(微积分II)课外练习题 期末考试题库
微积分II真题含答案
微积分II真题含答案微积分II真题含答案一、填空题(每题3分,共30分)1、函数的定义域是____________. 2、设,则________________. 3、广义积分的敛散性为_____________. 4、____________ . 5、若 . 6、微分方程的通解是____. 7、级数的敛散性为 . 8、已知边际收益R/(x)=3x2+1000,R(0)=0,则总收益函数R(x)=____________. 9、交换的积分次序= . 10、微分方程的阶数为_____阶. 二、单选题(每题3分,共15分)1、下列级数收敛的是()A,B,C,D,2、,微分方程的通解为()A,B,C,D,3、设D为:,二重积分=()A, B, C, D,0 4、若A, B, C, D, 5、=()A, 0 B, 1 C, 2 D, 三、计算下列各题(本题共4小题,每小题8分,共32分)1.已知2. 求,其中D是由,x=1和x轴围成的区域。
3. 已知z=f(x,y)由方程确定,求4.判定级数的敛散性. 四、应用题(本题共2小题,每小题9分,共18分):1. 求由和x轴围成的图形的面积及该图形绕x轴旋转所得旋转体的体积。
2. 已知x表示劳动力,y表示资本,某生产商的生产函数为,劳动力的单位成本为200元,,每单位资本的成本为400元,总1/ 14预算为*****元,问生产商应如何确定x和y,使产量达到最大?。
五、证明题(5分)一、填空题(每小题3分,共30分)1, 2,3,发散4,0 5,6,y=cx 7,收敛8,R(x)=x3+1000x 9,10,2 二、单选题(每小题3分,共15分)1,B 2,B 3,C 4,C 5,D 三、计算题(每小题8分,共32分)1、解:令2、3、整理方程得:4、先用比值判别法判别的敛散性,(2分)收敛,所以绝对收敛。
(交错法不行就用比较法) (8分)四、应用题(每小题9分,共18分)1、解:2、解:约束条件为200x+400y-*****=0 (2分)构造拉格朗日函数,(4分),求一阶偏导数,(6分)得唯一解为:,(8分)根据实际意义,唯一的驻点就是最大值点,该厂获得最大产量时的x为40,y为230. (9分)五、证明题(5分)证明:设对等式两边积分,得:(2分)(4分)解得:题设结论得证。
江西财经大学微积分II期末考试题及答案
x
b
其中
F () lim F ( x)
x
f ( x)dx f ( x)dx
c
c
f ( x)dx
其中 c 为任意取定的常数. 当且仅当右端两个广义积分都收敛时,左端的广义积分 才收敛,否则发散.
9.已知f ( x) sin x,则 f ( x)dx •••••• • ;
10.• lim 若
x 0
x
0
arctan xdx x
2
1,则 •••••• ;
x 2n 1 x 12.• e ,则级数 若 ••••••• ; n! n 0 n ! n2 n
五、(1).求 xy 2 dxdy, 其中D ( x, y) |1 x 2 y 2 2
D
(2).求 ( x x 2 y 2 )d,其中D : x 2 y 2 1.
六、1.设D ( x, y ) | ( x 1) y 1, y 2 x, x 2 ,
2 1 1 x2 II : 1.• 2. 3. x x 1 dx•••• •0 4 x 2 dx ••••• •0 arctan xdx
y 2Z 2Z 四、设z arctan ,求dz和 2 2 1. x x y
2.•求分程y y y x的通解
2Z 3.设z f ( x y, x sin y ),求dz和 xy
练习思考题
一、填空题
1.• z x 2 2 x y 2的驻点为•••••••••• 求 ;
2.已知f ( x)的弹性函数为 x,则f ( x) •••••• • ;
微积分II期末模拟试卷3套含答案.docx
17、求曲线x3-xy+y3=l(x>0,y>0)±的点到坐标原点的最长距离和最短距离。
微积分II期末模拟试卷3(满分:100分;测试时间:100分钟) 三、填空题(3X5=15)
『1-/_“2
1、曲线<X=Joe du在(0, 0)处的切线方程为
y = t2ln(2-r2)
”=i2”=]n
(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与入有关
7、曲线y=y(x)经过点(0,-1),且满足微分方程y'+2y = 4兀,则当兀=1时,y=()
(A)0;(B)l;(C)2;(D)4
8、设q,是圆域D = {(x,y)|/+y2 si}的第£象限的部分,记Ik=^{y-x)dxdy.则
(A)/, >/2>1.(B) l>/j >/2.(C)I2>/j >1.(D)l>/2>/,.
五、计算题(5X10=50)
12、计算下列定积分
1
(1)j2|ycsi:兀力.(2)求y=cos x - sin x, y = 0(0 < x < —) ^ x轴旋转的旋转体体积
12、计算下列多元微积分
(1)设z=f[x2-y.(p{xy)],其中f(〃,0具有二阶连续偏导数,(p(u)二阶可导,求
y = Jo ln(l + u)du
dx cf
2te= 0< dt
x —o = °
16、设非负函数y = y(x)(xnO)满足微分方程尢y"-y+2 = 0,当曲线y = y(x)过原点
时,其与直线x = \&y =0围成平面区域Q的面积为2,求D绕y轴旋转所得旋转体体积。
微积分Ⅱ期末考试试卷总集
微积分Ⅱ期末考试试卷1一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.若c x g dx x f +=⎰)()(,则=⎰dx x xf )(cos sin ________.2.极限=⎰→xtdt xx 020cos lim________.3.已知xy z =而)tan(t s x +=,)cot(t s y +=则=∂∂sz________. 4.设{}10,10),(≤≤≤≤=y x y x D 则=⎰⎰Dxy d xe σ________.5.微分方程02=+''y y 的通解为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1.设⎰=+21xdx ________.A. c x +arctanB. c x x +++)1ln(2C. c x ++212D. c x ++)1ln(212.2.下列积分值为0的是________.A. ⎰+∞+0211dx xB. ⎰-1121dx xC. ⎰-++ππdx x x x )cos 1sin (2D. ⎰--1121dx x . 3.函数),(y x f z =在点),(00y x 处可微的充分条件是函数在该点处________. A.有极限 B.连续 C.偏导数存在 D.有连续的偏导数. 4. =⎰⎰10),(xdy y x f dx ________.A. ⎰⎰1010),(dx y x f dy B. ⎰⎰y dx y x f dy 01),(C. ⎰⎰100),(y dx y x f dy D. ⎰⎰101),(ydx y x f dy .5.下列级数收敛的是________.A .∑∞=-+-12123n n n n B. nn n n∑∞=+1)1(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n n D. ∑∞=1!n n nn .三、(计算题请写出主要步骤及结果,每小题6分,共18分.) 1. ⎰dx e x x 2 2. ⎰+41)1(x x dx 3.请给出第七章(定积分)的知识小结.四、(请写出主要计算步骤及结果,6分.) 已知方程z x e z xy +=+ 确定函数),(y x z z = 求dz . 五、(请写出主要计算步骤及结果,8分.)求⎰⎰++Dd y x σ)1ln(22,其中D 为圆周122=+y x 围成的区域.六、(请写出主要计算步骤及结果,8分.) 求初值问题的解⎩⎨⎧=+==0)2(0x y dx y x dy 七、(请写出主要计算步骤及结果,8分.) 求幂级数∑∞=-0)1(n nnnx 的收敛半径,收敛区间.并求∑∞=03n nn的和. 八、(请写出主要计算步骤及结果,8分.)求由2x y =与2y x =所围成的平面图形的面积,并求此平面图形分别绕x 轴,y 轴旋转所成的体积.九、经济应用题(请写出主要计算步骤及结果,8分.)某厂生产某种产品的生产函数为y x Q 2005.0=,若甲、乙两种原料的单价分别为1万元和5万元,现用150万元购原料,求两种原料各购多少时,能使生产量最大?最大生产量为多少? 十、证明题(请写出推理步骤及结果,6分.)