基本不等式求值的类型与方法-经典大全
基本不等式常用方法

基本不等式常用方法
不等式在数学中有着广泛的应用,解决不等式时,常用的方法包括:
1. 代数方法
加减法:在不等式两边同时加上或减去相同的数字
乘除法:在不等式两边同时乘以或除以相同的正数,但若乘以或除以负数,则不等号需逆转
平方或取绝对值:当不等式中出现根式或绝对值时,可以平方或取绝对值,这时需要考虑平方或取绝对值后的符号变化
因式分解:将不等式中的多项式因式分解,然后根据因式之间的大小关系确定不等式的解
2. 几何方法
数轴法:将不等式表示在数轴上,不等号的符号决定了数轴上
被包含或排除的区域
直线法:当不等式涉及一次函数时,可以用直线方程表示不等式,直线上下方区域满足不等式
圆或椭圆法:当不等式涉及二次函数时,可以用圆或椭圆表示不等式,圆或椭圆内部或外部区域满足不等式
3. 代换法
代入法:给定不等式的解,将其代入不等式两边进行验证
换元法:引进新的变量,将不等式中的复杂表达式用新变量表示,简化不等式便于求解
4. 反证法
反证法:假设不等式不成立,推导出矛盾,从而证明不等式成立
背理法:假设不等式成立的否定,通过推理得到矛盾,从而证明不等式成立
5. 其它方法
分步传递法:将不等式分步传递,每一步都得到一个新的不等式,直到得到最终结果
数学归纳法:当不等式涉及自然数时,可以使用数学归纳法证明不等式对所有自然数成立
反例法:找出一个反例,证明不等式不成立。
基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。
2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。
3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。
4.倒数不等式公式:若a>b>0,则1/a<1/b。
5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。
若a<0且n为奇数整数,则a^n<0。
常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。
2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。
3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。
通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。
4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。
5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。
以上是基本不等式的一些公式和常用解法。
对于不同的不等式,我们需要根据具体情况选择合适的解法。
希望以上内容对您有所帮助。
基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。
2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。
3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当$a=b$时取“=”。
4、求最值的条件:“一正,二定,三相等”。
5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。
若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。
若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。
若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。
6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。
题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。
2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。
3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。
不等式求解方法归纳

一、不等式基本知识1、基本性质性质一:a b b a <⇔>(对称性)性质二:c a c b b a >⇒>>,,(传递性)性质三:c b c a b a +>+⇔>性质四:bc ac c b a bc ac c b a <⇔<>>⇔>>0,;0,2、运算性质d b c a d c b a +>+⇒>>,(加法法则);bd ac d c b a >⇒>>>>0,0(乘法法则)n n b a N n b a >⇒∈>>+,0(乘方法则);n n b a N n b a >⇒∈>>+,0(开方法则) 3、常用不等式(1)ab b a b a ≥+≥+222)2(2 (2)||222ab b a ≥+ 取等号条件:一正、二定、三相等(3)2|1|≥+x x (4)若ma mb a b m b a ++<>>>,0,0 (5)n n n x x x n x x x x ⋅⋅⋅⋅⋅⋅⋅≥+⋅⋅⋅+++21321(0≥i x )二、不等式的证明方法常用的方法有:比较法、分析法、综合法、归纳法、反证法、类比法、放缩法、换元法、判别式法、导数法、几何法、构造函数、数轴穿针法等。
