电力系统设计讲义6

合集下载

第六章电力系统的无功功率和电压调整

第六章电力系统的无功功率和电压调整
无功功率为ΣQGCN时,系
统电压为UN,但电源提供
的无功功率下降为ΣQGC
时 . 无功也能平衡,但电 压要下降。 ■ 调节变压器分接头可以改 善局部电压,但电源提供 的无功不足时,电压不能 全面改善,而且有可能发 生电压崩溃的危险。
第二节电力系统中无功功率的 最优分布
一、负荷功率因数的提高
■ 异步电动机的无功功率:
二、无功功率的平衡
■ 负荷无功功率的静态电压特性
jXΣ
Q



1’

1
U
二、无功功率的平衡
■ 发电机的静态电压特性
■ 近似二次曲线,E ↑ , 曲 线 ↑
Ф
δ
Ф
U
Q 2’
2 E
U
二、无功功率的平衡
Q
2’ 2
1’ 1
U
二、无功功率的平衡
■ 图中所示的无功电源静态 电压特性和无功负荷静态 电压特性,当电源提供的
■ 静止补偿器和静止调相机是分别与电容器和调相 机相对应而又同属“灵活交流输电系统”范 畴 的两种无功功率电源。前者出现在70年代初,是 这一“家族”的最早成员,日前已为人们所 熟 知;后者则尚待扩大试运行的规模。静止补 偿 器的全称为静止无功功率补偿器(svc)。
■ 并联电抗器
■ 就感性无功功率而言,并联电抗器显然不是电 源而是负荷,但在某些电力系统中的确装有这 种设施,用以吸取轻载或空载线路过剩的感性 无功功率。而对高压远距离输电线路而言,它 还有提高输送能力,降低过电压等作用。
■ 最优网损微增率准则
■ 无疑,系统的无功资源越丰富,就可能节约越多 的网损,但也可能会使电网的建设投资增大。
■ 在进行电网规划时,希望以较小的投资,节约 较多的网损,所以无功规划的目标函数不能只 考虑网损,也不能只考虑投资,需要考虑将来 一个时间段内电网的综合效益最好。

电力系统分析第6章

电力系统分析第6章

第六章 同步电机的数学模型
第六章 同步电机的数学模型
三、绕组的电压和磁链方程
一、电势方程和磁链方程
ua u b uc u f 0 0 0 Ra 0 0 0 0 0 0 0 Ra 0 0 0 0 0 0 0 Ra 0 0 0 0 0 0 0 Rf 0 0 0 0 0 0 0 RD 0 0 0 0 0 0 0 Rg 0 0 ia a 0 ib b 0 ic c d 0 i f f dt i 0 D D 0 i g g RQ i Q Q
第六章 同步电机的数学模型
第六章
同步电机的数学模型
之前的研究:电力系统稳态分析,主要内容:潮流分布计算 和电力系统稳态调整(电压、频率、有功、无功、运行方式 优化)。 此章之后的内容:电力系统暂态分析,主要内容:故障分析、 稳定性分析。 暂态过程:发电机机械暂态和电磁暂态过程相互作用,直接 影响发电机自身的运行状态,进一步影响到电力系统的暂态 行为,又反过来影响发电机的运行。

[ i a sin ib sin ( 1 2 0 ) i c sin ( 1 2 0 )]

第六章 同步电机的数学模型
二、d,q,0系统的电势方程和磁链方程 1)电势方程 应用派克变换对abc坐标中的所有电量进行变换,可得:
u d d q R a id u q q d R a iq u R i 0 0 a 0
D*

• 常用的转子运动方程式
第六章 同步电机的数学模型
第二节 abc坐标系统下的同步电机方程

电力系统分析第六章(2)

电力系统分析第六章(2)

