多元函数的极值与最优化问题(课堂PPT)
多元函数极值与最值课件
z ( 4, 2) 64
y
x y6
D
o
x
所以在 D 的边界上 , max z 0 , min z z ( 4, 2) 64 .
与 z (P) z ( 2, 1) 4 相比较 , 得 : z ( 4, 2) 64 为最小值 , z ( 2, 1) 4 为最大值 .
三、条件极值
A<0 时取极大值;
则: 1) 当AC B2 0时, 具有极值 A>0 时取极小值. 2) 当AC B2 0时, 没有极值. 3) 当AC B2 0时, 不能确定 , 需另行讨论.
机动 目录 上页 下页 返回 结束
例1. 求函数 解: 第一步 求驻点.
的极值.
解方程组
得驻点: (1, 0) , (1, 2) , (–3, 0) , (–3, 2) .
第二步 判别. 求二阶偏导数
B
C
fxx ( x, y) 6x 6, fxy ( x, y) 0, f yy ( x, y) 6 y 6
A
在点(1,0) 处
AC B2 12 6 0, A 0,
为极小值;
机动 目录 上页 下页 返回 结束
在点(1,2) 处
AC B2 12 (6) 0,
y
在点 (0,0) 无极值.
y xx y
机动 目录 上页 下页 返回 结束
2、驻点
使一阶偏导数同时为零的点称为函数的驻点
f x ( x0 , y0 ) 0
fy(
x0 ,
y0 )
0
( x0 , y0 ) 为驻点
注 驻点 意
极值点
如 z x y 点 (0 , 0) 是驻点但不是极值点
如
大学课程《高等数学》PPT课件:6-6 多元函数的极值及其求法
多元函数的极值及其求法
一、多元函数的极值 二、多元函数的最大值与最小值 三、条件极值与拉格朗日乘数法
一、多元函数的极值
定义1 设函数 z f x, y 在点 x0, y0 的某个邻
域内有定义,
对于该邻域内的任何点 x, y x0, y0 ,若总有
f x, y f x0, y0
若有,加以判别是否为极值点.
例3 考察 z x2 y2 是否有极值. 解 因为 z x , z y 在 x 0, y 0
x x2 y2 y x2 y2
处偏导数不存在,但是对任意点 x, y 0,0, 均有 f x, y f 0,0 0,所以函数在 0,0 点取得极大值.
从上例可知,在考虑函数的极值问题时,除了考 虑函数的驻点外,如果有偏导数不存在的点,那 么对这些点也应当考虑.
构造拉格朗日函数
31
F x, y, 100x4 y4 50000 150x 250y
由方程组
1 1
Fx 75x 4 y 4 150 0
Fy
3
25x 4
3
y4
250
0
F 50 000 150x 250 y 0
中的第一个方程解得
1
1
x4
1
y4
2
,将其代入第二
个方程中,得
3 3
1 1
其中 x ,y 就是函数在条件 x, y=0 下的可能
极值点的坐标.
(3)如何确定所求点是否为极值点,在实际问题中往 往可根据问题本身的性质来判定. 拉格朗日乘数法也可能推广到自变量多于两个而条件 多于一个的情形.
例如,求函数 u f x, y, z,t 在条件 x, y, z,t 0 ,
8-8多元函数极值和最值-PPT文档资料
z
O
y
x
回忆
一元函数极值的必要条件
如果函数 f(x)在x0处可导,且f(x)在x0 处取得极值, 那么 f(x0)0.
一元函数极值(第二)充分条件
如f果 (x0)0,f ( x0 ) 0 ( 0),则f (x0)为
极大值 (极小值).
二元函数极值的必要条件
定理 设 zf(x,y)在 (x0 点 ,y0)具有 偏导数, 且在(x点 0,y0)处有极值, 则
函数的极大值与极小值统称为 极值. 函数的极大值点与极小值点统称为 极值点.
z
例 函数 z3x24y2 椭圆抛物面
在(0,0)点取极小值. (也是最小值). O y
xz
例 函数 z x2y2 下半圆锥面
O
x
y
在(0,0)点取极大值. (也是最大值).
例 函数 zxy 马鞍面
在(0,0)点无极值.
8.8 多元函数的极值与最值
8.8.1 多元函数的极值 8.8.2 多元函数的条件极值 8.8.3 Lagrange(拉格朗日)乘数法 8.8.4 多元函数的最值及其应用
8.8.1 多元函数的极值(extremum)
极大值和极小值的定义 和一元函数一样,极值是局部概念
定义 设在点P0的某个邻域, f(P)f(P0),则称 点P0为函数的极大值点.f (P0) 为极大值(relative maximum). 类似可定义极小值点和极小值(relative minimum).