1、比较法例1、若,0,0>>b a 求证:b a ba ab +≥+22。
证明:abb a b a b a ab b ab a b a b a b a a b 22222))(()())(()(-+=+-+-+=+-+0≥,∴b a a b b a +≥+22。
2、分析法例2已知y x b a ,,,都是正实数,且.,11y x b a >>求证:yb y x a x +>+。
解: y x b a ,,,都是正实数,∴要证yb y x a x +>+,只要证)()(x a y y b x +>+,即证ay bx >,也就是ab ay ab bx >,即,b y a x >而由.,11y x b a >>,知by a x >成立,原式得证。
基本不等式题型及常用方法总结

基本不等式题型及常用方法总结基本不等式题型包括一元一次不等式、一元二次不等式、绝对值不等式和有理不等式等。
1. 一元一次不等式:- 解法1:通过移项和化简来求解,确保不等号方向的正确性。
- 解法2:将不等式转化为等价的集合表示,再通过集合的交、并运算求解。
2. 一元二次不等式:- 解法1:将不等式化为一元二次函数的图像,通过观察图像求解或者利用函数的性质来求解。
- 解法2:通过移项和配方法将不等式转化为二次函数的标准形式,再判断二次函数图像的位置与不等号关系来求解。
3. 绝对值不等式:- 解法1:将绝对值不等式分段求解,分别讨论绝对值内部是正数还是负数的情况。
- 解法2:通过绝对值的定义和不等式的性质,将绝对值不等式转化为两个简单的不等式来求解。
4. 有理不等式:- 解法1:将有理不等式化为分式的形式,然后通过分式的性质来求解。
- 解法2:通过变量的替换来将有理不等式转化为一元二次不等式或者一元一次不等式,再利用对应的方法来求解。
常用方法总结:1. 对于一元一次不等式和一元二次不等式,常用的方法是移项和化简、画函数图像和利用函数的性质来求解。
2. 对于绝对值不等式,常用的方法是分段求解和利用绝对值的性质来求解。
3. 对于有理不等式,常用的方法是化为分式形式和利用分式的性质来求解。
4. 在求解不等式的过程中,经常需要进行合并同类项、开方、取倒数、乘除等基本运算,需要注意运算法则和符号的变化。
5. 在不等式的求解过程中,需要注意不等式两边的平方值是否相等,以及是否存在不等式的等价变换等。
同时,在进行运算过程中,需要根据不等式的符号关系来选择合适的方式。
《基本不等式》 知识清单

《基本不等式》知识清单一、基本不等式的形式基本不等式是高中数学中的一个重要知识点,它有两种常见形式:1、对于任意两个正实数 a 和 b,有\(a + b \geq 2\sqrt{ab}\),当且仅当\(a = b\)时,等号成立。
2、如果\(a\gt 0\),\(b\gt 0\),则\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当\(a = b\)时,等号成立。
这两个形式本质上是等价的,它们都反映了两个正数的算术平均数不小于几何平均数的重要关系。
二、基本不等式的证明我们先来证明第一个形式\(a + b \geq 2\sqrt{ab}\)。
因为\((\sqrt{a} \sqrt{b})^2 \geq 0\),展开得到:\\begin{align}a 2\sqrt{ab} +b &\geq 0\\a +b &\geq 2\sqrt{ab}\end{align}\当且仅当\(\sqrt{a} \sqrt{b} = 0\),即\(a = b\)时,等号成立。
对于第二个形式\(\sqrt{ab} \leq \frac{a + b}{2}\),证明如下:因为\((a b)^2 \geq 0\),所以\(a^2 2ab + b^2 \geq 0\),移项得到\(a^2 + 2ab + b^2 \geq 4ab\),即\((a + b)^2 \geq 4ab\)。
因为\(a\gt 0\),\(b\gt 0\),所以\(a + b \gt 0\),两边同时除以 4 得到:\\begin{align}\frac{(a + b)^2}{4} &\geq ab\\\frac{a + b}{2} &\geq \sqrt{ab}\end{align}\当且仅当\(a = b\)时,等号成立。
三、基本不等式的应用1、求最值基本不等式在求最值问题中有着广泛的应用。
例如,求函数\(y = x +\frac{1}{x}\)(\(x\gt 0\))的最小值。
用基本不等式求最值六种方法

用基本不等式求最值六种方法一.配项例1:设x>2,求函数y=x+92x-的最小值解析:y=x-2+92x-+2≥8 当x-2=92x-时,即x=5时等号成立例2:已知a,b是正数,满足ab=a+b+3,求ab的最小值法1:ab=a+b+3≥当a=b3即ab≥9当a=b=3时等号成立。
法2:已知可化为(a-1)(b-1)=4.又ab=(a-1)+(b-1)+5≥9当a-1=b-1=2时等号成立,即a=b=3二.配系数例3:设0<x<1,求解析:当三.重复使用不等式例4:已知a>b>0,求2a+16()a b b-的最小值解析:2a+16()a b b-=2a b b-+()+16()a b b-≥4(a-b)b+16()a b b-≥当时,等号成立。