S(1)
& I S(2)
− k1
f2
+ & U
zS
S(2)
1:n s(2)
& I S(0)
− k2
f0 + zS & U S(0) − k0
1:n s(0)
(a)
& I P(1)
f1 + zP & U P(1) − k1 f2 + & U zP
P(2)
串联型故障的边界条件
1:n p(1)
& I P(1)
6.3复杂故障的计算 6.3复杂故障的计算
6.3.2多重故障计算
& & & U S(1) = U s(1) − U s′(1) & &′ & & = (U s(0) − U s(0) ) − (Z sS(1) − Z s′S(1) )I S(1) − (Z sP(1) − Z s′P(1) )I P(1) & (0) & & = U S − ZSS(1) I S(1) − ZSP(1) I P(1) & & & U = U −U ′
6.3复杂故障的计算 6.3复杂故障的计算
6.3.2多重故障计算 假定系统中同时发生了一处串联型故障和一处并联型故障,并通过其计算过程 介绍多重故障的计算思路。其中串联型故障端口记为端口S,并联型故障端口 记为端口P。描述两重故障的序网络二端口如图所示,发生上述两重故障相当 于从故障端口分别向各序网络注入了故障电流的该序分量。
6.3复杂故障的计算 6.3复杂故障的计算
6.3.1不对称故障的通用边界条件
& & & U F(1) +U F(2) +U F(0) =0

电力系统分析第六章新 72页PPT文档

电力系统分析第六章新 72页PPT文档
3、什么是冲击电流?什么是冲击系数? 4、什么是无限大容量电源供电系统短路电流最大有效值?
如何计算?
6.2 同步发电机的基本方程和等值电路
一、同步发电机绕组等效电路
1、同步发电机的6个绕组: ♦ 有阻尼绕组的凸极式发电机
定子:有静止的三相绕组abc , 通过该三相绕组与外电 路连接,向系统供电;
转子:有与转子一起旋转的一 个励磁绕组 f、d 轴等效阻尼绕组 D 和 q 轴等效阻 尼绕组Q 。
旋转的矢量 F
来表示;如果定子电
a
流用一个同步旋转的通用相量 I 表
示,那么,F a 与 I 在任何时刻都同
相位,而且在数值上成比例,如图所示:
6.2 同步发电机的基本方程和等值电路
ia = I cosθ

ib
=
I
cos(θ
-120 o
)

ic = I cos(θ + 120 o )
根据三相线路的对称性:
ib= Im s in (ω t+ α --1 2 0 o)+
-t
Im 0 s in (α -0-1 2 0 0)-Im s in (α --1 2 0 0) eT a
ic= Im s in (ω t+ α -+ 1 2 0 o)+
-t
Im 0 s in (α -0+ 1 2 0 0)-Im s in (α -+ 1 2 0 0) eT a
6.1 概述
二、无限大功率电源供电的三相短路电流分析
1、无限大功率电源(又称恒定电势源):是指端电压幅值和 频率都保持恒定的电源,其内阻抗为零。 理解:1)电源功率为无限大时,外电路发生短路引起的 功率改变对于电源来说是微不足道的,因而电源的电压 和频率保持恒定(对应于同步电机的转速); 2)无限大功率电源可以看作是由无限多个有限功 率电源并联而成,因而其内阻抗为零。

电力系统分析第6电压调整

电力系统分析第6电压调整
C B A QG QLD
若系统增发无功到2’, 则新交点C对应的电压接近 原电压
当系统有足够的无功电源时,就有较高的运行电压水 结论:平;当系统无功电源不足时,就只能维持较低的运行 电压水平。因此,电力系统的无功功率必须保持平衡
6.3 电力系统的电压管理
一.电压调整的必要性
1.电压偏移对负荷的影响
N N
jX d IN
D F
发电机的P-Q极限
2、同步调相机 (只能发出无功功率的发电机)
既可以过励运行,也可以欠励运行,其运行状态取决于 系统电压调整的要求
过激运行时向系统输送其额定容量的无功功率,做无功 电源; 欠励运行时从系统吸取0.5~0.65倍额定容量的无功功 率,做无功负载
作无功电源时,调相机输出无功功率与电压之间的关系
①可发视在功率 SG SGN
以A为圆心,AC为半径做弧CF表示视在功率保持额定值 的轨迹 ②转子励磁电流
i f i fN
以O为圆心,OC为半径做弧CD
③可发有功功率 PG PGN 以直线EC表示额定功率轨迹
E
E
C
V 当系统中无功电源不足,而有功备用容量又较充足 O A 时,可将负荷中心的发电机降低功率因数运行,多 I 发无功以提高系统的电压水平。
(Thyristor Controlled Reactors) 到稳压目的。 本上不消耗无功功率,整个装臵由并联电容器组发出无功, 零,从外界大量吸收无功功率,使母线电压降低; 使母线电压回升; 通过控制晶闸管的导通来改变L吸收的无功功率,调节供电 系统进线无功功率的大小,以达到调压目的。
3)可控硅控制电容器(Thyristor Switched Capacitor)加可控硅控制电

