太阳能电池

合集下载

太阳能电池关键参数

太阳能电池关键参数

太阳能电池关键参数
太阳能电池的关键参数主要包括:
1.开路电压(UOC):在光照条件下,太阳能电池的输出电压值。

2.短路电流(ISC):在输出端短路时,流过太阳能电池两端的电流值。

3.最大输出功率(pm):太阳能电池的工作电压和电流,乘积最大时可获得最大输出功率。

4.填充因子(FF):最大输出功率与开路电压和短路电流乘积之比,代表太阳能电池在带最佳负载时能输出的最大功率特性。

5.转换效率(CE):太阳能电池把光能转换成电能的能力,转换效率是最大输出功率与光功率的比值。

转换效率与填充因子有关,一般转换效率约为10%到20%。

6.光敏面积(A):太阳能电池的光敏面积越大,其接收光能的能力越强,但光敏面积增加到一定程度时,单位面积上接收到的光能就会减少。

7.暗电流(ID):在无光照条件下,太阳能电池中没有PN结反偏电压时,反向漏电流与反向饱和电流的统称。

8.暗电阻(RD):在无光照条件下,太阳能电池的电阻。

9.暗开路电压(UOD):在无光照条件下,太阳能电池
的开路电压。

10.暗短路电流(ISD):在无光照条件下,太阳能电池的短路电流。

这些参数用于描述太阳能电池在无光照条件下的性能,对于评估太阳能电池的质量和稳定性非常重要。

这些参数是描述太阳能电池性能的重要指标,不同的参数组合可以用于不同的应用场景,比如在低功耗设备、卫星通信、光伏电站等领域。

1.太阳能电池简介

1.太阳能电池简介

印刷 烧结
测试
PERC电池工艺流程图
制绒
扩散
刻蚀 抛光
背钝 化
正面 镀膜
激光 开槽
印刷 烧结
电注 入
测试
PERC电池——背抛
Talesun confidential
目的:削平金字塔塔尖,减少背表面悬 挂键,降低表面复合速率,增加内反射
PERC电池——背抛
Talesun confidential
PERC电池——背钝化
Hale Waihona Puke (1)如下:5POCl3 >600 ℃ 3PCl5+P2O5
(1)
生成的P2O5在扩散温度下与硅反应,生成二氧化硅(SiO2)和磷原子,其反应式如下:
2P2O5+5Si
5SiO2+4P
(2)
POCl3热分解时,如果没有外来的氧(O2)参与其分解是不充分的,生成的PCl5是不易分
解的,并且对硅有腐蚀作用,破坏硅片的表面状态。但在有外来O2存在的情况下,PCl5会进
一步分解成P2O5并放出氯气(Cl2)其反应式如下:
4PCl5 +5O2 过量氧 2P2O5 +10Cl2
(3)
刻蚀原理及目的
目的1:利用HNO3和HF的混合液体 对扩散后硅片下表面和边缘进行腐 蚀,去除边缘的N型硅,使得硅片的上 下表面相互绝缘。 边缘刻蚀原理反应方程式: 3Si + 4HNO3+18HF =3H2 [SiF6] + 4NO2 + 8H2O
需要强调指出:内建电场(PN结)可以有效地将少子(电子和空穴)进行分离;PN结是不能简
单地用两块不同类型(P型和N型)的半导体接触在一起就能形成的。

太阳能电池介绍

太阳能电池介绍

太阳能电池知识介绍什么是太阳能电池太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。

太阳能电池的原理太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下:图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。

当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图:图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。

而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。

同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。

黄色的为磷原子核,红色的为多余的电子。

如下图。

N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。

当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电。

这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。

N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。

达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。

当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。

然后在PN结中形成电势差,这就形成了电源。

(如下图所示)由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。

但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结(如图梳状电极),以增加入射光的面积。

太阳能电池基础知识

太阳能电池基础知识

一,基础知识(1)太阳能电池的发电原理太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置.•半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子.光激励核核电子空穴电子电子对•PN 结合型太阳能电池太阳能电池是由 P 型半导体和 N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子 ,当 P 型和 N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往 P 型区移动,带负电子的电子往 N 型区移动,在接上连线和负载后,就形成电流..(2)太阳能电池种类-++--+P 型铸 造 2工PN 结合(正面 N 极,反 面 P 极 ) 减 反膜形成通过电极,汇集电※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用. ※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质. ※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上).(3)多晶硅太阳能电池的制造方法空间用民用转换效率:24%转换效率:10%转换效率:8%(1400 度以上)破锭(150mm *155mm )N 极烧结电极 印刷 ( 正 反组配叠片层压模拟光源,输出测试边框安装(4)太阳能电池关连的名称和含义•转换效率太阳能电池的转换效率是指电池将接收到的光能转换成电能的比率转换效率 = 100%太阳能电池板被照射的太阳能※标准测试状态由于太阳能电池的输出受太阳能的辐射强度,温度等自然条件的影响,为了表述太阳能电池的输出和评价其性能,设定在太阳能电池板的表面温度为 25 度,太阳能辐射强度为 1000 w/㎡、分光分布 AM1.5 的模拟光源条件下的测试为标准测试状态.大气层分光分布小知识晶硅类理论转换效率极限为 29%,而现在的太阳能电池的转换效率为 17%~19%,因此,太阳能电池的技术上还有很大的发展空间.•太阳能电池输出特性【太阳能电池电流---电压特性(I-V 曲线)】最大输出(PM):最大输出电压(Vpm) 最大输出电流( Ipm ) 开路电压(Voc ):开路状态的太阳能电池端子间的电压短路电流(Isc ):太阳能电池端子间的短路电流最大输出电压(Vpm):最大输出状态时的动作电压最大输出电流 (Ipm ):最大输出状态时的动作电流日照强度变化和 I-V 曲线】温度变化和 I-V 曲线】日照强度—最大输出特性】温度-最大输出特性】最大输出%温度(度)12010080604020-25 0 25 50 75 100专用设备直流有蓄 电 路灯,交通信号灯,无线电 无蓄电池DC 水泵,换气扇,充电器②对能源和节能的贡献太阳能电池 2。