四.平方升次例5:当x>0时,求函数的最大值。
解析:y2=x2+4-x2≤4+[x2)2]=8 当,即时,y取得最大值.五.待定系数法例6:求y=2sinx(sinx+cosx)的最大值。
解析:y=2sin 2x+2sinxcosx=2 sin 2x+2sin (cos )x a x a (a>0) ≤2 sin 2x+222sin cos x a x a+ =a+22(21)sin a a xa+- 若为定值,则221a a +-=0,+1,所以y 时成立。
六. 常值代换 例7:已知x>0,y>0,且x+2y=3,求1x +1y 的最小值解析:1x +1y =13(x+2y)( 1x +1y )=1+13(2y x +x y )≥1+23当且仅当2y x =x y ,且x+2y=3,即-1),y=32)时,取得最小值为1+23。
基本不等式求值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法一、几个重要的基本不等式:①,、)(222222R b a ba ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
二、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=, 当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。
通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。
基本不等式完整版(非常全面)[整理]
![基本不等式完整版(非常全面)[整理]](https://img.taocdn.com/s3/m/9348b628cd1755270722192e453610661ed95ab5.png)
基本不等式完整版(非常全面)[整理]
基本不等式可以指几乎所有组成分析和数学的基础。
它可以使许多不同的数学问题变
得更容易理解,因此使用它们进行计算是极其重要的。
基本不等式包括了三类不等式:大
小不等式,加法不等式和乘法不等式。
以下是一些基本的不等式定义。
1、大小不等式:大小不等式表示一个数与另一个数之间的存在或缺失的关系。
例如,如果A > B,则表示A大于B,而A ≤ B表示A小于或等于B,A ≠ B表示A与B之间存
在某种不同。
2、加法不等式:加法不等式表示两个数相加时的结果。
例如,A + B > C的意思是A
与B的和大于C,A + B ≤ C的意思是A与B的和小于或等于C,A + B = C的意思是A
与B的和等于C。
一般地,一个数与另一个数之间的关系可以用不等式来表示,但也可以用不等式来表
示多个数之间的关系:
1、省略不等式:3x + 2y = 4z,这表示3x + 2y至少等于4z的意思。
基本不等式可以用来处理大量数学问题,比如解一元不等式、求函数的极值以及进行
多元函数分析等。
它们对于熟悉数学理论和解决数学问题都极其重要。
基本不等式公式大全

基本不等式公式大全基本不等式是数学中非常重要的概念,它在数学推导和解题过程中起着至关重要的作用。
本文将对基本不等式的相关公式进行全面的介绍和总结,希望能够对读者有所帮助。
1. 一元一次不等式。
一元一次不等式是最简单的不等式形式,一般表示为ax+b>0或ax+b<0,其中a和b为实数,且a≠0。
解一元一次不等式的关键在于求出不等式的解集,常用的方法有图解法和代入法。
2. 一元二次不等式。
一元二次不等式是一元二次方程不等式,一般表示为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b和c为实数,且a≠0。
解一元二次不等式的关键在于求出不等式的解集,常用的方法有配方法、图解法和代入法。
3. 绝对值不等式。
绝对值不等式是含有绝对值符号的不等式,一般表示为|ax+b|>c或|ax+b|<c,其中a、b和c为实数,且a≠0。
解绝对值不等式的关键在于将绝对值不等式转化为对应的复合不等式,并求出不等式的解集。
4. 分式不等式。
分式不等式是含有分式的不等式,一般表示为f(x)>0或f(x)<0,其中f(x)为有理函数。
解分式不等式的关键在于求出不等式的定义域和分子分母的符号,然后根据符号表确定不等式的解集。
5. 复合不等式。
复合不等式是由多个不等式组合而成的不等式,一般表示为f(g(x))>0或f(g(x))<0,其中f(x)和g(x)为函数。
解复合不等式的关键在于将复合不等式转化为对应的简单不等式,并求出不等式的解集。
以上是关于基本不等式的相关公式和解题方法的介绍,希望能够对读者有所帮助。
在实际应用中,不等式是数学建模和优化问题中的重要工具,掌握不等式的相关知识对于解决实际问题具有重要意义。
希望读者能够通过学习和实践,更加熟练地运用不等式解决实际问题,提高数学解题能力。
基本不等式的各种求解方法和技巧

