4.4梁的正应力及其强度条件
工程力学梁的正应力强度条件及其应用1
ymax
对矩形截面
Wz
bh3 12 h2
bh2 6
Wz
bh2 6
对圆形截面
Wz
d 4
d
64 2
d 3
32
Wz
d 3
32
各种型钢的截面惯性矩Iz和弯曲截面系数Wz的 数值,可以在型钢表中查得。
为了保证梁能安全的工作,必须使梁横截面上的
最大正应力不超过材料的许用应力,所以梁的正应力
强度条件为
σmax
M max Wz
σ
二、三种强度问题的计算
σmax
M max Wz
σ
(1)强度校核 (2)选择截面 (3)确定许用荷载
σmax
M max Wz
σ
Wz
M max σ
M max Wz σ
例题10-2 一矩形截面简支木梁如图所示,已知l=4m, b=140mm,h=210mm,q=2kN/m,弯曲时木材的许 用正应力[σ]=10MPa,校核该梁的强度。
σc,max
MC Iz
y1
2.7 103 0.072 0.573105
33.9 106 Pa
33.9MPa [σc]
由以上分析知该梁满足强度要求。
例题10−4 如图所示的简支梁由工字钢制成,钢的 许用应力[σ ]=150MPa,试选择工字钢的型号。
解:先画出弯矩图如图b所示。 梁的最大弯矩值为
y1
1.8103 0.072 0.573105
22.5106 Pa
22.5MPa
材料力学-第三章正应力强度条件
解: 由公式
max
M max Wz
M max bh 2
6
可以看出, 该梁的承载能力将是原来的 2 倍。
例:主梁AB,跨度为l,采用加副梁CD的方 法提高承载能力,若主梁和副梁材料相同,截面 尺寸相同,则副梁的最佳长度a为多少?
a Pa
C2 A
2D B
l
l
2
2
CL8TU8
解:
主梁AB的最大弯矩
P M max AB 4 (l a)
y1
Wy1tzy2ycImzayxmamxax抗弯截面模y 量CL8TU4
max
M ymax IZ
M WZ
横截面上的应力分布图:
z
z
M 0
M 0 CL8TU5
bh3
bh2
I Z 12 , WZ 6
d4
I Z 64
d3
, WZ 32
IZ
(D4 d 4)
64
D4
64
(1 4 )
P
A
x
dx C
2m
2m
300 B
200
例:我国营造法中,对矩形截面梁给出的尺 寸比例是 h:b=3:2。试用弯曲正应力强度证明: 从圆木锯出的矩形截面梁,上述尺寸比例接近 最佳比值。
解: b2 h2 d 2
bh2 b(d 2 b2 )
Wz 6
6
Wz d 2 b2 0 b 6 2
CL8TU3
梁在纯弯曲时的平面假设:
梁的各个横截面在变形后仍保持为平 面,并仍垂直于变形后的轴线,只是横截 面绕某一轴旋转了一个角度。
中性轴过截面形心
中性层的曲率公式: 1 M
EIz 正应力计算公式: M y
梁的应力
384 MPa
t max 178 MPa , c max 384 MPa
5. C 截面曲率半径ρ
30
A
1m
FAY
B C
l = 3m
x
K
C 截面弯矩
M C 60kN m
z y
FBY
I Z 5.832 10 m
1 M EI
9
5
4
FS 90kN
x 90kN
C
EI Z MC
200 10 5.832 10 60 10
3
5
q=60kN/m
180
3. C 截面最大正应力
120
A
1m
FAY
B C
l = 3m
30
C 截面弯矩
M C 60kN m
x
K
z y
Cmax
FBY
I Z 5.832 10 m
M C ymax IZ
3
5
4
FS 90kN
x 90kN x
60 10
180
二 、纯弯曲梁横截面上的正应力公式
(一)变形几何关系: 由纯弯曲的变形规律→纵向线应变的变化规律。 1、观察实验:
2、变形规律: ⑴、横向线:仍为直线, 只是相对转动了一个角度 且仍与纵向线正交。
⑵、纵向线:由直线变为 曲线,且靠近上部的纤维 缩短,靠近下部的纤维伸 长。 3、假设: M
a
c
b
a
§ 梁横截面的正应力和正应力强度条件
一、 纯弯曲和横力弯曲的概念
剪力“Fs”——切应力“τ”; 弯矩“M”——正应力“σ”
梁的应力和强度计算
z dA dM z y dA
dM y
( Stresses in Beams) 将应力表达式代入(1)式,得
FN
A
E
y
dA 0
E
A
ydA 0
待解决问题:
中性轴的位置
中性层的曲率半径ρ
S z ydA 0 A
y M y zE dA 0 A
中性轴通过横截面形心
伽利略(G.Galiieo, 1564-1642)的研究中认为: 弯曲应力是均匀分布的 (《两门新科学的对话》1638 年出版 ) , 因而得不到正确的公式,大科学家有时 也弄错。
( Stresses in Beams)
C C
Z 中性轴
Z
y
压
C M M
y 拉
C
Z
Z 两部分。
?