太阳能电池的定义

太阳能电池的定义

太阳能电池的定义
太阳能电池,也称为光伏电池,是一种能够将太阳能直接转换为电能的设备。

它利用光电效应原理,将太阳光中的光子能量转化为电子能量,最终产生电流。

太阳能电池通常由多个薄片或膜层组成,其中包含半导体材料如硅。

当太阳光照射到太阳能电池表面时,光子与半导体材料相互作用,将电子从半导体的价带中激发到导带中,形成电流。

这种电流可以直接供电使用,或者储存在电池中供以后使用。

太阳能电池广泛应用于太阳能发电系统、太阳能灯具、太阳能充电器等领域。

太阳能电池的结构和原理

太阳能电池的结构和原理

太阳能电池的结构和原理太阳能电池是一种直接将太阳光转化为电能的装置,因其无需外部能源输入,且环保可再生,成为新能源的热门发展方向之一。

那么,太阳能电池的结构和原理是怎样的呢?一、太阳能电池结构太阳能电池的结构主要包括以下几个部分:1.衬底层衬底层是太阳能电池的主体结构之一,其位于电极上方,通过它将光电转换成为可用电能。

目前,太阳能电池的衬底材料主要有:单晶硅、多晶硅、非晶硅、铜铟镓硒等,它们具有较高的光吸收性和电导率,能有效提高电池的效率。

2.电极层太阳能电池的另一个重要结构层是电极,其作用是将衬底层产生的电子导出,供外部使用。

目前太阳能电池使用的最常见的电极有两种,一种是以金属丝或箔条制成的导电纵线,即常见的“前电极”,另一种则是用金属薄膜制成的导电层,即“后电极”。

3.连结层连结层主要是将前后电极连接起来,方便电池的使用。

4.辅助电路辅助电路通常用于调节电池输出的电流和电压,可以使电能更好地应用在实际生产和生活中。

二、太阳能电池原理太阳能电池的原理基于光电效应,当光线照射在某一物质上时,光子与物质相互作用,使物质中的电子获得足够能量跃迁到离子带,并导出使之形成电流。

太阳能电池即是将这一原理应用于太阳能转化的电池。

具体的,太阳能电池由p型和n型半导体层组成,两种半导体之间形成p-n结。

当有光线照射在p-n结上时,由于p型半导体中被光子激发分离出的电子流向n型半导体,形成一定大小的电流。

这时,电极层与衬底层之间形成电势差,使电子流向电极,形成电路,从而产生电能。

三、太阳能电池应用目前,太阳能电池广泛应用于日常生活、交通运输和电网等领域。

例如,家庭使用的太阳能系统、公共建筑的太阳能供电设施和路灯、船只和太空舱等都采用了太阳能电池,为人类带来更为清洁、安全和节能的生产和生活方式。

总的来说,太阳能电池是一种能将太阳光转化为电能的新型装置,具有环保、可再生等特点,将是未来新能源的重要发展方向之一。

随着科技的不断进步,太阳能电池的效率和性能将得到不断提高,其应用前景也将更为广泛。

太阳能电池简介

太阳能电池简介

太阳能电池市场状况及趋势
谢谢
+4 +5
+4
+4
掺杂浓度远大于半导体中载流子浓度,所以,自由电 子浓度远大于空穴浓度。自由电子称为多数载流子 (多子),空穴称为少数载流子(少子)。
太阳能电池的结构与工作原理
二、P 型半导体
在硅晶体中掺入少量的三价元 素,如硼,晶体点阵中的某些 半导体原子被杂质取代,硼原 子的最外层有三个价电子,与 相邻的半导体原子形成共价键 时,产生一个空穴。这个空穴 可能吸引束缚电子来填补,使 得硼原子成为不能移动的带负 电的离子。由于硼原子接受电 子,所以称为受主原子。
海洋气象监测标
风云三号气象卫星的太阳能电池
太阳能电池的应用
家庭灯具电源 如庭院灯、路灯、手提灯、野营灯、登山灯、垂钓灯、 黑光灯、割胶灯、节能灯等。
太阳能电池的应用
光伏电站 10KW-50MW独立光伏电站、风光(柴)互补电站、各 种大型停车厂充电站等。
太阳能电池市场状况及趋势
太阳能电池的市场状况:
N 型半导体
P 型半导体
杂质型半导体多子和少子的移动都能形成电流。 但由于数量的关系,起导电作用的主要是多子。
太阳能电池的结构与工作原理
PN 结的形成
在同一片半导体基片上,分别制造P 型半导 体和N 型半导体,经过载流子的扩散,在它们的 交界面处就形成了PN 结。
多子扩散
而漂移使空间电荷区 变薄 漂移运动 内电场E N型半导体
空穴
+4 +3 +4 +4
硼原子
P 型半导体中空穴是多子,电子是少子。
太阳能电池的结构与工作原理
杂质半导体的示意表示法:
- - - - - - - - - - - - - - - - - - - - - - - -

