粒子群算法最全的PPT课件

合集下载

《粒子群算法论文》课件

《粒子群算法论文》课件
《粒子群算法论文》ppt课件
目录
CONTENTS
• 粒子群算法概述 • 粒子群算法的数学模型 • 粒子群算法的改进策略 • 粒子群算法的实验分析 • 粒子群算法的未来展望
01 粒子群算法概述
CHAPTER
定义与特点
定义
粒子群算法是一种基于群体智能 的优化算法,通过模拟鸟群、鱼 群等生物群体的行为规律,寻找 最优解。
粒子群算法的参数设置
粒子群算法中的参数包括粒子数量、惯性权重、加速常数 和社会学习因子等。这些参数对算法的性能和收敛速度有 重要影响,需要根据具体问题进行调整和优化。
粒子数量决定了算法的搜索空间和多样性,惯性权重决定 了粒子的运动惯性,加速常数决定了粒子的加速度,社会 学习因子决定了粒子向群体最优位置学习的程度。
粒子群算法的应用领域
01
函数优化
求解多维函数的最小值或最大值。
机器学习
用于支持向量机、神经网络等机器 学习模型的参数优化。
03
02
组合优化
求解如旅行商问题、背包问题等组 合优化问题。
数据挖掘
用于聚类分析、分类预测等数据挖 掘任务。
04
02 粒子群算法的数学模型
CHAPTER
粒子群算法的数学描述
03 粒子群算法的改进策略
CHAPTER
引入惯性权重
惯性权重可以调整粒子速度,使 粒子在全局搜索和局部搜索之间
取得平衡。
较大的惯性权重有利于全局搜索 ,而较小的惯性权重有利于局部
搜索。
通过调整惯性权重,可以改善粒 子群算法的性能,提高搜索效率

引入社会认知机制
社会认知机制是指粒子通过比 较自身与群体中其他粒子的位 置和速度来更新自身位置和速 度。

粒子群优化算法理论及应用ppt课件

粒子群优化算法理论及应用ppt课件
国内期刊如《计算机学报》、《电子学报》、《物理
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化

对群体中的每个个体进行评价


利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:

向背离最近同伴的方向移动;

向目的移动;

向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最

粒子群优化算法PPT上课讲义

粒子群优化算法PPT上课讲义

02
ALGORITHM PRINCIPLE
算法原理
02 算法原理
抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,
粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速 度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函
数决定的适应值(fitness value),并且知道自己到目前为止发现的
01 算法介绍
PSO产生背景之二:人工生命
研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、 研究如何利用生物技术研究计算问题。
我们关注的是第二点。已有很多源于生物现象的计算技巧,例如 神经网络和遗传算法。 现在讨论另一种生物系统---社会系统:由简 单个体粒子群优化算法PPT
01
ALGORITHM INTRODUCTION
算法简介
粒子群算法
设想这样一个场景:一群鸟在随 机搜索食物。在这个区域里只有 一块食物。所有的鸟都不知道食 物在那里。但是他们知道当前的 位置离食物还有多远。那么找到 食物的最优策略是什么呢?
最简单有效的就是搜寻目前离食 物最近的鸟的周围区域。
01 算法介绍
01 算法介绍
PSO产生背景之一:CAS
我们把系统中的成员称为具有适应性的主体(Adaptive Agent),简称为主体。所谓具有适应性,就是指它能够 与环境以及其它主体进行交流,在这种交流的过程中 “学习”或“积累经验”,并且根据学到的经验改变自 身的结构和行为方式。整个系统的演变或进化,包括新 层次的产生,分化和多样性的出现,新的、聚合而成的、 更大的主体的出现等等,都是在这个基础上出现的。即 CAS(复杂适应系统)理论的最基本思想