设)(x f 在],[b a 上连续,在),(b a 内可导,且有M x f ≤'(及0)(=a f ,试证:⎰-≥b adx x f b a M )()(22微积分Ⅱ期末考试试卷1答案一、1.c x g +-)(cos 2.1 3.)(csc )tan()cot()(sec 22t s t s t s t s ++-++4.2-e5.x c x c y 2sin 2cos 21+= 二、1.B 2.C 3.D 4.D 5.D三、1. ce xe e x dxe xe e x xde e x dx xe e x de x dx ex xxxx x x x x x x x x++-=+-=-=-==⎰⎰⎰⎰⎰2222222222222. x t =2t x =⎰⎰⎰=-=+=+-=+=+41212121234ln 221ln 232ln 21ln 2)111(2)1(2)1(t t dt t t t t tdt x x dx四、z x e z xy z y x F +-+=),,(z x x e y F +-= x F y = z x z e F +-=111-+--=---=-=∂∂++z xy zxy y e e y F F x z zx z x Z x 11-+=--=-=∂∂+z xy xe x F F y z z x Z y dy z xy xdx z xy z xy y dy y z dx x z dz 11-++-+--=∂∂+∂∂=五、⎰⎰⎰⎰+=++Drdr r d d y x 122022)1ln()1ln(πθσ⎥⎦⎤⎢⎣⎡+-+=+=⎰⎰⎰1022210221022201)1ln()1ln(21dr r r r r dr r d πθπ 1021021022)1ln(2ln )111ln(2ln r r dr r ++-=⎥⎦⎤⎢⎣⎡+--=⎰ππππ )12ln 2(2ln 22ln 2ln -=-=+-=ππππππ六、x y y 2=-'⎥⎦⎤⎢⎣⎡+⎰=⎰---c dx xe e y dx dxf )1()1(2[]c dx xe exx +=⎰-2[][]⎰⎰++-=+-=---c dx e xee c xde e x xxxx222x ce x +--=22因为00==x y 所以c =2 所求特解为)1(2--=x e y x七、111=+==+n na a R n n 当1±=x 时∑±nn )1(发散 收敛区间为)1,1(- 设∑∑∞=-∞===10)(n n n nnx x nxx S设∑∞=-=1)(n n nxx T则xx xdx nxdx x T n n x n n x n n x-====∑∑⎰∑⎰∞=∞=∞=-11)(012)1(1)(x x T -=所以2)1()()(x xx xT x S -==31=x 时 439431)311(31)31(320==-==∑∞=S n n n 八、31)(102=-=⎰dx x x S()dx x x V x ⎰⎥⎦⎤⎢⎣⎡-=10222)(ππ103=()ππ103)(10222=⎥⎦⎤⎢⎣⎡-=⎰dy y yV y九、解 )1502(005.0),,(2-++=y x y x y x F λλ 0001.0=+=λxy F x02005.02=+=λx F y ⎩⎨⎧==⇒25100y x01502=-+=y x F λ ==25*100*005.02Q 十、b a a x f a f x f x f <<-'=-=ξξ))(()()()(M x f ≤')()()(a x M x f -≤22)(212)()()(a b M a x M dx a x M dx x f baba b a-=-⋅=-≤⎰⎰dx x f dx x f b ab a⎰⎰≥)()(2)(2)(a b Mdx x f b a-≤⎰dx x f b a M b a⎰-≥)()(22微积分Ⅱ期末考试试卷 2一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.已知cos()z xy =,而()y x ϕ=可导,则dzdx=________. 2.若2()1f x xdx c x x =++⎰,则()f x =________.3.p ________时,广义积分22111(1)p dx x --⎰发散.4.若20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑,则函数2sin x 的麦克劳林级数等于________. 5.微分方程0y ay y '''+-=的通解为12x x y c e c e -=+,则a =________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.)1.设xy z xe =,则'x z =________.A.xy xyeB.xy e x 2C.xy eD.xy e xy )1(+ . 2.=________.A.x c + B. arcsinc +C.c +3x c +.3.下列结论正确的个数是________.(1)11230x dx x dx <⎰⎰ (2)22211x e e dx e ---<<⎰(3)cos 0x xdx ππ-=⎰(4)2221[sin ]2sin x t dt x x '=⎰A.0B.1C.2D.3. 4.1200(cos ,sin )d f r r rdr πθθθ=⎰⎰ ________.A. 110(,)dy f x y dx ⎰⎰ B. 10(,)dx f x y dy ⎰⎰C. 110(,)dx f x y dy ⎰⎰ D. 1(,)dy f x y dx ⎰⎰.5.微分方程1y y '-=的通解是________. A .x y ce = B. 1x y ce =+ C .1x y ce =- D. (1)x y c e =+.三、(请写出主要计算步骤及结果,每小题8分,共16分.) 1. arctan x xdx ⎰ 2. 41⎰.四、(请写出主要计算步骤及结果,8分.)已知方程sin xy x z yz += 确定函数(,)z f x y = ,求dz . 五、(请写出主要计算步骤及结果,8分.)求2()Dx y d σ-⎰⎰,其中D 是由直线2y =,y x =及2y x =围成的区域.六、(请写出主要计算步骤及结果,8分.)求由y =与3y x =所围成的平面图形的面积,并求此平面图形绕x 轴旋转所形成的立体的体积.七、(请写出主要计算步骤及结果,8分.)判断级数n ∞=的敛散性.八、(请写出主要计算步骤及结果,8分.)求幂级数1(1)nn n e x n∞=-∑的收敛半径,收敛区间.九、经济应用题(请写出主要计算步骤及结果,8分.)某工厂生产A 、B 两种产品,单位成本分别为2元和14元,需求量分别为1Q 件和2Q 件,价格分别为1P 元和2P 元,且满足关系式1214()Q P P =-,2128048Q P P =+-,试求A 、B 两种产品的价格1P ,2P ,使该厂总利润最大(要求利用极值的充分条件). 十、证明题(请写出推理步骤及结果,6分.) 设)(x f 为连续函数,试证:()()(())x x tf t x t dt f u du dt -=⎰⎰⎰.微积分Ⅱ期末考试试卷2答案一、填空题(每小题3分,共15分)1.sin[()][()()]x x x x x ϕϕϕ'-+2. 21x x ⎛⎫ ⎪+⎝⎭ 3.1p ≥4.()()1212121,(2)!n n n n x x n --∞=-∈-∞+∞∑ 5.0二、单项选择题(每小题3分,共15分) 1.D 2.C 3.B 4.B 5.C三、(请写出主要计算步骤及结果,每小题8分,共16分.)1.2222222221arctan arctan (1211arctan (32211111arctan (5221111arctan arctan 22211(1)arctan (822x xdx xdx x x x dx x x x x dx x x x x x c x x x c ==-++-=-+=-++=+-+⎰⎰⎰⎰分)分)分)分)2.44114141(2(42ln(1(632ln(82===+=⎰⎰⎰分)分)分)分).四、(请写出主要计算步骤及结果,8分.)sin (1sin cos (4sin (5cos (6cos sin (8cos cos x y z x z y z F xy x z yz F y z F x z F x z y F z y z x F x z yF z x z y F x z y y z x zdz dx dyx z y x z y=+-'''=+=-=-'∂+=-='∂-'∂-=-='∂-+-=+--分),,分)分)分)分)五、(请写出主要计算步骤及结果,8分.)图(1分)22222220222303420()()(31()(5231()(68211()(7881(8yy Dy y x y d dy x y dx x xy dyy y dy y y σ-=-=-=-=-=-⎰⎰⎰⎰⎰⎰分)分)分)分)分)六、(请写出主要计算步骤及结果,8分.)图(1分)130341201260)(321()(4345(512](75(814x S x dxx x V x dx ππ=-=-==-=⎰⎰分)分)分)分)分)七、(请写出主要计算步骤及结果,8分.)1(4n =分)由比较判别法的极限形式知级数3121,n n n∞∞==∑敛散性相同,因为3121,n n∞=∑所以0n ∞=收敛。
