2018届高三数学椭圆经典结论

合集下载

椭圆经典结论

椭圆经典结论

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b+=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4.以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

高中数学新课标椭圆常结论

高中数学新课标椭圆常结论

高中数学新课标中椭圆的常用结论一、椭圆上距离焦点距离最近的点,最远的点是长轴的两个端点。

二、通径:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在x 轴为例, 弦AB坐标:⎪⎪⎭⎫⎝⎛-a b c A 2,,⎪⎪⎭⎫ ⎝⎛a b c B 2,弦AB 长度:ab AB 22=三、若P 是椭圆:上的点.为焦点,若,则的面积为. 推导:如图θsin 212121⋅⋅=∆PF PF S F PF 根据余弦定理,得θcos =21221222PF PF F F PF PF ⋅-+=2122121242)PF PF c PF PF PF PF ⋅-⋅-+=2122122424PF PF c PF PF a ⋅-⋅-=21212224PF PF PF PF b ⋅⋅-得θcos 12221+=⋅b PF PFθsin 212121⋅⋅=∆PF PF S F PF =θθsin cos 12212⋅+⋅b =θθcos 1sin 2+⋅b =2tan 2θb12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb四、弦长公式直线与圆锥曲线相交所得的弦长直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,则它的弦长12AB x =-==注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为1212()y y x x -=-k ,运用韦达定理来进行计算.当直线斜率不存在是,则12AB y y =-. 五、圆锥曲线的中点弦问题: (1)椭圆中点弦的斜率公式:设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不平行y 轴)的中点,则有:22AB OM b k k a⋅=-证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得:22221212220x x y y a b--+=整理得:2221222212y y b x x a-=--,即2121221212()()()()y y y y b x x x x a+-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a⋅=-(2)遇到中点弦问题常用“韦达定理”或“点差法”求解。

椭圆的13个经典结论

椭圆的13个经典结论

椭圆的13个经典结论
椭圆被广泛应用于科学和工程领域。

下面是椭圆的13个经典结论:
1. 椭圆是一种闭合的曲线,它与两个焦点的距离之和是固定的,这个固定值称为椭圆的长轴。

2. 椭圆的中心是长轴的中点。

3. 椭圆的短轴是椭圆的宽度,是长轴的垂直线段。

4. 椭圆的离心率是一个无量纲常数,用来描述椭圆的形状,它等于长轴和短轴之间的差值与长轴之和的比值。

5. 椭圆的离心率小于1,当离心率等于0时,椭圆变成一个圆。

6. 椭圆的面积是长轴和短轴的乘积乘以π的一半。

7. 椭圆的周长没有一个简单的公式,但可以使用椭圆积分来计算。

8. 椭圆可以用焦点和一条线段来定义,这条线段被称为椭圆的直径。

9. 椭圆和直线之间的交点称为椭圆的交点。

10. 椭圆可以被切成两个相等的部分,这两个部分称为椭圆的半个。

11. 椭圆的焦点和直径的中点固定在椭圆上。

12. 椭圆是一种二次曲线,可以使用一元二次方程来表示。

13. 椭圆在几何上具有对称性,椭圆的每个点都可以通过椭圆的中心与另一点的对称轴来进行对称。

(完整版)椭圆常结论及其结论(完全版)

(完整版)椭圆常结论及其结论(完全版)

2椭圆常用结论一、椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率(点与线成对出现,左对左,右对右)对于12222=+by a x ,左准线c a x l 21:-=;右准线c a x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c a y l 22:=椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数)二、焦半径圆锥曲线上任意一点M 与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。