太阳能电池

太阳能电池

……
硅太阳能电池原理与结构

半导体的光电效应
半导体主要结构
正电荷表示硅原子,负电荷表示围绕在硅原 子旁边的四个电子
P(positive)型半导体

硅晶体中掺入其他的杂质,如硼,当掺入 硼时,硅晶体中就会存在着一个空穴
正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的 硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个 空穴因为没有电子而变得很不稳定,容易吸收电子而中和
N(negative)型半导体

硅晶体中掺入其他的杂质,如磷,当掺入 磷时,因为磷原子有五个电子,所以就会 有一个电子变得非常活跃
黄色的为磷原子核,红色的为多余的电子
PN结

N型半导体(含较多的电子) P型半导体(含较多的空穴) P型和N型半导体结合在一起时,就会在接 触面形成电势差,这就是PN结
太阳能电池
太阳能是人类取之不尽用之不竭的可再 生能源。也是清洁能源,不产生任何的 环境污染。
在太阳能的有效利用当中,大阳能光电利 用是近些年来发展最快,最具活力的研究 领域,是其中最受瞩目的项目之一。
太阳能电池分类

1.硅太阳能电池 2.多晶体薄膜电池 3.多元化合物薄膜太阳能电池 4.纳米晶太阳能电池 5.塑料太阳能电池
自制过程



1.用伏特表测量选好的3DDl5型三极管的 基极(b)和集电极(C)之间的电压,正、反向 各测一次;用毫安表测量三极管基极和集 电极之间的短路电流。记录测量结果。 2.将三极管的金属外壳撬掉,重复步骤1 的过程。记录测量结果。 3.将撬掉金属外壳的三极管置于强烈的阳 光下照射,同时重复步骤1的过程。记录测 量结果

太阳能电池的基本原理及应用技巧

太阳能电池的基本原理及应用技巧

太阳能电池的基本原理及应用技巧1. 太阳能电池的基本原理1.1 直接转换式太阳能电池直接转换式太阳能电池是将太阳光直接转换为电能的一种装置。

目前最常见的一种直接转换式太阳能电池是硅晶太阳能电池。

其基本原理是利用太阳光中光子的能量将硅晶中的电子激发出来,形成电流。

当太阳光照射到硅晶太阳能电池上时,光子会与硅晶中的硅原子发生相互作用。

光子的能量将硅原子中的电子激发出来,形成电子-空穴对。

在太阳能电池的 p-n结中,电子-空穴对会被分离,电子会通过外部电路从n 区向p 区移动,形成电流。

1.2 间接转换式太阳能电池间接转换式太阳能电池是先将太阳光转换为其他形式的能量,再将这种能量转换为电能的一种装置。

一种常见的间接转换式太阳能电池是光化学太阳能电池。

其基本原理是利用太阳光激发光敏剂,产生电荷分离,形成电流。

当太阳光照射到光化学太阳能电池的光敏剂上时,光子会将光敏剂中的电子激发出来,形成电子-空穴对。

在光化学电池的电荷分离层中,电子-空穴对会被分离,电子会通过外部电路从光敏剂向电荷分离层移动,形成电流。

2. 太阳能电池的应用技巧2.1 太阳能电池组件的安装太阳能电池组件的安装是太阳能电池应用的重要环节。

在安装太阳能电池组件时,需要考虑以下几个因素:•光照条件:太阳能电池的效率受到光照条件的影响。

一般来说,太阳光越强,太阳能电池的输出功率越高。

因此,在安装太阳能电池组件时,需要选择光照条件较好的地方。

•温度:太阳能电池的效率也会受到温度的影响。

一般来说,太阳能电池在较高的温度下性能会下降。

因此,在安装太阳能电池组件时,需要考虑温度的影响,并采取相应的措施,如安装遮阳板等。

•朝向和倾斜角度:太阳能电池组件的朝向和倾斜角度也会影响其输出功率。

一般来说,太阳能电池组件的朝向应该朝向太阳,倾斜角度应该根据当地的纬度和季节进行调整。

2.2 太阳能电池系统的储能设备太阳能电池的输出功率受到光照条件的影响,因此,在夜间或光照不足的情况下,太阳能电池的输出功率会下降。

太阳能电池的分类与特点

太阳能电池的分类与特点

太阳能电池的分类与特点太阳能电池是一种将太阳能转化为电能的装置,它由不同材料制成。

根据材料的不同,太阳能电池可以分为单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、染料敏化太阳能电池、聚合物太阳能电池等多种类型。