近十份大学微积分下期末试题汇总(含答案)
浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷一 、填空题(每小题5分.共25分.把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a =,3b =,3a b ⋅=,则a b += . 3.设(,)f u v 可微.(,)yxz f x y =,则dz = .4.设()f x 在[0.1]上连续.且()f x >0, a 与b 为常数.()}{,01,01D x y x y =≤≤≤≤,则()()()()Daf x bf y d f x f y σ++⎰⎰= .5.设(,)f x y 为连续函数.交换二次积分次序2220(,)x x dx f x y dy -=⎰⎰.二 、选择题(每小题5分.共20分.在每小题给出的四个选项中只有一个是符合题 目要求的.把所选字母填入题后的括号内)6.直线l 1:155121x y z --+==-与直线l 2:623x y y z -=⎧⎨+=⎩的夹角为 (A )2π . (B )3π . (C )4π . (D )6π. [ ] 7.设(,)f x y 为连续函数.极坐标系中的二次积分cos 2d (cos ,sin )d f r r r r πθθθθ⎰⎰可以写成直角坐标中的二次积分为(A)100(,)dy f x y dx ⎰⎰ (B)100(,)dy f x y dx ⎰⎰(C)10(,)dx f x y dy ⎰⎰(D)10(,)dx f x y dy ⎰⎰[ ]8.设1, 02()122, 12x x f x x x ⎧≤≤⎪⎪=⎨⎪-≤⎪⎩ ()S x 为()f x 的以2为周期的余弦级数.则5()2S -=(A )12. (B )12-. (C )34. (D )34-. [ ] <9.设,)(0,0),(,)0, (,)(0,0),x y f x y x y ≠==⎩则(,)f x y 在点O (0,0)处(A )偏导数存在.函数不连续 (B )偏导数不存在.函数连续(C )偏导数存在.函数连续 (D )偏导数不存在.函数不连续 [ ] 三、解答题10.(本题满分10分)求曲线L :2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在其上点M (1.-1.2)处的切线方程与法平面方程.11.(本题满分10分)设F 可微.z 是由F (x y -,,)0y z z x --=确定的可微函数.并设23F F ''≠.求z zx y∂∂+∂∂. 12.(本题满分10分)设D 是由曲线3y x =与直线y x =围成的两块有界闭区域的并集.求2[e sin()]d xDx y σ++⎰⎰. 13.(本题满分10分)求空间曲线L :222920335x y z x y z ⎧+-=⎨++=⎩上的点到xOy 平面的距离最大值与最小值.14.(本题满分10分)设平面区域D ={}(,)01,01x y x y ≤≤≤≤.计算二重积分22 1 d Dx y σ+-⎰⎰.15.(本题满分5分)设当y >0时(,)u x y 可微.且已知222222(,)()(2)y x du x y xy dx x y y dy x y x y=++-++++. 求(,)u x y .浙江大学2007-2008学年春季学期《微积分II 》课程期末考试试卷答案一、填空题(每小题5分.共25分) 1.231421=-++=d .2.22()()2496a b a b a b a b a b +=+⋅+=++⋅=++=3.()()dy xy f x x f dx y y f yx f dz x y x y 121211ln ln --'+⋅'+'+⋅'=4.()()()()()()()()⎰⎰⎰⎰++=++=D Dd x f y f x bf y af d y f x f y bf x af I σσ. ()()⎰⎰+=+=+=∴Db a I b a d b a I 21,2σ.5.()()2220111,,x x dx f x y dy dy f x y dx --=⎰⎰⎰⎰或 ()0111,dy f x y dx -⎰⎰或 ()1101,dy f x y dx -⎰⎰.二、选择题(每小题5分.共20分) 6.选(B ).l 1的方向向量{}1,2,1-.l 2的方向向量{}2,1,1--.{}{}3,2163662,1,11,2,1cos πθθ===--⋅-=.7.选(D ). 积分区域(){}0,,22≥≤+=y x y x y x D .化成直角坐标后故知选(D ).8.选(C ). 511111113()()()((0)(0))(1)222222224S S S f f -=-==-++=+=.9.选(A ). ()()0000,0lim0,0,00x y x f f x→-''===.偏导数存在. 取kx y =.()4411lim,lim kk kk kx x f x x +=+=→→随k 而异.所以不连续.三、解答题(10~14每题10分.15题5分.共55分) 10.由L .视x 为自变量.有⎪⎩⎪⎨⎧=-+=++.0226,0264dx dz z dx dy y x dx dz z dx dy y x 以()()2,1,1,,-=z y x 代入并解出dxdzdx dy ,.得 87,45==dx dz dx dy . 所以切线方程为87245111-=+=-z y x .法平面方程为()()()57112048x y z -+++-=.即0127108=-++z y x .11.133212232332,,1y x z z F F F F F F F F z z z z x F F F y F F F x y F F ''''''''--+∂∂∂∂=-=-=-=-+==''''''''∂-+∂-+∂∂-.12.D 在第一象限中的一块记为D 1.D 在第三象限中的一块记为D 2.()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++++=++2122122sin sin sin D D DD x D x x d y x d y x d e d e d y x eσσσσσ.32222312101xx x x x xxxD D e d e d dx e dy dx e dy σσ-+=+⎰⎰⎰⎰⎰⎰⎰⎰ ()()()()222210103333011x x x x x x e dx xx e dx x x e dx xx e dx -=-+-=-+-⎰⎰⎰⎰()2111130021()112x u u u u x x e dx e du ue du e ue e e e =-=-=---=--=-⎰⎰⎰()()()()3312101sin sin sin sin x x xxD D x y d x y d dx x y dy dx x y dy σσ-+++=+++⎰⎰⎰⎰⎰⎰⎰⎰()()()()103301cos cos cos cos x x x x dx x x x x dx -⎡⎤⎡⎤=-+-+-+-+⎣⎦⎣⎦⎰⎰ ()()()()13301cos cos cos cos 0x x x x dx x x x x dx ⎡⎤⎡⎤=-+-+++-+=⎣⎦⎣⎦⎰⎰ 所以.原式2-=e .13.L 上的点到平面xoy 的距离为z .它的最大值点.最小值点与2z 的一致.用拉格朗日乘数法.设()()()53329,,,,2222-+++-++=z y x zy x z z y x F μλμλ.求偏导数.并令其为零有:20F x x λμ∂=+=∂.1830F y x λμ∂=+=∂. 2430F z z z λμ∂=-+=∂.22920Fx y z x∂=+-=∂ . 3350Fx y z μ∂=++-=∂ . 解之得两组解()()1215,,(1,,1);,,(5,,5)33x y z x y z ==--. 