椭圆的焦半径公式:焦点在x 轴(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离心率焦点在y 轴 1020,MF a ey MF a ey =+=-其中21,F F 分别是椭圆的下上焦点焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加()c a PF c a PF -≥-≥21,推导:以焦点在x 轴为例如上图,设椭圆上一点()00,y x P ,在y 轴左边. 根据椭圆第二定义,e PMPF =1,则 02020201ex a c a x a c c a x e c c x e PM e PF +=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--== xO F 1F 2Py A 2A 1B 1B 2同理可得02ex a PF -=三、通径:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在x 轴为例, 弦AB坐标:⎪⎪⎭⎫⎝⎛-a b c A 2,,⎪⎪⎭⎫ ⎝⎛a b c B 2,弦AB 长度: ab AB 22=四、若P 是椭圆:上的点.为焦点,若,则的面积为. 推导:如图θsin 212121⋅⋅=∆PF PF S F PF 根据余弦定理,得 θcos =21221222PF PF F F PF PF ⋅-+=2122121242)PF PF c PF PF PF PF ⋅-⋅-+=2122122424PF PF c PF PF a ⋅-⋅-=21212224PF PF PF PF b ⋅⋅-得θcos 12221+=⋅b PF PFθsin 212121⋅⋅=∆PF PF S F PF =θθsin cos 12212⋅+⋅b =θθcos 1sin 2+⋅b =2tan 2θb12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb xO F 1F 2 P y A 2A 1B 1B 2五、弦长公式直线与圆锥曲线相交所得的弦长直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,则它的弦长12AB x =-==注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为1212()y y x x -=-k ,运用韦达定理来进行计算.当直线斜率不存在是,则12AB y y =-. 六、圆锥曲线的中点弦问题: (1)椭圆中点弦的斜率公式:设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不平行y 轴)的中点,则有:22AB OMb k k a⋅=-证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得:22221212220x x y y a b --+=整理得:2221222212y y b x x a-=--,即2121221212()()()()y y y y b x x x x a+-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a⋅=-(2)遇到中点弦问题常用“韦达定理”或“点差法”求解。

高考数学椭圆中的经典结论

高考数学椭圆中的经典结论

高中数学中椭圆的经典结论(一)1.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6.若000(,)P x y 在椭圆22221x y a b +=外,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=.7.椭圆22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8.椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q,A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11.AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12.若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+.13.若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程22002222x x y y x y a b a b+=+.高中数学中椭圆的经典结论(二)1.椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2.过椭圆22221x y a b+=(a >0,b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1,F 2是焦点,12PF F α∠=,21PF F β∠=,则tan t 22a c co a c αβ-=+.4.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin c e aαβγ==+.5.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1-时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8.已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.则(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +.。

椭圆常结论及其结论(完全版)

椭圆常结论及其结论(完全版)

2椭圆常用结论一、椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率(点与线成对出现,左对左,右对右)对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数)二、焦半径圆锥曲线上任意一点M 与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。

椭圆的焦半径公式:焦点在x 轴(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离心率焦点在y 轴1020,MF a ey MF a ey =+=-其中21,F F 分别是椭圆的下上焦点焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加()c a PF c a PF -≥-≥21,推导:以焦点在x 轴为例如上图,设椭圆上一点()00,y x P ,在y 轴左边. 根据椭圆第二定义,e PMPF =1,则 02020201ex a c a x a c c a x e c c x e PM e PF +=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--==同理可得02ex a PF -=三、通径:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在x 轴为例, 弦AB坐标:⎪⎪⎭⎫⎝⎛-a b c A 2,,⎪⎪⎭⎫ ⎝⎛a b c B 2,弦AB 长度:ab AB 22=四、若P 是椭圆:上的点.为焦点,若,则的面积为. 推导:如图θsin 212121⋅⋅=∆PF PF S F PF 根据余弦定理,得θcos =21221222PF PF F F PF PF ⋅-+=2122121242)PF PF c PF PF PF PF ⋅-⋅-+=2122122424PF PF c PF PF a ⋅-⋅-=21212224PF PF PF PF b ⋅⋅-得θcos 12221+=⋅b PF PFθsin 212121⋅⋅=∆PF PF S F PF =θθsin cos 12212⋅+⋅b =θθcos 1sin 2+⋅b =2tan 2θb12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb五、弦长公式直线与圆锥曲线相交所得的弦长直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,则它的弦长12AB x =-==注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为1212()y y x x -=-k ,运用韦达定理来进行计算.当直线斜率不存在是,则12AB y y =-. 六、圆锥曲线的中点弦问题: (1)椭圆中点弦的斜率公式:设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不平行y 轴)的中点,则有:22AB OM b k k a⋅=-证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得:22221212220x x y y a b--+=整理得:2221222212y y b x x a-=--,即2121221212()()()()y y y y b x x x x a+-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a⋅=-(2)遇到中点弦问题常用“韦达定理”或“点差法”求解。

高考数学必记结论(椭圆与双曲线)

高考数学必记结论(椭圆与双曲线)