张晓辉电力系统分析第六章

张晓辉电力系统分析第六章

转子旋转动能
2WK d M 2 0 dt
S N M N 0
2WK d / 0 M SN dt MN TJ 2WK SN TJ d / 0 M dt MN
2WK d M 2 M N 0 dt M N
同步电机的转子机械惯性时间常数,简称惯性时间常数。
用转速表示的转子运动方程式
若只考虑转速变化对阻尼的影响:
d * P P d * 1 TJ * * m* e* D* 1 dt* * dt* d* Pm* Pe* d TJ D* 1 0 * 1 d t dt *
同一系统中,所有发电机的转子相对角度必须用同一个同步 旋转坐标轴作为参考。
对于隐极机, l2 m2 0 2. 定子绕组与转子绕组之间的互感 定子与转子绕组间互磁通路径的磁阻周期性变化,应考虑转 子绕组的极性,即转子旋转一周磁路才重复一次。 定子绕组与励磁绕组之间的互感
M af M fa maf cos M bf M fb maf cos 2 / 3 M cf M fc maf cos 2 / 3
第六章 同步电机的数学模型
稳态—电力系统相对稳定的运行状态 暂态 — 电力系统受到扰动后,从一种稳态向另一种新的稳态的过渡过程。 (1)负荷变化;(2)设备故障;(3)短路故障。 从同步发电机入手进行暂态过程研究。 同步发电机的作用是将原动机的旋转机械能转换为同步发电机定子输出 的电能。 稳态分析中,重点在确定系统中的潮流分布,而并不十分关心同步发电 机的内部物理过程,因此主要涉及到发电机的定子电压、电流、有功功率 和无功功率以及励磁绕组的电流。 暂态过程中,不但发电机的转速将随时间变化,而且在发电机内部将产 生一系列复杂的机械和电磁过程。

第六章 电力系统无功功率和电压调整

第六章  电力系统无功功率和电压调整

Umax P1max R Q1max X /U1max 6.8945 (kV) Umin P1min R Q1min X /U1min 2.4561 (kV)
例题-降压变压器分接头的选择
3)计算分接头电压,取最大负荷时的 U2max=6.0 kV, 最小负荷时的 U2min=6.6 kV
U1t max U1maX Umax U2N U2max 110 6.8945 6.6 6 113.4161 (kV) U1t min (U1min Umin )U2N U2min 115 2.4561 6.6 6.6 112.5439 (kV)
第二节 电力系统中无功功率的最优分布
一、无功功率电源的最优分布 • 目标函数
• 约束条件P (QG1,QG2, ,QGn ) P (QGi )
m

QGi
n
QLi Q 0
Qi 1Gi min
i 1
QGi
QGimax
Ui min Ui Ui max
符合低压母线的要求 6~6.6 kV
电压调整的措施-变压器变比
(2)升压变压器分接头的选择
U2 1: k
RT+jXT U1
P + jQ
升压变压器分接头计算
电压调整的措施-变压器变比
• 最大负荷时高压绕组分接头电压为: • 最小负荷时高压绕组分接头电压为: • 普通变压器最大、最小负荷下只能选用同一个分接头:
电压调整的措施-变压器变比
(3)三绕组变压器
• 分接头选定:
– 高压绕组分接头 – 中压绕组分接头
• 步骤:
– 根据电压母线的要求选定高压绕组分接头 – 由选定高压绕组分接头和中压母线的要求选定中压绕组分接头

