高考数学(文)题型全归纳(提高版)三角恒等变换

合集下载

三角恒等变换 高考数学真题分类大全 专题07解析

三角恒等变换 高考数学真题分类大全 专题07解析

专题7三角恒等变换第一部分近3年高考真题一、选择题1.(2021·浙江高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是()A .0B .1C .2D .3【答案】C【解析】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>,故三式中大于12的个数的最大值为2,故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>,故三式中大于12的个数的最大值为2,故选:C.2.(2021·全国高考真题(理))2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''- 1.732≈)()A .346B .373C .446D .473【答案】B【解析】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+,由题,易知ADB △为等腰直角三角形,所以AD DB =.所以''100''100AA CC DB A B -=+=+.因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 304︒=︒-︒=︒︒-︒︒=,所以10042''1)273A B ⨯⨯==≈,所以''''100373AA CC A B -=+≈.故选:B .3.(2020·全国高考真题(理))已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .2【答案】D【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭ ,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D.4.(2020·全国高考真题(文))已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .2【答案】B【解析】由题意可得:13sin sin cos 122θθθ++=,则:3sin 122θθ+=,1sin cos 223θθ+=,从而有:3sin coscos sin 663ππθθ+=,即sin 63πθ⎛⎫+= ⎪⎝⎭.故选:B.5.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15B C .33D .255【答案】B【解析】2sin 2cos 21α=α+ ,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin 5α∴=,故选B .6.已知函数()222cos sin 2f x x x =-+,则()A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4【答案】B【解析】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+,所以函数()f x 的最小正周期为22T ππ==,且最大值为()max 35422f x =+=,故选B.7.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=()A .15B .5C .5D .1【答案】B【解析】由,,O A B 三点共线,从而得到2b a =,因为222cos22cos 1213αα⎛⎫=-=⋅-=,解得215a =,即55a =,所以25a b a a -=-=,故选B.二、填空题8.(2020·全国高考真题(文))若2sin 3x =-,则cos 2x =__________.【答案】19【解析】22281cos 212sin 12(1399x x =-=-⨯-=-=.故答案为:19.9.(2020·江苏高考真题)已知2sin ()4πα+=23,则sin 2α的值是____.【答案】13【解析】22221sin ())(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1310.(2020·北京高考真题)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=.故答案为:2π(2,2k k Z ππ+∈均可).11.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____.【答案】10.【解析】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ +⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭,当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭当1tan 3α=-时,上式=2211212233=210113⎛⎫⎛⎫⎛⎫⨯-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.综上,sin 2.410πα⎛⎫+= ⎪⎝⎭12.函数3π()sin(23cos 2f x x x =+-的最小值为___________.【答案】4-.【解析】23()sin(23cos cos 23cos 2cos 3cos 12f x x x x x x x π=+-=--=--+23172(cos )48x =-++,1cos 1x -≤≤ ,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.三、解答题13.(2020·全国高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C =22,求C .【答案】(1;(2)15︒.【解析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==△的面积1sin 2S ac B ==;(2)30A C +=︒ ,sin sin(30)A C C C ∴+=︒-+1cos sin sin(30)222C C C =+=+︒=,030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒.14.设常数R a ∈,函数()2sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若π14f ⎛⎫=⎪⎝⎭,求方程()1f x =[]ππ-,上的解.【答案】(1)0a =;(2)5π24x =-或19π24x =或13π11π2424x x 或==-.【解析】(1)∵()2sin22cos f x a x x =+,∴()2sin22cos f x a x x -=-+,∵()f x 为偶函数,∴()()f x f x -=,∴22sin22cos sin22cos a x x a x x -+=+,∴2sin20a x =,∴0a =;(2)∵π14f ⎛⎫=⎪⎝⎭,∴2ππsin 2cos 1124a a ⎛⎫+=+= ⎪⎝⎭,∴a =∴()2π2cos cos212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,∵()1f x =∴π2sin 2116x ⎛⎫++=- ⎪⎝⎭,∴πsin 262x ⎛⎫+=- ⎪⎝⎭,∴ππ22π64x k +=-+,或π52π2πZ 64x k k +=+∈,,∴5ππ24x k =-+,或13ππZ 24x k k =+∈,,∵[]ππx ∈-,,∴5π24x =-或19π24x =或13π11π2424x x 或==-15.已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos 2α的值;(2)求tan()αβ-的值.【答案】(1)725-;(2)211-【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos22cos 125αα=-=-.(2)因为,αβ为锐角,所以()0,παβ+∈.又因为()5cos 5αβ+=-,所以()25sin 5αβ+==,因此()tan 2αβ+=-.因为4tan 3α=,所以22tan 24tan21tan 7ααα==--,因此,()()()()tan2tan 2tan tan 21+tan2tan 11ααβαβααβααβ-+⎡⎤-=-+==-⎣⎦+.16.已知函数()2sin cos f x x x x =+.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.【答案】(Ⅰ)π;(Ⅱ)π3.【解析】(Ⅰ)()1cos211π1sin2sin2cos2sin 22222262x f x x x x x -⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(Ⅱ)由(Ⅰ)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为π,3x m ⎡⎤∈-⎢⎥⎣⎦,所以π5ππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦.要使得()f x 在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为32,即πsin 26x ⎛⎫-⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.17.在ABC 中,角,,A B C 所对的边分别为,,a b c .已知5,a b c ===(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值.【答案】(Ⅰ)4C π=;(Ⅱ)213sin 13A =;(Ⅲ)172sin 2426A π⎛⎫+= ⎪⎝⎭.【解析】(Ⅰ)在ABC 中,由22,5,13a b c ===2222cos 222225a b c C ab +-===⨯⨯,又因为(0,)C π∈,所以4C π=;(Ⅱ)在ABC 中,由4C π=,2,13a c ==222sin 2sin 13a CA c===21313;(Ⅲ)由a c <知角A 为锐角,由13sin 13A =,可得2cos 1sin A A =-=31313,进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=,所以12252sin(2)sin 2cos cos2sin 444132132A A A πππ+=+=⨯+⨯=17226.第二部分模拟训练1.已知ABC 的内角A ,B ,C 成等差数列,若()3sin sin 5B αα+=+,则()sin 300α+︒=()A .35B .45-C .45D .35-【答案】D【解析】解:∵A ,B ,C 成等差数列,∴2B A C =+,又180A B C ++=︒,∴60B =︒,由()3sin 60sin 5αα︒+=+得,313cos sin 225αα-=,∴()3cos 305α︒+=,则()()()3sin 300sin 27030cos 305ααα+︒=︒+︒+=-︒+=-,故选:D .2.已知函数()()cos 0f x x x ωωω=->在0,2π⎡⎤⎢⎥⎣⎦内有且仅有1个最大值点和3个零点,则ω的取值范围是()A .1316,33⎛⎤ ⎥⎝⎦B .1316,33⎡⎫⎪⎢⎣⎭C .1417,33⎛⎤ ⎥⎝⎦D .1417,33⎡⎫⎪⎢⎣⎭【答案】B【解析】()2sin(),0cos 62f x x x x x ππωωω=-≤≤-=,6626x ππωππω∴-≤-≤-,1322635162623ωπππωωπππω⎧⎧-≥≥⎪⎪⎪⎪⇒⎨⎨⎪⎪-<<⎪⎪⎩⎩,则ω的取值范围是1316,33⎡⎫⎪⎢⎣⎭.故选:B.3.将函数()sin 22f x x x =+的图象沿x 轴向左平移()0ϕϕ>个单位后得到函数()g x ,若()g x 为偶函数,则ϕ的最小值为()A .12πB .6πC .4πD .512π【答案】A【解析】函数sin 222sin(2)3y x x x π==+,将函数sin 22y x x =+的图象沿x 轴向左平移ϕ个单位后,得到函数2sin(22)3y x πϕ=++,因为函数是偶函数,∴2()()32212k k k Z k Z ππππϕπϕ+=+∈∴=+∈.当0k =时,12πϕ=.故选:A 4.设ABC 的内角A ,B ,C 满足2A C B +=,则函数()2sin()cos sin2f x x B x x =+-图象的对称轴方程是()A .ππ,32k x k =+∈Z B .ππ,122k x k =+∈Z C .5ππ,122k x k =+∈Z D .ππ,62k x k =+∈Z 【答案】C 【解析】因为()A C B π-+=,2A+C =B ,所以3B π=,()2sin cos sin 23f x x x x π⎛⎫=+- ⎪⎝⎭(sin )cos sin 2x x x x=+-1sin 2cos 2222x x =-++sin 232x π⎛⎫=--+ ⎪⎝⎭.由232x kx ππ-=+,k ∈Z ,得5122k x ππ=+,k ∈Z .故选:C.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足()2cos b c A acosC -=.(1)求角A ;(2)若a =,5b c +=,求△ABC 的面积.【答案】(1)A 3π=;(2)【解析】(1)在三角形ABC 中,()2cos acos b c A C -= ,由正弦定理得:()2sin cos sin cos B sinC A A C -=,化为:()2sin cos sin cos sin cos sin sin B A C C A C A C B =+=+=,三角形中sin 0B ≠,解得cos A 12=,()0,A π∈,∴A 3π=.(2)由余弦定理得2222cos a b c bc A =+-,a =5b c +=,()2213353b c cb bc ∴=+-=-,化为4bc =,所以三角形ABC 的面积S 12=sin bc A 12=⨯432⨯=6.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且直线x A =为函数()222sin f x x x =+图象的一条对称轴.(1)求A ;(2)若4a =,求ABC 面积的最大值.【答案】(1)3A π=;(2)【解析】(1)()222sin 2cos 212sin 216πx x x x x f x ⎛⎫=+=-+=-+ ⎪⎝⎭,∴直线x A =为函数()f x 图像的一条对称轴,∴262ππA kπ-=+(k ∈Z ),即132πA kπ=+(k ∈Z ),又02A π<<,∴当0k =时,3A π=.(2)∵3A π=,4a =,∴由余弦定理得,2222162cos23πb c bc b c bc bc bc bc =+-=+-≥-=,即16bc ≤,当且仅当b=c=4时等号成立∴1113sin sin 1622322ABC πbc A bc S ==≤⨯⨯=△故ABC 面积的最大值为7.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知45b c B ==∠= .(1)求边BC 的长﹔(2)在边BC 上取一点D ,使得4cos 5ADB Ð=,求sin DAC ∠的值.【答案】(1)3BC =;(2)25.【解析】在ABC 中,因为b =,c =,45B ∠= ,由余弦定理2222cos b a c ac B =+-,得25222a a =+-⨯所以2230a a --=解得:3a =或1a =-(舍)所以3BC =.(2)在ABC 中,由正弦定理sin sin b c B C=,得sin 45sin C= .所以sin 5C =在ADC 中,因为()4cos 180cos cos 5ADB ADB ADC -∠=-∠∠=-= ,所以ADC ∠为钝角.而180ADC C CAD ∠+∠+∠= ,所以C ∠为锐角故25cos 5C ==因为4cos 5ADC ∠=-,所以35sin ADC ∠===,()sin sin 180sin ()DAC ADC C ADC C ∠=-∠-∠=∠+∠ ,sin cos cos sin ADC C ADC C =∠∠+∠∠3254525555525=⨯-⨯=8.已知函数2()cos cos 1f x x x x =++.(1)求()f x 的最小正周期和值域;(2)若对任意x ∈R ,2()()20f x k f x -⋅-≤的恒成立,求实数k 的取值范围.【答案】(1)最小正周期π,值域为15,22⎡⎤⎢⎥⎣⎦;(2)1710k ≥.【解析】解:(1)2()cos cos 1f x x x x =++3cos213133sin 212sin 22222262x x x x x π+⎛⎫=++=++=++ ⎪⎝⎭∴()f x 的为最小正周期22T ππ==,值域为15(),22f x ⎡⎤∈⎢⎥⎣⎦;(2)记()f x t =,则15,22t ⎡⎤∈⎢⎥⎣⎦,由2()()20f x k f x -⋅-≤恒成立,知220t kt --≤恒成立,即22kt t ≥-恒成立,∵0t >∴222t t t k t-=-≥.∵2()g t t t =-在15,22t ⎡⎤∈⎢⎥⎣⎦时单调递增max 55417()22510g t g ⎛⎫==-= ⎪⎝⎭∴k 的取值范围是1710k ≥9.已知函数2()2cos 12x f x x =-+.(Ⅰ)若()6f παα⎛⎫=+ ⎪⎝⎭,求tan α的值;(Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦得的值域.【答案】(Ⅰ)9-;(Ⅱ)[]1,2-.【解析】解:(Ⅰ)2()2cos 12x f x x =-+cos 2sin6x x x π⎛⎫=-=- ⎪⎝⎭,因为()6f παα⎛⎫=+ ⎪⎝⎭,所以sin 6παα⎛⎫-= ⎪⎝⎭,即31sin cos 22ααα-=,所以cos αα-=,所以3tan 9α=-;(Ⅱ)()f x 图象上所有点横坐标变为原来的12倍得到函数()g x 的图象,所以()g x 的解析式为()(2)2sin 26g x f x x π⎛⎫==- ⎪⎝⎭,因为02x π≤≤,所以52666x πππ-≤-≤,则1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭,所以1()2g x -≤≤故()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为[]1,2-.10.已知函数()2cos 2cos 1222x x x f x =-+.(1)求函数()f x 的最小正周期;(2)将函数()f x 图象上所有点的横坐标都缩短到原来的12倍(纵坐标不变),再向左平移6π个单位得到函数()g x 图象,求函数()g x 的单调增区间.【答案】(1)最小正周期2π;(2)单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.【解析】(1)()2cos 2cos 1cos 2sin 2226x x x f x x x x π⎛⎫=-+=-=- ⎪⎝⎭,所以函数()f x 的最小正周期为2π;(2)将函数()f x 图象上所有点的横坐标都缩短到原来的12倍(纵坐标不变),得到()2sin 26h x x π⎛⎫=- ⎪⎝⎭,再向左移动6π个单位得()2sin 22sin 2666g x x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()222262k x k k ππππ-≤+≤π+∈Z ,解得()36k x k k πππ-≤≤π+∈Z .函数()g x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.。