( Stresses in Beams)
横截面的 对称轴
横截面
y σ Eε E ρ
M
中性层
中性轴
1、中性轴的位置(Location of the neutral axis) 2、中性层的曲率半径 (Curvature radius of the neutral surface)
?
中性轴
( Stresses in Beams)
强度条件(strength condition):
梁内的最大工作应力不超过材料的许用应力
1、数学表达式(mathematical formula)
max
M max [ ] W
2、强度条件的应用(application of strength condition)
M max (1) 强度校核 [ ] W M max (2)设计截面 W [ ] (3)确定许可核载 M max W [ ]
四梁的正应力强度条件
Iz
1 2
Ip
πr03
S
* z
(πr0
)
2r0 π
2r02
max
FS
S
* z
I z (2 )
FS (2r02 ) πr03 (2 )
FS 2 FS
πr0
A
例 FS = 15 kN,Iz = 8.8410-6 m4,b
= 120 mm, 20 mm, yC = 45 mm。试求 :max ;腹板与翼缘交 接处切应力 a
需要校核剪应力旳几种特殊情况: (1)梁旳跨度较短,M 较小,而 Q 较大时,要校核剪应力。 (2)铆接或焊接旳组合截面,其腹板旳厚度与高度比不大于型钢
旳相应比值时,要校核剪应力 (3)各向异性材料(如木材)旳抗剪能力较差,要校核剪应力。
§6-3 薄壁截面梁弯曲切应力旳进一步分析
切应力公式旳应用-弯曲中心
B截面:
max
MB WzB
Fa
d13
62.5 267 32
0.163
32
41.5106 Pa 41.5MPa
C截面:
max
MC WzC
Fb
d
3 2
62.5 160
0.133
32
32 46.4106 Pa 46.4MPa
(5)结论:轮轴安全
Fa
Fb
例、T 字形截面旳铸铁梁受力如图,铸铁旳[t]=30 M Pa,
E mG C mH D l/2 l
E max
F max
F
梁旳切应力强度条件为
max
对等直梁,有
F S* Smax z max
Izb
材料在横力弯曲时旳许用切应力
弯曲正应力、切应力与强度条件
M
C
拉
Z
C
Z
中性轴
拉
y
中性轴
y
压
中性轴将横截面分为 受拉 和 受压 两部分。
M yAz(
d)A E
Az
y dA
E
I
yz
0
Iyz0
因为 y 轴是横截面的对称轴,所以 Iyz 一定为零。 该式自动满足
中性轴是横截面的形心主惯性轴
M ZAy(
d)A E
A
y2 dA
E
Iz
M
1M
EI z
基本假设2: 纵向纤维无挤压假设
纵向纤维间无正应力。
公式推导
d
用两个横截面从梁中假想地截取 长为 dx 的一段 。
由平面假设可知,在梁弯曲时,
这两个横截面将相对地旋转一个
角度 d 。
横截面的转动将使梁的凹边的纵 向线段缩短,凸边的纵向线段伸 长。由于变形的连续性,中间必 有一层纵向线段 O1O2 无长度改 变。此层称为 中性层 。
m M
FS m
m
m
M
FS
m
m
只有与切应力有关的切向内力元素 dFS = dA 才能合成剪力 只有与正应力有关的法向内力元素 dFN = dA 才能合成弯矩 所以,在梁的横截面上一般既有 正应力,又有 切应力
一,纯弯曲梁横截面上的正应力
RA
P
P RB
C a
P
+
D a
+
P
+
Pa
推导 纯弯曲 梁横截面上正应力的计算公式。 几何 物理 静力学
2 假想地从梁段上截出体积元素 mB1
m'
m z
梁应力强度计算
第五章 平面弯曲梁的强度
内容: 梁的应力、强度计算
τ→FS
z
dA
FS y
σ→M