所以当31,1==y x 时.1=z 最小;当35,5-=-=y x 时.5=z 最大.14.将分成如图的两块.41的圆记为D 1.另一块记为D 2()⎰⎰⎰⎰--=-+DD d y x d y x 1222211σσ+()⎰⎰-+2122D d y x σ ()()()σσσd y x d y x d y xD DD ⎰⎰⎰⎰⎰⎰-+--++--=11111222222()()()()1222211122220211211211()43343D Dx y d x y d d r rdr dy xy dx πσσθππ=--++-=-++-=+-+=-⎰⎰⎰⎰⎰⎰⎰⎰15.由()222222,()(2)y x du x y xy dx x y y dy x y x y =++-++++.有222xy y x y x u ++=∂∂.从而知()()y y x y x y x u ϕ++=2221arctan,.又由y y x yx x y u 2222+++-=∂∂.推知 ()22222221()xx y x y y x y y x x y y ϕ-'++=-++++. ()()22,y y y y C ϕϕ'==+所以.()2221,arctan2x u x y x y y C y =+++. 注:若用凑的办法亦可:222222()(2)y x xy dx x y y dy x y x y++-++++()()22222211221()ydx xdy ydx xdy xy ydx xdy ydy d xy dy x x y y y--=+++=++++ ()221(arctan)2x d xy y y =++ 所以.()C y y x y x y x u +++=22221arctan,. ()()u f u F ='.浙江大学2006–2007学年春季学期 《 微积分Ⅱ 》课程期末考试试卷开课学院: 理学院 考试形式:闭卷 考试时间: 年 月 日 所需时间:120 分钟 考生姓名: _____学号: 专业: ________一、 填空题(每小题5分.满分30分) 1. 直线63321-==+z y x 在平面0522=--+z y x 上的投影直线方程为.2. 数量场2),,(zye z y x g x +=在)0,3,1(P 点的梯度为 .=u函数)ln(),,(22z y x z y x f ++=在P 点沿u的方向导数为 .3. 设ϕϕ,),2,3(),,(f y x x u u x f z+== 具有二阶连续偏导数.则=∂∂∂yx z 2.4. 设}1,11|),{(3≤≤≤≤-=y x x y x D.则=+⎰⎰+Dy xy x e y x x d d )(222.5. 已知曲面1=z y x 与椭球面193222=++z y x 在第一卦限内相切.则切点坐标为 .公共切平面方程为.6. 设函数⎪⎩⎪⎨⎧<≤<≤=121,210,)(2x x x x x f .∑∞=+=10cos 2)(n n x n a a x S π.其中,2,1,0,d cos )(210==⎰n x x n x f a n π.则.)27(=S二、 (满分10分)求直线 ⎩⎨⎧=-++=-+-022012z y x z y x 绕x 轴旋转一周所得的旋转曲面方程.1002 22dd x yex y.三、(满分10分)计算⎰⎰-四、 (满分15分)已知),(y x z z =由方程013=++zxe z y 确定.试求1022==∂∂y x x z.五、 (满分15分)设平面),,(,1:z y x d y x =+π为曲线⎪⎩⎪⎨⎧=++=++014222z y x z y x 上的点),,(z y x 到平面π的距离.求),,(z y x d 的最大.最小值 .六、 (满分15分)如图是一块密度为ρ(常数)的薄板的平面图形(在一个半径为R 的半圆直 径上拼上一个矩形.矩形的另一边为h ),已知平面图形的形心位于原点(0, 0). 试求:1. 长度 h ;2.薄板绕x 轴旋转的转动惯量.七、 (满分5分) 求证:当0,1≥≥s t 时.成立不等式 s e t t t ts +-≤ln .参考解答:一.1.⎩⎨⎧=--+=+-0522043z y x z y x ; 2. 21},0,,3{e e ;3. )3(2))(3(2222122222122212ϕϕϕϕϕϕ''+''⋅'+'+'⋅'⋅''+'''f f f ; 4.;32 5. ;03313,3,1,31=-++⎪⎭⎫⎝⎛z y x 6. 83.二.直线:t z t y t x -=-==1,1,曲面上点→),,(z y x P 直线上点00000001,1),,,(x z x y z y x -=-=22222020220)1()1(,,x x z y z y z y x x -+-=+⇒+=+=则旋转曲面方程:222)1(2x z y -=+三.⎰⎰10222d d xy ex y -⎰⎰⎰-==--212212220142)d 41(d d y y e x e y 2y yy2120202020221d d d d 212212212212212------=-+=+=⎰⎰⎰⎰e y e ey y e e y y e yy y y y四.,1)1,0(-=z ,032=∂∂++∂∂⋅x z xe e x z z y z z ex z y x 3110-=∂∂∴== ,02632222222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂⋅+∂∂⋅x z xe x z xe x z e x z z y x z z y z z z 2102294ex zy x =∂∂∴== 五.|1|21),,(-+=y x z y x d )14()()1(2222-++++++-+=z y x z y x y x L μλ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++='=±===++='==+='-==⇒≠=++-+='=⇒==++-+='014,01302,002)1(20,002)1(22223231221z y x L z y x z y x L x z L xz x y y y x L x y x L z y xμλμλμμλλμμλ,无解最小距离:2236),,(323131-=-d .最大距离:2236),,(323131+=--d六.形心:01,0=⇒==⎰⎰⎰⎰DDxdxdy xdxdyx y σ即0d cos d d d 220=⋅+⎰⎰⎰⎰---ππθθRhRRr r r y x xR h R h R 320312)21(232=⇒=⋅+-⋅ ⎰⎰=Dxdxdy y I 2302202)832(d θsin d d d 22R R h r r r y y x RhRR πθππ+=⋅+=⎰⎰⎰⎰--- 七.设0)0,1(,ln ),(=-+-=F ts e t t t s t F s.ln ,0),(t s e t t e s t F s s s ==⇒=-=' 且对固定的1>t . 当,0),(,ln 0<'<<s t F t s s 当,0),(,ln >'>s t F t ss所以.t s ln =取得最小值且为0.则 0),(≤s t F .即s e t tt ts +-≤ln1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________. 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( c ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( b ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值 8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( a).(A)123I I I >> (B)213I I I >> (C)123I I I << (D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+=10、设∑∞=12n na收敛.则∑∞=-1)1(n nna ( d ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 2、、)32,31(-. 4、1. 5、"6'0y y y -+=. 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。
2019《微积分II》期末复习题一 - 参考答案
.