2024年新高考版数学专题1_5.2 三角恒等变换

2024年新高考版数学专题1_5.2 三角恒等变换

cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;
tan
2α=
2 tan α 1 tan2α
.
(T2α)
3.公式的变形与应用
(C2α)
1)两角和与差的正切公式的变形
tan α+tan β=tan(α+β)(1-tan αtan β);
tan α-tan β=tan(α-β)(1+tan αtan β).
2)升幂公式
1+cos α=2cos2 α ;1-cos α=2sin2 α .
2
2
3)降幂公式
sin2α=1 cos 2α ;cos2α=1 cos 2α .
2
2
4)其他常用变形
sin
2α=
2 sin sin 2α
α cos α cos2α
=
2 tan tan 2 α
α 1
;
cos 2α= cos2α sin2α =1 tan2α ;
1
10
10
=- 3 10 .
10
所以cos(β+α)=cos(β-α+2α)=cos(β-α)·cos 2α-sin(β-α)sin 2α
=
3 10 10
×
25 5
-
10×
10
5=
5
.2
2
因为α∈
4
,
2
,β∈
,
3 2
,所以β+α∈
5 4
,
2
,所以α+β=
7 4
.
答案 7
4
a2 b2
a2 b2
a
5.角的拆分与组合 1)用已知角表示未知角 例,2α=(α+β)+(α-β),2β=(α+β)-(α-β),

《高考数学题型全归纳》之 三角恒等变换

《高考数学题型全归纳》之  三角恒等变换

第三节 三角恒等变换考纲解读会用向量的数量积推导出两角差的余弦公式.能利用两角差的余弦公式导出两角差的正弦,正切公式.能利用两角差的余弦公式导出两角和的正弦,余弦,正切公式,导出二倍角的正弦,余弦,正切公式,了解它们的内在联系. 能利用上述公式进行简单的恒等变换(包括导出积化和差,和差化积,半角公式,但对这三种公式不要求记忆). 命题趋势探究 高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具.分值与题型稳定,属中下档难度.考题以考查三角函数式化简,求值和变形为主.化简求值的核心是:探索已知角与未知角的联系,恒等变换(化同角同函). 知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin22αα==sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .baα=常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα=±cos 2sin();6πααα±=±题型65 两角和与差公式的证明 题型归纳及思路提示 思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例4.33 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+22(cos cos sin sin )22cos()αβαβαβ⇒--=-+:cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故=即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+ sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型66 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例4.34 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=3,5x x =即cos sin x x -=两边平方得2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A. 评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单.变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ= 变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=-1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例4.35 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或72524.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则sin()______.αβ+=二、辅助角公式变换5.12A π例4.36 已知cos()sin 6παα-+=,则7sin()6πα+的值为( )..5A - .5B 4.5C - 4.5D 分析 将已知式化简,找到与未知式的联系.解析 由题意,cos cossin sinsin 66ππααα++=3sin )26πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C.变式1设sin14cos14,sin16cos16,b c α=+=+=则a,b,c 的大小关系为( ).A.a<b<cB.b<c<aC.a<c<bD.b<a<c变式2设sin15cos15,sin17cos17,b α=+=+ 则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例 4.37(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B C D 分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos 3αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 2α==.故选A. 解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-< 且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin αα-= 22cos2cos sin (cos sin )(cos sin )ααααααα=-=+-(==故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2(2012江苏11)设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值.变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-=24.7A - 7.24B - 24.7C 7.24D变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例4.38若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3c o s C x +.3s i nD x +分析 化同函(cos )(sin())f x f = 以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos2 3.f x x x x =+=-+=+ 故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α=变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+ 最有效训练题19(限时45分钟)1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).A.a<b<cB. c<a<bC.b<a<cD.b<c<a2.若1sin()34πα+=,则cos(2)().3πα-=1.4B - 7.8C - 7.8D 3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ-5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D 6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A -B 4.3C -D 1.4A7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y +=________.= 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ==11.已知函数2()2cos .2xf x x =(1)求函数()f x 的最小正周期和值域;(2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =,求角α;(2)若1AC BC ⋅=- ,求22sin sin 21tan ααα++的值.。

