增益可自动变换放大器的设计与实现
开环增益和放大倍数的关系
温馨小提示:本文主要介绍的是关于开环增益和放大倍数的关系的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇开环增益和放大倍数的关系能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。
开环增益和放大倍数的关系(大纲)一、引言1.1背景介绍1.2开环增益与放大倍数的概念1.3研究目的与意义二、开环增益的定义与计算2.1开环增益的概念2.2开环增益的数学表达式2.3开环增益的测量方法三、放大倍数的定义与计算3.1放大倍数的概念3.2放大倍数的数学表达式3.3放大倍数的测量方法四、开环增益与放大倍数的关系4.1理论分析4.1.1开环增益与放大倍数的数学关系4.1.2影响因素分析4.2实验验证4.2.1实验设计4.2.2实验结果分析五、开环增益与放大倍数在实际应用中的优化5.1优化原则5.2优化方法5.2.1参数调整5.2.2结构优化5.3优化案例分析六、总结与展望6.1研究成果总结6.2存在问题与展望6.3未来研究方向一、引言在现代电子技术中,放大器电路是不可或缺的核心组成部分,它能够对微弱的信号进行增强,从而满足各种实际应用的需求。
放大器的性能优劣直接关系到整个电子系统的准确性和稳定性,因此,深入研究放大器的关键参数和特性具有重要意义。
其中,开环增益和放大倍数作为衡量放大器性能的两个重要指标,它们之间的关系备受关注。
1.1背景介绍随着科技的不断发展,放大器在通信、自动控制、生物医学等领域发挥着越来越重要的作用。
可变增益放大器
电子设计竞赛题目:可变增益放大器学院:自动化工程学院班级:08级自动化二班学号:200840604055姓名:杨嘉伟时间:2010年11月16日设计任务一、题目设计制作一个增益可变的交流放大器。
二、要求1.基本部分(1)放大器增益可在0.5倍、1倍、2倍、3倍四档间巡回切换,切换频率为1Hz;(2)可以随机对当前增益进行保持,保持时间为5s,保持完后继续巡回状态;(3)对指定的任意一种增益进行选择和保持(保持时间为5s),保持完后返回巡回状态;(4)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍;2.发挥部分(1)对于不同的输入信号自动变换增益:a.输入信号峰值为0—1V,增益为3;b.输入信号峰值为1—2V,增益为2;c.输入信号峰值为2—3V,增益为1;d.输入信号峰值为3V以上,增益为0.5;(2)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍。
基础部分一、设计方案及组成框图分析设计要求,确定大致思路如下:①这个电路可以采用反相比例放大器实现对输入信号进行放大。
A u=-R f/R 控制反相比例放大电路的反馈电阻实现放大器增益的变换, 即控制R f的阻值。
输出信号经过反相跟随器,使输入信号与放大信号同相。
②想实现R f的自动变换,需的使用模拟开关进行控制。
而要想实现电路的自动切换,需要使用多谐振荡器输出脉冲进行控制。
③要想对一种增益进行选择和保持,需要用一个单稳态触发器来实现电路这一功能。
④想随机和任意地对一种增益选择和保持,需要用到触发式单刀双掷开关以及逻辑与、逻辑或构成逻辑电路对其进行控制。
⑤最后该电路主要部分,则通过计数器计数来控制模拟开关。
另外想实现显示这一功能,需的加一个译码器驱动数码管,实现增益档位的显示。
如上所示流程图:由555组成的多谐振荡电路产生频率为1Hz的振荡波形,由555组成的单稳态实现对增益保持5秒的功能。
自动增益控制(AGC)
自动增益控制(AGC)电路自动增益控制(AGC)电路是无线电接收设备中的重要电路,用来保证接收幅度的稳定。
自动增益控制(AGC)电路的作用是能根据输入信号的电压的大小,自动调整放大器的增益,使得放大器的输出电压在一定范围内变化。
它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器和可控增益放大器组成。
其中可控增益放大器是实现增益控制的关键。
一、自动增益控制电路(AGC)的工作原理(一)AGC的作用自动增益控制电路的作用,是在输入信号幅度变化很大的情况下,自动保持输出信号幅度在很小范围内变化的一种自动控制电路。
自动增益控制电路可以看成由反馈控制器和(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器和控制电压产生器组成,被控对象是可控增益放大器。
可控增益放大器的输入信号就是AGC电路的输入信号.(二)AGC各单元电路的功能与基本工作原理1.电平检测器电平检测器的功能是检测出输出信号的电平值,通常由振幅检波器实现,它的输出与输入信号电平成线性关系,其输出电压为。