椭圆与双曲线性质(必背的经典结论)椭 圆校对:李炳璋(原名李东升)1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b+=. 6.若000(,)P x y 在椭圆22221x y a b+=外,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7.椭圆22221x y a b +=(a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 双曲线1.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相交.4.以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=.6.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7.双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11.AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

高三数学椭圆与双曲线的必背的经典结论

高三数学椭圆与双曲线的必背的经典结论

秘籍:椭圆与双曲线的必背的经典结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

椭圆的92条神仙级结论

椭圆的92条神仙级结论

椭圆的92条神仙级结论
椭圆是高中数学的重要内容,以下是椭圆的92条神仙级结论:
1. 若P是椭圆上一点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|=2a。

2. 椭圆的焦点三角形面积公式:$\underline{S=b^2\tan\frac{\theta}{2}}$。

3. 椭圆的准线方程:$\underline{x=±a^2\frac{c}{a}}$。

4. 椭圆的焦半径公式:$\underline{|PF1|=a+ex}$,$\underline{|PF2|=a-ex}$(F1为左焦点,F2为右焦点,P为椭圆上任意一点)。

5. 椭圆的切线方程:$\underline{椭圆上一点P(x_0,y_0)处的切线方程是x_0x+y_0y=1}$。

6. 椭圆的焦准距:$\underline{椭圆的焦准距指的是椭圆的焦点到相应准线的距离,其数值为离心率的倒数,即$p={\frac{1}{e}}$。

$0\lt e\lt1$。

椭圆的性质还有很多,同学们可以在学习中不断总结和积累。

椭圆常用结论证明

椭圆常用结论证明

椭圆常用结论证明椭圆是数学中的一个重要概念,被广泛应用于几何学、物理学和工程学等领域。

在椭圆的研究过程中,人们积累了许多常用的结论。

本文将就其中几个常见的结论进行证明。

1.椭圆的定义:椭圆是平面上到两个给定点F1和F2的距离之和等于常数2a(a>0)的点P的轨迹。

证明如下:设P(x,y)是椭圆上的任意一点。

由定义可知,PF1+PF2=2a。

根据点到坐标轴的距离公式可得PF1=√((x-c)^2+y^2),PF2 =√((x+c)^2+y^2)。

代入得√((x-c)^2+y^2)+√((x+ c)^2+y^2)=2a。

平方两边并移项得(x-c)^2+(x+c)^2+ 2√((x-c)^2+y^2)√((x+c)^2+y^2)=4a^2。

化简得x^2 +y^2=a^2-c^2。

由此可见,椭圆的定义得证。

2.椭圆的离心率:椭圆的离心率是一个重要的参数,用来衡量椭圆的扁平程度。

离心率的计算公式为e=c/a,其中c是两个焦点之间的距离,a是椭圆的长半轴长。

证明如下:根据椭圆的定义可知,PF1+PF2=2a,PF1=e∙a,PF2=(1-e)∙a。

代入得e∙a+(1-e)∙a=2a,化简得e=c/a。

因此,椭圆的离心率的计算公式得证。

3.椭圆的焦点坐标:椭圆的焦点是椭圆定义中的两个关键点,其坐标可以通过长半轴和离心率计算得出。

证明如下:设椭圆的焦点分别为F1(c,0)和F2(-c,0),长半轴为a,离心率为e。

根据离心率的定义可知e=c/a。

将其代入焦点坐标的表示式,得到F1(c,0)和F2(-c,0)。

因此,椭圆的焦点坐标的计算得证。

以上就是椭圆常用结论的证明过程。

这些结论在解决椭圆相关问题时非常有用,可以帮助我们深入理解椭圆的性质和特点。

在实际应用中,我们可以利用这些结论进行问题求解和分析。

椭圆作为一种重要的几何形状,其研究和应用将继续对数学和其他学科的发展产生积极的影响。

高考椭圆选填题中常考的8个神奇结论

高考椭圆选填题中常考的8个神奇结论