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。

题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。

这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。

题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。

这类题目需要熟练掌握各种诱导公式,以及灵活应用。

题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。

需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。

题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。

需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。

题型五:三角函数的周期性这类题目要求确定三角函数的周期。

需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。

题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。

需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。

题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。

需要掌握各种三角函数的恒等式,以及灵活应用。

2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。

三角恒等变换知识点梳理及经典高考例题及解析

三角恒等变换知识点梳理及经典高考例题及解析

三角恒等变换【考纲说明】1、 掌握两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.2、 能运用上述公式进行简单的三角函数化简、求值和恒等式证明.3、 本部分在高考中约占5-10分.【趣味链接】1、 cos(α+β)有的时候蛮无聊的,把人家好好的α和β硬是弄得分居,结果上去调停的还是她;sin(α+β)也会做差不多的事,但他比较懒,不变号.2、 tan 很寂寞很寂寞,于是数学家看不下去了,创造了cot 陪陪他.【知识梳理】1、两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos( =±;tan tan tan()1tan tan αβαβαβ±±=。

2、二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。

3、半角公式2cos 12sin αα-±= 2c o s12c o s αα+±= αααcos 1cos 12tan+-±= (αααααsin cos 1cos 1sin 2tan -=+=) 4、三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=. αα2cos 1sin 22-= αα2cos 1cos 22+= (2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+= [])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos2cos cos βαβαβα-+=+ ④2sin2sin2cos cos βαβαβα-+-=-5、三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

新高考数学计算题型精练 三角恒等变换(解析版)

新高考数学计算题型精练 三角恒等变换(解析版)

新高考数学计算题型精练三角恒等变换1.cos70cos20sin70sin160︒︒-︒︒=()A.0B.12C D.1【答案】A【详解】cos20cos70sin160sin70︒︒-︒︒()cos20cos70sin18020sin70=︒︒-︒-︒︒cos20cos70sin20sin70=︒︒-︒︒()cos2070cos900=︒+︒=︒=.故选:A.2.sin40°cos10°+cos140°sin10°=()A B C.﹣12D.12【答案】D【详解】sin40°cos10°+cos140°sin10°,=sin40°cos10°-cos40°sin10°,=sin(40°-10°),=sin30°=12.故选:D3.sin20cos40cos20sin140︒︒︒︒+=A.B.2C.12-D.12【答案】B【详解】sin20cos40cos20sin140sin20cos40cos20sin40sin(2040)sin60︒︒+︒︒=︒︒+︒︒=︒+︒=︒故选B4.已知π1cos63α⎛⎫-=⎪⎝⎭,则πsin26α⎛⎫+=⎪⎝⎭()A.79-B.79C.3-D.3【答案】A【详解】因为π1 cos63α⎛⎫-=⎪⎝⎭,故2πππππ27sin 2sin 2()cos 2()2cos ()116626699αααα⎛⎫⎡⎤+=-+=-=--=-=- ⎪⎢⎥⎝⎭⎣⎦,故选:A 5.若cos tan 3sin ααα=-,则sin 22πα⎛⎫+= ⎪⎝⎭()A .23B .13C .89D .79【答案】D【详解】因为cos tan 3sin ααα=-,所以sin cos cos 3sin αααα=-,即223sin sin cos ααα-=,所以223sin sin cos 1ααα=+=,即1sin 3α=,所以27sin 2cos212sin 2π9ααα⎛⎫+==-= ⎪⎝⎭,故选:D .6.sin 20cos 40sin 70sin 40︒︒+︒︒=()AB .12C.2D .1【答案】A【详解】已知可化为:()sin 20cos 40cos 20sin 40sin 20402︒︒︒+︒=︒+︒=.故选:A7.若πtan 28α⎛⎫-= ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .34B .34-C .43D .43-【答案】D【详解】由2π2tan()π448tan 2π41431tan ()8ααα-⎛⎫-===- ⎪-⎝⎭--.故选:D8.已知π0,2α⎛⎫∈ ⎪⎝⎭π2sin 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α=()A .34-B .34C .1-D .1【答案】B【详解】π2sin(4αα=+Q,)22(sin cos )2cos sin αααα=+-Q,1(cos sin )(cos sin )02αααα∴+--=,又π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以2(0,π)α∈,sin 20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.故选:B.9.已知5π4sin 125θ⎛⎫+= ⎪⎝⎭,则πsin 23θ⎛⎫+= ⎪⎝⎭()A .2425-B .725-C .725D .2425【答案】C【详解】5ππππ4sin sin cos 12212125θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以22πππ47cos 2cos 22cos 1216612525θθθ⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得ππππ7sin 2sin 2cos 2326625θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:C.10.已知tan 2α=,则213cos sin2αα-=()A .12B .14C .2D .4【答案】A【详解】因为tan 2α=,所以222213cos sin 2cos tan 221sin22sin cos 2tan 42αααααααα---====,故选:A.11.化简:()22sin πsin 22cos 2ααα-+=()A .sin αB .sin 2αC .2sin αD .sin2α【答案】C【详解】根据题意可知,利用诱导公式可得()222sin πsin 22sin sin 22cos 2cos 22αααααα-++=再由二倍角的正弦和余弦公式可得()()222sin 1cos 2sin 1cos 2sin sin 22sin 1cos 2cos2cos22αααααααααα+++===+,即()22sin πsin 22sin 2cos2αααα-+=.故选:C12.cos78cos18sin 78sin18︒︒+︒︒的值为()A .12B .13CD【答案】A【详解】依题意由两角差的余弦公式可知,()1cos78cos18sin 78sin18cos 7818cos602︒︒+︒︒=︒-︒==.故选:A13.若tan 2θ=-,则()()()πsin 1sin22sin πcos πθθθθ⎛⎫+- ⎪⎝⎭=-++____________【答案】35-/-0.6【详解】()()()()22πsin 1sin2cos sin cos 2cos sin cos sin πcos πsin cos θθθθθθθθθθθθ⎛⎫+- ⎪-⎝⎭==--++-22222tan 1213cos sin 1tan 1(2)5cossin cos θθθθθθ-=---===-+++-,故答案为:35-14.已知ππ2θ<<,且4cos 5θ=-,则tan 2θ=______.【答案】247-【详解】4cos 5θ=-,3sin 5θ==±,ππ2θ<< ,3sin 5θ∴=.sin 3tan cos 4θθθ∴==-,232tan 242tan 291tan 7116θθθ-===---.故答案为:247-.15.已知cos 24π7sin 4αα=⎛⎫+ ⎪⎝⎭,则sin 2α的值是______.【答案】4149【详解】22cos 2442cos sin π777sin 422αααα=⇒⇒-=⎛⎫+ ⎪⎝⎭228841cos 2sin cos sin 1sin 2sin 2494949αααααα⇒-+=⇒-=⇒=,故答案为:414916.已知()0,απ∈,若sin 6πα⎛⎫-= ⎪⎝⎭cos 26πα⎛⎫+= ⎪⎝⎭_________.【答案】3±【详解】因为sin 63πα⎛⎫-= ⎪⎝⎭,()0,απ∈,所以cos 6πα⎛⎫-== ⎪⎝⎭所以sin 2=2sin cos =6663πππααα⎛⎫⎛⎫⎛⎫---±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以cos 2cos 2cos 2sin 2=6326263ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-+=--± ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:17.若3,0,sin 25⎛⎫∈-=- ⎪⎝⎭x x π,则tan 2x =________.【答案】247-【详解】343,0,sin cos ,tan 2554x x x x π⎛⎫∈-=-∴==-⎪⎝⎭Q 232tan 242tan 291tan 7116x x x -∴===---故答案为:247-18.已知(),2αππ∈,cos 3sin 1αα-=,则cos 2α=_______________________.【答案】【详解】因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,由cos 3sin 1αα-=可得212sin 6sin cos 1222ααα--=,整理可得sin 3cos 22αα=-,22sin 3cos 22sin cos 12222ααααπαπ⎧=-⎪⎪⎪+=⇒⎨⎪⎪<<⎪⎩cos 2α=故答案为:19.若πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,则α=__________.【答案】6π/16π【详解】依题意,πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,所以2222tan 1,2tan 1tan 1tan tan ααααα==--,21tan 3α=,而α为锐角,所以πtan 6αα=.故答案为:π620.已知tan 3α=,则sin 2α=______.【答案】35【详解】22222sin cos 2tan 233sin 2sin cos tan 1315ααααααα⨯====+++.故答案为:3521.已知α是第二象限的角,1cos24α=,则tan α=________.【答案】5/【详解】因为21cos 212sin 4αα=-=,又α是第二象限的角,所以6sin 4α=,cos 4α=,所以5tan α=-.故答案为:5-22.已知22cos 5sin 10αα-+=,则cos 2=α______.【答案】12/0.5【详解】解:已知()2222cos 5sin 121sin 5sin 12sin 5sin 30αααααα-+=--+=--+=,即()()22sin 5sin 32sin 1sin 30αααα+-=-+=,解得1sin 2α=或sin 3α=-(舍),211cos 212sin 1242αα∴=-=-⨯=,故答案为:12.23.若tan 2θ=,则sin cos 2cos sin θθθθ=-_________.【答案】65/1.2/115【详解】()()22sin cos sin sin cos 2sin cos sin cos sin cos sin θθθθθθθθθθθθ-==+--222222sin cos sin tan tan 246sin cos sin sin cos tan 155θθθθθθθθθθθ+++=+====++.故答案为:65.24.函数()sin 2sin 1cos x xf x x=+的值域__________.【答案】14,2⎛⎤- ⎥⎝⎦【详解】因为()()222221cos cos sin 2sin 2sin cos 11=2cos 2cos 2cos 1cos 1cos 1cos 22x x x x x x f x x x x x x x -⎛⎫===-+=--+ ⎪+++⎝⎭,因为1cos 1x -≤≤,当1cos 2x =时,()f x 取得最大值12,当cos 1x =-时,()f x 取得最小值4-,又因为1cos 0x +≠,所以()f x 的值域为14,2⎛⎤- ⎝⎦.故答案为:14,2⎛⎤- ⎥⎝⎦.25.已知sin 2cos αα=,π0,2α⎛⎫∈ ⎪⎝⎭,tan α=________.【详解】sin 2cos 2sin cos αααα==,π0,2α⎛⎫∈ ⎪⎝⎭,则cos 0α≠,1sin 2α=,π6α=,故tan α=26.(1)计算:cos157sin 97sin 60cos 97︒+︒︒︒;(2)已知tan 1α=-,求2cos 2sin cos 1ααα--的值.【答案】(1)12;(2)12【详解】(1)cos157sin 97sin 60cos97︒+︒︒︒()cos 9760sin 97sin 60cos 97︒+︒+︒︒=︒cos 97cos 60sin 97sin 60sin 97sin 60cos 97︒︒-︒︒+︒︒=︒cos 60=︒12=.(2)2cos 2sin cos 1ααα--222cos 2sin cos 1cos sin ααααα-=-+212tan 11tan αα-=-+()()2121111-⨯-=-+-12=.。