电力系统分析6章课件

电力系统分析6章课件


3 WR 1 0
最大功率损耗时间
的意义
0
2 P 3 3 a x 2m R 1 0 P 1 0 (k w h ) m a x 2 Uc o s
6.3.2电力网中电能损耗的计算方法 表6.2最大负荷利用小时 T max与最大负荷损耗时间
的关系
1200 1500 1800 2150 2600 3000 3500 4000 4600 5200 5900 6000 7350
1000 1250 1600 2000 2400 2900 3400 3950 4300 5100 5800 6550 7350
800 1100 1400 1800 2200 2700 3200 3750 4350 5000 5700 6500 7300
• • • 式中,S的单位为KVA,U的单位为KV。 h , 则 W 为一天的电能损耗; 若时间 t 24 h ,则 若 t 8760 W 为全年的电能损耗。
6.3.2电力网中电能损耗的计算方法
最大负荷损耗时间法
线路向一个集中负荷供电. • 设如果面积 S 0 abc 与一矩形 面积相等,并令矩形的高 2 等于 S max ,则矩形的底用 表示,电能损耗可表示 为
它是安排日发电计 划,确定各发电厂 任务以及确定系统 运行方式等的重要 依据。
图6.1有功日负荷曲线
图6.2阶梯形有功日负荷曲线
6.1.2 负荷曲线
有功日负荷曲线
日负荷曲线的最大值称为日最大负荷(峰荷) 最小值称为日最小负荷(谷荷)
日负荷曲线下的面积就是负荷一天所消耗的电能。即:
w Pdt
700 950 1250 1000 2000 2500 3000 3600 4200 4850 5600 6400 7250

电力系统基础知识--6第六章电力负荷特性和计算分析

电力系统基础知识--6第六章电力负荷特性和计算分析
求计算负荷的这项工作称作为负荷 计算。
16
第二节 负荷计算的方法
根据长期观察所测得的负荷曲线可以发现: 对于同一类型的用电设备组、同一类型车间或 同一类企业,其负荷曲线具有相似的形状。因 此,典型负荷曲线就可作为负荷计算时各种必 要系数的根本依据。利用这种系数,根据工厂 所提供的用电设备容量、将其变换成电力设备 所需要的假想负荷——计算负荷。
Kz
Pca Pav
5、附加系数Kf
附加系数可定义为
Kf
Pm Pav
21
第三节 工厂供电负荷的统计计算例如
考虑到在变配电系统中,并不是所有用电设备都 同时运行,即使同时运行的设备也不一定每台都到达 额定容量,因此不能用简单地把所有用电设备的容量 相加的方法来确定计算负荷。 一、计算负荷的估算法
在作设计任务书或初步设计阶段,尤其当需要进 行方案比较时,车间或企业的年平均有功功率和无功 功率往往可按下述方法估算。
25
第三节 工厂供电负荷的统计计算例如
〔二〕多组用电设备的负荷计算 多组用电设备求计算负荷的常用方法如下:
1、需要系数法 用需要系数法求计算负荷的具体步骤如下:
⑴将用电设备分组,求出各组用电设备的总额 定容量。
⑵查出各组用电设备相应的需要系数及对应的 功率因数Pc。a1Kd1PN1 Pca 2Kd2PN2
位为kW/m2〕时,车间的平均负荷按下 式求得
Pav A
式中 A —车间生产面积。
24
第三节 工厂供电负荷的统计计算例如
二、求计算负荷的方法
〔一〕对单台电动机
供电线路在30min内出现的最大平均 负荷即计算负荷为
Pca
PNM
N
PNM
式中 PNM-电动机的额定功率;

电力系统分析第6章.

电力系统分析第6章.