高考椭圆选填题中常考的8个神奇结论【名师综述】在高考中,圆锥曲线肯定要出一至两道小题,难度在中等偏上,所以,为了节省时间,记住一些重要的结论,到时候就可以直接用了!下面小数老师给大家带来8条出题率最高的结论,一定要记住哦;【典例剖析】例题1.椭圆=1上存在n个不同的点P1,P2,…,P n,椭圆的右焦点为F.数列{|P n F|}是公差大于的等差数列,则n的最大值是()A.16B.15C.14D.1312 【分析】(|P n F|)min≥|a﹣c|=,(|P n F|)max≤a+c=3,|P n F|=|P1F|+(n﹣1)d.再由数列{|P n F|}是公差大于的等差数列,可求出n的最大值.【解答】解:∵(|P n F|)min≥|a﹣c|=,(|P n F|)max≤a+c=3,||P n F|=|P1F|+(n﹣1)d ∵数列{|P n F|}是公差d大于的等差数列,∴d=>,解得n<10+1,则n的最大值为15故选:B.【典例剖析】例题2.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.解法一:基本解题法【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.3∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.解法二:结论解题法【典例剖析】例题3.椭圆C:=1的左、右顶点分别为A1,A2,点P在C上且直线PA2的斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.45【分析】由题意求A 1、A 2的坐标,设出点P 的坐标,代入求斜率,进而求PA 1斜率的取值范围.【解答】解:由椭圆的标准方程可知, 左右顶点分别为A 1(﹣2,0)、A 2(2,0), 设点P (a ,b )(a ≠±2),则=1…①,=,=;则==,将①式代入得=﹣,∵∈[﹣2,﹣1],∴∈.故选:D .解法二:结论解题法【典例剖析】例题4.已知P是椭圆+=1上的点,F1、F2分别是椭圆的左、右焦点,若=,则△F1PF2的面积为()A.3B.2C.D.【分析】先根据椭圆的方程求得c,进而求得|F1F2|,设F1P=m,F2P=n,再根据条件求出∠F1PF2=60°,然后利用余弦定理可求得mn的值,je利用三角形面积公式求解.【解答】解:由题意可得:a=5,b=3,所以c=4,即F1F2=2c=8.设F1P=m,F2P=n,所以由椭圆的定义可得:m+n=10…①.因为,所以由数量积的公式可得:cos<>=,所以.在△F1PF2中∠F1PF2=60°,所以由余弦定理可得:64=m2+n2﹣2mn cos60°…②,由①②可得:mn=12,所以.故选:A.解法二:结论解题法67【典例剖析】例题5. 已知椭圆的两个焦点分别为F 1,F 2,若椭圆上存在点P 使得∠F 1PF 2是钝角,则椭圆离心率的取值范围是( ) A .B .C .D .【分析】当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值,由此可得结论.【解答】解:如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值.由此可得:∵椭圆上存在点P 使得∠F 1PF 2是钝角, ∴△P 0F 1F 2中,∠F 1P 0F 2>90°, ∴Rt △P 0OF 2中,∠OP 0F 2>45°, 所以P 0O <OF 2,即b <c ,∴a2﹣c2<c2,可得a2<2c2,∴e>,∵0<e<1,∴<e<1.故选:B.解法二:结论解题法【典例剖析】例题6.已知圆的方程为x2+y2=1,则经过圆上一点M(x0,y0)的切线方程为x0•x+y0•y=1,类比上述性质,可以得到椭圆x2+4y2=8上经过点的切线方程为8;.9【分析】已知圆的方程为x 2+y 2=1,则经过圆上一点M (x 0,y 0)的切线方程为x 0•x +y 0•y =1,类比上述性质,可以得到:椭圆mx 2+ny 2=c (m ,n ,c 同号,且m ≠n )经过椭圆上一点M (x 0,y 0)的切线方程为:.【解答】解:已知圆的方程为x 2+y 2=1,则经过圆上一点M (x 0,y 0)的切线方程为x 0•x +y 0•y =1,类比上述性质,可以得到:椭圆mx 2+ny 2=c (m ,n ,c 同号,且m ≠n )经过椭圆上一点M (x 0,y 0)的切线方程为:故椭圆x 2+4y 2=8上经过点的切线方程为:2x ﹣4y =8,即;,故答案为:.【典例剖析】例题7. 已知两定点A (﹣1,0),B (1,0),若直线l 上存在点M ,使得|MA |+|MB |=3,则称直线l 为“M 型直线”,给出下列直线:①x =2;②y =x +3;③y =﹣2x ﹣1;④y =1;⑤y =2x +3.其中是“M 型直线”的条数为( )A.1B.2C.3D.4【分析】点M的轨迹方程是,把①,②,③,④,⑤分别和联立方程组,如果方程组有解,则这条直线就是“M型直线”.【解答】解:由题意可知,点M的轨迹是以A,B为焦点的椭圆,其方程是,①把x=2代入,无解,∴x=2不是“M型直线”;②把y=x+3代入,无解,∴y=x+3不是“M型直线”;③把y=﹣2x﹣1代入,有解,∴y=﹣2x﹣1是“M型直线”;④把y=1代入,有解,∴y=1是“M型直线”;⑤y=2x+3代入,有解,∴y=2x+3是“M型直线”.故选:C.解法二:结论解题法10数学思想 高中数学【高考椭圆选填题中常考的8个神奇结论】数学思想 | 高中数学 11【典例剖析】例题8.过点(0,2)P 的直线l 交椭圆22:142x y E +=于,M N 两点,且OM ON ⊥,则直线l 的方程为 ;20y -+=或20y +-=22a b,则有OA OB ⊥,d =。

