全国各地2016年中考数学试题分类汇编专题 二次函数 含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数

选择题

1.(2016²山东省滨州市²3分)抛物线y=2x2﹣2x+1与坐标轴的交点个数是()

A.0 B.1 C.2 D.3

【考点】抛物线与x轴的交点.

【专题】二次函数图象及其性质.

【分析】对于抛物线解析式,分别令x=0与y=0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数.

【解答】解:抛物线y=2x2﹣2x+1,

令x=0,得到y=1,即抛物线与y轴交点为(0,1);

令y=0,得到2x2﹣2x+1=0,即(x﹣1)2=0,

解得:x1=x2=,即抛物线与x轴交点为(,0),

则抛物线与坐标轴的交点个数是2,

故选C

【点评】此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点.

2.(2016²山东省滨州市²3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()

A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+【考点】二次函数图象与几何变换.

【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.

【解答】解:∵抛物线的解析式为:y=x2+5x+6,

∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+,

∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+﹣3=﹣(x﹣)2﹣.

故选A.

【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.

3.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所

示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()

A.大于0 B.等于0 C.小于0 D.不能确定

【考点】抛物线与x轴的交点.

【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,

设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,

∵由二次函数的图象可知x1+x2>0,a>0,

∴﹣>0.

设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,

∵a>0,

∴>0,

∴a+b>0.

故选C.

【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.

4.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()

A. B. C. D.

【考点】二次函数的图象;一次函数的图象.

【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.

【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;

B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;

C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;

D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.

5.(2016²福建龙岩²4分)已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()

A.a+bB.a﹣2bC.a﹣bD.3a

【考点】二次函数图象与系数的关系.

【分析】观察函数图象找出“a>0,c=0,﹣2a<b<0”,由此即可得出|a﹣b+c|=a﹣b,|2a+b|=2a+b,根据整式的加减法运算即可得出结论.

【解答】解:观察函数图象,发现:

图象过原点,c=0;

抛物线开口向上,a>0;

抛物线的对称轴0<﹣b<1,﹣2a<b<0.

∴|a﹣b+c|=a﹣b,|2a+b|=2a+b,

∴|a﹣b+c|+|2a+b|=a﹣b+2a+b=3a.

故选D.

6.(2016²广西桂林²3分)已知直线y=﹣3x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣3)2+4上,能使△ABP为等腰三角形的点P的个数有()

A.3个 B.4个 C.5个 D.6个

【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由

直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再

令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.

【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.

令一次函数y=﹣x+3中x=0,则y=3,

∴点A的坐标为(0,3);

令一次函数y=﹣x+3中y=0,则﹣x+3,

解得:x=,

∴点B的坐标为(,0).

∴AB=2.

∵抛物线的对称轴为x=,

∴点C的坐标为(2,3),

∴AC=2=AB=BC,

∴△ABC为等边三角形.

令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,

解得:x=﹣,或x=3.

∴点E的坐标为(﹣,0),点F的坐标为(3,0).

△ABP为等腰三角形分三种情况:

①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;

②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;

③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;

∴能使△ABP为等腰三角形的点P的个数有3个.

故选A.

7.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()

A.大于0 B.等于0 C.小于0 D.不能确定

【考点】抛物线与x轴的交点.

【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,

相关文档
最新文档