高考数学 试题汇编 第三节三角恒等变换 文(含解析)

高考数学 试题汇编 第三节三角恒等变换 文(含解析)

第三节三角恒等变换利用三角恒等变换求值考向聚焦利用三角恒等变换求三角函数值是常考内容,主要体现在:(1)把三角恒等变换作为工具来解决三角函数问题,即利用两角和与差的三角公式、倍角公式进行三角函数式的化简、求值问题;(2)在题目设置上多出现三角函数公式的正用、逆用、变形用以及特定条件下的使用,以考查学生对公式的掌握,常以客观题的形式出现,属于中档以下题目,所占分值为5分左右备考指津训练题型:(1)三角恒等变换一般解题模式,其中特别要注重遇切弦,化统一,遇多元,想消元,遇差异,想联系,遇特角,想求值等;(2)角的配凑形式,提升思维起点,缩短思维路线1.(2012年四川卷,文5,5分)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin ∠CED等于( )(A)(B)(C)(D)解析:由图可知sin∠AED=cos∠AED=,sin∠BEC=,cos∠BEC=,∴sin∠CED=sin(∠AED-∠BEC)=sin∠AEDcos∠BEC-cos∠AEDsin∠BEC=(-)=,故选B.答案:B.2.(2012年全国大纲卷,文4,5分)已知α为第二象限角,sin α=,则sin 2α等于( )(A)-(B)-(C)(D)解析:∵α为第二象限角,且sin α=,∴cos α=-=-=-;sin 2α=2sin αcos α=2×(-)×=-,故选A.答案:A.3.(2012年江西卷,文9,5分)已知f(x)=sin2(x+).若a=f(lg 5),b=f(lg),则( )(A)a+b=0 (B)a-b=0(C)a+b=1 (D)a-b=1解析:本题考查三角恒等变换,二倍角公式,三角函数的奇偶性,对数的性质以及换元法的思想.法一:因为f(x)=sin2(x+)==,令lg 5=t,则lg =-t,所以a=f(lg 5)=f(t)=,b=f(lg )=f(-t)=,所以a+b=1.故应选C.法二:因为f(x)=sin2(x+)==,所以2f(x)-1=sin 2x.设g(x)=2f(x)-1,则函数g(x)为奇函数.令lg 5=t,则lg =-t,则g(t)+g(-t)=2f(t)-1+2f(-t)-1=0,所以f(t)+f(-t)=1.即a+b=1.故应选C.答案:C.本题的难点在于三角函数的变换,熟练掌握三角函数的各种公式,并能灵活应用是解题的关键.法一是常规解法,直接换元后代入解析式消元求值;法二奇妙地利用了三角函数的奇偶性,将非奇函数转化为奇函数来求解,其求解的依据是奇函数的定义,函数g(t)是奇函数等价于g(t)+g(-t)=0.4.(2012年辽宁卷,文6,5分)已知sin α-cos α=,α∈(0,π),则sin 2α=( )(A)-1 (B)-(C)(D)1解析:由sin α-cos α=两边平方得1-2sin αcos α=2,∴1-sin 2α=2,∴sin 2α=-1.答案:A.5.(2011年福建卷,文9)若α∈(0,),且sin2α+cos 2α=,则tan α的值等于( )(A)(B)(C)(D)解析:由sin2α+cos 2α=得sin2α+cos2α-sin2α=,即cos2α=,又α∈(0,),∴cos α=,∴α=,则tan α=.答案:D.6.(2011年全国新课标卷,文7)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos 2θ等于( )(A)-(B)-(C)(D)解析:因为终边在直线y=2x上,所以tan θ=2.所以cos 2θ=cos2θ-sin2θ====-.故选B.答案:B.7.(2011年湖北卷,文6)已知函数f(x)=sin x-cos x,x∈R,若f(x)≥1,则x的取值范围为( )(A){x|2kπ+≤x≤2kπ+π,k∈Z}(B){x|kπ+≤x≤kπ+π,k∈Z}(C){x|2kπ+≤x≤2kπ+,k∈Z}(D){x|kπ+≤x≤kπ+,k∈Z}解析:∵f(x)=sin x-cos x=2sin(x-)≥1,∴sin(x-)≥,∴2kπ+≤x-≤2kπ+,k∈Z,∴2kπ+≤x≤2kπ+π,k∈Z,故选A.答案:A.8.(2010年全国新课标卷,文10)若cos α=-,α是第三象限的角,则sin(α+)等于( )(A)-(B)(C)-(D)解析:∵cos α=-且α为第三象限的角,∴sin α=-,∴sin(α+)=sin αcos +cos αsin=(sin α+cos α)=×(--)=-,故选A.答案:A.本题考查了给值求值问题,在已知cos α=-时要注意α为第三象限的角这一条件,否则会出现增值;另外应用了两角和的正弦公式.9.(2012年江苏数学,11,5分)设α为锐角,若cos(α+)=,则sin(2α+)的值为.解析:本题考查三角恒等变形、同角三角函数的基本关系.∵cos(α+)=,∴α+∈(0,),∴sin(α+)=,∴sin(2α+)=2cos(α+)sin(α+)=2××=,cos(2α+)=2cos2(α+)-1=,∴sin(2α+)=sin[(2α+)-]=sin(2α+)cos-cos(2α+)sin=.答案:10.(2011年江苏卷,7)已知tan(x+)=2,则的值为.解析:由tan(x+)=2得=2,即=2,∴tan x=,∴====.答案:11.(2012年四川卷,文18,12分)已知函数f(x)=cos2-sin cos -.(1)求函数f(x)的最小正周期和值域;(2)若f(α)=,求sin 2α的值.解:(1)由已知,f(x)=cos2-sin cos -=(1+cos x)-sin x-=cos(x+).所以f(x)的最小正周期为2π,值域为[-,].(2)由(1)知,f(α)=cos(α+)=,所以cos(α+)=,所以sin 2α=-cos(+2α)=-cos 2(α+)=1-2cos2(α+)=1-=.利用三角恒等变换化简三角函数式考向聚焦高考重点考查内容,主要体现在以下两个方面:(1)利用三角恒等变换把三角函数式化简成为一个角的一个三角函数,即y=Asin(ωx+φ)的形式,或者化简成为二次函数的形式,从而研究三角函数的其他性质;(2)有时给定自变量范围进行三角函数式的化简,再与解三角形或者与平面向量结合综合求解.一般以解答题形式出现,具有一定的综合性,难度中等,所占分值12分左右12.(2012年重庆卷,文5,5分)=( )(A)-(B)-(C)(D)解析:===.故选C.答案:C.13.(2012年全国大纲卷,文15,5分)当函数y=sin x-cos x(0≤x<2π)取得最大值时,x= .解析:y=sin x-cos x=2sin(x-),当y取最大值时,x-=2kπ+(k∈Z),即x=2kπ+(k∈Z),又0≤x<2π,∴x=.答案:本题主要考查两角和的公式的逆用,特殊角的三角函数值,以及正弦函数的性质.解题的关键是将函数解析式化为一个角的三角函数的形式,再利用正弦函数的性质求解. 14.(2012年广东卷,文16,12分)已知函数f(x)=Acos(+),x∈R,且f()=.(1)求A的值;(2)设α,β∈[0,],f(4α+π)=-,f(4β-π)=,求cos(α+β)的值.解:(1)由f()=Acos(+)=Acos=A=,∴A=2.(2)由(1)知f(x)=2cos(+),则f(4α+)=2cos(+)=2cos(α+)=-,∴sin α=.又α∈[0,],∴cos α=,f(4β-)=2cos(+)=2cos β=,∴cos β=.又β∈[0,],∴sin β=.故cos(α+β)=cos αcos β-sin αsin β=×-×=-.此题综合考查了同角三角函数关系式、诱导公式、两角和的余弦公式,要求学生熟练掌握公式.15.(2010年北京卷,文15)已知函数f(x)=2cos 2x+sin2x.(1)求f()的值;(2)求f(x)的最大值和最小值.解:法一:(1)f()=2cos(2×)+sin2=2cos +sin2=-1+=-.(2)f(x)=2(2cos2x-1)+(1-cos2x)=3cos2x-1,x∈R.∵cos x∈[-1,1],∴cos2x∈[0,1],∴当cos x=±1时,f(x)max=2,当cos x=0时,f(x)min=-1.法二:(1)由f(x)=2cos 2x+sin2x得f(x)=2cos 2x+=cos 2x+,∴f()=cos +=-+=-.(2)∵x∈R,∴cos 2x∈[-1,1].∴f(x)max=+=2,此时cos 2x=1,f(x)min=-+=-1,此时cos 2x=-1.(2011年广东卷,文16,12分)已知函数f(x)=2sin(x-),x∈R.(1)求f()的值;(2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值. 解:(1)f()=2sin(×-)1分=2sin 2分=.3分第(1)问赋分细则:(1)直接写f()=2sin =不扣分,但建议把代入式子写上;(2)直接写f()=只得1分,扣去2分.(2)由f(3α+)=,得2sin[×(3α+)-]=2sin α=4分∴sin α=.5分由f(3β+2π)=,得2sin[×(3β+2π)-]=2sin(β+)=2cos β=6分∴cos β=7分∵α,β∈[0,],8分∴cos α===9分sin β===10分故cos(α+β)=cos αcos β-sin αsin β11分=×-×=.12分第(2)问赋分细则:(1)把第(2)问中f(3α+)=转化求得sin α=共得2分,转化f(3β+2π)=求得cos β=,再得2分;(2)漏掉α,β∈[0,]直接计算cos α,sin β的值要扣1分;(3)求cos(α+β)直接写出cos(α+β)=没有展开代入运算过程的扣1分.通过高考阅卷统计分析,造成失分的原因如下:(1)第(1)问出现计算失误,把前面的2漏掉得;(2)对于第(2)问的两个条件不会利用或者化简出现错误;(3)忽略α,β∈[0,]的条件,讨论cos α,sin β的取值正负;(4)cos(α+β)公式记忆错误导致结果错误.11。