每种类型的太阳能电池都有其独特的特点和适用范围,下面将逐一介绍这些分类和特点。

1. 单晶硅太阳能电池:单晶硅太阳能电池是最常见的太阳能电池之一,它采用高纯度的单晶硅材料制成。

其特点包括高效率、长寿命和稳定性强。

单晶硅太阳能电池的高效率意味着单个电池的发电能力较强,因此在有限的面积内可以获得更多的电能。

此外,单晶硅太阳能电池通常具有较长的寿命,可在正常使用条件下运行20年以上。

然而,由于制造工艺较为复杂,单晶硅太阳能电池的成本较高,因此价格也相对较贵。

2. 多晶硅太阳能电池:多晶硅太阳能电池是另一种常见的太阳能电池类型,它由多晶硅材料制成。

与单晶硅太阳能电池相比,多晶硅太阳能电池的制造工艺更简单,成本也较低。

然而,多晶硅太阳能电池的效率较低,发电能力相对较弱,但仍然可以满足家庭和商业用途的基本需求。

此外,多晶硅太阳能电池的寿命较长,可持续发电15年以上。

3. 非晶硅太阳能电池:非晶硅太阳能电池是一种采用非晶硅材料制成的薄膜太阳能电池。

与单晶硅和多晶硅太阳能电池相比,非晶硅太阳能电池的制造工艺更简单,可以在较大面积的基板上快速制造。

非晶硅太阳能电池还具有较高的灵活性,可以适应不同形状的物体,因此广泛应用于卷曲表面和柔性电子设备。

然而,与其他太阳能电池相比,非晶硅太阳能电池的效率较低,需要更大的面积才能获得相同的发电能力。

4. 染料敏化太阳能电池:染料敏化太阳能电池是一种基于染料分子的太阳能电池。

它利用染料分子吸收光子,激发电子跃迁并产生电流。

相比于硅基太阳能电池,染料敏化太阳能电池具有灵活性好、制造工艺简单、成本低廉和透明度高等优势。

然而,染料敏化太阳能电池的稳定性较差,寿命较短,通常需在几年内更换。

什么是太阳能电池

什么是太阳能电池

什么是太阳能电池?太阳能电池是一种利用太阳光直接发电的光电半导体薄片,其将高纯度的半导体材料加入一些不纯物使其呈现不同的性质,如加入硼可形成P型半导体,加入磷可形成N型半导体,PN两型半导体相结合后,当太阳光入射时,产生光子与电洞,当电流通过时.则产生电式太阳能电池为主流,而以光化学原理工作的太阳能电池则还处于萌芽阶段.太阳光照在半导体P-N结上,形成新的空穴—电子对.在P-N结电场的作用下,空穴由 N区流向P区,电子由P区流向N区,接通电路后就形成电流。

太阳能光伏电池(简称光伏电池)目前大量使用的是以硅为基底的硅太阳能电池,可分为单晶硅、多晶硅、非晶硅太阳能电池。

在能量转换和使用寿命等综合性能方面,单晶硅和多晶硅电池优于非晶硅电池。

多晶硅比但晶硅转换效率低但价格更便宜。

本公司光伏组件,采用高效率单晶硅或多晶硅光伏电池、高透光率钢化玻璃、Tedlar、抗腐蚀铝合金边框等材料,使用先进的真空层压工艺及脉冲焊接工艺制造。

即使在最严酷的环境中也能长时间的使用寿命。

组件的安装架设十分方便。

组件的北面安装有一个防水接线盒,通过它可以十分方便地与外电路连接。

对每一块太阳能电池组件,都保证20年以上的使用寿命。

太阳能电池组件是将太阳能电池直接转变为直流电能的阳光发电装置。

根据用户对功率和电压的不同要求,制成太阳电池组件单个使用,也可以数个太阳能电池组件经过串联(以满足电压要求)和并联(以满足电流要求),形成供电方阵提供更大的电功率。

太阳能电池组件具有高面积比功率,长寿命和高可靠性的特点,在20年使用期限内,输出功率下降不超过20%。

色温究竟指什么?我们知道,通常人眼所见到的光线,是由三原色(红绿蓝)组成的7种色光的光谱所组成。

色温就是专门用来量度光线的颜色成分的。

用以计算光线颜色成分的方法,是19世纪末由英国屋里学家洛德·凯尔文所创立的,他制定出了一整套色温计算法,而其具体界定的标准是基于以一黑体辐射器所发出的波长。

太阳能光伏电池综述

太阳能光伏电池综述

太阳能光伏电池综述一、本文概述随着全球能源危机和环境污染问题的日益严重,清洁、可再生能源的开发和利用受到了越来越多的关注。

太阳能光伏电池作为一种将太阳能直接转换为电能的装置,具有无污染、可再生、资源丰富等优点,因此成为了当前研究的热点。

本文旨在对太阳能光伏电池进行全面的综述,包括其基本原理、发展历程、主要类型、性能评估、应用领域以及未来发展趋势等方面。

通过本文的介绍,读者可以深入了解太阳能光伏电池的相关知识,为太阳能光伏技术的进一步研究和应用提供参考。

二、太阳能光伏电池的基本原理太阳能光伏电池,又称为太阳能电池,是一种能将太阳光直接转换为电能的半导体器件。

其基本原理基于光生电效应,即当太阳光照射在光伏电池的表面时,光子会与电池内的半导体材料发生相互作用,导致电子从原子中逸出,形成光生电流。

太阳能光伏电池的核心构造是PN结,也就是由P型半导体和N型半导体接触形成的结构。

在PN结中,由于两侧半导体中的电荷载流子浓度不同,会形成内建电场。

当太阳光照射在光伏电池上时,光子被电池吸收并激发出电子-空穴对。

这些电子-空穴对在内建电场的作用下分离,电子流向N型区域,空穴流向P型区域,从而在电池的两端形成电势差,即光生电压。

光生电流和光生电压的产生是太阳能光伏电池工作的基础。

通过连接外部电路,光生电流可以驱动电路中的负载工作,从而实现太阳能到电能的转换。

而光生电压的大小则取决于光伏电池的材料性质、光照强度、光谱分布以及电池的工作温度等因素。

为了提高太阳能光伏电池的转换效率,科学家们不断研究和开发新型半导体材料、优化电池结构、改进制造工艺等。

随着光伏技术的不断发展,太阳能光伏电池在能源领域的应用也日益广泛,包括太阳能发电站、太阳能屋顶、移动能源系统等,为实现可持续能源利用和减少环境污染做出了重要贡献。