③定出 ACB2的符号, 判定是否是极值.
例 求 f( x 函 ,y ) 3 a 数 x x 3 y 3 ( a 0 )的极值.
解
①解方程组
fx fy
8.6多元函数的极值与最值ppt课件
将条件极值问题转化为求F( x, y, )的无条件极值。
2)、求解方程组:FFxy
f x x f y y
0 0
F ( x, y) 0
可能极值点( x, y)
和乘数
3)、判别(x,y)是否为极值点.一般根据实际问题得结论.
;
11
例: 某企业生产两种不同型号的机器,当生产量分别为 x, y台时,总成本函数:C( x, y) x2 xy 2 y2 , 如果两种 机器共生产8台,问:各生产多少可使总成本最少?
f
y
(
x0
,
y0
)
0.
注1:称使f x( x0 , y0 ) 0,f y( x0 , y0 ) 0的点为f ( x, y)的驻点。
注2:二元函数的极值点必是驻点或一阶偏导不存在的点,
因此,函数的极值点从这两类点中去寻找。
例 求函数f ( x, y) 3x2 4 y 2的极值。
解:
f x
6x
称f ( x0 , y0 )为f ( x, y)的最大值(或最小值).
相应的点为f ( x, y)的最大值点(或最小值点).
注1:若区域D为有界闭域,先求出f(x,y)在D内的全部驻点
的函数值,一阶偏导数不存在点的函数值, 以及区域D
边界上驻点的函数值,再比较大小,其中最大者为最大值,
最小者为最小值。
所以当两种机器各生产5台; 和3台时总成本最少。
12
例:将正数12分成三个正数x、y、z之和,并使S=xyz 最大。
解:目标函数:C( x, y) xyz
约束条件:( x,
y)
x
y
z
12
0
令F( x, y, z, ) xyz ( x y z 12)
Z7-7多元函数的极值及其求法PPT课件
(x, y) 0,
-
15
目录 上页 下页 返回 结束
思考与练习 已知平面上两定点 A( 1 , 3 ), B( 4 , 2 ),
试在椭圆 x2 y2 1 (x 0, y 0) 圆周上求一点 C, 使 94
△ABC 面积 S△最大.
yA
解答提示: 设 C 点坐标为 (x , y), D
B
则
-
21
目录 上页 下页 返回 结束
3. 有一宽为 24cm 的长方形铁板 , 把它折起来做成
一个断面为等腰梯形的水槽, 问怎样折法才能使断面面
积最大.
解: 设折起来的边长为 x cm, 倾角为 , 则断面面积
为
A
1 2
( 24
2x
2x
cos
24
2x)
x sin
24xsin 2x2 sin x2 cos sin
-
4
目录 上页 下页 返回 结束
例7.7.1 求函数 f (x, y) x3 y3 3x2 3y2 9x的极值.
解: 第一步 求驻点.
解方程组
fx (x, y) 3x2 6x 9 0 f y (x, y) 3y2 6y 0
求得驻点为: (1, 0) , (1, 2) , (–3, 0) , (–3, 2) .
f (P)为极小值
(大)
-
f (P)为最小值
(大)
7
目录 上页 下页 返回 结束
例7.7.2 某厂要用铁板做一个体积为8 m3的有盖长方体
水箱,问当长、宽、高各取多少时, 才能使用料最省?