高考数学热点:三角恒等变换

高考数学热点:三角恒等变换

高考数学热点:简单的三角恒等变换【考点梳理】1、两角和与差的三角函数公式sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ−=−cos()cos cos sin sin αβαβαβ+=−cos()cos cos sin sin αβαβαβ−=+tan tan tan()1tan tan αβαβαβ−−=+ tan tan tan()1tan tan αβαβαβ++=− 2、二倍角公式sin 22sin cos ααα= 22cos2cos sin ααα=− 2cos22cos 1αα=−2cos212sin αα=− 22tan tan 21tan ααα=−3、辅助角公式sin cos )a x b x x ϕ±=±(其中tan b aϕ=) 4、降幂公式21cos2cos 2αα+=21cos2sin 2αα−=【典型题型讲解】 考点一:两角和与差公式【典例例题】例1.(2022·广东汕头·高三期末)已知πsin (,π)2αα=∈,则cos()6πα−=( )A .-1B .0C .12D【答案】B 【详解】∵πsin (,π)22αα=∈,∴2π3α=,故ππcos()cos 0.62α−== 故选:B例2.(2022·广东湛江·一模)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )ABC.D.【答案】B 【详解】由4cos 5α=,02πα<<,得3sin 5α=,所以34sin 422252510πααα⎛⎫+=+=⨯+= ⎪⎝⎭,故选:B.例3.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−, 整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B【方法技巧与总结】1.三角函数式化简的方法:化简三角函数式常见方法有弦切互化,异名化同名,异角化同角,降幂与升幂等.2.给值求值:解题的关键在于“变角”,把待求三角函数值的角用含已知角的式子表示出来,求解时要注意对角的范围的讨论. 【变式训练】 1.已知5π1tan()45−=α,则tan =α__________. 【答案】32【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα−−⎛⎫−=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 2.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫−=∈+= ⎪⎝⎭,则tan β=__________. 【答案】17【详解】因为()sin 0,2ππαα⎛⎫−=∈ ⎪⎝⎭,所以sin α=,所以cos α=,所以sin 1tan cos 3ααα==. ()()()11tan tan 123tan tan .111tan tan 7123αβαβαβααβα−+−=+−===⎡⎤⎣⎦+++⨯又 故答案为:173.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ−=B .()tan 1αβ+=C .()tan 1αβ−=−D .()tan 1αβ+=−【答案】C 【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++−=−, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ−++=, 即:()()sin cos 0αβαβ−+−=, 所以()tan 1αβ−=−, 故选:C 4.已知sin α=()cos αβ−=304πα<<,304πβ<<,则sin β=( )A.35BC.35D.35【答案】A 【解析】易知()()sin sin βααβ=−−,利用角的范围和同角三角函数关系可求得cos α和()sin αβ−,分别在()sin 5αβ−=和5−两种情况下,利用两角和差正弦公式求得sin β,结合β的范围可确定最终结果. 【详解】2sin 72α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴−<−<,()sin 5αβ∴−=±.当()sin 5αβ−=时,()()()()sin sin sin cos cos sin βααβααβααβ=−−=−−−57==304πβ<<,sin 0β∴>,sin β∴=当()sin αβ−=sin β.综上所述:sin β= 故选:A .5.已知sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13−C .23D .23−【答案】A 【解析】根据题意得到sin 152α⎛⎫︒−= ⎪⎝⎭进而得到26cos 1529α⎛⎫︒−= ⎪⎝⎭,()1cos 303α︒−=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒−︒−=︒−⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒−=︒=︒+︒=︒= ⎪⎝⎭,则226cos 151sin 15229αα⎛⎫⎛⎫︒−=−︒−= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒−=︒−−︒−= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒−︒−⎣⎦ ()1cos 303α=︒−=,故选A.考点二:二倍角公式【典例例题】例1.(2022·广东中山·高三期末)若2sin 3α=,则cos2α=___________. 【答案】19【分析】根据余弦的二倍角公式即可计算.【详解】2221cos212sin 1239αα⎛⎫=−=−⨯= ⎪⎝⎭.故答案为:19.例2.(2022·广东清远·高三期末)已知tan 2α=,则sin cos 44sin 2⎛⎫⎛⎫−+ ⎪ ⎪⎝⎭⎝⎭=ππααα________. 答案】18−【详解】1sin cos (sin cos )(cos sin )442sin 22sin cos ⎛⎫⎛⎫−+−− ⎪ ⎪⎝⎭⎝⎭=ππααααααααα222sin cos 2sin cos tan 12tan 14sin cos 4tan 8−−+−−+===−ααααααααα.故答案为:18−例3.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪−⎝⎭,则tan α=( )ABCD【答案】A 【详解】cos tan 22sin ααα=−2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===−−,0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=−−,解得1sin 4α=, cos 4α∴=sin tan cos 15ααα∴==. 故选:A.【方法技巧与总结】三角恒等变换的基本思路:找差异,化同角(名),化简求值.三角恒等变换的关键在于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系. 【变式训练】1.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】.B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−,整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B2.(2022·广东韶关·二模)已知 1sin cos 5αα+=,则()2tan 12sin sin 2πααα++=+( )A .17524−B .17524C .2524−D .2524【答案】.C【详解】由题知1sin cos 5αα+=,有242sin cos 25αα=−,所以()2tan 12sin sin 2πααα+++()tan 12sin sin cos αααα+=+()sin cos 1cos 2sin sin cos αααααα+=⨯+1252sin cos 24αα==−, 故选:C .3.(2022·广东佛山·二模)已知sin πα43⎛⎫−= ⎪⎝⎭,则sin 2α=___________.【答案】59【详解】sin sin 443ππαα⎛⎫⎛⎫−=−−=⎪ ⎪⎝⎭⎝⎭所以sin 4πα⎛⎫−= ⎪⎝⎭所以225sin 2cos 2cos 212sin 122449πππαααα⎛⎡⎤⎛⎫⎛⎫⎛⎫=−=−=−−=−⨯= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ 故答案为:594.(2022·广东肇庆·二模)若sin cos 5θθ+=−,则sin 2θ=______. 【答案】45【详解】∵sin cos θθ+= ∴()29sin cos 12sin cos 5θθθθ+=+=, 所以4sin 22sin cos 5θθθ==. 故答案为:45.5.(2022·广东深圳·二模)已知tan 3α=,则cos 2=α__________. 【答案】45−【详解】解:由题意可知:2214cos 22cos 121tan 15ααα=−=⨯−=−+ .6.若3sin 5α=−,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα−=+( )A .12B .12−C .2D .−2【答案】D 【详解】3sin 2sincos225ααα==−,故2222sincos2tan32225sin cos tan 1222αααααα==−++, 可解得1tan23α=−或tan 32α=−,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=−,故1tan 221tan2αα−=−+, 故选:D7.已知1sin 64x π⎛⎫−= ⎪⎝⎭,则cos 23x π⎛⎫−= ⎪⎝⎭( )A .78−B .78C.4−D.4【答案】B 【详解】因为sin sin 66x x ππ⎛⎫⎛⎫−=−− ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫−=− ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=−−= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.8.已知,22ππα⎛⎫∈− ⎪⎝⎭,且1cos 42πα⎛⎫−= ⎪⎝⎭,则cos2α=( )A. B. C .12D【答案】D 【详解】 因为22ππα−<<,所以3444πππα−<−< 又1cos 42πα⎛⎫−= ⎪⎝⎭,所以43ππα−=−,所以12πα=−所以cos 2cos cos 66ππα⎛⎫=−==⎪⎝⎭故选:D9.已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫−= ⎪⎝⎭( )A .2325B .2325−C D .5−【答案】B 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=−=−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=⨯−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .10.已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α( )A .2425B .2425−C .725D .725−【答案】B 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==−,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯−=− ⎪⎝⎭。