三、太阳能光伏电池的分类太阳能光伏电池,又称太阳能电池,是一种能够直接将太阳能转化为电能的器件。

随着技术的不断进步,太阳能光伏电池的种类也日益丰富,各具特色。

《太阳能电池》课件

《太阳能电池》课件

交通工具用电
太阳能汽车
利用太阳能电池板为电动汽车提供动力,减少对传统能源的依赖。
太阳能飞机
在飞机上安装太阳能电池板,为飞机提供辅助动力,减少燃油消耗。
04
太阳能电池的优缺点
优点
环保性
太阳能电池利用太阳能 进行发电,不产生任何 污染物,对环境友好。
可持续性
太阳能资源丰富,且可 再生,使用太阳能电池 有助于实现能源的可持
多元化应用
除了家庭和工业应用外,太阳 能电池在交通、航空航天等领
域的应用也将得到拓展。
05
太阳能电池的制造与维护
制造过程
制造流程
制造设备
从原材料的选取、加工、组装到成品 测试,太阳能电池的制造过程需要经 过多个环节。
制造太阳能电池需要一系列专业设备 ,包括晶体生长炉、表面处理设备、 电极制备设备等。
更换损坏组件
对于损坏或老化严重的组件,需要及时更换,以保证整个系统的 稳定性和效率。
使用注意事项
安装角度与方向
安装太阳能电池板时,应考虑当地的气候和太阳高度角,使电池 板与太阳光垂直,以获得最大的能量转换效率。
避免遮挡
确保太阳能电池板周围没有遮挡物,以免影响光线的照射和能量的 转换。
定期检查系统
定期检查整个太阳能发电系统,包括电池板、控制器和储能设备等 ,确保系统正常运行并延长使用寿命。
商业用电
商业屋顶光伏电站
大型商业建筑如商场、办公楼等可安 装太阳能电池板,满足部分电力需求 ,降低运营成本。
光伏照明系统
太阳能路灯、景观灯等为商业区提供 照明,节能环保且维护成本低。
公共设施用电
01
公共建筑如图书馆、博物馆等可 利用太阳能电池板提供部分电力 ,降低建筑运营成本。

《太阳能电池》PPT课件

《太阳能电池》PPT课件

精选ppt
6
太阳能电池的原理
• 最基本的原理——光伏效应(Photovoltaic Effect缩写PV)
• 太阳能电池(光伏)材料主要包括:产生光 伏 效应的半导体材料、薄膜衬底材料、减反 射膜材料、电极与导线材料、组件封装材 料等。
精选ppt
7
• 电池的分类 单晶硅太阳能电池 多晶硅太阳能电池 薄膜光伏电池
目前对于某一种光电池材料,只是与其对应的光 谱段。所以,对单晶硅能量转化的效率的理论极限为 27.8%。太阳光中有大量的低能长波光子,降低了太阳 能电池的效率。
提高转换效率和降低成本是太阳能电池制备中考 虑的两个因素,对于目前的硅系太能电池,要想再进 一步提高转换效率是比较困难的。
精选ppt
22
新型太阳能电池 ——铁电太阳能电池
精选ppt
8
单晶硅太阳能电池
• P型晶体硅经过掺杂磷可 得N型硅,形成P-N结。
• 当光线照射太阳电池 表面 时,一部分光子被硅材料 吸收;光子的能量传递给 了硅原子,使电子发生了 越迁,成为自由电子在PN结两侧集聚形成了电位 差,当外部接通电路时, 在该电压的作用下,将会 有电流流过外部电路产生 一定的输出功率。
精选ppt
12
在军事上的应用
精选ppt
13
在航空领域的应用
精选ppt
14
卫星上的太阳能电池
精选ppt
15
在生活中的应用
精选ppt
16
精选ppt
17
汽车上的太阳能电池
精选ppt
18
电动玩具上的太阳能电池
精选ppt
19
在公共设施上的应用
精选ppt
20
在工农业上的应用

太阳能电池的结构

太阳能电池的结构

太阳能电池的结构太阳能电池(Solar Cell)是一种将太阳能转化为电能的装置。

它是一种半导体器件,将光能直接转化为电能。

太阳能电池的结构相对简单,主要由多个不同层次的材料构成。

本文将介绍太阳能电池的结构及其工作原理。

1. 太阳能电池的基本构成太阳能电池的基本构成包括以下几个主要部分:1.1 表面玻璃罩层表面玻璃罩层起到保护太阳能电池的作用,可以防止灰尘、水分、气体等物质进入电池内部,同时还能保护电池不受机械损伤。

1.2 透明导电层透明导电层位于表面玻璃罩层下方,主要由氧化锌等材料构成。

透明导电层在太阳光的作用下,可以将光能转化为电能,并且对光的透过率较高。

1.3 光吸收层光吸收层是太阳能电池的核心部分,通过吸收太阳光中的能量来产生电流。

常见的光吸收层材料有单晶硅、多晶硅、非晶硅等。

在光吸收层中,太阳光的能量会激发材料中的电子,使其进入激发态,然后通过电场分离出电子和空穴。

1.4 正(负)极金属电极正(负)极金属电极分别位于光吸收层的上下方,负责导出电子和空穴,形成电流。

通常使用的正(负)极材料有铝、银等。

金属电极具有良好的导电性能,能够有效地将产生的电流输送出来。

1.5 背面导电层背面导电层位于光吸收层下方,主要起到导电和防反射的作用。

背面导电层可以提高太阳能电池对太阳光的吸收率,同时也能够将光能转化为电能。

2. 太阳能电池的工作原理太阳能电池的工作原理是基于光生电效应和荷尔-维斯滕效应的。

当太阳光照射到太阳能电池的表面玻璃罩层时,经过透明导电层的导引,光能会通过光吸收层吸收,并激发光吸收层中的电子。

光吸收层中的电子在吸收光能后,会变成激发态,并丧失自由电子的稳定性。

在太阳能电池内部存在一个电场,这个电场会分离光吸收层中的电子和正电空穴,并引导它们到正(负)极金属电极上。

正(负)极金属电极会导出电子和空穴,形成电流。

背面导电层的作用是增加太阳能电池对太阳光的吸收率,同时还能够将光能转化为电能。

太阳能电池的分类太阳能电池的分类介绍

太阳能电池的分类太阳能电池的分类介绍

太阳能电池的分类太阳能电池的分类介绍太阳能电池依据所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是进展最成熟的,在应用中居主导地位。