计算智能-粒子群算法PPT课件

计算智能-粒子群算法PPT课件
公式(1)的第一项对应多样化(diversification)的特点,第二项、 第三项对应于搜索过程的集中化(intensification)特点,这三项之 间的相互平衡和制约决定了算法的主要性能。
2020/4/13
9
参数意义
(1)粒子的长度N:问题解空间的维数。
(2)粒子种群大小M:粒子种群大小的选择视具体问题而定,但 是一般设置粒子数为20-50。对于大部分的问题10个粒子已经可 以取得很好的结果,不过对于比较难的问题或者特定类型的问 题,粒子的数量可以取到100或200。另外,粒子数目越多,算 法搜索的空间范围就越大,也就更容易发现全局最优解。当然, 算法运行的时间也较长。
2020/4/13
5
粒子群优化算法的一般数学模型
假设在一个N维空间进行搜索,粒子i的信息可用两个N维向量 来表示:
第i个粒子的位置可表示为 xixi1,xi2,xiNT
速度为 vi vi1,vi2,viNT
在找到两个最优解后,粒子即可根据下式来更新自己的速度和 位置:
v i k 1 d v i k d c 1 r1 a k ( P n i k b d d x i k ) d e c 2 r s2 a k t ( G n d k d b x i k ) d (1e ) s
每个粒子知道自己到目前为止发现的最好位置(particle best,记 为pbest)和当前的位置,pbest就是粒子本身找到的最优解,这 个可以看作是粒子自己的飞行经验。
除此之外,每个粒子还知道到目前为止整个群体中所有粒子发 现的最好位置(global best,记为gbest),gbest是在pbest中的最 好值,即是全局最优解,这个可以看作是整个群体的经验。
8

粒子群算法(基础精讲)课件

粒子群算法(基础精讲)课件

神经网络训练
神经网络训练是指通过训练神经网络来使其能够学习和模拟特定的输入输出关系 。粒子群算法可以应用于神经网络的训练过程中,通过优化神经网络的参数来提 高其性能。
例如,在机器视觉、语音识别、自然语言处理等领域中,神经网络被广泛应用于 各种任务。粒子群算法可以用于优化神经网络的结构和参数,从而提高其分类、 预测等任务的准确性。
优势
在许多优化问题中,粒子群算法表现出了良好的全局搜索能 力和鲁棒性,尤其在处理非线性、多峰值等复杂问题时具有 显著优势。
粒子群算法的核心要素
02
粒子个体
01
粒子
在粒子群算法中,每个解被称为一个粒子,代表问题的 一个潜在解。
02
粒子状态
每个粒子的位置和速度决定了其状态,其中位置表示解 的优劣,速度表示粒子改变方向的快慢。
社会认知策略的引入
总结词
引入社会认知策略可以增强粒子的社会性,提高算法的群体协作能力。
详细描述
社会认知策略是一种模拟群体行为的方法,通过引入社会认知策略,可以增强粒子的社会性,提高算 法的群体协作能力。在粒子群算法中引入社会认知策略,可以使粒子更加关注群体最优解,促进粒子 之间的信息交流和协作,从而提高算法的全局搜索能力和鲁棒性。
03 粒子群算法的实现步骤
初始化粒子群
随机初始化粒子群的 位置和速度。
初始化粒子的个体最 佳位置为随机位置, 全局最佳位置为随机 位置。
设置粒子的个体最佳 位置和全局最佳位置 。
更新粒子速度和位置
根据粒子个体和全局最佳位置计 算粒子的速度和位置更新公式。
更新粒子的速度和位置,使其向 全局最佳位置靠近。
每个粒子都有一个记录其历史最 佳位置的变量,用于指导粒子向