基本不等式一、知识梳理二、极值定理(1)两个正数的和为常数时,它们的积有 ;若0,0,a b a b M >>+=,M 为常数,则ab ≤ ;当且仅当 ,等号成立.简述为,当0,0,a b a b M >>+=,M 为常数,max ()ab = .(2)两个正数的积为常数时,它们的和有 ;若0,0,a b ab P >>=,P 为常数,则a b +≥ ;当且仅当 ,等号成立.简述为,当0,0,a b ab P >>=,M 为常数,min ()a b += .(,)2a b a b R ++≤∈,求最值时应注意以下三个条件:应用基本不等式的经典方法方法一、直接利用基本不等式解题例1、(1)若0,0,4a b a b >>+=,则下列不等式恒成立的是( )A .112ab > B .111a b +≤ C 2≥D. 2211+8a b ≤(2)不等式2162a bx x b a +<+对任意(),0,a b ∈+∞ 恒成立,则实数x 的取值范围是() A .(2,0)− B .(,2)(0,)−∞−+∞ C .(4,2)−D .(,4)(2,)−∞−+∞(3)设,,1,1x y R a b ∈>>,若3,x y a b a b +,则11x y +的最大值为 ( )A .2B .32C .1D .12方法二:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件,通过乘或除常数、拆因式、平方等方式进行构造) 例2、(1)已知54x <,求函数1445y x x =+−的最大值;(2)已知,则的取值范围是() A . B . C. D .方法三:“1”的巧妙代换命题点1、“1”的整体代换例3、(1)若正数,x y 满足35x y xy +=,则34x y +的最小值是() A .245 B .285 C .5D .6(2)已知0,0,x y >>且21x y +=,求11x y +的最小值.0,2b a ab >>=22a b a b +−(],4−∞−(),4−∞−(],2−∞−(),2−∞−命题点2、“1”的部分代换(3)已知0,0,x y >>且21x y +=,求1x x y +的最小值.(4)(2013·天津高考理科)设a + b = 2, b >0, 则当a = 时,1||2||a a b +取得最小值.命题点3、“1”的变形代换(5)设0,1a b >>,若3121a b a b +=+−,则的最小值为 .(6)已知实数,x y 满足102x y x y >>+=,且,则213x y x y++−的最小值为________.(7)设10<<x ,,a b 都是大于0的常数,则x b x a −+122的最小值为 .方法四: 消元(转化为函数最值,此时要注意确定变量的范围)例4、(1)已知,,x y z R +∈,230x y z −+=,则2y xz 的最小值 .(2)设正实数,,x y z 满足22340x xy y z −+−=,则当xy z 取得最大值时, 212x y z +−的最大值为 .方法五:“之和”与“之积”的互化例5、(1)已知a ,b 为正实数,2b +ab +a =30,则1ab的最小值 .(2)已知0x >,0y >,228x y xy ++=,则2x y +的最小值是 .方法六、连续两次使用基本不等式求最值例6、(1)(2009重庆卷)已知0,0a b >>,则11a b++ )A .2B .C .4D .8(2)已知22log log 1+≥a b ,则39a b+的最小值为__________(3)若 的最小值为 .方法七、利用基本不等式求分式函数最值例7、(1)当1x >−时,求1()21f x x x =++的最小值.(2)求函数y =的值域。
基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法
基本不等式是数学中一种重要的概念,它可以帮助我们解决许多复杂的问题。
基本不等式的公式有许多,其中最常用的是加法不等式、乘法不等式、减法不等式和比较不等式。
加法不等式的公式是:若a、b是任意实数,则有a+b≥0。
加法不等式的解法是:若a、b是
任意实数,则可以将a+b≥0转化为a≥-b,从而得出a的取值范围。
乘法不等式的公式是:若a、b是任意实数,则有ab≥0。
乘法不等式的解法是:若a、b是任
意实数,则可以将ab≥0转化为a≥0或b≥0,从而得出a、b的取值范围。
减法不等式的公式是:若a、b是任意实数,则有a-b≥0。
减法不等式的解法是:若a、b是
任意实数,则可以将a-b≥0转化为a≥b,从而得出a的取值范围。
比较不等式的公式是:若a、b是任意实数,则有a>b或a<b。
比较不等式的解法是:若a、b
是任意实数,则可以将a>b或a<b转化为a-b>0或a-b<0,从而得出a的取值范围。
基本不等式的公式和解法可以帮助我们解决许多复杂的问题,它们在生活中也有着重要的作用。
比如,当我们在购物时,可以利用基本不等式的公式和解法来比较价格,从而节省购物费用。
此外,基本不等式的公式和解法还可以帮助我们解决许多其他的问题,比如计算投资回报率、计算贷款利息等。
总之,基本不等式的公式和解法对我们的生活娱乐有着重要的意义,它们可以帮助我们解决许多复杂的问题,节省购物费用,计算投资回报率和贷款利息等。
基本不等式(很全面)