M
gradu
u i x
u y
j
u k z
u x
,
u y
,
u z
2 9
,
4 9
,
4 9
u
2x
x x2 y2 z2
u
2y
y x2 y2 z2
u
2z
z x2 y2 z2
gradu M
S
曲面方程, x用 x替换, 曲面边界方程不变化.
(1)被积函数f ( x, y, z)关于x是奇函数 (即f ( x, y, z) f ( x, y, z)),
则 f ( x, y, z)dS 0;
S
(2)被积函数f ( x, y, z)关于x是偶函数 (即f ( x, y, z) f ( x, y, z)),
x2 y2 1以及平面z 0围成.
法一: 积分区域为圆柱去掉圆锥的部分,
z
用先一后二法
V
:
0
z
x2 y2
Dxy : 0 x2 y2 1
I
2
d
1
rdr
r z r 2dz
0
0
0
2 1 r 3 1 z2 r dr 1 r 5dr
0 0
1 x cos 2x 1
cos 2xd 2x
0 2 0
1 1 sin 2x
2
0
1
11/24
三、设z
xn
f
微积分二期末练习1
微积分二期末练习14-15(1)一、 单项选择题(每题3分,共15分) 1、已知413ln I xdx =⎰,4223(ln )I x dx =⎰,则1I 与2I 的大小关系是( )A 、12I I <B 、12I I >C 、12I I =D 、不能确定 2、设dt t x f x ⎰=212sin )(,则()f x '=( )A 、4sin x B 、2sin 2x x C 、2cos 2x x D 、4sin 2x x 3、若广义积分11pdx x +∞⎰收敛,则p 应满足( ) A 、01p << B 、01p <≤ C 、1>p D 、1p ≥4、下列级数收敛的是( )A 、∑∞=122n nnB 、∑∞=+11n n nC 、∑∞=-+1)1(1n nnD 、∑∞=-1)1(n nn5、微分方程0y y ''+=满足0|0x y ==,0|1x y ='=的解是( ) A 、12cos sin y c x c x =+ B 、sin y x = C 、cos y x = D 、sin y c x =二、填空题(每题3分,共15分) 1、22(x -+=⎰.2、设yxz =,则全微分=dz . 3、交换积分次序()10,y eedy f x y dx =⎰⎰ .4、=⎰⎰Ddxdy ,其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三角形区域.5、将函数2x e 展开成x 的幂级数 .三、解答题(每题6分,共48分)1、计算定积分40cos 2x xdx π⎰. 2、计算定积分4⎰. 3、已知()22ln yx x z ++=,求x z∂∂,2z x y∂∂∂.4、设f 具有一阶偏导数,22(,)xyu f x y e =-,求,u u x y∂∂∂∂. 5、设函数(,)z z x y =由方程3331z xy z +-=所确定,求,z z x y∂∂∂∂. 6、计算二重积分()Dx y dxdy +⎰⎰,其中D 是由y x =-,1y =,0x =所围成的平面区域.7、求幂级数nn nn x n )3(3)1(1--∑∞=的收敛域. 8、求()sin cos x y x y e '-=满足1)0(=y 的解. 四、综合题(每题8分,共16分)1、 已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕X 轴旋转一周所成的旋转体体积.2、 假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别11182p Q =-,2212p Q =-,其中1p 、2p 分别表示该产品在两个市场的价格(单位:万元/吨),1Q 、2Q 分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这种产品的总成本函数是25C Q =+,其中12Q Q Q =+.试确定两个市场上该产品的销售量和价格,使该企业获得最大利润.五、证明题(本题6分) 设函数22x y z e +=,证明:0=∂∂-∂∂yz x x z y.答案:一、 ADCDB二、1. 4π 2.21xdx dy y y- 3. ()ln 1,ex dx f x y dy ⎰⎰4. 15. 0(,)2!nnn x x n ∞=∈-∞+∞⋅∑, 三、1、11()242π- 2、2833、32222()zz y x y xx y -∂∂==-+∂∂∂4、121222xy xy u u xf ye f yf xe f x y∂∂=+=-+∂∂, 5、22,11y x z z F F z y z xx F z y F z∂∂=-==-=∂-∂- 6、1()6Dx y dxdy +=⎰⎰ 7、(0,6]收敛域为 8、sin (1)xy ex =+四、综合题(每题8分,共16分) 1、12164S V V V π==-=(1) (2)2、当两种产品价格分别为10万/吨、7万/吨,销售量分别为4吨、5吨时,利润最大。
微积分——期末考试模拟试卷以及答案
《微积分II 》练习题一、 填空题1.函数()y x z +=ln 1的定义域是_______________ 。
2.函数(,)f x y =,则定义域为 。
3. 。
4.设(,)(1)arcsin f x y xy y =+-(,1)x f x = _______ 。
5.设222lny x e z x +=,则=)1,1(dz 。
6.函数yx z =在(2,1)点处的全微分为_______________。
7.22()Dxyf x y dxdy +=⎰⎰。
(其中D :由曲线221y x y ==与所围成)。
8. 改变积分次序210(,)xx dx f x y dy ⎰⎰= _________ 。
9.微分方程'sin cos x y y x e -+=的通解是 。
10.微分方程0=+'y y 满足初始条件10==x y的特解 。
11.计算_________________sin 21231=⎰⎰-dy y dx x12.微分方程02'"=+-y y 的通解是 。
13.差分方程02312=+-++t t t y y y 的通解是 。
14.计算极限.______________________)sin(42lim 00=+-→→xy xy y x二、选择题),(,),( 22=-=-y x f y x yxy x f 则1.极限).(2lim22)0,0(),(=+→yx xyy x(A );0 (B );1 (C );2 (D )不存在。
2.二元函数z=f(x,y)在点),(00y x 处各偏导数存在是全微分存在的( ) (A )充分条件 (B )必要条件 (C )无关条件 (D )充要条件 3.设 f(x,y) 在点(a,b )处的偏导数存在,则=--+→xb x a f b x a f x ),(),(lim 0( )(A) 0 (B) ),2(b a f x ' (C) ),(b a f x ' (D) ),(2b a f x ' 4.若)y , (x f z =在点P (x ,y )处x z ∂∂,yz ∂∂都存在,则下列结论正确的是( )。
微积分二期末考试的几点说明及试题
1、 本学期期末考试考察的知识点如下:第七章二重积分(二重积分的概念,几何意义,直角坐标系下的交换积分次序,直角坐标与极坐标系下的二重积分计算)约占30%;第八章无穷级数(无穷级数的概念,几何级数,P-级数,正项级数的比较判别法和比值判别法,任意项级数的敛散性,幂级数的收敛半径及收敛域,求幂级数的和函数,间接展开以1,,ln(1)1x e x x+-为主)约占40%; 第九章微分方程(微分方程及其解的概念,一阶分离变量,齐次和一阶线性微分方程求解(通解和特解),二阶常系数齐次,非齐次微分方程的通解(三角型的不要求)。