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析三角恒等变换基础知识及题型分类汇总一、知识点:一)公式回顾:cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta $,简记为C($\alpha\pm\beta$)sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,简记为S($\alpha\pm\beta$)sin2\alpha=2\sin\alpha\cos\alpha$,简记为S2cos2\alpha=\cos^2\alpha-\sin^2\alpha$,简记为C2tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}$,其中$\alpha\neq\frac{k\pi}{2}$,简记为T2二)公式的变式1\pm\cos2\alpha=2\cos^2\alpha$,简记为1±C2frac{1\pm\cos\alpha}{2}=\sin^2\frac{\alpha}{2}$,简记为S2/2sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac {\alpha\mp\beta}{2}$,简记为S±Scos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\al pha-\beta}{2}$,简记为C+Ccos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$,简记为C-Ctan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}$,简记为T1辅助角(合一)公式:begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(\pi+\alpha)=-\sin\alpha\\\cos(\pi+\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(-\alpha)=-\sin\alpha\\\cos(-\alpha)=\cos\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}-\alpha)=\cos\alpha\\\cos(\frac{\pi}{2}-\alpha)=\sin\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}+\alpha)=\cos\alpha\\\cos(\frac {\pi}{2}+\alpha)=-\sin\alpha\end{cases}$begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$二典例剖析:基础题型例1:已知$\sin2\alpha=\frac{5\pi}{13}$,$\alpha\in\left(0,\frac{\pi}{2}\right)$,求$\sin4\alpha$,$\cos4\alpha$,$\tan4\alpha$。

2023高中数学三角恒等变换题型总结及解题方法

2023高中数学三角恒等变换题型总结及解题方法

(每日一练)2023高中数学三角恒等变换题型总结及解题方法单选题1、若3sinθ=cosθ−1,则tan θ2的值为( ) A .−3B .13C .−3或0D .−13 答案:C 解析:观察角度之间的联系,利用倍角公式和同角三角函数的基本关系式化简求值. 由3sinθ=cosθ−1,得6sin θ2cos θ2=1−2sin 2θ2−1,得2sin θ2(3cos θ2+sin θ2)=0,得sin θ2=0或3cos θ2+sin θ2=0, 得tan θ2=0或tan θ2=−3. 故选:C 小提示:本题利用倍角公式和同角三角函数的基本关系式化简求值,属于容易题. 2、若tan α=2tan 10∘,则cos (α−80∘)sin (α−10∘)=( ) A .1B .2C .3D .4 答案:C 解析:利用诱导公式、两角和公式可得cos (α−80∘)sin (α−10∘)=sin αcos10∘+cosαsin10∘sin αcos10∘−cosαsin10∘,再利用弦化切即得.∵tan α=2tan 10∘, ∴cos (α−80∘)sin (α−10∘)=cos (α+10∘−90∘)sin (α−10∘)=sin (α+10∘)sin (α−10∘) =sin αcos10∘+cosαsin10∘sin αcos10∘−cosαsin10∘=tan α+tan10∘tan α−tan10∘ =3tan 10∘tan 10∘=3. 故选:C.3、关于函数y =sinx(sinx +cosx)描述正确的是( ) A .最小正周期是2πB .最大值是√2C .一条对称轴是x =π4D .一个对称中心是(π8,12) 答案:D 解析:利用三角恒等变换化简y 得解析式,再利用正弦型函数的图像和性质得出结论. 解:由题意得:∵y =sinx(sinx +cosx) =sin 2x +12sin2x=1−cos2x 2+12sin2x =√22sin(2x −π4)+12选项A:函数的最小正周期为T min=2πω=2π2=π,故A错误;选项B:由于−1≤sin(2x−π4)≤1,函数的最大值为√22+12,故B错误;选项C:函数的对称轴满足2x−π4=kπ+π2,x=k2π+3π8,当x=π4时,k=−14∉Z,故C错误;选项D:令x=π8,代入函数的f(π8)=√22sin(2×π8−π4)+12=12,故(π8,12)为函数的一个对称中心,故D正确;故选:D4、函数f(x)=√3cosx−sinx在区间[0,2π3]上的值域为()A.[−√32,√32]B.[−√3,√3]C.[−√32,1]D.[−1,2]答案:B 解析:先将函数转化为f(x)=2cos(x+π6),再根据x∈[0,2π3],利用余弦函数的性质求解.函数f(x)=√3cosx−sinx=2cos(x+π6)因为x∈[0,2π3],所以x+π6∈[π6,5π6],cos(x+π3)∈[−√32,√32],所以函数f(x)的值域为[−√3,√3],故选:B5、设锐角△ABC的内角A,B,C所对的边分别为a,b,c,若A=π3,a=√3,则b2+c2+bc的取值范围为()A.(1,9]B.(3,9]C.(5,9]D.(7,9]答案:D 解析:由正弦定理求出b=2sin B,c=2sin(2π3−B),再由余弦定理可得b2+c2+bc=8sin B sin(2π3−B)+3,化为5+4sin(2B−π6),结合角的范围,利用正弦函数的性质可得结论.因为A=π3,a=√3,由正弦定理可得asin A =√3√32=2=bsin B=csin(2π3−B),则有b=2sin B,c=2sin(2π3−B),由△ABC的内角A,B,C为锐角,可得{0<B<π2,0<2π3−B<π2,,∴π6<B<π2⇒π6<2B−π6<5π6⇒12<sin(2B−π6)≤1⇒2<4sin(2B−π6)≤4,由余弦定理可得a2=b2+c2−2bc cos A⇒3=b2+c2−bc,因此有b2+c2+bc=2bc+3=8sin B sin(2π3−B)+3=4√3sinBcosB+4sin2B+3=2√3sin2B−2cos2B+5=5+4sin(2B−π6)∈(7,9]故选:D.小提示:方法点睛:正弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.。

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结1. 基本定义三角恒等变换是指在三角函数运算中,通过等式的变换,得到具有相同意义但表达形式不同的等价关系。