粒子群优化算法PPT

粒子群优化算法PPT

Swarm Intelligence(续)
Swarm可被描述为一些相互作用相邻个体的集合体, 蜂群、蚁群、鸟群都是Swarm的典型例子。鱼聚集成 群可以有效地逃避捕食者,因为任何一只鱼发现异常 都可带动整个鱼群逃避。蚂蚁成群则有利于寻找食物, 因为任一只蚂蚁发现食物都可带领蚁群来共同搬运和 进食。一只蜜蜂或蚂蚁的行为能力非常有限,它几乎 不可能独立存在于自然世界中,而多个蜜蜂或蚂蚁形 成的Swarm则具有非常强的生存能力,且这种能力不 是通过多个个体之间能力简单叠加所获得的。社会性 动物群体所拥有的这种特性能帮助个体很好地适应环 境,个体所能获得的信息远比它通过自身感觉器官所 取得的多,其根本原因在于个体之间存在着信息交互ce(续)
由于SI的理论依据是源于对生物群落社会性的模拟, 因此其相关数学分析还比较薄弱,这就导致了现有研 究还存在一些问题。首先,群智能算法的数学理论基 础相对薄弱,缺乏具备普遍意义的理论性分析,算法 中涉及的各种参数设置一直没有确切的理论依据,通 常都是按照经验型方法确定,对具体问题和应用环境 的依赖性比较大。其次,同其它的自适应问题处理方 法一样,群智能也不具备绝对的可信性,当处理突发 事件时,系统的反应可能是不可测的,这在一定程度上 增加了其应用风险。另外,群智能与其它各种先进技 术(如:神经网络、模糊逻辑、禁忌搜索和支持向量机 等) 的融合还不足。
Swarm Intelligence(续)
信息的交互过程不仅仅在群体内传播了信息,而 且群内个体还能处理信息,并根据所获得的信息 (包括环境信息和附近其它个体的信息)改变自身 的一些行为模式和规范,这样就使得群体涌现出一 些单个个体所不具备的能力和特性,尤其是对环境 的适应能力。这种对环境变化所具有适应的能力可 以被认为是一种智能(关于适应性与智能之间的关 系存在着一些争议,Fogel认为智能就是具备适应 的能力),也就是说动物个体通过聚集成群而涌现 出了智能。因此,Bonabeau 将SI的定义进一步推 广为:无智能或简单智能的主体通过任何形式的聚 集协同而表现出智能行为的特性。这里我们关心的 不是个体之间的竞争,而是它们之间的协同。

粒子群算法ppt

粒子群算法ppt
若加速系数、最大速度等参数太大,粒子群可能错过最优解, 算法不收敛;
而在收敛的情况下,由于所有的粒子都向最优解的方向飞去, 所以粒子趋向同一化(失去了多样性),使得后期收敛速度明显变 慢,同时算法收敛到一定精度时,无法继续优化,所能达到的精度 也不高。
因此很多学者都致力于提高PSO算法的性能。
惯性权重法(Inertia Weight):
基本思想:
在PSO中,把一个优化问题看作是在空中觅食的鸟群,那么 “食物”就是优化问题的最优解,而在空中飞行的每一只觅食的 “鸟”就是PSO算法中在解空间中进行搜索的一个“粒子” (Particle)。“群”(Swarm)的概念来自于人工生命,满足人工生 命的五个基本原则。因此PSO算法也可看作是对简化了的社会模型 的模拟,这其中最重要的是社会群体中的信息共享机制,这是推动 算法的主要机制。
vmax是一个非常重要的参数,如果该值太大,则粒子们也许会飞过优 秀区域;另一方面如果该值太小,则粒子们可能无法对局部最优区域 以外的区域进行充分的探测。实际上,它们可能会陷入局部最优,而 无法移动足够远的距离跳出局部最优达到空间中更佳的位置。
(5) rand1和rand2是介于[0,1]之间的随机数,增加了粒子飞行的 随机性。
(6)迭代终止条件:一般设为最大迭代次数Tmax、计算精度或最优解 的最大停滞步数△t。
算法流程:
开始 初始化粒子X、V 计算Pbest、Gbest 粒子位置、速度更新 计算适应函数值 更新Pbest、Gbest
达到迭代次数或
精度要求?


输出所需参数
结束
四、PSO的各种改进算法
PSO收敛速度快,特别是在算法的早期,但也存在着精度较低, 易发散等缺点。

基本粒子群优化算法课件

基本粒子群优化算法课件
更新粒子位置
根据粒子的新速度,结合粒子的位置 更新公式,计算粒子的新位置。
终止条件和迭代次数
01
终止条件:当达到预设的迭代次数或满足其他终止条件时,算 法停止迭代。
Байду номын сангаас
02
迭代次数:根据问题规模和复杂度,设定合适的最大迭代次数