M
z
dA
dA
y
M =∫yσσd
A
§5.1 梁的正应力
一、纯弯曲梁横截面上的正应力
F
F
a
l
a
FS F
M
x
F Fa
x
FS M
纯弯曲梁
Me
l
x
Me
450×0.03 2×45×10-9
=150
MPa
(-)
习题5-13 当20号槽钢受纯弯曲变形时,测出A、B两点间长度
Δl=27×10-3mm,材料的E=200GPa。试求梁截面上的弯矩M。
解:
50
5
M
AB
M
●
●
ε=
Δl l
=
27×10-3 50
=5.4×10-4
σ=Eε=200×109×5.4×10-4=108MPa
BC段: d2 ≥ 3
32×455×103 π140×106
= 321 mm
取: d1=250mm d2=322mm
例11. 已知:[σ]=160MPa,[τ]=100MPa,
试选工字钢梁的型号。
解: Fsmax=6kN
1.σ计算:
σmax =
M max Wz
≤ [σ]
M max = 8 kN • m
=
1 2
qab+
1 8
qb2
=
0.02375q
N
•
m
梁的正应力强度条件
梁的正应力强度条件
梁的正应力强度条件是指在梁受到载荷作用时,梁内部所产生的正应力不能超过材料的承载能力。
这是保证梁结构不会发生破坏的重要条件之一。
一、梁的正应力
在静力学中,梁是指一种长条形结构,在两端支撑下承受外部载荷。
当外部载荷作用于梁上时,会在梁内部产生正应力。
正应力是指垂直于截面的单位面积上所受到的拉伸或压缩作用。
二、强度条件
为了保证梁结构的安全可靠,需要满足强度条件。
强度条件是指在外部载荷作用下,材料内部所产生的应力不能超过其承载能力,即:
σ≤σmax
其中,σ为材料所受到的应力;σmax为材料允许承受的最大应力。
三、正应力强度条件
对于梁而言,其内部产生的正应力必须满足以下强度条件:
σx≤f
其中,σx为沿着x轴方向产生的正应力;f为材料允许承受的最大正应力。
四、梁的截面形状对强度条件的影响
梁的截面形状对其正应力强度条件有重要影响。
一般来说,截面形状越大,正应力强度条件就越好。
例如,在相同载荷作用下,矩形截面的梁比圆形截面的梁更加稳定。
五、应力集中
应力集中是指在梁结构中存在某些地方的应力异常集中现象。
这种现象可能会导致材料发生裂纹或破坏。
为了避免应力集中,可以通过改变梁的截面形状或采用合适的支撑方式来解决。
六、总结
梁的正应力强度条件是保证其结构安全可靠的重要条件之一。
在设计
和使用梁结构时,需要考虑其截面形状和支撑方式等因素,并避免出现应力集中现象,以确保其正应力不超过材料承载能力。
《材料力学》讲义4-4梁横截面上正应力梁正应力条件
4m
L 1
F 7 6 3 31.5kN
L2
4
2m
25 10m
31.5 31.5 31.5 31.5
WZ
M max
189103 215
879cm3
查表:
189kNm
I 36a
例题 4.31
承受相同弯矩Mz的三根直梁,其截面组成方式如图所示。图(a) 的截面为一整体;图(b)的截面由两矩形截面并列而成(未粘接);图 (c)的截面有两矩形截面上下叠合而成(未粘接)。三根梁中的最大正 应力分别为σmax(a)、 σmax(b)、 σmax(c)。关于三者之间的关系 有四种答案,试判断哪一种是正确的。
平面假设:
变形前杆件的横截面变形后仍
为平面。
中性层
中性轴:
中性层与横截面的交线称 为中性轴。
mn
o1
o2
m
n
中性轴
F
mn
mn
M
M
中性轴
z
m
n
y
o
o
dA
mn
dx
z
y
d
dx
y
F
yd d y
d
E y E
FN
dA
A
E
ydA
许用应力[σ] =160MPa ,试计算:1.F加在辅助梁的什么位置,才 能保证两台吊车都不超载?2.辅助梁应该选择多大型号的工字钢?