2. 基本恒等式- 正弦函数的基本恒等式:$\sin^2\theta + \cos^2\theta = 1$- 余弦函数的基本恒等式:$1 + \tan^2\theta = \sec^2\theta$- 正切函数的基本恒等式:$1 + \cot^2\theta = \csc^2\theta$3. 和差恒等式- 正弦函数的和差恒等式:$\sin(\alpha \pm \beta) =\sin\alpha\cos\beta \pm \cos\alpha\sin\beta$- 余弦函数的和差恒等式:$\cos(\alpha \pm \beta) =\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$- 正切函数的和差恒等式:$\tan(\alpha \pm \beta) =\dfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$4. 二倍角恒等式- 正弦函数的二倍角恒等式:$\sin2\theta = 2\sin\theta\cos\theta$ - 余弦函数的二倍角恒等式:$\cos2\theta = \cos^2\theta -\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- 正切函数的二倍角恒等式:$\tan2\theta = \dfrac{2\tan\theta}{1 - \tan^2\theta}$5. 三倍角恒等式- 正弦函数的三倍角恒等式:$\sin3\theta = 3\sin\theta -4\sin^3\theta$- 余弦函数的三倍角恒等式:$\cos3\theta = 4\cos^3\theta -3\cos\theta$- 正切函数的三倍角恒等式:$\tan3\theta = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$6. 半角恒等式- 正弦函数的半角恒等式:$\sin\dfrac{\theta}{2} = \sqrt{\dfrac{1 - \cos\theta}{2}}$- 余弦函数的半角恒等式:$\cos\dfrac{\theta}{2} =\sqrt{\dfrac{1 + \cos\theta}{2}}$- 正切函数的半角恒等式:$\tan\dfrac{\theta}{2} = \dfrac{1 -\cos\theta}{\sin\theta} = \dfrac{\sin\theta}{1 + \cos\theta}$7. 和角恒等式- 正弦函数的和角恒等式:$\sin(\alpha + \beta) =\sin\alpha\cos\beta + \cos\alpha\sin\beta$- 余弦函数的和角恒等式:$\cos(\alpha + \beta) =\cos\alpha\cos\alpha - \sin\alpha\sin\beta$以上是高中数学中常用的三角恒等变换知识点的归纳总结。

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析三角恒等变换一、知识点:一)公式回顾:cos(α±β)=cosαcosβ∓sinαsinβ,简记为C(α±β)sin(α±β)=sinαcosβ±cosαsinβ,简记为S(α±β)sin2α=2sinαcosα,XXX为S2αcos2α=cos²α-sin²α,XXX为C2αtan2α=(α≠kπ/2且α≠kπ)简记为T2α2、二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的两倍,α/2是α/4的两倍,3α是3α/2的两倍,α/3是α/6的两倍等,所有这些都可以应用二倍角公式。

因此,要理解“二倍角”的含义,即当α=2β时,α就是β的二倍角。

凡是符合二倍角关系的就可以应用二倍角公式。

二)公式的变式1±sin²α=(sinα±cosα)²cos²α=1/(1+tan²α)1-cos²α=2sin²αtan(α±β)=(tanα±tanβ)/(1∓tanαtanβ)公式前的±号,取决于2合1公式所在的象限,注意讨论。

absinx+cosx=a+ba+b其中tanθ=b/a二、经典例题剖析:基础题型例1:已知sin2α=5π/13,0<α<π/2,求sin4α,cos4α,tan4α.例2:在△ABC中,cosA=4/5,tanB=2,求tan(2A+2B).题型二:公式的逆向运用例3:求下列各式的值:2tan15°1.化简下列各式:1) sin²22.5°cos²22.5°;2) (1-2sin²75°)/(21-tan15°);3) sin(3π/4)/[1-(tanπ/5)²].2.化简下列各式:1) sin⁴θ-cos⁴θ;2) -αcosα-(3α²/4).3.求值:1) cos(π/12)cos(π/6);2) cos36°cos72°.题型三:升降幂功能与平方功能的应用例3.化简下列各式:1) 1+sin40°;2) 1-sinα;3) 1+cos20°;4) 1-cosα.1) (cos²θ+sin²θ+2sinθcosθ-cos²θ)/(cos²θ+sin²θ-2sinθcosθ) = 2sinθ/(1-cos2θ);2) (cos²θ+sin²θ+2sinθcosθ+cos²θ)/(cos²θ+sin²θ-2sinθcosθ) = 2cosθ/(1+cos2θ).3.已知sinx+cosx=3/2.x∈(0,π),求sin2x和cos2x.2sinxcosx = sin2x。

(完整版)三角恒等变换高考试题汇编,推荐文档

(完整版)三角恒等变换高考试题汇编,推荐文档

22)B(,)C(0,)D(- ,)三角恒等变换高考题汇编1、(07 ft东理)函数y=sin (2x+)+cos(2x+)的最小正周期和最大值分别为(6 3)A ,1B ,C 2,1D 2,cos 22、(07 海南)=-sin( )42 ,则 cos+sin的值为()A - 7B -1C1D 72 2 2 23、(07 福建文)sin150cos750+cos150sin1050=()A 0 B1C 3D 12 21 34、(07浙江理)已知sin+cos=且≤≤,则cos2的值是()5 2 415、(07浙江文)已知sin+cos=则sin2的值是()5x6、(07 全国Ⅰ理)函数 f(x)=cos2x-2cos2 的一个单调增区间是()2A(,23 3 6 2 3 6 617、(07广东理)已知函数f(x)=sin2x-(x∈R),则f(x)是()2A 最小正周期为的奇函数B 最小正周期为的奇函数2C 最小正周期为2的偶函数D 最小正周期为的偶函数8、(07 北京文)函数f(x)=sin2x-cos2x 的最小正周期是()A B2C 2D 49、(06 全国)函数f(x)=sin2xcos2x 的最小正周期是()A B2C 2D 410、(06 全国)若 f(sinx)=3-cos2x,则 f(cosx)=()A 3-cos2xB 3-sin2xC 3+cos2xD 3+sin2x11、(06 重庆文)已知, ∈(0,),cos(-)= 3 ,sin(- )=-1,则2cos(+)的值等于()2 2 2 223 3 A - 3B - 1C1 D3 2 22 23 3 1212、(06 重庆理)已知, ∈( ,),sin (+ )=-,sin ( - )= ,4则cos (+ )=()454 13113、(06 浙江理)函数y= sin2x+sin 2x ,x∈R 的值域是( ) 21 3 3 12 1 2 1 2 1 2 A [- , ]B [- , ]C [-+ ,+ ] D [-- ,-2 222 1 ]222 22 22214、(06 浙江文)函数 y=2sinxcosx-1,x∈R 的值域是( )15、(08 四川)若0 ≤≤ 2,sin > 3cos,则的取值范围是:()⎛ ⎫ ⎛ ⎫ ⎛ 4⎫ ⎛ 3⎫ (A) , ⎪(B) ,⎪(C) , ⎪(D) , ⎪⎝ 3 2 ⎭ ⎝ 3 ⎭2 ⎝3 3 ⎭ ⎝ 3 2 ⎭16、(06 湖北)若∆ A BC 的内角A 满足 s in2A= ,则sinA+cosA=( ) 3A15 B- 15C5 D - 533 3 317、(06 湖南)若 f (x )= asin (x+ )+bsin (x- )(ab≠0)是偶函数,则有序实数44对(a ,b )可以是()(注:只要满足 a+b=0 的一组数即可)18、(05 全国1 + cos 2x + 8sin2 x)当 0<x< 时,函数 f (x )的最小值为( )2sin 2xA 2B 2C 4D 4 3sin 3x 13 )设x 是第四象限角,若=则tan2x=( )sin x520、(05 北京)已知 tan =2,则 tan =(),tan (+ )=()2421、(07 全国Ⅰ文)函数y= 2cos 2x 的一个单调增区间是( )3A (- , )B (0, )C ( ,) D ( ,)4 4 244222、(07 上海理)函数 y=sin (x+ )sin (x+ )的最小正周期 T 是()3223、(07 江苏)函数f (x )= sinx- cosx , x∈[-,0] 的单调增区间是()19、(05 全国3 225 5A [-,- ]B [- ,- ]C [- ,0]D[- ,0]6663 6 24、(10 浙江理数)(11)函数 f (x ) = sin(2x - )- 2 2 sin 2 x 的最小正周期是4.cos25、(07 江西理)若 tan ( -)=3 则 等于( )4sinA -2B -1 C1 D2 22 426、(07 江西文)若 tan =3,tan =,则tan (-)等于()31 1 A -3B -C 3D31 3328、(07 江苏)若 cos (+)=,cos (-)= ,则tantan=()5π429、(08 ft 东卷 5)已知 cos (α- )+sinα= 6 553,则sin(α - 7π 6)的值是(A )-2 3 (B ) 2 3(C)- 4 (D) 4 5 5 5 530、(08 湖南)函数 f (x ) = sin x + 3⎡ ⎤ sin x cos x 在区间 ⎢ , ⎥ 上的最大值是()⎣ 4 2 ⎦A.1B. 1+2C.32 D.1+ 331、(08 浙江)若cos a + 2sin a = - 5, 则 tan a =11(A )(B )2(C ) -22 3 - sin 700132、(08 海南)2 - cos 2100 =() A.2B. 2(D ) - 2C. 2D.233、(08 上海)函数 f (x )= 3sin x +sin(2+x )的最大值是34、(08 广东)已知函数 f (x ) = (sin x - cos x ) s in x , x ∈ R ,则 f (x ) 的最小正周期是.35、(08 ft 东卷 15)已知 a ,b ,c 为△ABC 的三个内角 A ,B ,C 的对边,向量 m =(3,-1 ),n =(cos A ,sin A ).若 m ⊥n ,且 a cos B +b cos A =c sin C ,则角 B =36、(07 重庆文)下列各式中,值为3 的是( )233) () cos( - A 2sin150cos150 B cos 2150-sin 2150 C 2sin 2150-1 D sin 2150+cos 215037、(2010 陕西文数)3.函数f (x )=2sin x cos x 是 [C](A) 最小正周期为 2π 的奇函数(B )最小正周期为 2π 的偶函数(C)最小正周期为 π 的奇函数 (D )最小正周期为 π 的偶函数38、(10 全国 2 文)已知sin=2,则cos(x - 2) =3 (A ) - 5 (B ) - 1 (C 1 D ) 5 39 9339、(10 福建文数)计算1- 2 s in 22.5 的结果等于()1 2 A .B .C .3D . 223240、(10 福建理数) 计算si n43 cos13 - si n13 cos 43 的值等于()1 3 A .B .C.2D.3232241、(10 全国 2 理数)(13)已知a 是第二象限的角, tan(+ 2a ) = - 4,则 tan a =3.42、(10 浙江文数)(12)函数 f (x ) = sin 2 (2x - )的最小正周期是。