以上内容仅供参考,具体内容可以根据您的需求进行调整优化
03 。
04 粒子群优化算法的改进
基本粒子群优化算法课 件
目录
Contents
• 基本粒子群优化算法概述 • 粒子群优化算法的数学基础 • 粒子群优化算法的实现 • 粒子群优化算法的改进 • 粒子群优化算法的应用实例 • 总结与展望
01 基本粒子群优化算法概述
起源和背景
起源
粒子群优化算法起源于对鸟群、 鱼群等动物群体行为的研究。
理论分析
深入分析基本粒子群优化算法的数学性质和收敛 性,有助于更好地理解算法的工作原理,为算法 改进提供理论支持。
拓展应用领域
随着技术的发展,基本粒子群优化算法有望在更 多领域得到应用。例如,在人工智能领域,可探 索与其他优化算法的结合,以解决更复杂的机器 学习、深度学习等问题。
与其他智能算法的交叉研究
机器学习问题
机器学习问题
粒子群优化算法还可以应用于机器学习领域,如分类、聚类、特征选择等。
举例
例如,在分类问题中,可以使用粒子群优化算法来训练一个分类器,通过迭代和更新粒子的位置和速度,找到最 优的分类器参数。
06 总结与展望
当前研究进展和挑战
研究进展
基本粒子群优化算法在多个领域得到广泛应 用,如函数优化、神经网络训练、数据挖掘 等。近年来,随着研究的深入,算法的性能 和收敛速度得到了显著提升。

粒子群优化算法课件

粒子群优化算法课件

实验结果对比分析
准确率
01
在多个数据集上,粒子群优化算法的准确率均高于对比算法,
表明其具有较强的全局搜索能力。
收敛速度
02
粒子群优化算法在多数数据集上的收敛速度较快,能够更快地
找到最优解。
鲁棒性
03
在不同参数设置和噪声干扰下,粒子群优化算法的性能表现稳
定,显示出良好的鲁棒性。
结果讨论与改进建议
讨论
其中,V(t+1)表示第t+1次迭代 时粒子的速度,V(t)表示第t次迭 代时粒子的速度,Pbest表示粒 子自身的最优解,Gbest表示全 局最优解,X(t)表示第t次迭代时
粒子的位置,w、c1、c2、 rand()为参数。
算法优缺点分析
优点
简单易实现、参数少、收敛速度快、 能够处理多峰问题等。
03
强化算法的可视化和解释性
发展可视化工具和解释性方法,帮助用户更好地理解粒子群优化算法的
工作原理和结果。
THANKS
感谢观看
粒子群优化算法的改进与扩展
动态调整惯性权重
惯性权重是粒子群优化算法中的一个 重要参数,它决定了粒子的飞行速度 。通过动态调整惯性权重,可以在不 同的搜索阶段采用不同的权重值,从 而更好地平衡全局搜索和局部搜索。
VS
一种常见的动态调整惯性权重的方法 是根据算法的迭代次数或适应度值的 变化来调整权重值。例如,在算法的 初期,为了更好地进行全局搜索,可 以将惯性权重设置得较大;而在算法 的后期,为了更好地进行局部搜索, 可以将惯性权重设置得较小。
并行粒子群优化算法
并行计算技术可以提高粒子群优化算法的计算效率和收敛 速度。通过将粒子群分成多个子群,并在不同的处理器上 同时运行这些子群,可以加快算法的收敛速度。

《粒子群优化算法》课件

《粒子群优化算法》课件
《粒子群优化算法》PPT课件
CONTENTS
• 粒子群优化算法概述 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进与变种 • 粒子群优化算法的参数选择与
调优 • 粒子群优化算法的实验与分析 • 总结与展望
01
粒子群优化算法概述
定义与原理
定义
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智 能的优化算法,通过模拟鸟群、鱼群等生物群体的觅食行为,寻找最优解。
限制粒子的搜索范围,避免无效搜索。
参数选择与调优的方法
网格搜索法
在参数空间中设定网格, 对每个网格点进行测试, 找到最优参数组合。
经验法
根据经验或实验结果,手 动调整参数。
贝叶斯优化法
基于贝叶斯定理,通过不 断迭代和更新参数概率分 布来找到最优参数。
遗传算法
模拟生物进以进一步深化对粒子群优化算法的理 论基础研究,探索其内在机制和本质规律,为算 法设计和改进提供更科学的指导。
为了更好地处理大规模、高维度和复杂问题,未 来研究可以探索更先进的搜索策略和更新机制, 以增强粒子群优化算法的局部搜索能力和全局搜 索能力。
随着人工智能技术的不断发展,粒子群优化算法 的应用领域也将不断扩展,未来研究可以探索其 在机器学习、数据挖掘、智能控制等领域的新应 用和新方法。
04
粒子群优化算法的参数选择与调优
参数对粒子群优化算法性能的影响
粒子数量
惯性权重
粒子数量决定了算法的搜索空间和搜索速 度。过少可能导致算法过早收敛,过多则 可能导致计算量增大。
影响粒子的全局和局部搜索能力,过大可 能导致算法发散,过小则可能使算法过早 收敛。
加速常数