高中椭圆曲线三级结论

高中椭圆曲线三级结论

高中椭圆曲线三级结论
椭圆曲线是数学中的一种曲线形式,具有许多重要的性质和应用。

通过研究和探索椭圆曲线的特点,我们可以得出以下高中椭圆
曲线的三级结论:
1. 椭圆曲线的定义:
- 椭圆曲线是平面上满足特定方程的点的集合。

- 椭圆曲线的方程形式为:y^2 = x^3 + ax + b,其中a和b是常数。

2. 椭圆曲线的对称性:
- 椭圆曲线具有对称性,即如果点P(x,y)位于椭圆曲线上,则点Q(x,-y)也位于椭圆曲线上。

- 这种对称性使得我们可以通过已知点求出曲线上的其他点。

3. 椭圆曲线的群结构:
- 椭圆曲线上的点构成一个群结构,并且该群是可交换的。

- 群结构的基本性质包括单位元、逆元、封闭性和结合律等。

- 这种群结构是椭圆曲线在密码学中应用的基础,如椭圆曲线
密码算法(ECC)。

通过了解以上三个结论,我们可以更好地理解和应用椭圆曲线。

椭圆曲线在密码学、编码理论和数学研究中都具有广泛的应用前景。

以上是关于高中椭圆曲线的三级结论的简要介绍。

希望这份文
档对您有所帮助。

高中数学椭圆与双曲线的必背的经典结论

高中数学椭圆与双曲线的必背的经典结论

椭圆与双曲线的必背的经典结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

高三数学辅导—椭圆与双曲线的必背的经典结论

高三数学辅导—椭圆与双曲线的必背的经典结论

椭圆与双曲线的必背的经典结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y ab+=.6. 若000(,)P x y 在椭圆22221x y ab+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y ab+=.7. 椭圆22221x y ab+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F P F S b γ∆=.8. 椭圆22221xya b+=(a >b >0)的焦半径公式:10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y ab+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22O M AB b k k a⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y ab a b+=+.13. 若000(,)P x y 在椭圆22221x y ab+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y abab+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y ab-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y ab-=.6. 若000(,)P x y 在双曲线22221x y ab-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y ab-=.7. 双曲线22221x y ab-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F P F S b co γ∆=.8. 双曲线22221xyab-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-.当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22221x y ab-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则202y a x b KK ABOM =⋅,即0202y a x b K AB =。

椭圆经典结论

椭圆经典结论

椭圆1. 点P 处的切线PT 平分△PF1F2 在点P 处的外角.2. PT 平分△PF1F2 在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF1 为直径的圆必与以长轴为直径的圆内切.5. 若P0 ( x0 , y0 ) 在椭圆2 2x y2 2 1a b上,则过P0 的椭圆的切线方程是x x y y0 02 2 1a b.6. 若P0 ( x0 , y0 ) 在椭圆2 2x y2 2 1a b外,则过Po 作椭圆的两条切线切点为P1、P2,则切点弦P1P2 的直线方程是x x y y0 02 2 1a b.7. 椭圆2 2x y2 2 1a b(a>b>0) 的左右焦点分别为F1 ,F 2,点P 为椭圆上任意一点F PF ,则椭圆的焦点角形的面积为1 2 S b .2 tanF PF1 228. 椭圆2 2x y2 2 1a b(a>b>0)的焦半径公式:| M F | a ex ,| M F2 | a ex0 (1 0 F1 ( c,0) , F2 ( c,0) M( x , y ) ).0 09. 设过椭圆焦点 F 作直线与椭圆相交P、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点 F 的椭圆准线于M 、N 两点,则MF⊥NF.10. 过椭圆一个焦点 F 的直线与椭圆交于两点P、Q, A1、A2 为椭圆长轴上的顶点,A1P 和A2Q 交于点M ,A2P 和A1Q 交于点N,则MF⊥NF.11. AB 是椭圆2 2x y12 2a b的不平行于对称轴的弦,M ( x0 , y ) 为AB 的中点,则k k O M AB ba22,即K2b xAB 。