基本不等式【知识框架】1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;4、求最值的条件:“一正,二定,三相等”5、常用结论(1)若0x >,则12x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab+≤+≤≤+ 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+【题型归纳】题型一:利用基本不等式证明不等式题目1、设b a ,均为正数,证明不等式:ab ≥ba 112+题目2、已知c b a ,,为两两不相等的实数,求证:cabc ab c b a ++>++222题目3、已知1a b c ++=,求证:22213a b c ++≥题目4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---题目5、已知,,a b c R +∈,且1a b c ++=,求证:1111118⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪题目6、(新课标Ⅱ卷数学(理)设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a ++≥.题型二:利用不等式求函数值域题目1、求下列函数的值域(1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x x x y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;变式3:已知2<x ,求函数4224xy x x =+-的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;题目2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)题目1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
基本不等式基础入门篇

基本不等式基础入门篇基本不等式:()()2240a b ab a b +-=-≥ ()24a b a b ⇒+≥ 当a,b>0时,两边开方可得:2a b ab +≥2a b +≥左边是两个正数的算数平均数,右边是两个正数的几何平均数。
故此不等式称之为:均值不等式,也叫基本不等式。
一正二定三相等:一正:使用的对象a,b 必须是正数;二定:和定积最大,积定和最小;三相等:当且仅当a=b 时,取得最大(小)值。
常见的类型:一、和积互化积定1.已知a,b>0,且ab=1,求a+b 的最小值;2.已知a,b>0,且ab=2,求2a+b 的最小值;3.已知a,b>0,且ab=1,求2a+3b 的最小值;和定1.已知a,b>0,且a+b=1,求ab 的最大值;2.已知a,b>0,且2a+b=1,求ab的最大值;3.已知a,b>0,且a+b=1,求2ab的最大值;三、1 tt +型1.当x>0时,求1xx+的最小值;2.当x>0时,求12xx+的最小值;3.当x>1时,求121xx+-的最小值;4.当x<1时,求1231xx++-的最大值;5.当x>0时,求221x xx-+的最小值;(引申:高低次)四、构造“齐次”(柯西不等式)1.已知a,b>0,且1a b +=,求11+a b的最小值; 2. 已知a,b>0,且1a b +=,求21+a b的最小值; 3. 已知a,b>0,且1a b +=,求11+2a b的最小值; 4. 已知a,b>0,且2a b +=,求13+2a b的最小值; 5. (提升)已知a,b>0,且2ab =,求22a ab+的最小值; 6. (提升)已知1a b +=,求a b ab -的最小值;。
基本不等式九个方法

基本不等式九个方法
基本不等式求解方法
不等式是数学中用于比较两个表达式大小关系的工具。
基本不等式求解方法有九种,每种方法都适用于不同的类型不等式。
一、代入法
代入法是最简单的不等式求解方法。
将一个已知的值代入不等式中,如果不等式仍然成立,则此值即为不等式的解。
二、两边同加或同减
在不等式两边同时加上或减去相同的数,不等式仍然成立。
这种方法可以简化不等式或消除分母。
三、两边同乘或同除
在不等式两边同时乘以或除以相同的正数,不等式仍然成立。
但需要注意,如果乘以或除以负数,不等号方向将改变。
四、利用性质化简
利用不等式的性质,如传递性、反对称性、可加性、可乘性等,可以简化或化解不等式。
五、转化为等价不等式
将不等式转化为等价形式,即不等号方向不变的不等式。
这种
方法可以将复杂不等式转换为简单形式。
六、平方或开方
对于含未知数平方或方根的不等式,可以平方或开方(注意开
方时不等号方向可能改变),将不等式化为可解的形式。
七、分离系数法
对于含有系数的不等式,可以将未知数的系数提取出来,分离
在不等式的一侧,使不等式化简为求解系数的不等式。
八、判别式法
对于二次回不等式(二次方程形式),可以应用判别式法判定不等式的解集。
判别式为正则有两实根,为零则有一重根,为负则无实根。
九、数轴法
对于线性不等式,可以在数轴上标出不等式对应的解集。
这种方法形象直观,适用于简单的不等式求解。
以上九种方法是基本不等式求解的常用方法,熟练掌握这些方法对于解决不等式问题至关重要。
基本不等式技巧窍门

基本不等式技巧窍门一、基本不等式的概念和基本类型1.算术平均数和几何平均数的不等式:即对于任意非负数a和b,有以下不等式成立:(a+b)/2 >= sqrt(ab)2.算术平均数和谐均值的不等式:即对于任意非负数a和b,有以下不等式成立:(a+b)/2 >= 2ab/(a+b)3.几何平均数和谐均值的不等式:即对于任意非负数a和b,有以下不等式成立:sqrt(ab) >= 2ab/(a+b)根据这些基本不等式,可以进一步推导一系列其他类型的不等式。