粒子群优化算法PPT

粒子群优化算法PPT

01
算法介绍
PSO产生背景之二:人工生命
研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、 研究如何利用生物技术研究计算问题。 我们关注的是第二点。已有很多源于生物现象的计算技巧,例如 神经网络和遗传算法。 现在讨论另一种生物系统---社会系统:由 简单个体组成的群落和环境及个体之间的相互行为。 Millonas在开发人工生命算法时(1994年),提出群体智能概念并 提出五点原则: 1、接近性原则:群体应能够实现简单的时空计算; 2、优质性原则:群体能够响应环境要素; 3、变化相应原则:群体不应把自己的活动限制在一狭小范围; 4、稳定性原则:群体不应每次随环境改变自己的模式; 5、适应性原则:群体的模式应在计算代价值得的时候改变。
02
算法原理
从社会学的角度来看,公式(1)的第一部分称为记忆 项,表示上次速度大小和方向的影响;公式第二部分称为 自身认知项,是从当前点指向粒子自身最好点的一个矢量, 表示粒子的动作来源于自己经验的部分;公式的第三部分 称为群体认知项,是一个从当前点指向种群最好点的矢量, 反映了粒子间的协同合作和知识共享。粒子就是 通过自己的经验和同伴中最好的经验来决定下一步的运动。 以上面两个公式为基础,形成了后来PSO 的标准形 式
选题背景 和其他算法 0202 PSO
PSO和ANN
GA可以用来研究ANN的三个方面:网络连接权重、网 络结构、学习算法。优势在于可处理传统方法不能处 理的问题,例如不可导的节点传递函数或没有梯度信 息。
01
算法介绍
PSO是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新 的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算 法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代 寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法 规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异 ”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最 优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界 的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一 种并行算法。

粒子群算法ppt课件

粒子群算法ppt课件

粒子群算法Reynolds,Heppner,Grenader等发现,鸟群在行进过程中会突然同步地改变方向,散开或聚集。

一定有种潜在的规则在起作用,据此他们提出了对鸟群行为的模拟。

在他们的早期模型中,仅仅依赖个体间距的操作,即群体的同步是个体之间努力保持最优距离的结果。

1987年Reynolds对鸟群社会系统的仿真研究,一群鸟在空中飞行,每个鸟遵守以下三条规则:1)避免与相邻的鸟发生碰撞冲突;2)尽量与自己周围的鸟在速度上保持协调和一致;3)尽量试图向自己所认为的群体中靠近。

仅通过使用这三条规则,系统就出现非常逼真的群体聚集行为,鸟成群地在空中飞行,当遇到障碍时它们会分开绕行而过,随后又会重新形成群体。

作为CASKennedy和Eberhart在CAS中加入了一个特定点,定义为食物,鸟根据周围鸟的觅食行为来寻找食物。

他们的初衷是希望通过这种模型来模拟鸟群寻找食源的现象,然而实验结果却揭示这个仿真模型中蕴涵着很强的优化能力,尤其是在多维空间寻优中。

鸟群觅食行为Food Global BestSolutionPast BestSolution车辆路径问题构造一个2L维的空间对应有L个发货点任务的VRP问题,每个发货点任务对应两维:完成该任务车辆的编号k,该任务在k车行驶路径中的次序r为表达和计算方便,将每个粒子对应的2L维向量X分成两个L维向量:Xv(表示各任务对应的车辆)和Xr(表示各任务在对应的车辆路径中的执行次序)。