200kN吊车
150kN吊车 1.确定F加在辅助梁的位置
A FA
C 辅助梁
x F
梁的正应力强度计算.
§7-2 梁的正应力强度计算一、最大正应力在强度计算时,必须算出梁的最大正应力。
产生最大正应力的截面,称为危险截面。
对于等直梁,弯矩最大的截面就是危险截面。
危险截面上的最大应力处称为危险点,它发生在距中性轴最远的上、下边缘处。
对于中性轴是截面对称轴的梁,最大正应力的值为:maxmax max zM y I σ=令zz maxI W y =,则 maxmax zM W σ=式中z W 称为抗弯截面系数,是一个与截面形状和尺寸有关的几何量。
常用单位是m 3或mm 3。
z W 值越大,max σ就越小,它也反映了截面形状及尺寸对梁的强度的影响。
对高为h 、宽为b 的矩形截面,其抗弯截面系数为:32z z max /12/26I bh bh W y h ===对直径为d 的圆形截面,其抗弯截面系数为:43z z max /64/232I d d W y d ππ===对于中性轴不是截面对称轴的梁,例如图7-9所示的T 形截面梁,在正弯矩M 作用下梁下边缘处产生最大拉应力,上边缘处产生最大压应力,其值分别为:+1max z My I σ=2maxzMy I σ-=令z 11I W y =、z 22IW y =,则有: +max 1M W σ=max2M W σ-=maxσ-图7-9二、正应力强度条件为了保证梁能安全地工作,必须使梁截面上的最大正应力max σ不超过材料的许用应力,这就是梁的正应力强度条件。
现分两种情况表达如下:1、材料的抗拉和抗压能力相同,其正应力强度条件为:maxmax z[]M W σσ=≤ 2、材料的抗拉和抗压能力不同,应分别对拉应力和压应力建立强度条件:+maxmax 1[]M W σσ+=≤ max max2[]MW σσ--=≤ 根据强度条件可解决有关强度方面的三类问题:1)强度校核:在已知梁的材料和横截面的形状、尺寸(即已知[]σ、z W )以及所受荷载(即已知max M )的情况下,可以检查梁是否满足正应力强度条件。
梁的应力及强度计算
Q图
-
2KN
y2=32.8mm由弯矩图可知上部受拉,下部受压
最大拉应力在上边缘
1KNm
s l max
M maxy1 IZ
1106 15.2 25.6 104
59.4MPa 拉
M图
最大压应力在下边缘
s ymax
M maxy2 IZ
1106 32.8 25.6 104
128.1MPa压
23
9 104
:3
144 104
:
4
3
642
2
104
3 72 : 3 144 : 3 64
结论:矩形截面最省料;圆形截面用料最多。
Z
Z
习题8-44
2、横截面上:在与中性轴平行的一条直线上的各点应力相 等。
3、截面上与中性轴距离最远的点应力最大。
横截面上正应力的画法:
M 0
M 0
M
M
smax
smax
第九章 梁的应力及强度计算
公式适用范围: ①弹性范围—正应力小于比例极限; ②精确适用于纯弯曲梁; ③对于横力弯曲的细长梁(跨度与截面高度比L/h>5),上述公 式的误差不大。
20kNm
20kNm
-
-
50 2003 50 200 94.6 1502
12 102106 mm4
+
20kNm
10kN/m
CA 2m
40kN
D 2m 2m
10kN/m
BE 2m
Q图
20kN
20kN
+
+
-
20kN
材料力学 正应力及其强度条件
中性层
中性轴
对 称 z o 轴 中 性 y 轴
中性层
F
F
m
n
2.纯弯曲正应力公式的推导 (一)几何关系: o
中性层
d q
m
n
中性轴
m
n o
z m o 1
m
n
z