二、基本不等式的应用实例1.求函数的极值:当函数的取值范围为非负数时,可以通过基本不等式推导出函数的最大值或最小值。
2.解决几何问题:例如,求解三角形的最大面积或最短边长等问题时,可以利用基本不等式来推导和证明相关的不等式。
3.证明数学定理:基本不等式可以作为证明数学定理的重要工具,例如,证明柯西-施瓦茨不等式和霍尔德不等式等。
三、基本不等式的技巧和窍门1.设想数学模型:在使用基本不等式时,可以通过设想合适的数学模型来降低问题的复杂性,从而更容易利用基本不等式进行推导和证明。
2.利用对称性和等价变形:基本不等式通常具有对称性和等价变形的特点,可以根据这些特点对给定的问题进行适当的变形,从而使得不等式的应用更为简单和直观。
3.运用递归和数学归纳法:对于一些复杂的不等式问题,可以通过递归和数学归纳法的思想,将复杂问题分解为简单的基本情况,然后利用基本不等式进行递推和证明。
4.运用等比数列的性质:在一些涉及等比数列的不等式问题中,可以通过运用基本不等式的几何平均数和谐均值不等式来简化问题,从而得到更简洁的推导和证明过程。
总结起来,基本不等式是一种重要的数学工具,能够帮助解决各种求极值的问题。
在应用基本不等式时,需要灵活运用各种技巧和窍门,根据具体的问题和数学模型进行变形和推导。
通过学习和掌握基本不等式的应用,可以提高解决数学问题的能力和思维能力。
方法技巧专题30不等式的解法与基本不等式

方法技巧专题30不等式的解法与基本不等式不等式是数学中常见的一类问题,解决不等式问题需要掌握一些方法和技巧。
本文将介绍不等式的解法以及基本不等式。
一、不等式的解法1.同加同减法:对于不等式a<b,可以在两边同时加上(或减去)同一个数得到新的不等式,即:a+c<b+ca-c<b-c2.同乘同除法:对于不等式a<b,可以在两边同时乘上(或除以)同一个正数得到新的不等式,即:a*c<b*c,c>0a/c<b/c,c>0需要注意的是,当同乘或同除的数为负数时,不等号的方向需要颠倒,即:a*c>b*c,c<0a/c>b/c,c<03.倒置不等号:对于不等式a<b,如果两边同时乘以-1,不等号的方向需要颠倒,即:-a>-b4.分类讨论:对于一些复杂的不等式,可以通过分类讨论的方法进行求解。
根据不等式中出现的变量或系数的范围,将不等式分为几个情况进行讨论,然后逐一解决。
5.代换法:对于一些复杂的不等式,可以通过代换一些变量来简化问题。
选择合适的代换变量,使得不等式中的形式更加简单,从而更容易求解。
二、基本不等式基本不等式是不等式求解中常用且重要的技巧,掌握了基本不等式可以更方便地求解复杂的不等式问题。
以下是几个常用的基本不等式:1.平均值不等式:对于任意一组非负实数a1, a2, ..., an,平均值不等式成立:(a1 + a2 + ... + an) / n ≥ √(a1 * a2 * ... * an)即算术平均数大于等于几何平均数。
2.均值不等式:对于任意一组非负实数a1, a2, ..., an,有下列不等式成立:(a1 + a2 + ... + an) / n ≥ (√a1 + √a2 + ... + √an) / √n 即算术平均数大于等于几何平均数。
3.柯西-施瓦茨不等式:对于任意一组实数a1, a2, ..., an和b1, b2, ..., bn,有下列不等式成立:(a1 * b1 + a2 * b2 + ... + an * bn)^2 ≤ (a1^2 + a2^2 + ... + an^2) * (b1^2 + b2^2 + ... + bn^2)即两组数的乘积之和的平方不超过各自平方和的乘积之和。
基本不等式题型总结

基本不等式题型总结基本不等式是数学中的重要概念,其中包括很多不等式题型。
下面将对基本不等式的常见题型进行总结,并提供一些解题思路和方法。
1. 一次不等式:一次不等式是最简单的不等式形式,通常是形如 ax + b > 0 的形式。
解这类不等式时,可以将不等式转化为等式,求出等式的解集,然后根据不等号的方向确定不等式的解集。
2. 二次不等式:二次不等式是一次不等式的推广,形如 ax^2 + bx + c > 0 的形式。
解这类不等式时,可以利用二次函数的性质,首先求出二次函数的零点,然后根据二次函数的图像确定不等式的解集。
3. 绝对值不等式:绝对值不等式是一种常见的不等式形式,形如 |ax + b| > c 的形式。
解这类不等式时,可以根据绝对值的定义,分别考虑 ax + b > c 和 ax + b < -c 两种情况,然后求出每种情况下的解集。
4. 分式不等式:分式不等式是包含有分式的不等式,形如p(x)/q(x) > 0 的形式。
解这类不等式时,可以找出分式的零点,然后根据分式的正负性确定不等式的解集。
5. 根式不等式:根式不等式是带有根号的不等式,形如√(ax +b) > c 的形式。
解这类不等式时,可以根据根式的定义,将不等式平方后再进行求解。
6. 微分不等式:微分不等式是用微分的方法解决的不等式,通常涉及函数的导数。
解这类不等式时,可以求出函数的导数,然后根据导数的正负性确定函数在不同区间上的增减性以及函数的极值点,从而确定不等式的解集。
7. 参数不等式:参数不等式是含有参数的不等式,通常涉及参数的范围和取值。
解这类不等式时,可以根据参数的取值范围,分析不等式在不同情况下的解集,并给出参数的取值条件。
8. 不等式组:不等式组是由多个不等式组成的集合,通常需要在平面上找出满足所有不等式条件的解集。