主要是为了满足近处地方负荷的电压质量要求。
对于由若干发电厂并列运行的电力系统,进行电压调 整的电厂需有相当充裕的无功容量储备,利用发电机调 压一般不易满足要求。另外调整个别发电厂的母线电压, 会引起无功功率重新分配,可能同无功功率的经济分配
发生矛盾。此时发电机调压只能作为一种辅助性的调压
措施。
2018/12/9 19
I0 % Q yT SN 100 U k % S2 SN 绕组漏抗中的无功损耗: Q zT S 100 N
励磁无功损耗:
输电线路的无功损耗

ห้องสมุดไป่ตู้
2
并联电纳中的无功损耗:又称充电功率,与线路电
压的平方成正比,呈容性。
2018/12/9 3
串联电抗中的损耗:与负荷电流的平方成正比,
线路额定电压的102.5% ,最小负荷时允许中枢点电压升 高,但不高于线路额定电压的107.5%。 适用于供电线路 不长,负荷变动不大的中枢点。
2018/12/9 14
恒调压:中枢点电压保持基本不变,一般为线路额定 电压的102%~105%, 适用于线路长度、负荷变动情况 介于上述两者之间的情况。
AD PGN SGN cos N
2018/12/9
____ ____
____
____
AB QGN SGN sin N
4
D
B
在不同功率因数下,发电机发出的P和Q受到以下限制:
以A为圆心,AC为半径的圆弧表示受定子额定电流的限制;
以O为圆心,OC为半径的圆弧表示受转子额定电流的限制; 水平线DC表示受原动机出力的限制。
均未超出允许电压范围10~11kV,因此所选分接头 能满足调压要求。

电气考研《电力系统稳态课程》第6章 电力系统的无功功率和电压

电气考研《电力系统稳态课程》第6章 电力系统的无功功率和电压

功率补偿改善的是包括
电容器在内的整个线路
的功率因数。
4.4.3 静电电容器补偿
2.补偿方式 采用静电电容器作无功补偿装置时,可以采 用就地补偿和集中补偿的补偿方式。
就地补偿是低压部分的无功负荷由低压电容 器补偿,高压部分由高压电容器补偿。容量较 大、负荷集中且经常使用的用电设备的无功负 荷宜单独就地补偿。
集中补偿的电容器组宜在变电所内集中补偿。 居住区的无功负荷宜在小区变电所低压侧集中 补偿。
• 4.并联电抗器
• 就感性无功功率而言,并联电抗器显然不是电源 而是负荷,但在某些电力系统中的确装有这种设 备,用以吸取轻载或空载线路过剩的感性无功功 率。而对高压远距离输电线路而言,它还有提高 输送能力,降低过电压等作用。
r1
1 UN2
20(QL1
QL2
QC1
QC2)2
30(QL2
QC2)2
• 2、无功功率电源的最优分布
• 首先要给定除平衡节点外其它各节点的有功功率 和PQ节点的无功功率、PV节点的电压大小。
• 而在计算高峰负荷下的无功电源分布时,第一次 给定Qi(0)和Ui(0)应尽可能多投入无功功率补偿设 备和尽可能提高系统的电压水平考虑。
• 然后作潮流分布和网损微增率的 P / QGi、
Q
/ QGi、QPG2
1 (1 Q
/ QG2 )
计算。
• 根据求得的、各节点修正后的有功网损微增率调 整。
• 调整的原则是:网损微增率大的节点应减少该节 点的无功功率或降低电压,即令这些节点的无功 功率电源少发无功功率,网损微增率小的节点应 增大该节点的无功功率或提高电压,即令这些节 点的无功功率电源多发无功功率。
QGC QG QC QG QC1 QC2 QC3

电力系统设计讲义6

电力系统设计讲义6

电力系统设计讲义6电气主接线表达了发电厂、变电站电气系统的主体结构,也是构成电力系统的重要环节,与电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性紧密相关,同时对电气设备选择、配电装置布置、继电爱护和操纵方式的拟定有较大阻碍。

因此,电气主接线方案设计是电力系统设计和发电厂、变电所电气设计的要紧部分,必须正确处理好各方面的阻碍,全面分析其相互关系,通过技术经济综合比较,合理确定主接线方案,以满足可靠性、灵活性和经济性三项差不多要素。