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析

(二)公式的变式
1 sin 2 (sin cos )2 1 cos 2 2 cos2 1 cos 2 2sin2 cos2 1 cos 2
2 sin2 1 cos 2
2
tan 1 cos sin 1 cos 2 1 cos 1 cos sin
二倍角公式不仅限于 2α 是 α 的二倍的形式,其它如 4α 是 2α 的两倍,α/2 是 α/4 的两倍, 3α 是 3α/2 的两倍,α/3 是 α/6 的两倍等,所有这些都可以应用二倍角公式。因此,要理解“二 倍角”的含义,即当 α=2β 时,α 就是 β 的二倍角。凡是符合二倍角关系的就可以应用二倍角 公式。
2
4
5
13
[类似题]已知 cos


1 ,sin

2 ,且

,0



,求 cos

.
2 9 2 3 2
2
2
方法:1、想想常见的角的变换有哪些?2、求值时注意讨论研究角的范围。
3.cos


3 ,sin 5
1 sin 2 cos 2 1 sin 2 cos 2 3.下下 sin x cos x 1 ,0 x ,下 sin 2x下 cos 2x.
3
提高题型:
题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形)
例1
1.sin

3 cos
12
12
1.已知 , 为锐角,sin 8 , cos( ) 21 ,求 cos 的值.
17
29
[类似题] , 为锐角, cos 4 , tan( ) 1 ,求 cos 的值.

高考文数热点题型和提分秘籍 专题16 简单的三角恒等变换(含答案解析)

高考文数热点题型和提分秘籍 专题16 简单的三角恒等变换(含答案解析)

【高频考点解读】能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简例1、化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x .【提分秘籍】三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.【举一反三】化简:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+t an α·tan α2. 解:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝ ⎛⎭⎪⎫1+sin αcos α·sin α2cos α2=cos 2α2-sin 2α2sin α2cos α2·cos αcos α2+sin αsin α2cos αcos α2=2cos αsin α·cos α2cos αcos α2=2sin α. 题型二 三角函数式的求值例2、3cos 10°-1sin 170°=( ) A .4B .2C .-2D .-4 解析:选D 3cos 10°-1sin 170°=3cos 10°-1sin 10°= 3sin 10°-cos 10°sin 10°cos 10°=2-12sin 20°=-2sin 20°12sin 20°=-4 【提分秘籍】三角函数求值有三类(1)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于 “变角”,使其角相同或具有某种关系.(2)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.【举一反三】 化简:sin 50°(1+3tan 10°)=________. 解析:sin 50°(1+3tan 10°)=sin 50°⎝⎛⎭⎫1+3·sin 10°cos 10°=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝⎛⎭⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1. 答案:1题型三 三角恒等综合应用例3、已知函数f(x)=cos x·sin ⎝⎛⎭⎫x +π3-3cos 2x +34,x ∈R. (1)求f(x)的最小正周期;(2)求f(x)在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.【提分秘籍】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =Asin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.【举一反三】已知函数f(x)=(2cos 2x -1)sin 2x +12cos 4x. (1)求f(x)的最小正周期和最大值;(2)当α∈⎝⎛⎭⎫π2,π时,若f(α)=22,求α的值.【高考风向标】【2015高考陕西,文6】“s i n c o s αα=”是“cos 20α=”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要【答案】A【解析】22cos20cos sin 0(cos sin )(cos sin )0ααααααα=⇒-=⇒-+=, 所以sin cos αα=或sin cos αα=-,故答案选A.【2015高考四川,文13】已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是______________.【答案】-1【解析】由已知可得,sin α=-2cos α,即tan α=-22sin αcos α-cos 2α=22222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++ 【高考押题】1.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .-23 C.13 D.23解析:选D ∵cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎫α-π4=23. 2.设tan ⎝⎛⎭⎫α-π4=14,则tan ⎝⎛⎭⎫α+π4=( ) A .-2B .2C .-4D .4解析:选C 因为tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=14,所以tan α=53,故tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=-4.故选C.3.已知角α的顶点与原点O 重合,始边与x 轴的正半轴重合,若它的终边经过点P(2,3),则tan ⎝⎛⎭⎫2α+π4=( ) A .-125B.512C.177 D .-717解析:选D 依题意,角α的终边经过点P(2,3),则tan α=32,tan 2α=2tan α1-tan 2α=-125, 于是tan ⎝⎛⎭⎫2α+π4=1+tan 2α1-tan 2α=-717. 4.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A.118B .-118 C.1718 D .-1718解析:选D cos 2α=sin ⎝⎛⎭⎫π2-2α=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α=2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α 代入原式,得6sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α, ∵α∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫π4-α=16, ∴sin 2α=cos ⎝⎛⎭⎫π2-2α =2cos 2⎝⎛⎭⎫π4-α-1=-1718. 5.cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9=( ) A .-18B .-116 C.116 D.186.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若cos α=17,⎪⎪⎪⎪⎪⎪sin α s in βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6C.π4D.π3解析:选D 依题意有sin αcos β-cos αsin β=sin(α-β)=3314, 又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2-=1314, 而cos α=17,∴sin α=437, 于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32. 故β=π3. 7.函数y =32sin 2x +cos 2x 的最小正周期为________. 解析:y =32sin 2x +12cos 2x +12=sin ⎝⎛⎭⎫2x +π6+12,所以其最小正周期为2π2=π. 答案:π8.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π39.tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α的值为________.解析:原式=sin ⎝⎛⎭⎫π4+α·cos 2α2sin 2⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α =cos 2α2sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α =cos 2αsin 2⎝⎛⎭⎫π4+α=cos 2αsin ⎝⎛⎭⎫π2+2α=cos 2αcos 2α=1. 答案:110.3tan 12°-3212°-=________. 解析:原式=3·sin 12°cos 12°-3212°-=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23-2cos 24°sin 12°cos 12° =-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3. 答案:-4 311.已知函数f(x)=cos 2x +sin xcos x ,x ∈R.(1)求f ⎝⎛⎭⎫π6的值;(2)若sin α=35,且α∈⎝⎛⎭⎫π2,π,求f ⎝⎛⎭⎫α2+π24.12.已知,0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=13,sin(α+β)=45. (1)求sin 2β的值;(2)求cos ⎝⎛⎭⎫α+π4的值. 解:(1)法一:∵cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin π4sin β =22cos β+22sin β=13, ∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79. (2)∵0<α<π2<β<π, ∴π4<β-π4<34π,π2<α+β<3π2, ∴sin ⎝⎛⎭⎫β-π4>0,cos(α+β)<0. ∵cos ⎝⎛⎭⎫β-π4=13,sin(α+β)=45, ∴sin ⎝⎛⎭⎫β-π4=223,cos(α+β)=-35. ∴cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤α+β-⎝⎛⎭⎫β-π4 =cos(α+β)·cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4 =-35×13+45×223=82-315.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档