解这类不等式组时,可以利用图像解法、代数解法或线性规划等方法,确定不等式组的解集。
不等式专题:基本不等式求最值的6种常用方法(解析版)

基本不等式求最值的6种常用方法知识梳理:一、基本不等式常用的结论1、如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a b =时取等号“=”)推论:ab ≤a 2+b 22(a ,b ∈R ) 2、如果a >0,b >0,则a +b ≥2ab ,(当且仅当a =b 时取等号“=”).推论:ab ≤⎝ ⎛⎭⎪⎫a +b 22(a >0,b >0);a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 223、a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0)二、利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ(3a +4b )+μ(a +3b )=(3λ+μ)a +(4λ+3μ)b∴ ⎩⎪⎨⎪⎧3λ+μ=1,4λ+3μ=2.解得:⎩⎨⎧λ=15,μ=25.4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。
5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式求最值的类型与方法-经典大全————————————————————————————————作者:————————————————————————————————日期:25 6专题:基本不等式求最值的类型及方法一、几个重要的基本不等式:①,、)(222222R b a ba ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。
二、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a x bax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质:①值域:),2[]2,(+∞--∞ab ab Y ;②单调递增区间:(,]b a -∞-,[,)ba+∞;单调递减区间:(0,]ba,[,0)b a -. 三、用均值不等式求最值的常见类型类型Ⅰ:求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>- 3211131222(1)x x x --≥⋅⋅+-312≥+52=, 当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。
通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。
类型Ⅱ:求几个正数积的最大值。
例2、求下列函数的最大值:①23(32)(0)2y x x x =-<< ②2sin cos (0)2y x x x π=<<解析:①30,3202x x <<->Q ∴, ∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。
②0,sin 0,cos 02x x x π<<>>Q ∴,则0y >,欲求y 的最大值,可先求2y 的最大值。
242sin cos y x x =⋅222sin sin cos x x x =⋅⋅2221(sin sin 2cos )2x x x =⋅⋅22231sin sin 2cos 4()2327x x x ++≤⋅=,当且仅当22sin 2cos x x =(0)2x π<<tan 2x ⇒=,即tan 2x arc =时 “=”号成立,故此函数最大值是239。
评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。
通常要通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。
类型Ⅲ:用均值不等式求最值等号不成立。
例3、若x 、y +∈R ,求4()f x x x=+)10(≤<x 的最小值。
解法一:(单调性法)由函数()(0)bf x ax a b x=+>、图象及性质知,当(0,1]x ∈时,函数4()f x x x=+是减函数。
证明:任取12,(0,1]x x ∈且1201x x <<≤,则xab ab2-ab 2ab -oy7812121244()()()()f x f x x x x x -=-+-211212()4x x x x x x -=-+⋅1212124()x x x x x x -=-⋅, ∵1201x x <<≤,∴12121240,0x x x x x x --<<,则1212()()0()()f x f x f x f x ->⇒>, 即4()f x x x =+在(0,1]上是减函数。
故当1x =时,4()f x x x=+在(0,1]上有最小值5。
解法二:(配方法)因01x <≤,则有4()f x x x =+22()4x x=-+, 易知当01x <≤时,20x x μ=->且单调递减,则22()()4f x x x=-+在(0,1]上也是减函数, 即4()f x x x =+在(0,1]上是减函数,当1x =时,4()f x x x=+在(0,1]上有最小值5。