2a y12. 若P0 ( x0 , y0 ) 在椭圆2 2x y2 2 1a b内,则被Po 所平分的中点弦的方程是2 2 x x y y x y0 0 0 02 2 2 2a b a b.13. 若P0 ( x0 , y0 ) 在椭圆2 2x y2 2 1a b内,则过Po 的弦中点的轨迹方程是2 2x yx x y y0 02 2 2 2a b a b.双曲线第 1 页1. 点P 处的切线PT 平分△PF1F2 在点P 处的内角.2. PT 平分△PF1F2 在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF1 为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若P0 ( x0 , y0 ) 在双曲线2 2x y2 2 1a b(a>0,b>0)上,则过P0 的双曲线的切线方程是x x y y0 02 2a b1 .6. 若P0 ( x0 , y0 ) 在双曲线2 2x y12 2a b(a>0,b>0)外,则过Po 作双曲线的两条切线切点为P1、P2,则切点弦P1P2 的直线方程是x x y y0 02 2a b1 .7. 双曲线2 2x y(a>0,b>o)的左右焦点分别为F1,F 2,点P 为双曲线上任意12 2a b一点F PF ,则双曲线的焦点角形的面积为1 22 t S b co .F PF1 228. 双曲线2 2x y2 2 1a b(a>0,b>o)的焦半径公式:( F c ,1 ( , 0)Fc ,F 2 (c , 0)当M( x , y ) 在右支上时,0 0 | M F | ex a ,| M F | ex a .1 02 0当M( x , y ) 在左支上时,0 0 | M F | ex a ,1 0| M F | ex a2 09. 设过双曲线焦点 F 作直线与双曲线相交P、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点 F 的双曲线准线于M 、N 两点,则MF⊥NF. 10. 过双曲线一个焦点 F 的直线与双曲线交于两点P、Q, A1、A2 为双曲线实轴上的顶点,A1P 和A2Q 交于点M ,A2P 和A1Q 交于点N,则MF⊥NF.11. AB 是双曲线2 2x y2 2 1a b(a>0,b>0)的不平行于对称轴的弦,M ( x 0 , y ) 为AB的中点,则K2b xOM ,即KAB2a yK2b xAB 。

椭圆经典结论【范本模板】

椭圆经典结论【范本模板】

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离。

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=。

8. 椭圆22221x y a b+=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y )。

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF 。

11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+。

高考椭圆必背结论

高考椭圆必背结论

椭圆22221x y a b+=)0(>>b a 的性质一.基本性质1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆上,则过0P 的椭圆的切线方程是00221x x y ya b+=. 6. 若000(,)P x y 在椭圆外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆的左右焦点分别为21,F F ,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 焦半径公式:10||MF a ex =+,20||MF a ex =-.9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 13. 若000(,)P x y 在椭圆内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 二.会推导的经典结论1. 椭圆的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2. 过椭圆上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y =(常数). 3. 若P 为椭圆上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5. 若椭圆的左、右焦点分别为F 1、F 2,左准线为L ,则当0<1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8. O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b+.9. 过椭圆的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<. 11. 设P 点是椭圆上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b γ∆=.12. 设A 、B 是椭圆的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBAβ∠=,BPAγ∠=,c、e分别是椭圆的半焦距离心率,则有(1)22222|cos|||sabPAa c coαγ=-.(2) 2tan tan1eαβ=-.(3)22222cotPABa bSb aγ∆=-.13.已知椭圆的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC x⊥轴,则直线AC经过线段EF 的中点.14.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高三数学一轮复习 极速秒杀法-------椭圆经典结论[结论1]:椭圆焦点三角形周长:122PFF =2a 2,=4a c MNF +周长周长;[例题]:(1)椭圆22131x y +=,点A,B 经过椭圆左焦点,2ABF ∆的周长。