解:
设水箱长,宽分别为
x
,
y
m
,则高为
多元函数的极值及求法课件
详细描述
在交通网络、通信网络或其他类型的网络中,最短路 径问题是一个重要的优化问题。通过使用多元函数的 极值理论,可以找到网络中两点之间的最短路径,或 者从一个点出发到另一个点的最短路径。这有助于节 省时间和资源,提高效率。
生产成本最小化问题
要点一
总结词
生产成本最小化问题是企业经常面临的问题,通过最小化 生产成本来提高利润。
在工程领域的应用
结构优化设计
在工程设计中,如何优化设计方案以使 得结构性能最优是一个重要问题。多元 函数的极值理论可以用来解决这类问题, 通过找到使得结构性能函数最大的最优 解,得到最优的结构设计方案。
VS
控制工程问题
在控制工程中,如何确定控制系统的参数 以使得系统性能最优是一个重要问题。多 元函数的极值理论可以用来解决这类问题, 通过找到使得性能函数最大的最优解,得 到最优的控制系统参数。
04
多元函数极的展
偏导数与极值的关系
偏导数
在一元函数中,导数描述了函数值随自变量变化的速率。在多元函数中,偏导数描述了 函数值随某个自变量变化,而其他自变量保持不变的速率。
极值必要条件
如果一个多元函数在某点的偏导数都为0,那么这个点可能是函数的极值点。然而,这 个条件只是必要条件,不是充分条件,也就是说,偏导数都为0的点不一定是极值点。
生产成本最小化
在生产过程中,企业希望通过优化生产要素的投入比例,使 得生产成本最小化。多元函数的极值理论可以用来解决这类 问题,通过找到使得成本函数最小的最优解,实现生产成本 的最小化。
资源分配问题
在资源有限的情况下,如何合理分配资源以最大化经济效益 是经济领域中常见的问题。多元函数的极值理论可以用来解 决这类问题,通过找到使得收益函数最大的最优解,实现资 源的最优配置。
08-多元函数的极值及其求法课件
多元函数的极值及其求法多元函数的极值多元函数的最大值、最小值条件极值拉格朗日乘数法多元函数的极值定义 设函数()z f x y =,的定义域为D ,()000,P x y 则称函数在点()00,x y 有极大值(或极小值) ()00,f x y为D 的内点,若存在0P 的某个邻域()0U P D ⊂,如果对于该邻域内任何异于0P 的点(),x y , 都有()()00,,f x y f x y < (或()()00,,f x y f x y >),极大值、极小值统称为极值. 使函数取得极值的点称为极值点.例 函数2234z x y =+在点(0,0)处有极小值.()0,00z =, 例 函数22y x z +-=在点(0, 0)处有极大值.当()(),0,0x y ≠时, 0z >.=在点(0,0)处既不取得极大值也不取得极小例函数z xy值.()0,00z=,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点.设n 元函数()u f P =在点0P 的某一邻域内有定义,如果对于该邻域内任何异于0P 的点P , 都有则称函数()fP 在点0P 有极大值(或极小值)()0f P .()()0f P f P < (或()()0f P f P >),定理1(必要条件) 设函数()z f x y =,在点()00,x y 具 有偏导数, 且在点()00,x y 处有极值, 则有()00,0x f x y =, ()00,0y f x y =.不妨设()z f x y =,在点()00,x y 处有极大值. 证 依极大值的定义, 对于点()00,x y 的某邻域内异于()00,x y 的点(),x y , 都有不等式特殊地, 在该邻域内取0y y =而0x x ≠的点,也应有()()00,,f x y f x y <()()000,,f x y f x y <这表明一元函数()0,f x y 在0x x =处取得极大值,因而有()00,0x f x y =.类似地可证()00,0y f x y =.从几何上看, 这时如果曲面()z f x y =,在点()000,,x y z 处有切平面, 则切平面()()()()0000000,,x y z z f x y x x f x y y y -=-+-成为平行于xoy 坐标面的平面0z z =.凡是能使()00,0xf x y =, ()00,0y f x y =同时成立的点()00,x y 称为函数()z f x y =,的驻点.具有偏导数的函数的极值点必定是驻点.但函数的驻点不一定是极值点.例如, 函数z xy =在点 (0,0)处的两个偏导数都是零, 但(0,0)不是极值点.定理2(充分条件) 设函数()z f x y =,在点()00,x y 的某邻域内连续且有一阶及二阶连续偏导数,又()00,0x f x y =, ()00,0y f x y =,令()00,xx f x y A =, ()00,xy f x y B =, ()00,yy f x y C =则()f x y ,在()00,x y 处是否取得极值的条件如下:(2)20AC B -<时没有极值;(1) 20AC B ->时具有极值, 且当0A <时有极大值,当0A >时有极小值;(3) 20AC B -=时可能有极值, 也可能没有极值.极值的求法: 第一步 解方程组求得一切实数解, 即可得一切驻点.