一、电气主接线设计原则发电厂、变电所电气主接线设计的差不多原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合实际工程情形,综合分析装机容量、机组台数、接入系统方式、要紧负荷性质及线路回数,及燃料、水源、厂区地势、地质、水文、气象、交通运输等基础资料,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行爱护方便,并尽可能地节约投资。

二、选择主接线的依据在选择电气主接线时,应以下列各点作为设计依据:1.发电厂、变电所在电力系统中的地位和作用分析所设计的发电厂、变电所的类型、性质、规模,在电力系统地理接线图与电气接线图中所处的位置及所担负的任务,从而明确其对电气主接线可靠性、灵活性、经济性的具体要求。

电力系统中的发电厂有大型主力电厂、中小型地区电厂及企业自备电厂三种类型。

大型主力火电厂靠近煤矿或沿海、沿江地区,并接入330~500kV超高压电网;地区电厂靠近负荷中心的城镇,一样接入110~220kV电网,也有接入更高一级电压电网的;企业自备电厂则以对本企业供电供热为主,并与地区电网相连;中小型电厂常用发电机电压馈线向邻近供电。

电力系统中变电所有系统枢纽变电所、地区重要变电所和一样变电所三种类型。

一样系统枢纽变电所聚拢多个大电源,进行系统功率交换和以高压供电,电压为330~500kV;地区重要变电所电压为220~330kV;一样变电所多为终端和分支变电所,电压为110kV,但也有220kV的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节电气主接线设计电气主接线体现了发电厂、变电站电气系统的主体结构,也是构成电力系统的重要环节,与电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置布置、继电保护和控制方式的拟定有较大影响。

因此,电气主接线方案设计是电力系统设计和发电厂、变电所电气设计的主要部分,必须正确处理好各方面的影响,全面分析其相互关系,通过技术经济综合比较,合理确定主接线方案,以满足可靠性、灵活性和经济性三项基本要素。

一、电气主接线设计原则发电厂、变电所电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合实际工程情况,综合分析装机容量、机组台数、接入系统方式、主要负荷性质及线路回数,及燃料、水源、厂区地形、地质、水文、气象、交通运输等基础资料,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行维护方便,并尽可能地节约投资。

二、选择主接线的依据在选择电气主接线时,应以下列各点作为设计依据:1.发电厂、变电所在电力系统中的地位和作用分析所设计的发电厂、变电所的类型、性质、规模,在电力系统地理接线图与电气接线图中所处的位置及所担负的任务,从而明确其对电气主接线可靠性、灵活性、经济性的具体要求。

电力系统中的发电厂有大型主力电厂、中小型地区电厂及企业自备电厂三种类型。

大型主力火电厂靠近煤矿或沿海、沿江地区,并接入330~500kV超高压电网;地区电厂靠近负荷中心的城镇,一般接入110~220kV电网,也有接入更高一级电压电网的;企业自备电厂则以对本企业供电供热为主,并与地区电网相连;中小型电厂常用发电机电压馈线向附近供电。

电力系统中变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。

一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以高压供电,电压为330~500kV;地区重要变电所电压为220~330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV的。

2.发电厂、变电所的分期和最终建设规模了解系统的逐年电力电量平衡,以及系统装机容量、备用容量、最大单机容量等状况。

对于发电厂,应根据电力系统规划容量、负荷增长速度和电网结构等因素,明确初期装机容量与台数,最终规划容量及分期投运的机组台数、容量、时间等。

对变电所,应根据系统5~10年发展规划及本所负荷资料,确定主变压器台数、容量及分期装设计划。

3.供电负荷的数量和性质分析由本厂、所供电的主要负荷的生产特点、电力、电量要求、功率因数和保安负荷要求,各电压等级负荷水平(最大值、最小值)及逐年增长情况等。

对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电;对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电;对于三级负荷一般只需要一个电源供电。

4.系统备用容量大小系统备用容量的大小将会影响运行方式的变化,例如:检修母线或断路器时,是否允许线路、变压器或发电机停运;故障时允许切除部分线路、变压器和机组的数量等。