1、硅太阳能电池硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

单晶硅太阳能电池转换效率最高,技术也最为成熟。

在试验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2023,为18%)。

在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节约硅材料,进展了多晶硅薄膜和非晶硅薄膜作为单晶硅太阳能电池的替代产品。

多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其试验室最高转换效率为18%,工业规模生产的转换效率为10%(截止2023,为17%)。

因此,多晶硅薄膜电池不久将会在太阳能电池市场上占据主导地位。

非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。

但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。

假如能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要进展产品之一。

2、多晶体薄膜太阳能电池多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严峻的污染,因此,并不是晶体硅太阳能电池最抱负的替代产品。

3、纳米晶太阳能电池纳米晶体化学能太阳能电池是新近进展的,优点在于它廉价的成本和简洁的工艺及稳定的性能。

其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。

此类电池的讨论和开发刚刚起步,不久的将来会逐步走上市场。

4、有机薄膜太阳能电池有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。

太阳能电池的分类

太阳能电池的分类

太阳能电池的分类
太阳能电池是一种能够将太阳能转化为电能的器件。

随着科学技术的不断发展,太阳
能电池也不断地发展和改进,现在已经有多种不同类型的太阳能电池。

下面将介绍几种常
见的太阳能电池,并对它们的特点进行简要说明。

1. 单晶硅太阳能电池
单晶硅太阳能电池是最常见的太阳能电池,市场占有率也最高。

它是利用单晶硅制作
而成的,因此其结晶度非常高,电池效率也较高。

单晶硅太阳能电池具有体积小,重量轻,质量稳定等优点,而且可以进行自动化生产,因此成本也比较低。

但是单晶硅太阳能电池
的制造成本较高,并且需要使用纯度较高的硅材料,这使得其价格较高。

染料敏化太阳能电池是一种比较新型的太阳能电池,是采用从自然中提取的染料成分
制成的。

染料敏化太阳能电池的优点是制造成本低,对低光强度的适应能力非常好,但是
其效率和稳定性仍然需要进一步的提高,目前还没有得到广泛的应用。

有机太阳能电池是一种使用有机高分子材料制成的太阳能电池,其工作原理是电荷转移。

有机太阳能电池的制造成本低,重量轻,但是制造工艺复杂,效率低,稳定性差,应
用范围有限。

硒化铟太阳能电池是一种由铟和硒材料制成的太阳能电池,它可以在高温和强光下稳
定工作。

硒化铟太阳能电池的制造成本较高,重量较重,但是效率和稳定性都非常好,适
合于一些特殊的使用场合。

总的来说,太阳能电池在未来的发展前景非常广阔,这是因为其具有可再生、环保、
免费等诸多优点。

随着科学技术的进步,太阳能电池的效率将会不断提高,价格也会越来
越低,这将使得太阳能电池在未来得到更广泛的应用。

太阳能电池简介介绍

太阳能电池简介介绍
电势差与电流
通过适当的电极收集和引导,这些 自由电子和自由空穴可以形成电势 差,从而产生电流。
太阳能电池的效率与性能参数
转换效率:太阳能电池的转换效率是指电池将光 能转换为电能的比例,通常以百分比表示。高效 率意味着电池能更好地利用光能。
填充因子:填充因子是太阳能电池最大功率与开 路电压和短路电流乘积之比,它反映了电池的输 出特性。高填充因子意味着电池更接近理想电源 。
开路电压和短路电流:开路电压是电池在空载状 态下的电压,短路电流是电池短路时的电流。这 两个参数是评估太阳能电池性能的重要指标。
这些是关于太阳能电池基本原理的简要介绍,它 们为我们理解和应用太阳能电池提供了基础。
02
太阳能电池的主要类 型
硅基太阳能电池
晶体硅太阳能电池
利用晶体硅材料制成的太阳能电池, 主要包括单晶硅和多晶硅两种类型。 晶体硅太阳能电池转换效率高,稳定 性好,但成本相对较高。
其他新型太阳能电池
染料敏化太阳能电池:利用染料吸收太阳光并产生电流的太阳能电池,具有低成本、高效率 和可柔性化等优点。
有机太阳能电池:以有机材料为主体的太阳能电池,具有轻质、柔性、可低成本制备等特点 。目前转换效率正在不断提升。
在这些不同类型的太阳能电池中,每种电池都有各自的优势和不足。随着技术的不断进步和 产业的发展,太阳能电池的转换效率、稳定性和成本等方面将持续改善,为太阳能发电领域 的广泛应用奠定坚实基础。
技术创新推动
不断的技术创新和成本降低,将提高太阳能电池 的竞争力,加速其在各个领域的应用。
3
政策扶持
各国政府纷纷出台支持清洁能源发展的政策,将 为太阳能电池市场提供有力支持,促进市场的快 速发展。
THANKS
感谢观看
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