第二步 对于每一个驻点()00,x y , 求出二阶偏导数的 ()00,0x f x y =, ()00,0y f x y =,值A 、B 和C .第三步 定出2AC B -的符号, 按定理2的结论判定()00,f x y 是否是极值、是极大值 还是极小值.例 求函数()3322,339f x y x y x y x =-++-的极值.解 解方程组⎩⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f yx 得驻点为()1,0、()1,2、()3,0-、()3,2-.求得1,3x =- ; 0,2y =再求出二阶偏导数(),66xx f x y x =+,(),0xy f x y = ,(),66yy f x y y =-+.在点()1,0处,21260AC B -=⋅>, 又0A >,所以函数在()1,0处有极小值()1,05f =-;在点()1,2处, ()21260AC B -=⋅-<,所以()1,2f 不是极值;所以()3,0f -不是极值;所以函数在()3,2-处有极大值()3,231f -=.在点()3,0-处, 21260AC B -=-⋅<,在点()3,2-处,()21260AC B -=-⋅->, 又0A <,不是驻点也可能是极值点.例如,函数220,0处有极大值,=-+在点()z x y0,0不是函数的驻点.但()多元函数的最大值、最小值如果()f x y ,在有界闭区域D 上连续, 则()f x y ,在 D 上必定能取得最大值和最小值.假定函数在D 上连续、在D 内可微分且只有有限个驻 点, 如果函数在D 的内部取得最大值(最小值), 那么这个 最大值(最小值)也是函数的极大值(极小值).求最大值和最小值的一般方法将函数()f x y ,在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较, 其中最大的就是最大 值, 最小的就是最小值.实际问题中如果根据问题的性质, 知道函数()f x y , 的最大值(最小值)一定在D 的内部取得, 而函数在D 内 只有一个驻点, 那么可以肯定该驻点处的函数值就是函数 ()f x y ,在D 上的最大值(最小值).例 某厂要用铁板做成一个体积为38m 的有盖长方体水箱.问当长、宽、高各取多少时, 才能使用料最省.解 设水箱的长为x , 宽为y , 则其高应为xy8. 此水箱所用材料的面积为)0 ,0( )88(2)88(2>>++=⋅+⋅+=y x yx xy xy x xy y xy A令0)8(22=-=x y A x , 0)8(22=-=yx A y , 得2x =, 2y =.当水箱的长为2m 、宽为2m 、高为82m 22=⋅时, 水箱所用的材料最省.条件极值拉格朗日乘数法例如, 对自变量有附加条件的极值称为条件极值.求表面积为2a 的长方体的最大体积.设长方体的三棱的长为x y z 、、, 则体积V xyz =.x y z 、、还必须满足附加条件22()xy yz xz a ++=.由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 有些条件极值问题可以化为无条件极值问题.例如, 求表面积为2a 的长方体的最大体积.函数()z f x y =,在条件()0x y ϕ=,下取得极值的必要 条件.如果函数()z f x y =,在()00,x y 取得所求的极值, 则()00,0x y ϕ=.假定在()00,x y 的某一邻域内()f x y ,与()x y ϕ,均有连续的一阶偏导数, 将其代入目标函数()z f x y =,, 得的函数()y x ψ=, 定理, 由方程()0x y ϕ=,确定一个连续且具有连续导数而()00,0y x y ϕ≠. 由隐函数存在一元函数()()z f x x ψ=,.0x x =是一元函数()()z f x x ψ=,的极值点,由取得极值的必要条件, 有即()()0000d d ,,0d d x y x x x x z yf x y f x y xx--=+=()()()()00000000,,,0,x x y y x y f x y f x y x y ϕϕ-=设λϕ-=),(),(0000y x y x f y y , 则函数()z f x y =,在条件 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ ()0x y ϕ=,下在()00,x y 取得极值的必要条件是拉格朗日乘数法要找函数()z f x y =,在条件()0x y ϕ=,下的可能极值点, 可以先构成辅助函数()()()L x y f x y x y λϕ=+,,,其中λ为某一常数. 然后解方程组(,)(,)(,)0(,)(,)(,)0(,)0L x y f x y x y x x x L x y f x y x y y y y x y λϕλϕϕ⎧=+=⎪=+=⎨⎪=⎩ 由这方程组解出,x y 及λ, 则其中(),x y 就是所要求的可能的极值点.此方法可以推广到自变量多于两个而条件多于一个的情形.例 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱的长为x y z 、、, 构成辅助函数解方程组()()2,222L x y z xyz xy yz xz a λ=+++-,(,,)2()0(,,)2()0(,,)2()02222L x y z yz y z x L x y z xz x z y L x y z xy y x z xy yz xz aλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩ 得a z y x 66===, 这是唯一可能的极值点. 最大值就在这个可能的值点处取得. 此时3366a V =.。