例如,设VRP问题中发货点任务数为7,车辆数为3,若某粒子的位置向量X为:发货点任务号: 1 2 3 4 5 6 7Xv : 1 2 2 2 2 3 3Xr : 1 4 3 1 2 2 1则该粒子对应解路径为:车1:0 → 1 → 0车2:0 → 4 →5 → 3→ 2→ 0车3:0 → 7→ 6→ 0粒子速度向量V与之对应表示为Vv和Vr。

该表示方法的最大优点是使每个发货点都得到车辆的配送服务,并限制每个发货点的需求仅能由某一车辆来完成,使解的可行化过程计算大大减少。

粒子群算法简介优缺点及其应用 PPT课件

粒子群算法简介优缺点及其应用 PPT课件

(3)加速常数c1和 c2:分别调节向Pbest和Gbest方向飞行的最大 步长,决定粒子个体经验和群体经验对粒子运行轨迹的影响,
反映粒子群之间的信息交流。
如果c1=0,则粒子只有群体经验,它的收敛速度较快,但容易 陷入局部最优;
2019/12/14
12
如果c2 = 0,则粒子没有群体共享信息,一个规模为M的群体等 价于运行了M个各行其是的粒子,得到解的几率非常小,因此 一般设置c1 = c2 。这样,个体经验和群体经验就有了相同重要 的影响力,使得最后的最优解更精确。
vmax是一个非常重要的参数,如果该值太大,则粒子们也许会 飞过优秀区域;另一方面如果该值太小,则粒子们可能无法对 局部最优区域以外的区域进行充分的探测。实际上,它们可能 会陷入局部最优,而无法移动足够远的距离跳出局部最优达到 空间中更佳的位置。
(5) rand1和rand2是介于[0,1]之间的随机数,增加了粒子飞行 的随机性。
2019/12/14
4
粒子在搜索空间中以一定的速度飞行,这个速度根据它本身的 飞行经验和同伴的飞行经验来动态调整。所有的粒子都有一个 被目标函数决定的适应值(fitness value),这个适应值用于评价 粒子的“好坏”程度。
每个粒子知道自己到目前为止发现的最好位置(particle best, 记为pbest)和当前的位置,pbest就是粒子本身找到的最优解, 这个可以看作是粒子自己的飞行经验。
(6)迭代终止条件:一般设为最大迭代次数Tmax、计算精度或最 优解的最大停滞步数△t。
2019/12/14
14
算法流程
开始 初始化粒子X、V 计算Pbest、Gbest 粒子位置、速度更新 计算适应函数值 更新Pbest、Gbest

粒子群优化算法详细易懂-很多例子51页PPT

粒子群优化算法详细易懂-很多例子51页PPT
粒子群优化算法详细易懂-很多例子
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型算法 蚁群算法(蚂蚁觅食) 粒子群算法(鸟群捕食)
7
智能优化计算
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源
蚁群的自组织行为 “双桥实验” 通过遗留在来往路径 上的信息素 (Pheromone)的挥 发性化学物质来进行 通信和协调。
华东理工大学自动化系 2007年
8
智能优化计算
特点 个体的行为很简单,但当它们一起协同工作时,却 能够突现出非常复杂(智能)的行为特征。
5
智能优化计算
6.1 群智能
6.1.2 群智能算法
华东理工大学自动化系 2007年
描述 群智能作为一种新兴的演化计算技术已成为研究焦 点,它与人工生命,特别是进化策略以及遗传算法 有着极为特殊的关系。
10
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
蚁巢
华东理工大学自动化系 2007年
食物
蚂蚁从A点出发,随机选择路线ABD或ACD。
经过9个时间单位时:走ABD的蚂蚁到达终点,走
ACD的蚂蚁刚好走到C点。
11
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
数,Q为正常数,Lk表示第k只蚂蚁在本次周游中
所走过路径的长度。
16
智能优化计算
6.3 基本蚁群优化算法
初始化:华t=0东; N理C=0工; τi大j(t)=学C; Δ自τij(动t)=0化; 系 2007年
将m只蚂蚁放到n座城市上
6.6 粒子群算法的基本原理
6.6.1 粒子群算法的提出 6.6.2 粒子群算法的原理描述
6.7 基本粒子群优化算法
6.7.1 基本粒子群算法描述 6.7.2 参数分析 6.7.3 与遗传算法的比较
6.8 改进粒子群优化算法
6.8.1 离散二进制PSO 6.8.2 惯性权重模型 6.8.3 收敛因子模型 6.8.4 研究现状
蚁巢
华东理工大学自动化系 2007年
食物
经过18个时间单位时:走ABD的蚂蚁到达终
点后得到食物又返回了起点A,而走ACD的蚂蚁刚
好走到D点。
12
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
华东理工大学自动化系 2007年
蚁巢
食物
最后的极限是所有的蚂蚁只选择ABD路线。
(正反馈过程)
解决TSP问题
当所有蚂蚁完成一次周游后,各路径上的信息素 将进行更新:
ij (t n) (1 ) ij (t) ij
m
ij