解:2AB F 周长(2)过椭圆221259x y +=左焦点作直线与椭圆交于AB ,若22AF +BF =12AB ,求的值。

解:2AB =4a=12+AB AB =8F ∴周长。

[结论2]:焦点三角形离心率:121222F F c e a PF PF ==+;1221cos2=PFF =PF F cos2e αβαβαβ+=∠∠-(,); [例题]:(1)过椭圆22221x y a b+=左焦点作x 轴的垂线与椭圆交于P ,若1260F PF ∠=,求离心率。

解:12122233F F c e a PF PF t ====+ 。

(2)过椭圆22112mx y +=右焦点2F 作x 轴的垂线与椭圆交于A,B ,若1ABF ∆为正三角形,求椭圆方程。

解:3090coscos22===830903cos cos 22e m αβαβ++==-- 。

(3)已知正方形ABCD ,求以A ,B 为焦点且过C ,D 的椭圆的离心率。

解:1212212F F c e a PF PF ====+ 。

(4)在三角形ABC 中,AB=BC ,7cos 18B =-,求以A,B 为焦点,且过C 的椭圆的离心率。

解:21221225523593283F F t t c t AC AC e t a PF PF t =∴=∴====++ 。

(5)设222221F x y a b+=以的右焦点为圆心,且过椭圆中心的圆与椭圆的一个交点为M ,若1F M 与圆相切,求e.解:1212212F F c e a PF PF ====+。

[结论3]:焦点三角形之夹角:122PF F 12S =b tan,sin 1=FPF 22e θθθ⎡⎫∈∠⎪⎢⎣⎭,,; [例题]:已知椭圆22221x y a b+=的两焦点,P 为椭圆上点且12120F PF ∠=,求离心率取值范围。

解:sin1,12e e θ⎫⎡⎫∈∴∈⎪⎪⎢⎪⎣⎭⎣⎭, 。

[结论4]:中点弦斜率:则2222220022222200x x 11a x x y b y a k k a b a y b b y +=∴=-+=∴=-;;[例题]:(1)已知椭圆2222x 1a y b +=的焦点F 0(被直线y=3x-2截得弦中点横坐标为12,求椭圆方程。

解:22222111a 2-c 503-112275252y x k b =∴==∴+=-中点(,),。

(2)已知椭圆 22x 143y +=,确定m 取值范围,使得对于直线y=4x+m ,椭圆上总有不同两点关于该直线对称。

解:00000013AB x -344x k y x y ∴=-=∴=设中点(,y ),,22m 9-m -3m 1431313m m ∴∴+<∴-<<中点(,)在椭圆内。

[结论5]:椭圆上任意不与x 轴垂直弦AB 中点M ,O 为原点,则22AB OM2k k =e 1b a=-- ;[例题]:(1)过点M (1,1)作斜率为1-2的直线与椭圆2222x 1y a b +=交于A,B 两点,且M 为AB中点,求离心率。

解:2AB OM 211k =1,K =-k k 222OM AB b e a ∴=-=-∴=。

(2)过椭圆2222x 1y a b +=的右焦点直线x 0y +-=交椭圆于A,B 两点,且p 为AB 中点,OP斜率为12,求椭圆方程。

解:222P AB OM 211k =-1,K =k k F 30a 6,12263O AB b x y b a ∴=-=-∴==+=(,)。

(3)椭圆22221x y a b+=的右焦点F(3,0),过F 作直线交椭圆于A ,B 两点,若中点M(1,-1),求椭圆方程。

解:222222119k 1-11=3122a 189AB OMx y k e e e a b =-∴⨯=-∴=∴==∴+=()。

[结论6]:椭圆上两关于原点对称点为A ,B ,任意点为P ,则222k k =e 1PA PBb a=-- ;[例题]:(1)已知椭圆2222x1y a b+=的离心率e=3过椭圆上一点M 作直线MA ,MB 分别交椭圆于A,B 两点,且斜率分别为12k ,k ,若A ,B 关于原点对称,求12k k 的值。

解:222212221k k =-1a 3b ac e a -=-=-=-。

(2)已知椭圆22x 143y +=的左右顶点分别为A ,B ,点P 在椭圆上,且PA 斜率取值范围:[]-2-1,,直线PB 的斜率取值范围。

解:[]2122333k k k 2,1==-,484b k a ⎡⎤=---∴∈⎢⎥⎣⎦。

[结论7]:焦点弦:设通径长为H ,则222222222222H 2ab H 2ab AB ==(x AB =(cos sin 1-e cos 1-e sin a c a c αααα=--焦点在轴);焦点在y 轴); [例题]:(1)已知斜率为1的直线过椭圆22x 14y +=焦点交椭圆于A ,B 两点,求AB 。