背景:随着我国的经济的快速发展和综合实力的崛起,对能源需求越来越大,传统的的石油,煤炭,天然气等不可再生能源终将枯竭。

能源危机将是不可避免的。

如果不作出重大努力去利用和开发各种能源资源,那么人类在不久的未来将会面临能源短缺的严重问题。

而且煤炭、石油的大量开发和利用是造成环境污染和气候变化的主要原因之一。

作为负责任的发展中国家,中国高度重视环境保护和全球气候变化,将保护环境作为一项基本国策,促进能源与环境协调发展,全面控制温室气体排放。

所以发展新型能源正时当务之急,太阳能电池因其光明的发展前景,正在原来越被人们所熟知。

但随着新型材料和器件的运用,其转换效率正在不断提高。

大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。

能源问题是世界性的,向新能源过渡的时期迟早要到来。

从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。

1太阳能及太阳能电池1.1太阳能的特点(1)普遍:太阳光普照大地,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。

(2)无害:开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。

(3)巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨标煤,其总量属现今世界上可以开发的最大能源。

(4)长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。

1.2太阳能的利用太阳能的利用有多种方式:(1)太阳热能的利用,比如太阳能热水器,目前就用的比较多也比较普及;(2)太阳能发电,是目前太阳能利用的重点研究领域,主要的普及障碍是:①用于完成光电转化的硅光电池成本太高、转化效率低、使用寿命短;②用于储存电能的蓄电池成本高、使用寿命有限、造成环境污染。

1.3太阳能电池的分类2.太阳能电池原理2.1无机太阳能电池的原理太阳能电池的工作原理是基于 P-N 结的光生伏打效应:当 N 型半导体与 P 型半导体通过适当的方法组合到一起时, 在二者的交界处就形成了P-N 结。

由于多数载流子的扩散,形成了空间电荷区,并形成一个不断增强的从n 型半导体指向p 型半导体的内建电场,导致多数载流子反向漂移。

达到平衡后,扩散产生的电流和漂移产生的电流相等。

如果光照在p–n 结上,而且光能大于p–n 结的禁带宽度,则在p–n 结附近将产生电子-空穴对。

由于内建电场的存在,产生的非平衡电子载流子将向空间电荷区两端漂移,产生光生电势,破坏了原来的平衡。

如果将p-n结和外电路相连,则电路中出现电流。

图1 太阳能电池的工作原理2.2有机太阳能电池的工作原理无机半导体是通过掺杂微量的杂质元素(如P、N等) ,改变载流子浓度,从而提高电导率。

而聚合物的导电机理则更为复杂,聚合物半导体的主要特征是存在共轭键,其中σ键定域性较强,而π键电子定域性较弱。

在掺杂原子(O、N、S、N等)作用下,π键分子轨道可发生简并,从而形成一系列扩展的电子状态,即能带。

π键轨道与π* 反键轨道分别与聚合物的价带和导带相对应,六噻吩的电子结构与导电机理示意图如图2所示。

无机太阳能电池在光照作用下产生电子- 空穴对,在p-n结附近形成的内电场的作用下,电子-空穴对被分离并分别传输到两极,在两极间产生电势,称为光伏效应,(如图3)所示。

对于绝大多数无机光电池而言,光生载流子的理论解释是基于半导体材料的能带理论。

图2 六噻吩的电子结构由于共轭有机半导体材料的导电机理与无机半导体有所不同,因此,有机太阳能电池与无机太阳能电池的载流子产生过程有所不同。

聚合物吸收光子产生激子,激子只有离解成自由载流子(电子和空穴)才能产生光电流。

一种被广泛接受的观点是,有机薄膜太阳能电池的作用过程由三个步骤:(1)光激发产生激子; (2)激子在给体/受体(D /A)界面的分裂; (3)电子和空穴的漂移及其在各自电极的收集。

器件的能量损失贯穿于整个过程: (1)光子损失; (2)激子损失; (3)载流子损失。

激子的离解有多种机制,可归结为激子的热电离或自由电离、激子与激子之间的碰撞电离、光致电离、激子与杂质或缺陷中心相互作用而电离等。

这样离解产生的自由载流子迁移率比较低,容易成对复合而损失,只有扩散到D /A界面的激子,被界面的内建电场离解才对光电流的产生有贡献。

(如图3)图3 界面的内建电场离解3有机太阳能电池分类3.1单质结结构有机太阳能电池单质结有机太阳能电池是研究最早的有机太阳能电池。

其电池结构为: 玻璃/金属电极/染料/金属电极, 即为两种功函不同的电极之间为一单一的有机半导体层。

(如图4)图4 有机半导体层一般常用各种有机光伏材料均可被制成此类有机太阳能电池,如酞菁类化合物(phthalocyanine)、卜啉(porphyrin)、(cyanine)染料、叶绿素、导电聚合物等有机材料。

各类有机材料各有其优缺点:酞青类化合物具有良好的热稳定性及化学稳定性, 而卜啉具有良好的光稳定性, 同时也是良好的光敏化剂, 但具有较大的电阻; 青易于合成、价格便宜, 是良好的光导体并具有良好的溶解性, 但稳定性较差。

单质结有机太阳能电池工作原理是由于2 电极功函不同, 电子从低功函的金属电极穿过有机层到达高功函电极,而产生光电压形成光电流, 其光伏特性取决于载流子的浓度。

但由于电子与空穴在同一材料中传输因而复合几率较大, 所以单质结结构有机太阳能电池的光电转换效率较低3.2 p-n 异质结结构有机太阳能电池p-n异质结结构有机太阳能电池电池结构为: 玻璃/ITO/n- 染料/p- 染料/金属电极。

由于其具有给体-受体异质结结构的存在, p-n异质结结构有机太阳能电池因存在D/A 界面使激子的分离效率提高, 同时电子和空穴分别在不同的材料中传输, 使得复合几率降低, 因而具有较高的光电转换效率。