解法三:(拆分法)4()f x x x=+)10(≤<x 13()x x x =++1321x x ≥⋅+5=,当且仅当1x =时“=”号成立,故此函数最小值是5。
评析:求解此类问题,要注意灵活选取方法,特别是单调性法具有一般性,配方法及拆分法也是较为简洁实用得方法。
类型Ⅳ:条件最值问题。
例4、已知正数x 、y 满足811x y+=,求2x y +的最小值。
解法一:(利用均值不等式)2x y +8116()(2)10x y x y xyy x =++=++1610218x y y x≥+⋅=, 当且仅当81116x y x y yx ⎧+=⎪⎪⎨⎪=⎪⎩即12,3x y ==时“=”号成立,故此函数最小值是18。
解法二:(消元法)由811x y +=得8x y x =-,由00088xy x x x >⇒>>⇒>-又,则2x y +22(8)1616162(8)108888x x x x x x x x x x -+=+=+=++=-++----162(8)10188x x ≥-⋅+=-。
当且仅当1688x x -=-即12,3x y ==此时时“=”号成立,故此函数最小值是18。
解法三:(三角换元法)令228sin 1cos x x x y⎧=⎪⎪⎨⎪=⎪⎩则有228sin 1cos x x y x ⎧=⎪⎪⎨⎪=⎪⎩ 则:22822sin cos x y x x+=+2222228csc 2sec 8(1cot )2(1tan )108cot 2tan x x x x x x =+=+++=++ 22102(8cot )(2tan )x x ≥+⋅18≥,易求得12,3x y ==此时时“=”号成立,故最小值是18。
评析:此类问题是学生求解易错得一类题目,解法一学生普遍有这样一种错误的求解方法:81812()(2)228x y x y x y x y x y+=++≥⋅⋅⋅=。
原因就是等号成立的条件不一致。
类型Ⅴ:利用均值不等式化归为其它不等式求解的问题。
例5、已知正数x y 、满足3xy x y =++,试求xy 、x y +的范围。
解法一:由0,0x y >>,则3xy x y =++32xy x y xy ⇒-=+≥,即2()230xy xy -+≥解得13xy xy ≤-≥(舍)或,当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故xy 的取值范围是[9,)+∞。
又23()2x y x y xy +++=≤2()4()120x y x y ⇒+-+-≥2()6x y x y ⇒+≤-+≥舍或, 当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故x y +的取值范围是[6,)+∞。
解法二:由0,0x y >>,3(1)3xy x y x y x =++⇒-=+知1x ≠,则:31x y x +=-,由30011x y x x +>⇒>⇒>-, 则:2233(1)5(1)44(1)51111x x x x x xy x x x x x x ++-+-+=⋅===-++----42(1)591x x ≥-⋅+=-, 当且仅当41(0)31x x x x -=>=-即,并求得3y =时取“=”号,故xy 的取值范围是[9,)+∞。
3144441(1)22(1)2611111x x x y x x x x x x x x x x +-++=+=+=++=-++≥-⋅+=-----910,当且仅当41(0)31x x x x -=>=-即,并求得3y =时取“=”号,故xy 的取值范围是[9,)+∞。
评析:解法一具有普遍性,而且简洁实用,易于掌握,解法二要求掌握构造的技巧。
四、均值不等式易错例析:例1. 求函数()()y x x x=++49的最值。
错解:()()y x x x x x x=++=++4913362=++≥+⋅=133********x x x x 当且仅当x x=36即x =±6时取等号。
所以当x =±6时,y 的最小值为25,此函数没有最大值。
分析:上述解题过程中应用了均值不等式,却忽略了应用均值不等式求最值时的条件导致错误。
因为函数()()y x x x=++49的定义域为()()-∞+∞,,00Y ,所以须对x 的正负加以分类讨论。
正解:1)当x >0时,25362133613=⋅+≥++=xx x x y 当且仅当x x=36即6=x 时取等号。
所以当x =6时,y min =25 2)当x <0时,->->x x0360,, ()()-+-⎛⎝ ⎫⎭⎪≥--⎛⎝ ⎫⎭⎪=x x x x 3623612 11213)]36()[(13=-≤-+--=∴xx y 当且仅当-=-x x36,即x =-6时取等号,所以当x =-6时,y max =-=13121. 例2. 当x >0时,求y x x=+492的最小值。
错解:因为x y x x x x x>=+≥⋅=049249622,所以当且仅当492x x =即x =943时,y xmin ==62183。
分析:用均值不等式求“和”或“积”的最值时,必须分别满足“积为定值”或“和为定值”,而上述解法中4x 与92x 的积不是定值,导致错误。
正解:因为x y x x x x x x x x>=+=++≥⋅⋅=049229322933622233,当且仅当292x x=,即x =3623时等号成立,所以当x =3623时,y min =3363。