高等数学(微积分)课件-86多元函数极值与最值
极值的必要条件
必要条件一
如果函数$f(x)$在点$x_0$处取得极 值,则该点的导数$f'(x_0)$必定为零 。
必要条件二
如果函数$f(x)$在点$x_0$处取得极值 ,则该点的二阶导数$f''(x_0)$必定存 在且不为零。
极值的充分条件
第一充分条件
如果函数$f(x)$在点$x_0$处的Hessian矩阵(二阶导数矩阵)是正定的,则函数在点$x_0$处取得极 小值。
拉格朗日乘数法
通过引入拉格朗日乘数,将约束条件转化为无约束条件,再利用 无约束条件的求解方法求得极值点。
惩罚函数法
通过构造一个惩罚函数,将约束条件转化为无约束条件,再利用无 约束条件的求解方法求得极值点。
序列二次规划法
将原问题转化为一系列二次规划问题,利用二次规划的求解方法逐 一求解,最终得到极值点。
数。
答案与解析
计算下列函数的极值 点
$f(x,y) = x^2 + 4y^2 - 4x + 8y + 10$的极值点为 $(0,0)$和$(2,-2)$。
$g(x,y) = x^2 + y^2 - 2x - 4y + 6$的极值 点为$(1,2)$和$(1,2)$。
求函数$f(x,y) = x^2 + y^2$在点$(1,1)$ 处的梯度:$nabla f(1,1) = (2,2)$。
高等数学(微积分)课件-86多元函 数极值与最值
目录
• 引言 • 多元函数极值的基本概念 • 多元函数的最值 • 多元函数的极值与最值的求解方法 • 习题与答案
01 引言
主题简介
01
多元函数极值与最值是高等数 学中的一个重要主题,主要研 究多元函数在某个区域内的最 大值和最小值问题。
多元函数的极值及最大值【精品-PPT】
高等数学
主讲人: 苏本堂
第八节多元函数的极值及其求法
一、多元函数的极值及最大值、最小值 二、条件极值 拉格朗日乘数法
山东农业大学
高等数学
主讲人: 苏本堂
一、多元函数的极值及最大值、最小值
定义 设函数zf(x y)在点(x0 y0)的某个邻域内有定 义 如果对于该邻域内任何异于(x0 y0)的点(x y) 都有
则: 1) 当AC B2 0 时, 具有极值
A<0 时取极大值; A>0 时取极小值.
2) 当 AC B2 0 时, 没有极值.
3) 当 AC B2 0 时, 不能确定 , 需另行讨论.
证明见 第九节.
山东农业大学
高等数学
主讲人: 苏本堂
求函数 z = f ( x , y) 极值的一般步骤:
fx
fy
dy dx
0
因d y dx
x y
,
故有
fx
f
y
x y
0
记
fx fy
x y
山东农业大学
高等数学
主讲人: 苏本堂
极值点必满足
fx x 0 f y y 0 (x, y) 0
引入辅助函数 F f (x, y) (x, y)
则极值点满足:
辅助函数F 称为拉格朗日( Lagrange )函数. 利用拉格 朗日函数求极值的方法称为拉格朗日乘数法.
oO4uUaB!hH)nO4uUaA#hH)nN3tUaA #gG(n N3tT9A #gG(mM3tT9 zZfG(mM2sS9 zZfF*mM2sS8y ZfF*lL1sS8y YeE*lL 1rR8y YeE&kL 1rR7x XeE&kK0qR7x XdD& kK0qQ 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驻点
A
(0,0) 9a2 0
z(x, y) 非极值
(a, a)
27a2 0
6a
(a 0) (a 0)
极小值 极大值
即当a 0时,z x3 y3 3axy 在(0,0)不
取得极值. 当a 0时,z x3 y3 3axy 在(a,a)取
得极小值:z(a,a) a3; 当a 0时,z x3 y3 3axy 在(a,a)取
事实上, zx y, zy x,
z
z z
x y
(0,0) (0,0)
0 0
y o
(0,0)是 z xy 的驻点.
x
但当 xy 0(一、三象限的点)时,z( x, y) z(0,0) 0 当 xy 0(二、四象限的点)时,z( x, y) z(0,0) 0
(0,0)不是 z xy 的极值点. 问题:如何判定一个驻点是否为极值点?
第九节
第八章
多元函数的极值
与最优化问题
一、多元函数的无条件极值 二、多元函数的最值
三、多元函数的条件极值—— 拉格朗日乘数法
一、 多元函数的无条件极值
观察二元函数
z
e
xy
x2 y2
的图形
1. 极值定义
定义8.10 若函数 z f ( x, y) 在点 P( x0, y0) 的某
邻域内有定义且满足
(
P
U (P0
),
P0
,
P
Rn
)
例1 函数 z 3x2 4 y2
(1)
在 (0,0) 处有极小值.