但由于有效的电荷分离只能发生在D/A界面处, 即在接近于激子扩散途径或空间电荷区域附近, 而在远离D/A界面处产生的激子就会先扩散到异质结界面处而复合掉。

同时电荷分离被限制在电池较小的区域, 从而使吸收光子的数量受到限制所以p- n 异质结结构有机太阳能电池较单质结结构有机太阳能电池的光电转换效率要高, 因此成为后来研究的重点。

3.3 p-n本体异质结结构有机太阳能电池对由施主和受主对材料组成的高聚物体系而言, 在本质上可以获得象半导体一样的p-n结。

当光与施主分子相互作用, 电子就能够从低的分子轨道提升到高的分子轨道从而产生激子(比如电子- 空穴对)。

在没有外界影响下, 驰豫过程随后产生; 在此期间电子和空穴复合导致能量发射——通常是以比产生原跃迁波长更长的光的形式而发射。

但是如果受体存在, 电子就向受主传输从而发生电荷分离。

(如图5)图5 p-n本体异质结结构电子跃迁给体-受体结构。

受激发的电子给体吸收光子, 其HOMO 轨道上的一个电子跃迁到LUMO , 通常由于给体LUMO 的电离势比受体LUMO 的电离势低, 电子就由给体转移到受体, 完成了电子的转移。

激子分离后产生的电子和空穴向相反的方向运动,被收集在相应的电极上, 就形成了光电压。

3.4 染料敏化电池染料敏化太阳能电池(简称DSSC) 是20 世纪90 年代发展起来的一种新型太阳能电池,它具有工艺简单和生产成本低等优点,约为5~10 元/ W;同时它具有实用性强的特点,即可以通过适当选择染料和电介质的颜色及薄膜厚度来控制电池的透光率,这样可以把电池用作窗户玻璃,既透光又能作为电池使用。

染料敏化太阳能电池的基本结构包括三个部分染料敏化他二氧化钛的纳晶薄膜、工作电极由导电玻璃、纳米二氧化钛半导体薄膜和带有发色团的染料敏化剂组成、含有几犷的电解质和对电极图通常由于的禁带宽度较大(3.2eV),可见光不能将其直接激发, 因此在认表面上吸附了一层对可见光吸收性能良好的染料分子作为敏化剂, 这种染料分子带有发色团, 当光照射到染料分子,染料分子吸收光子后跃迁到激发态, 处在激发态的染料分子产生中心离子向配体的电荷转移, 电子通过配体很快注人到较低能级的二氧化钛导带上, 电子在导带基底上富集, 通过外电路流向对电极染料分子输出电子后成为氧化态, 它们随后被电解质中的还原而得以再生, 而氧化态的电解质卜一在对电极上得到电子被还原, 从而完成一个光电化学反应循环.理想的染料敏化剂要具有以下特点对可见光具有良好的吸收, 其吸收光能与太阳能光谱很好地匹配此外, 它能够牢固的联接到二氧化钛半导体的表面, 并且以一致的量子产率的方式将电子注入到导带上。

4太阳能电池器件改善研究4.1增加入射光,减少反射玻璃是太阳能电池的第一个器件,对其处理主要有两种。

一是对其表面形状处理。

采用特制的花辊,在超白玻璃的下表面压制特制的金字塔花纹,而在上表面压制特殊的绒面图案,通过特殊的压花花纹设计减少玻璃定向反射,增加内反射效应,促进其有效的吸收太阳光能,最大限度地提高太阳光线的透过率,提高发电效能,是太阳能电池不可或缺的重要组成部件之一,它具有高太阳能透过率、低反射率、低含特量、高机械强度、高平整度等优异特点。

(如图6)图6 表面形状处理另一种是镀膜。

它有两种途径。

一:玻璃表面镀增透膜优点:在硅太阳电池类金刚石增透膜的研制中,用类金刚石膜制作硅太阳电池的增透膜可以明显地改善它的光谱特性,实验表明,用类金刚石薄膜制作增透膜之后,硅太阳电池的短路电流增加38%,在较大的光谱范围内响应值增大,并且在650-750nm波长范围内有最大增透效应,在650-950nm波长范围内,量子效率接近1。

缺点:膜的厚度是唯一的,所以只能照顾到一种颜色的光让它完全进入玻璃。

二:镀低折射率薄膜对于它又有两种方法。

1:镀非均匀膜。

特点是折射率r随着深度d的变化而连续变化用低压反应离子镀(RLVIP)的方法在Ge基底上制备了Ge1-xCx单层非均匀增透薄膜。

随着沉积速率在0.05-0.4nm/s之间的变化,其折射率在2.31~3.42之间可变。

实验结果表明,镀制的Ge1-x C x单层非均匀增透保护薄膜均为无定形结构,并实现了从2000-8000nm的宽波段增透。

当沉积速率为0.1nm/s时,单面平均透过率从68.6%提高到了80.9%,比单面未镀膜时提高了17.9%。

通过对薄膜的稳定性和牢固度进行测试表明,制备的Ge1-xCx单层非均匀增透薄膜具有良好的性能。

2:用几种不同折射率的减反射膜,称为多层减反射膜。

现在的玻璃折射率为1.52的冕牌玻璃。

为了增加低反射区的宽度可以在基层上附加一层低折射率的半波长层通过研究:a类在900nm~1200nm的反射率几乎为0,但在700nm~900nm和1200nm~1400nm 时反射率较高,在0.05左右;b类在700nm~1400nm反射率在0.01左右;如果将a,b的优点和在一起,会使对700nm~1400nm反射率在0.01以下,这就要寻找介质折射率在1.905~2.13之间或者找到比1.38更低的物质,将放最上层,或许有意外收获。

相关文档
最新文档