因此设计主接线时需要设置有一定数量的备用容量,一般不宜小于发电负荷的20%~25%,以适应负荷的突然增长、机组设备的检修和事故停运等各种情况。

5.电压等级与接入系统方式为避免发电厂、变电所的设备与接线过于复杂,总的电压等级不宜多于三级。

当厂、所接入系统环网中时,应了解环网中的潮流变化、调压要求、稳定措施等。

对系统主干线路,系统联络线,必须保证供电可靠性,检修其线路断路器时不应停电,同名双回路,应分别接在两段母线上。

三、电气主接线的设计程序电气主接线的设计伴随着发电厂或变电所的整体设计,在各个阶段中随着要求、任务的不同,其深度和广度也有所差异,但总的设计思想、方法和步骤相同。

具体设计的步骤概括如下:1.对原始资料进行分析明确本程情况,分析所设计的发电厂或变电站在电力系统中的位置,明确负荷的性质、输电电压等级、出线回路数及输送容量等情况。

分析当地的环境条件,调查了解设备制造情况。

2.拟定主接线方案拟订主接线方案并进行经济比较,即主要对各方案的综合总投资和年运行费用进行综合效益比较,选出最终方案。

3.绘制电气主接线图四、发电厂、变电站电气主接线的设计1.6~220kV配电装置的基本接线形式6~220kV高压配电装置的接线方式,决定于电压等级及出线回路数。

基本接线形式主要有:单母线、单母线分段,双母线、双母线分段,增设旁路母线或旁路隔离开关的接线,一个半断路器接线等有汇流母线的接线;变压器——线路组合的单元接线、桥形接线和角形接线等无汇流母线的接线。

2.330~500kV超高压配电装置的基本接线形式我国330~500kV超高压配电装置采用的接线有:双母线三分段(或四分段)带旁路母线(或带旁路隔离开关)接线、一个半断路器接线、变压器-母线接线和3~5角形接线。

3.大型电厂的电气主接线大型电厂一般指总容量为1000MW及以上、单机容量为200MW及以上的电厂。

其接线的特点是:(1)采用简单可靠的单元接线方式。

有发电机-变压器单元接线、发电机-变压器扩大单元接线和发电机-变压器-线路单元接线等,直接接入高压或超高压配电装置。

(2)大型电厂的所有发电机一变压器单元有部分接入超高压配电装置、部分接入220kV 配电装置的,也有全部接入超高压配电装置的。

(3)接入220kV配电装置的单机容量不宜过大。

发电机一变压器单元接线200MW及以上大机组一般都采用与双绕组变压器组成单元接线而不与三绕组变压器组成单元接线的方式,当发电机升压为两种电压等级时,则可设置联络变压器。

发电机一变压器扩大单元接线当发电机的容量与升高电压等级所能传输的容量相比,发电机容量较小而不配合时,可采用两台发电机接一台主变压器的扩大单元接线,以减少主变压器、高压断路器台数和高压配电装置间隔。

当采用扩大单元接线时,发电机出口应装设断路器和隔离开关。

200~300MW机组接至500kV配电装置时,相对机组容量较小,因而可采用两台200~300MW机组与一台主变压器接成扩大单元。

发电机-变压器-线路单元接线大型电厂采用发电机一变压器一线路单元接线,厂内不设高压配电装置,电功率能直接输送到附近枢纽变电所。

在下列情况下宜采用本接线:(1)某些地区发电燃料丰富,同一地区有几个大型电厂,工业发达和集中,则汇总起来建设一个公用的枢纽变电所较为经济。

(2)有的电厂场地狭窄,厂内不设高压配电装置,不仅解决了电厂占地面积庞大的困难,而且也为电厂总平面布置创造有利条件,汽机房前可布置冷却塔或紧靠河流,从而缩短循环冷却水管道。

(3)有时电厂距现有枢纽变电所较近,直接从那里引出线路较为方便,因而在电厂内也不设高压配电装置。

在大型电厂内不设高压配电装置,必须在电力系统设计中作好规划。

一厂两站接线个别大型电厂同一电压或两种电压的两个配电装置互不联系,使在同一场地上有多台机组的一座大容量区域发电厂在电气上分成为两座发电厂,这对电力系统来说,相当于两座独立的发电厂,它们之间的电气距离等于由发电厂的两个升压站到并列运行的枢纽变电所的线路长度之和,这样可限制发电厂内高压配电装置过大的短路电流。