r
o
o 2
n
中性轴
y
dx
n m dx
y
变形前:
y
l = dx = r × dq
变形后:
100
例题 4.22 &
图示T形截面简支梁在中点承受集中力F=32kN,梁的长度L=2m。T形 截面的形心坐标yc=96.4mm,横截面对于z轴的惯性矩Iz=1.02×108mm4。求 弯矩最大截面上的最大拉应力和最大压应力。 y
F
150 50
A l 2 l 2
B
96 . 4 C 50
F
实验现象:
F
ü1、变形前互相平行的纵向直
m
n
线、变形后变成弧线,且凹边纤 维缩短、凸边纤维伸长。
ü2、变形前垂直于纵向线的横向
m
n
线,变形后仍为直线,且仍与弯曲 了的纵向线正交,但两条横向线 间相对转动了一个角度。
§由现象1
j靠近凹入的一侧,纤维缩短,靠近凸出的 一侧,纤维伸长; k由于纤维从凹入一侧的伸长或缩短到突出 一侧的缩短或伸长是连续变化,故中间一定 有一层,其纤维长度不变,这层纤维称为中 性层。中性层与横截面的交线称为中性轴; l弯曲变形时,梁的横截面绕中性轴旋转。
28 . 1
kNm
13. 16
材料力学04梁截面正应力
y
M
这表明,直梁的横截面上的 正应力沿垂直于中性轴的方向按 直线规律变化(如图)。 11
三、静力学方面
横截面上的应力合成内力,则
FN d A
A
(d)
M y z d A
A
M z y d A
A
12
EI yz E M y z d A yz d A 0 A A
所以梁的强度由最大拉应力控制:
33
C截面:
F 3 2 m 13410 m M C 134103 m 4 t,max 30106 Pa Iz Iz
F 24.6kN
B截面:
F 3 2 m 8610 m M B 86103 m 2 t,max 30106 Pa Iz Iz
F 19.2kN
所以,该梁的许可荷载为[F]=19.2 kN。
34
§4-5 梁横截面上的切应力· 梁的切 应力强度条件
Ⅰ. 梁横截面上的切应力
• • • • 矩形截面梁 工字形截面梁 薄壁圆环形截面梁 圆截面梁
研究表明:截面上各点的切应力不相等
求解的理论根据:切应力互等定理
35
一、矩形截面梁
29
根据强度条件要求:
Wz M max
375 kN m 2460106 m3 152106 Pa
由型钢规格表查得56b号工字钢的Wz为
Wz 2447cm3 2447106 m3
此值虽略小于要求的Wz但相差不到1%,故 可以选用56b工字钢。
工程实践中,如果最大工作应力超过许用应力 不到5%,则通常还是允许的。
梁弯曲正应力强度条件应用
7-15b所示的简支梁。 电葫芦移动到
梁跨长的中点时,梁中点截面处产生
最大弯矩,作出大梁的弯矩图,如图
c所示。梁中点为危险截面,其最大弯
矩为
由梁的弯曲强度条件
得
查热轧工字钢型钢表中的32b工字钢,
其Wz=726.33cm3=7.26×105mm3,代入上式得
梁能够承受的最大起吊重量为40.2kN。
例6-9、见P95
练习:一矩形截面的简支木梁,梁上作用有均布荷载,已知:l=4m,b=140mm,h=210mm,q=2kN/m,弯曲时木材的许用正应力[σ]=10Mpa,试校核该梁的强度。
解:作梁的弯矩图,梁中的最大正应力发生在跨中弯矩最大的截面上,最大弯矩为
梁的弯曲截面Βιβλιοθήκη 数为最大正应力为所以满足强度要求。
教 师 备 课 教 案 首 页
课时授课计划编号:26
授课日期
授课时数
授课班级
12道桥8
12道桥9
12道桥10
12道桥11
2
课 题:梁弯曲正应力强度条件
教学目的:梁弯曲正应力强度条件
教学重点:正应力强度条件
教学难点:应用
课堂类型与教学方法:理论教学、讲授法