k ij
,
k 1

k ij

Q Lk
,
0,
若蚂蚁k在本次周游中经过边ij 否则
其中,ρ(0< ρ <1)表示路径上信息素的蒸发系
特性 指无智能的主体通过合作表现出智能行为的特性, 在没有集中控制且不提供全局模型的前提下,为寻 找复杂的分布式问题求解方案提供了基础。
6
智能优化计算
6.1 群智能
6.1.2 群智能算法
华东理工大学自动化系 2007年
优点 灵活性:群体可以适应随时变化的环境; 稳健性:即使个体失败,整个群体仍能完成任务; 自我组织:活动既不受中央控制,也不受局部监管。
数);
14Βιβλιοθήκη 智能优化计算6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
华东理工大学自动化系 2007年
解决TSP问题
每只蚂蚁根据路径上的信息素和启发式信息(两 城市间距离)独立地选择下一座城市:
在时刻t,蚂蚁k从城市i转移到城市j的概率为

pikj
(t
)


[ ij (t)] [ij (t)] [ is (t)] [is (t)]
,
示信 sJk (i)
0,
j Jk (i) j Jk (i)
式Jk (因i) 子1,2,, n tabuk , ij 1/ dij
下一步允许的城市的集合
α、β分别表
息素和启发
15
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
华东理工大学自动化系 2007年
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源
蚁群的自组织行为 “双桥实验”
华东理工大学自动化系 2007年
9
智能优化计算
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源
华东理工大学自动化系 2007年
提出蚁群系统 1992年,意大利学者M. Dorigo在其博士论文中提 出 蚂蚁系统(Ant System)。 近年来, M. Dorigo等人进一步将蚂蚁算法发展为 一种通用的优化技术——蚁群优化(ant colony optimization, ACO)。
智能优化计算
华东理工大学自动化系 2007年
第六章 群智能算法
1
智能优化计算
6.1 群智能
6.1.1 群智能的概念 6.1.2 群智能算法
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源 6.2.2 蚁群算法的原理分析
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现 6.3.2 蚂蚁系统的参数设置和基本属性
6.4 改进的蚁群优化算法
6.4.1 蚂蚁系统的优点与不足 6.4.2 最优解保留策略蚂蚁系统 6.4.3 蚁群系统 6.4.4 最大-最小蚂蚁系统 6.4.5 基于排序的蚂蚁系统 6.4.6 各种蚁群优化算法的比较
华东理工大学自动化系 2007年
2
智能优化计算
6.5 蚁群优化算法的应用
6.5.1 典型应用 6.5.2 医学诊断的数据挖掘
华东理工大学自动化系 2007年
3
智能优化计算 6.9 粒子群优化算法的应用
华东理工大学自动化系 2007年
6.9.1 求解TSP问题 6.9.2 其它应用
6.10 群智能算法的特点与不足
4
智能优化计算
6.1 群智能
6.1.1 群智能的概念
华东理工大学自动化系 2007年
群智能( Swarm Intelligence, SI ) 人们把群居昆虫的集体行为称作“群智能”(“群 体智能”、“群集智能”、“集群智能”等)
13
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
华东理工大学自动化系 2007年
解决TSP问题
在算法的初始时刻,将m只蚂蚁随机放到n座城市;
将每只蚂蚁 k的禁忌表tabuk(s)的第一个元素 tabuk(1)设置为它当前所在城市;
设各路径上的信息素τ ij(0)=C(C为一较小的常
相关文档
最新文档