例2 函数 z x2 y2
(2)
在 (0,0) 处有极大值.
例3 函数 z xy
(3)
在 (0,0) 处无极值.
2. 多元函数取得极值的条件 定理8.10 (必要条件)
设函数 z f ( x, y) 在点( x0, y0 )具有偏导数, 且在该点取得极值,则有
(0,0)不是z x3 y3的极值点.
当a =0 时,
z x3 y3 3axy 无极值.
求函数z f ( x, y)极值的一般步骤: 1 求极值可疑点:驻点、偏导数不存在的点; 2 判断
(1) 利用极值的充分条件判定,
(2) 若充分条件不满足,则利用极值的定义.
例4 z x2 y2
zx (0,0), z y (0,0)均不存在,
但 z x2 y2在(0,0)处取得极小值 z(0,0) 0.
令 ( x) f ( x, y0), 则
( x) ( x0 ) ( x U( x0 )) ( x) f ( x, y0 )在x x0处可导
(x0 ) 0
即 f x ( x0, y0 ) 0;
类似地可证 f y ( x0 , y0 ) 0.
注 1º 推广: 如果三元函数u f ( x, y, z)在点 P( x0 , y0 , z0 )具有偏导数,则它在点 P( x0 , y0 , z0 )处有极值的必要条件为:
f x ( x0, y0 ) 0 ,
f
y
(
x0
,
y0
)
0.
证 不妨设z f ( x, y)在点 P ( x0 , y0 ) 处有极大值,
即 f ( x, y) f ( x0 , y0 ), ( ( x, y) U(P))
f ( x, y0 ) f ( x0, y0 ) ( ( x, y0 ) U(P))
定理8.11(充分条件) 若函数z f ( x, y) 在点( x0 , y0) 的 某邻域内
具有二阶连续偏导数, 且
f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 记 A f x x ( x0 , y0 ) , B f x y ( x0 , y0 ) , C f y y ( x0 , y0 ) 则 1)当 AC B2 0 时, f ( x0, y0 )是极值,
f x ( x0 , y0 , z0 ) 0, f y ( x0 , y0 , z0 ) 0, fz ( x0 , y0 , z0 ) 0.
2º 仿照一元函数,凡能使一阶偏导数同时为零 的点,均称为多元函数的驻点.
驻点
可导函数的极值点
例如: 点(0,0)是函数 z xy 的驻点,但不是极值点.
A<0 时是极大值;
A>0 时是极小值. 2) 当 AC B2 0 时, f ( x0, y0)不是极值. 3Байду номын сангаас 当 AC B2 0 时, 不能判定 , 需另行讨论.
即有
f ( x0, y0 )
A 0, 极小值
0
A 0, 极大值 是极值
0
非极值
0
不定(需用其他方法确定)
( AC B2 )
得极大值:z(a,a) a3.
(2) 当a =0 时,在唯一驻点(0,0)处,
AC B2 (36xy 9a2 ) 0
(0,0)
充分判别法失效!
此时,z x3 y3, z(0,0) 0
当 x 0时,z( x,0) x3 0 z(0,0) 当 x 0时,z( x,0) x3 0 z(0,0) y
f ( x, y) f ( x0, y0 ) ( ( x, y) U(P))
( f ( x, y) f ( x0, y0 ))
则称函数在点( x0, y0 )取得极大值 (f极( x小0,值y0).f ( x0, y0 ).
极大值和极小值统称为极值, 使函数取得极值的点
称为极值点.
推广:n 元函数 f (P ), 极小值 f (P0):f (P0) f (P)
否则 x ya 0
x y 代入①,
zx 3[x2 a(xa)]
得 x2 ax 0, x 0, x a
有驻zz点xy :
3x2 3(0y,20),
3ay 3(aa,xa
)
0 0
① ②
3(x2 axa2) 0
2º判断 zx 3x2 3ay , z y 3 y2 3ax A zxx 6x, B zxy 3a, C zyy 6 y, AC B2 36xy 9a2
例5 求 z x3 y3 3axy (a为常数)的极值.
解 1º求驻点
z z
x y
3x2 3 y2
3ay 3ax
0 0
① ②
当 a=0 时,有唯一驻点:(0,0)
当 a 0 时,
① – ②:( x2 y2 ) a( x y) 0
(x y)(x y a) 0
x ya0