解:2222H 82AB ===351-e sin 1-sin 454α; (2)已知过椭圆 221x 1F 32y +=的左焦点的直线叫椭圆于B ,D 两点,过2F 右焦点的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P,求四边形ABCD 的面积最小值。

解:ABCD 22219696S =min 224sin 2251-cos 1-sin 33ABD BCD S S BD AC ααα+=⨯==+. [结论8]:焦半径:则2222b b b b AF =AF =(x BF BF (cos +cos sin +sin ac a c a c a c αααα==--;焦点在轴);;焦点在y 轴);[例题]:已知斜率为1的直线l 过椭圆2222x 1y a b+=左焦点1F 交椭圆于A ,B 两点,其中22AF AB BF ,,成等差数列,求椭圆离心率。

解:22222222AF +BF =2AB42AB AF +BF +AB =4a32cos 4a ab e ac π⎧⎪∴==∴=⎨⎪⎩-。

[结论9]:焦半径之比:e =(焦点在x 轴);e =(焦点在y 轴); [例题]:(1)连接椭圆22221x y a b+=右焦点F 和短轴端点A 交椭圆于另点B,且2AF FB =,求离心率。

解:121213e e e -===∴=+ 。

(2)已知22221x y b a+=的离心率2e =,直线l:y=kx+1过上焦点F 与椭圆交于A ,B 两点,若A 到y 轴距离是点B 到y 轴距离的2倍,求k 。

解:k 27e ====。

[结论10]:焦半径之比求离心率取值范围:111e λλ-⎡⎫∈⎪⎢+⎣⎭椭圆:,;; [例题]:已知椭圆22221x y a b+=的两焦点,P 为椭圆上点且123P PF F =,求离心率取值范围。

解:111112e e λλ-⎡⎫⎡⎫∈∴∈⎪⎪⎢⎢+⎣⎭⎣⎭,, 。

[结论11]:仿射变换求斜率:222222x 1PA PB y b k k a b a+=∴=-椭圆:;[例题]:(1)已知P 是椭圆22221a x y b+=上一点,且A ,B 为椭圆左右顶点,求PA ,PB 两直线斜率之积。

解:222222x a +y 1,1PAPB PA PB PA PB xa b x k k k k k k y b a y b⎧'=⎪⎪''''∴==-=∴=-⎨⎪'=⎪⎩ 。

(2)已知P 是椭圆22143x y +=上一点,且A ,B 为椭圆左右顶点,且PB 斜率取值范围为【-2,-1】,求PA 斜率取值范围。

解:333-2k 1k 484PA PB PB PA k k =-≤≤∴≤≤, 。

[结论12]:仿射变换求面积:2222x 1y S abS a b'+=∴=椭圆:;[例题]:(1)已知椭圆22y 14x +=,且A (2,0),B (0,1),直线y=kx(k>0)与AB 相交于D ,于椭圆相交于EF ,求四边形AEBF 面积最大值。

解:22maxmax x 1+y 1,2EF S 2122xx S AB y y⎧'=⎪'''∴===⊥∴=⨯⎨⎪'=⎩) 。

(2)已知椭圆22y 143x +=,且四边形EFGH 四个顶点都在椭圆上,且EG ,FH 过原点,若3k 4EG FH k =-,求证:四边形EFGH面积为定值。

解:22121212121212x 332+y 1,1,4422xy y y y x x x x x x x y ⎧'=⎪''''⎪''∴=⨯=-∴⨯=-∴⨯=-⎨''''⎪'=⎪⎩则对角线垂直 , 1S 22=2S=22'∴=⨯⨯∴[结论13]:直线与椭圆位置关系:222222222222222c (c (c (A a B b A a B b A a B b =+>+<+相切);相离);相交);[例题]:(1)求直线y=2x+1与椭圆22y 1416x +=的位置关系________。

解:144116<⨯+⨯,则相交。

(2)求直线x+y-3=0与椭圆22y 14x +=的位置关系________。

解:94111>⨯+⨯,则相离。

相关文档
最新文档