约占30%.2、样题供参考(难度、题型)一、填空题:(每小题3分,共30分)1、若D :224x y y +≤,则Dd σ=⎰⎰ 。
或D :9122≤+≤y x ,则⎰⎰=D dxdy 。
2、交换积分次序110(,)y dy f x y dx =⎰⎰ 。
或660cos yx dy dx x ππ=⎰⎰ 。
3、若级数1n n u ∞=∑的前n 项和1n n s n =+,则n u = ,1n n u ∞=∑= 。
4、级数112n n n x n ∞=⋅∑的收敛域为 。
5、级数1(1)n n u ∞=-∑收敛,则lim n n u →∞= 。
6、级数123nn ∞=⎛⎫= ⎪⎝⎭∑ 。
或11!n n ∞==∑ 。
7、方程4cot 2=-'y x y 满足条件2)0(=y 的特解是 。
8、微分方程03512=+'-''y y y 的通解为 。
9、方程x xe y y y 396=+'-''的一个特解形式为=*y 。
10、若微分方程60y y ay '''-+=的通解为2412x x y C eC e =+,则a = 。
二、计算下列二重积分1、求22()D I x y dxdy =+⎰⎰,其中{}22(,)4D x y x y =+≤。
微积分II期末练习题1答案
《微积分II 》练习题1答案一、 填空题1.1>+y x2.{(,)0,0}x y y x x y ≤≥+> 3. 4. 1 ; 5 .=)1,1(dz 2211(ln 2)22e dx e dy ++ 6.dz=dx+2ln2dy 7. 0 8.dx y x f dy y y ⎰⎰10),( ; 9.sin ()x y x c e -=+ 10. x e y -=二、 选择题1. D2.B3. D4.D5.B6.B7.D8.C三、解答题1.222222)sin(0y x y x y x y x +≤+≤x yx xy x 2122≤+≤ ---------(4分) 且.0lim 0=→x x ---------(5分) 所以0)sin(lim 22200=+→→y x y x y x ---------(6分) 2、解:ln(2)2u x x y x x y∂=-+∂---------------(2’) 22u x y x y∂-=∂- -----------------------------------(4’) 2222(2)24(2)(2)u x y x y y x x y x y ∂--+==∂∂-- -------(6’) 3、两边求全微分02)(=+---dz e dz xy d e z xy -------------- (3’)02)(=+-+--dz e dz xdy ydx e z xy ----------------------(4’)2)(-+=-z xy e xdy ydx e dz 层 -----------------------------------(6’)5. 解 设,,x y v xy u == 则),(v u f z = -------------- (1分) 则),()3(.433a d xyz z d =-由,033332=---xydz xzdy yzdx dz z ,22dy xy z xz dx xy z yz dz -+-=,2xy z yz x z -=∂∂.2xy z xz y z -=∂∂222)()2())((xy z x y z z yz xy z y z y z --∂∂⋅--∂∂+=y x z ∂∂∂222222)()2())((xy z x xy z xz z yz xy z xy z xz y z ---⋅---+=.)()2(322224xy z y x xyz z z ---=x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂,2v u f x y yf -=22x z ∂∂v f x y 32+⎪⎭⎫ ⎝⎛-=uv uu f x y yf 2⎪⎭⎫ ⎝⎛-vv vu f x y yf 22x y -vv uv uu v f x y f x y f y f x y x z 4222232222+-+=∂∂y x z∂∂∂2⎥⎦⎤⎢⎣⎡++uv uu f x xf y 1v f x 21-.12⎥⎦⎤⎢⎣⎡+-vv vu f x xf x y .11),(2x y y y x f -+=6.解:dxdy x x I D⎰⎰=sin ⎰⎰=x dy x x dx 010sin ----------------------( 2分 ) ⎰⋅=100sin dx x y x x -------------( 3分 ) ⎰=10sin xdx ----------------------( 4分7.解:e e x dx e dx e dy xe dx dxdy xe x x xy xy D xy 1)()1()(101001011010=+=-===----⎰⎰⎰⎰⎰⎰(5’) 8. 解:⎰⎰⎰⎰-+-=D r D y x rdrd e dxdy eθ22)2( ---------------------------( 2分 ) ⎰⎰-=30202rdr e d r πθ --------------------------------( 3分) ⎰--=πθ2003)21(2d e r ---------------------------( 4分 ) ).1(9--=e π -------------------------------------( 5分 ) 9.2323x 023232323(1)(1)(1)(1)111123235y 0C 56y 11151123623323250x xdx y y dyx xdx y ydyx x C y y x x y y y y x x =17,将原始变形得到:两边积分得到:即:(4)将=代入上式,即得:=()从而在初始条件:=的特解为:等价于:-+=++=+++=+----------------------------++=++--=---------蝌7()--- 10.将方程标准化为,1ln 1xy x x y =+'于是 ⎪⎪⎭⎫ ⎝⎛+=⎰⎰⎰-C dx e x e y x x dx x x dx ln ln 1⎪⎭⎫ ⎝⎛+=⎰-C dx e x e x x ln ln ln ln 1.ln 21ln 12⎪⎭⎫ ⎝⎛+=C x x 由初始条件,1==e x y 得,21=C 故所求特解为.ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y 11.解:原方程可改写成 代入原方程得 .132vv uu v u f x y xyf f x f -+-=u f =122+-=x y x y dx dy 有设,x y u =,ux y =dx du x u dx dy +=dx du x u +,12+-=u u 122+-=u u dx du x 即xdx u du =-2)1(分离变量得两端积分得 则原方程通解为 12.解:这是一个贝努利方程。
微积分II期末模拟试卷三套及答案
微积分II 期末模拟试卷1(满分:100分;测试时间:100分钟) 一、填空题(3X5=15)1、幂级数∑∞=-112n n n n x 的收敛区间为__________2、由曲线23x y -=及直线x y 2=所围成平面区域的面积是____________ 3、改变⎰⎰--21222x x xfdy dx 的积分次序_______________________4、微分方程02=-'+''y y y 的通解=y5、设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于____________ 二、选择题(3X5=15) 6、定积分()dx ex x x⎰-+22的值是( )。