4.中小型电厂的电气主接线中型电厂一般指总容量为200MW及以上至1000MW以下的电厂,安装的单机容量一般为50~125MW。

小型电厂一般指总容量在200MW以下的电厂,安装的单机容量一般不超过30MW。

中小型电厂一般建设在工业企业或城镇附近,除少数为凝汽式电厂外,多数为热电厂,常设6~10kV发电机电压配电装置向附近供电。

(1)发电机的连接方式1)容量为12~60MW的发电机,当有发电机电压直配线时,应根据地区网络的需要,采用6.3kV或10.5kV。

发电机与变压器单元连接且有厂用分支引出时,一般采用6.3kV。

2)100MW发电机电压为10.5kV,一般为变压器单元连接,但也可接至发电机电压母线。

125MW发电机组则为变压器单元连接。

连接于6kV配电装置的发电机总容量不能超过120MW,连接于10kV配电装置的发电机总容量不能超过240MW,以免母线分段过多和短路电流太大。

(2) 主变压器的连接方式1)为了保证发电厂电压出线供电可靠性,接在发电机电压母线上的主变压器一般不少于两台。

2)当发电厂用两种电压升压,且机组容量为125MW及以下时,一般采用两台三绕组变压器与两种升高电压母线连接,但每一个绕组的通过功率应达到该变压器容量的15%以上。

3)若两种升高电压母线均系中性点直接接地系统,且送电方向主要由变压器低、中压向高压侧输送时,选用自耦变压器连接较为经济。

4)当两种升高电压母线间交换功率较大时,可采用降压型自耦变压器连接。

(3) 发电机电压配电装置的接线发电机电压配电装置采用单母线分段或双母线分段接线,采用的原则是:每段母线上发电机容量为12MW时,一般采用单母线分段接线;每段母线上发电机总容量或负荷为24MW 及以上时,一般采用双母线分段接线。

5. 变电所的电气主接线35~500kV变电所的电气主接线有:变压器——线路单元接线、桥形接线、3~5角形接线、单母线、单母线分段、双母线、双母线分段、增设旁路母线或旁路隔离开关以及1个半断路器接线。

变电所采用哪种电气主接线,应根据变电所在电力系统中的地位、变电所的电压等级、出线回路数、设备特点、负荷性质等条件,以及满足运行可靠、简单灵活、操作方便和节约投资等要求来决定。

第七节主变压器的选择发电厂、变电站中的变压器按照其作用可分为三类:主变压器、联络变压器和厂(所)用变压器。

主变压器是指用来向电力系统或用户输送功率的变压器,联络变压器是指用于两种电压等级之间交换功率的变压器,厂(所)用变压器是指只供本厂(所)用电的变压器。

主变压器的选择是发电厂变电站电气系统设计的重要内容,也是电网设计的一部分。

一、发电厂主变压器容量和台数的确定1.具有发电机电压母线的主变压器连接在发电机电压母线与系统之间的主变压器容量,应按下列条件计算。

(1)当发电机电压母线上为最小负荷时,能将发电机电压母线上剩余容量送人系统,但可不考虑出现频率极少的最小负荷的特殊情况;(2)当发电机电压母线上最大一台发电机组停用时,能由系统供给发电机电压的最大负荷。

在电厂分期建设过程中,在事故断开最大一台发电机组的情况下,通过变压器向系统取得电能时,可以考虑变压器的允许过负荷能力和限制非重要负荷;(3)根据系统经济运行的要求(如充分利用丰水季节的水能)而限制本厂输出功率时,能供给发电机电压的最大负荷;(4)按上述条件计算时,应该考虑负荷曲线的变化和逐年负荷的发展。

特别注意发电厂初期运行,当发电机电压母线负荷不大时,能将发电机电压母线上的剩余容量送入系统;(5)发电机电压母线与系统连接的变压器一般选用两台。

相关文档
最新文档