教具挂图:三角板、多媒体
教学过程:如下
教研室主任签字:年 月 日任课教师:冯春盛
1、设计截面
2、确定许可荷载
【作业布置】
P1236-14、6-16
2、切应力强度条件
二、梁的弯曲强度计算
(1)强度校核,即已知 检验梁是否安全;
(2)设计截面,即已知 可由 确定
截面的尺寸;
(3)求许可载荷,即已知 可由 确定。
例:图7-15a所示桥式起重机的大梁由32b工字钢制成,跨长L=10m,材料的许用应力[б]=140MPa,电葫芦自重G=0.5 kN,梁的自重不计,求梁能够承受的最大起吊重量F。
工程力学 第九章 梁的应力及强度计算
1、矩形截面梁纯弯曲时的变形观察
现象:
(1)变形后各横向线仍为直线,只是相对旋转了一个角度,且与变形后的梁轴曲线保持垂直,即小矩形格仍为直角;
(2)梁表面的纵向直线均弯曲成弧线,而且,靠顶面的纵线缩短,靠底面的纵线拉长,而位于中间位置的纵线长度不变。
对剪应力的分布作如下假设:
(1)横截面上各点处剪应力均与剪力Q同向且平行;
(2)横截面上距中性轴等距离各点处剪应力大小相。
根据以上假设,可推导出剪应力计算公式:
式中:τ—横截面上距中性轴z距离为y处各点的剪应力;
Q—该截面上的剪力;
b—需求剪应力作用点处的截面宽度;
Iz—横截面对其中性轴的惯性矩;
Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。
应力σ的正负号直接由弯矩M的正负来判断。M为正时,中性轴上部截面为压应力,下部为拉应力;M为负时,中性轴上部截面为拉应力,下部为压应力。
第二节 梁的正应力强度条件
一、弯曲正应力的强度条件
等直梁的最大弯曲正应力,发生在最大弯矩所在横截面上距中性轴最远的各点处,即
对于工程上的细长梁,强度的主要控制因素是弯曲正应力。为了保证梁能安全、正常地工作,必须使梁内最大正应力σmax不超过材料的许用应力[σ],故梁的正应力强度条件为:
圆形截面横梁截面上的最大竖向剪应力也都发生在中性轴上,沿中性轴均匀分布。
其它形状的截面上,一般地说,最大剪应力也出现在中性轴上各点。
结合书P161-162 例8-3进行详细讲解。
五、梁的剪应力强度校核
梁的剪应力强度条件为:
在梁的强度计算时,必须同时满足弯曲正应力强度条件和剪应力强度条件。但在一般情况下,满足了正应力强度条件后,剪应力强度都能满足,故通常只需按正应力条件进行计算。
弯曲正应力
m n a a b b m n 纵向线与横向线垂直 →无剪应变 →τ = 0; ; 正应力沿横截面宽度方向均匀分布。 正应力沿横截面宽度方向均匀分布。 受压区
中性层
受拉区
中性轴
受拉区
}
C
m n a a b b m n
ρ
ε=
O2
y
ρ
y
O1
dx
σ = Eε = E
ρ
ρ ——中性层的曲率半径 中性层的曲率半径
40 z
180
A
20
y 20
Fb/4
M
+ max
M max
Fb = 4 Fb = 2
发生在截面C 发生在截面 发生在截面B 发生在截面
134
b C
B b b Fb/2
D
C 形心
86 z
据此作出梁的弯矩图如下 q=F/b F
120 40
Fb/2
40 180
120 C 形心 86 z 134
Fb/4 考虑截面B 考虑截面 :
梁横截面上的正应力•梁的正应力强度条件 §4-4 梁横截面上的正应力 梁的正应力强度条件
纵对称面 对称轴 F1
F2
B
FB
A FA
梁变形后轴线 所在平面与外力所 在平面相重合, 在平面相重合,称为 平面弯曲。 平面弯曲。
梁变形后的轴线与外 力在同一平面内
F a FS F l F Fa a
F
x
M
x
纯弯曲
3