(A ) 0 ; (B ) 2 ; (C ) 2e 2+2; (D ) 26e7、一曲线在其上任意一点),(y x 处的切线斜率等于yx2-,这曲线是( ) (A)直线; (B)抛物线; (C)圆; (D)椭圆 8、设函数()xy f xyz =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 9、设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点.()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点10、设级数10nn na∞==∑,且()11n n n n a a ∞-=-∑收敛,则级数1n n a ∞=∑( )(A )收敛 (B ) 发散 (C )不定 (D ) 与n a 有关 三、计算题(5X10=50)11、计算下列定积分 (1)⎰-2234dx x x ;(2)求抛物线342-+-=x x y 及其在)3,0(-和)0,3(处的切线所围成图形的面积。
微积分二同济期末考试B答案
对外经济贸易大学 2004─2005学年第二学期《微积分(二)》期末考试试卷(B 卷)课程代码及课序号:CMP101-1-14学号: 姓 名: 成 绩: 班级: 课序号: 任课教师:一、选择题:(每题2分,共10分) 得分 1.设级数1nn a ∞=∑绝对收敛,则11(1)n n n a n ∞=+∑( ). A .发散 B .条件收敛 C .敛散性不能判定 D .绝对收敛 答案:D 答案:C 答案:B 答案:B5.设)(1x y 是方程)()(x Q y x P y =+'的一个特解,c 是任意常数,则该方程的通解是( ).A.()1P x dt y y e -⎰=+B.()1P x dxy y ce -⎰=+ C.()1P x dxy y e c -⎰=++D. ()1P x dx y y ce ⎰=+ 答案:B二、填空题:(每空2分,共10分) 得分 1.部分和数列{}n s 有界是正项级数∑∞=1n nu收敛的 条件。
答案:充要2. ._________)2sin 1(1lim 010=+⎰→x t x dt t x答案: 2e3.函数z =的定义域是 .答案:2{(,)|0,0}x y x y x y ≥≥≥, 4.),(y x f Z =的偏导数x z ∂∂及yz ∂∂在点),(y x 存在且连续是),(y x f 在该点 可微分的 条件。
答案:充分5.微分方程20y y '''-=的通解为 。
答案:212xc c e +⋅三、判断题:(每题2分,共10分,正确的划√,错误的划╳) 得分00005.(,)(,)(,)(,).().z f x y x y z f x y x y ==若在点偏导数存在,则在点一定连续答案:1 . √ 2. × 3. √ 4. × 5. ×四、计算题(每题6分,共48分) 得分1.设(,),w f x y z x yz =++2,.w w f x x z∂∂∂∂∂具有二阶连续导数,求解:,,(,)u x y z v x yz w f u v =++==令则1211(,)wf f yz f x y z x yz x∂'''=⋅+⋅=++∂2(,)yz f x y z x yz '+++ -------2分 21112222()f y x z f x y z f y f '''''''=++++ -------4分 2.方程(,)0(,),z zF x y z f x y F y x++==确定了函数其中为可微函数,求z z x y ∂∂∂∂, 解:122F zF F x x∂=-∂, ------- 1分 122F zF F y y ∂=-+∂, ------- 1分 1211F F F z y x∂=+∂ ------- 2分 所以2212121212,()()x yF yzF xzF xy F z z x x xF yF y y xF yF -+-∂∂==∂+∂+, ------- 2分 3.计算二重积分d ,Dx y σ⎰⎰其中D 为抛物线2y x =及直线2y x =-所围成的闭区域。
微积分二第六章课外练习题参考答案
《微积分二》第六章课外综合练习题(一)参考答案单项选择题:1.设2()()2x xF x f t dt x =-⎰,其中()f x 是连续函数,则2lim ()x F x →=( C )。
A .0B .(2)fC .2(2)fD .不存在提示:22222()()()lim ()limlim21xxx x x x f t dtf t dt xf x F x x →→→+==-⎰⎰22()2(2)2(2)f t dt f f =+=⎰。
2.设13201()()1f x x f x dx x =++⎰,则10()f x dx ⎰=( B )。
A.2π B. 3π C. π D. 4π提示:111320001()[()]1f x dx x f x dx dx x =++⎰⎰⎰111320001()1dx f x dx x dx x=+⋅+⎰⎰⎰ =11001arctan ()4x f x dx +⎰101()44f x dx π=+⎰所以10()3f x dx π=⎰3.设()(),()xaf x f t dt '⎰为连续函数则 为( C )。
A .)(t fB .)()(a f t f -C .)(x fD .)()(a f x f - 提示:利用积分上限的函数的性质。
4.设)(x f 为连续函数,则()()b baaf x dx f a b x dx -+-⎰⎰等于( A )A .0B .1C .b a +D .()b af x dx ⎰提示:()()()()t a b xba b babaaf a b x dx f t dt f t dt f x dx =+-+-=-==⎰⎰⎰⎰。
5.下列定积分中,其值为零的是( D )A .22sin x xdx -⎰ B .2cos x xdx ⎰ C .22()x e x dx -+⎰ D .22(sin )x x dx -+⎰提示:因为sin x x +是奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微积分Ⅱ》课外练习题一、选择:1. 函数在闭区间上连续是在上可积的. ( )A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.无关条件2. 二元函数定义域是. ( ) B.D.比较大小:. ( )B. C. D.不确定4.微分方程的阶数是. ( )A.5 B.3 C.2 D.15.下列广义积分发散的是. ( )A. B. C. D.6.是级数收敛的条件. ( )A.必要非充分 B.充分非必要 C.充分必要 D.无关7.如果点为的极值点,且在点处的两个一阶偏导数存在,则点必为的. ( )最大值点 B.驻点 C.最小值点 D.以上都不对微分方程是微分方程. ( )A.一阶线性非齐次 B. 一阶齐次 C. 可分离变量的 D. 一阶线性齐次9 .设是第一象限内的一个有界闭区域,而且。
记,,,则的大小顺序是. ( )C. D.10. 函数的连续区域是. ( )B.D.1. . ( )B. C. D.12.下列广义收敛的是. ( ) A. B. C. D..下列方程中,不是微分方程的是. ( ) A. B. C. D..微分方程的阶数是. ( )A.5 B.3 C.2 D.1.二元函数的定义域是. ( )A. B.C. D..设,则 ( )A. B. C. D..= 其中积分区域D为区域:. ( )A. B. C. D.18.下列等式正确的是. ( ) A.B.C.D.19.二元函数的定义域是. ( )A. B.C. D.20.曲线在上连续,则曲线与以及轴围成的图形的面积是.( )A.B.C.D.||.. ( )A. B. C. D.22.= 其中积分区域D为区域:. ( )A. B. C. D.23.下列式子中正确的是. ( )A. B.C. D.以上都不对24. 二元函数的定义域是 ( )A. B.C. D.25.二元函数在点的某一邻域内有连续的偏导数是函数在点的.( )A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.无关条件26.设,则. ( )A. B. C. D.. . ( )A. B. C. D.. = 其中积分区域D为区域:. ( )A. B. C. D.29. . ( )A. B. C. D.30. 则=. ( )A. B. C. D.31.函数的连续区域是. ( )A. B.C. D.32. . ( )A. B. C. D.33.差分方程的阶数为. ( )A. B. C. D.34.微分方程的阶数是 ( )A. B. C. D.35.函数的定义域是. ( )A. B.C. D.36.级数的部分数列有界是该级数收敛的. ( )A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.无关条件37. ,其中积分区域D为区域. ( )A. B. C. D.38.微分方程的阶是. ( )A.一阶 B. 二阶 C.三阶 D.以上均不对 39.. ( )A. B. C. D.40.二元函数的定义域是 ( )A. B.C. D.以上都不对41.设,则 ( )A. B. C. D.42.下列式子中正确的是. ( )A. B. C. D.以上都不对43., ( )A. B. C. D.44.微分方程是. ( )A.一阶线性非齐次微分方程 B.一阶齐次微分方程C.可分离变量的微分方程 D.不可分离变量的微分方程45. 设是第二象限内的一个有界闭区域,而且。
记,,,则的大小顺序是. ( )A. B. C. D.46.函数的定义域为. ( )A. B. C. D.以上都不对。
47. . ( )A. B. C. D.48. 二元函数的定义域是. ( )A. B.C. D.以上都不对49.设在上连续,且为奇函数,则( ( )A. B. C. D. 以上答案均不对比较大小:. ( )B. C. D.不确定51. ,其中积分区域D为矩形: ( )A. B. C. D.二、填空:1..2. 二元函数的驻点为.3. 则=.4. 微分方程的通解是.5.幂级数的收敛半径是.6.若是由曲线所围成的平面区域,则.7.则=.8. .9. 设,则.10.微分方程的通解为.11. 幂级数的收敛半径是. 12.= .13.点关于平面的对称点是 . 14. .15.幂级数的收敛域是 .16.由隐函数确定的函数的导数= (公式).17. . 18.则= .19.由隐函数确定的函数的导数= (公式).20.微分方程的通解为 .21.若函数在点的偏导数存在,且有极值,则 , .22.设,则 . 23..24.则= .25.差分方程的阶为 .26.设,则= . 27.已知,则 .28.设,则 .29.设,则 .30.若D是由曲线所围成的平面区域,则 .31. 微分方程的阶为 .32. 设,则全导数= .33. 无穷级数的和为 .34. 设,则 . 35. 微分方程的通解是.36.则= .37.设,则 .38.设,则 .39.,求 .40. .41.若是由曲线所围成的平面区域,则 .42. 设函数 ,全微分= .43.无穷级数 .44.微分方程的通解为 .45.则= .46.若,求 .47.微分方程的通解为 .48. 由隐函数确定函数的导数,有连续偏导数,且,则=(公式).49.设,则 . 50. .51. . 52.差分方程的阶数为.53.无穷级数的和为 .54.则= .55.,则 .三、计算(一):1.求定积分.2. 求极限.3. 设,求全导数.4. 设,求.5. 计算二重积分,其中.6. 求函数的极值.7.计算定积分.8. 求极限.9. 设方程确定隐函数,求.10. 设,其中,求.11.求微分方程的通解.12. 求二重积分,其中.13.求定积分.14. 求微分方程的通解.15. 求函数,求全微分.16.计算二重积分,其中D是由所围成的区域.17. 求函数,其中的偏导数.18. 求函数的极值.19.求微分方程的通解.20. 求定积分.21. 求极限.22. 求微分方程的通解.23. 求定积分.24. 求函数的极值.25.求微分方程的通解.26. 求定积分:.27.求广义积分.28.判定级数的敛散性.29. 求函数的二阶偏导数.30. 设其中,求.31.求微分方程的通解.32. 求的通解.33. 求定积分.34. 求极限.35. 设,其中,求.36. 求的二阶偏导数.37.求微分方程的通解.38. 求的通解.39. 求定积分.40. 求极限.41. 求函数,其中的偏导数.42. 求函数的极值.43.解微分方程:.44. 求定积分.45. 求广义积分.46. 求微分方程的通解.47. 已知函数,求各二阶偏导数.48. 函数的极值.49.求定积分.50. 求微分方程的通解.51. 求定积分.52.求微分方程的通解.53. 设由方程确定隐函数,求.54. 设,求二阶偏导数.55.求微分方程的通解.56. 求定积分.57. 设,其中,求.58.求极限.59.计算二重积分,其中:.60. 求函数的极值.四、计算(二):1. 求曲线与直线所围成的图形的面积.2. 交换二次积分的次序.3. 用比值判别法(达朗贝尔法则)判定级数的敛散性.4. 求曲线与所围成的图形的面积.5.用比值判别法(达朗贝尔法则)判定级数的敛散性.6.利用极坐标计算二重积分,是圆域.7. 求由曲线,围成的平面图形的面积.8. 求幂级数的收敛半径和收敛域.9. 计算二重积分,其中.10. 用比值判别法判定级数的敛散性.11.求的偏导数.12.计算二重积分,其中是由所围成的闭区域.13. 应用二重积分, 求在平面上由与所围成的区域的面积.14.求微分方程在初始条件下的特解.15. 计算二重积分,其中是区域.16. 求函数的极值.17. 计算,其中是由不等式所确定的正方形区域.18. 求幂级数的收敛半径和收敛域.19. 求函数的二阶偏导数.20. 计算二重积分,其中.21. 用比值判别法(达朗贝尔法则)判定级数求极限的敛散性.22. 设,求全导数.23. 计算二重积分,其中是区域.24.用比值判别法判定级数的敛散性.25. 求在区间上,由曲线与直线所围成的图形的面积.26. 计算,其中 =.27. 交换二次积分的次序.28. 判定级数的敛散性,若级数收敛,求其和.29. 求的近似值.30. 计算二重积分,其中是由直线与双曲线所围成的区域.五、证明:1. 证明:设,且是可微函数,求证:.2. 证明:设,且是可微函数,求证:.3. 设二元函数,证明.4. 设,且,证明:5. 证明:.6. 求证:函数满足方程.六、应用:1. 某厂家生产的一种产品同时在两个市场销售,售价分别为和,销售量分别为 和,需求函数分别为,,总成本函数为试问:厂家如何确定两个市场的产品售价,使其获得的总利润最大?最大利润是多少?2.(利用拉格朗日乘数法) 设生产某种产品的数量与所用两种原料A、B的数量 间有关系式.欲用150元购料,已知A、B原料的单价分别为1元、2元,问:购进两种原料各多少,可使生产的产品数量最多?3. 求由曲线与直线所围成的图形分别绕轴、轴旋转产生的旋转体的体积.4. 某工厂生产两种产品I与II,出售单价分别为10元与9元,生产单位的产品I与生产单位的产品II的总费用是: (元).问:取得最大利润时,两种产品的产量各多少?5. 求由曲线与直线所围成的图形分别绕轴、轴旋转产生的旋转体的体积.6. 将正数12表示成三个正数之和使得为最大,求此三个正数.7. 要做一个容积为的长方体箱子,问怎样选择尺寸,才能使其表面积最小?8. 求由曲线 与所围成图形的面积.9. 将正数12表示成三个正数之和使得为最大,求此三个正数.10. 某厂要用铁板作成一个体积为的有盖长方体水箱。
问当长、宽、高各取怎样的尺寸时,才能使用料最省.。