Iz bh 2 Wz = = h/2 6 2 Iy b h = Wy = b/2 6
4
z y
πd Iz = Iy = 64 Iy Iz πd 3 = = Wz = W y = d /2 d /2 32
梁的弯曲正应力强度条件及其应用
别求出每个矩形对 z 轴的惯性矩,然后求其和,就得到 T 形截面对 z 轴的惯性矩
Iz 。用 I z1 和 I z2 分别表示矩形 1 和矩形 2 对 z 轴的惯性矩,由式(5-22)得
I z I z1 I z2
1 12
200 303
200 30 (48 15)2
mm4
1 12
20 1603
5-21(a)所示,即
Iz Iy
因
2 y 2 z 2
故有
或
(5-18) 抗弯截面系数为
Ip
2dA
A
(y2
A
2
πD4 6
4
πD4
Wz Wy
64 D
πD3
32
2
(5-19)
同理,可得外直径为 D、内直径为 d 的圆环形截面,如图 5-21(b)所示, 对其形心轴 y 和 z 的惯性矩为
的强度条件如下:
max
M max Wz
[ ]
(5-27)
如图 5-24 所示的 T 形截面,它的最大拉应力和最大压应力分别不得超过弯 曲许用拉应力和弯曲许用压应力,即
1 max y max
[ t ] [ c ]
(5-28)
式中,[ t ] 和 [ c ] 分别为材料的弯曲许用拉应力和弯曲许用压应力。
(5-24) (5-25)
例 5-7 求图 5-23 中,T 形截面对通过形心 C 的 z 轴的惯性矩。
图 5-23
解 将 T 形截面视为由 1,2 两个矩形组成的组合图形。它们对形心轴 z1
和
z2
的惯性矩分别为 1 12
200 303
mm4 及 1 20 1603 12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《梁的正应力及其强度条件》教学设计
课题 4.4梁的正应力及其强度条件教学时间4课时
教学目标
知识与技能
1、通过实验,理解对称截面上的正应力分布规律;
2、理解非对称截面上的正应力分布规律;
3.了解矩形和圆形截面二次矩、抗弯截面系数,了解正
应力计算公式;
4.能运用正应力强度条件解决工程实际中基本构件的强
度校核;
5.能运用正应力强度条件解决工程实际中的截面设计和
确定许用荷载
过程与方法
1、能通过实验,观察称截面梁的变形特点,分析得出对称
截面上的正应力分布规律;
2、探究正应力强度条件在工程中的三种应用的解题方法。
情感、态度、价值观
1、通过探究梁的变形特点,体验分析出梁的内力分布规
律,培养学生开拓创新精神,增强理解能力,分析能力;
2、通过分析梁的正应力强度条件在工程中的三种应用,
增强学生的安全、经济、适用意识。
教学重点梁的正应力分布规律和梁的正应力强度条件在工程中的三种应用。
教学难点此节概念较抽象,重在理解和熟悉。
教学内容及其过程学生活动教师导学
一、引入
1、如图一、二所示,用一矩形橡胶棒(建议力学教师常备),在其表面画上一些均匀分布的小方格,在力偶(均布线荷载或力)的作用下,观察其横向线和纵向线的变化。
那么,是什么原因引起的变化呢?变化大小又与什么因素有关呢?
图一图二
二、导学提纲
1.梁的正应力
(1)上述实验中,通过观察可得出:各横向线代表的横截面变形后为面,在梁的下部的纵向线,而上部的纵向线则,说明了梁的下部受,下让两位同学上
来做图一、图二
的实验,橡胶棒
两端作用两个
力偶,其它同学
通过观察纵向
与横向线的变
化情况来回答
问题。
通过图二的实
验,让学生亲
身体验或观察
变形特点,提
出问题,从而
引入课题。
解:( 1)绘制M 图(图4-16b)。
M max 发生在跨中截。