2.低通滤波器环路中的低通滤波器具有非常重要的作用。
由于发射功率变化、距离远近变化、电波传播衰落等引起信号强度的变化是自动增益控制电路需要进行控制的范围,这些变化比较缓慢,而当输入为调幅信号时,调幅波的幅值变化是传递信息的有用幅值变化.这种变化不应被自动增益控制电路的控制作用减弱或抵消(此现象称为反调制),由于两类信号的变化频率不同,就可以恰当选择环路的频率响应特性,适当地选择低通滤波器的传输特性,使环路对高于某一频率的调制信号的变化无响应,而对低于这一频率的缓慢变化具有抑制作用。
3.直流放大器直流放大器将低通滤波器输出的电平值进行放大后送至电压比较器,由于电平检测器输出的电平信号的变化频率很低,例如几赫左右,所以一般均采用直流放大器进行放大。
4.电压比较器经直流放大器放大后的输出电压与给定的基准电压进行比较,输出误差信号电压,当电压比较器增益为时,服从下列关系式5.控制电压产生器控制电压产生器的功能是将误差电压变换为适合可变增益放大器需要的控制电压,这种变换可以是幅度的放大或电压极性的变换。
增益可自动变换的放大器设计
增益可自动变换的放大器设计一、设计要求1、放大器增益可在1倍→2倍→3倍→4倍四档间巡回切换,切换频率为1赫兹。
2、能够对任意一种增益进行选择和保持(演示:控制某个增益保持时间为4秒)。
二、设计方案1、方案图:2、功能说明:此电路由电源电路,时钟脉冲产生电路,具有延时功能的脉冲产生、反相电路、计数电路、译码驱动电路、数码显示电路、具有选择功能的电路、电阻网络以及放大电路九部分组成。
增益可自动变换的放大器是通过以下方式来实现其功能的:时钟脉冲产生电路控制增益的切换频率,并通过计数电路对某一种增益进行选择;具有延时功能的脉冲产生电路通过对计数电路使能端的控制达到对某一种增益保持的目的;通过译码驱动显示电路显示不同的放大倍数;通过计数电路输出的信号控制具有选择功能的电路来实现不同反馈电阻的接入,从而实现了不同增益范围的切换。
三、电路设计与分析1、时钟脉冲产生电路、具有延时功能的脉冲产生电路及反向电路该部分电路的核心器件是555定时器,其中,时钟脉冲产生电路是由555定时器组成的多谐震荡器,具有延时功能的脉冲产生电路是由555定时器组成的单稳态触发器。
其具体电路如下:图一时钟脉冲产生电路图二具有延时功能的脉冲产生电路及反向电路555定时器(又称时基电路)是一个模拟与数字混合型的集成电路。
按其工艺分双极型和CMOS型两类,其应用非常广泛。
2、555定时器的组成和功能图1—1是555定时器内部组成框图。
它主要由两个高精度电压比较器A1、A2,一个RS触发器,一个放电三极管和三个5KΩ电阻的分压器而构成。
3、555定时器的应用如图所示的时钟脉冲产生电路是用555定时器组成的多谐震荡器,其工作波形如下所示:计算公式如下:输出高电平时间tpL=RP1C2ln2≈0.7RP1C2输出低电平时间tpH=(R2+RP1)C2ln2≈0.7(R2+RP1)C2振荡周期f=1/ tpL+tpH≈1.43/ (R2+RP1)C2由以上计算公式可知:通过确定电阻阻值及电容容值和调节电位器RP1可以实现频率为1赫兹的时钟脉冲输出。
20可变增益放大器的设计
DA转换器构成的可编程增益放大器 除法器型可编程增益放大器
可编程仪表放大器
• PGA205
(有电阻型,引脚型,数字型)
模拟开关的基本原理
模拟开关的结构是将n沟道MOSFET与p沟道MOSFET并联,可使信号在两个方向上同等顺畅地通过,因而 也没有严格的输入端与输出端之分。n沟道与p沟道器件之间承载信号电流的多少由输入与输出电压比决 定。两个MOSFET由内部反相与同相放大器控制下导通或断开。这些放大器根据控制信号是CMOS或是 TTL逻辑、以及模拟电源电压是单或是双电源,对数字输入信号进行所需的电平转换。(CD4066没有电 平转换)。
模拟开关的应用
3、音频信号的失真问题
音频信号对失真的要求都比较高,模 拟开关在切换音频信号时由于导通电 阻随信号变化(即非线性)产生了信 号失真。
模拟开关的应用
4、高频或视频的特殊要求:
RON和寄生电容之间的平衡对视频信号非常重要。RON较大的传统模拟开关需要额外增益级来补偿插 入损耗。同时,低RON开关具有较大寄生电容,减小了带宽,降低视频质量。低RON开关需要输入缓冲器, 以维持带宽,但是这会增加元件数量。L、T型开关适合高频开关,有比较高的隔离度,可以利用单刀双 置。
电阻越小、越平坦越好
模拟开关的基本原理
模拟开关CD4051-53特性
通路电阻与电源电压、输入电压的关系
通路电阻与温度、输入电压的关系
模拟开关CD4051-53参数
模拟开关CD4051-53参数
模拟开关CD4051-53参数
AD603程控增益调整放大器
AD603程控增益调整放大器AGC电路常用于RF/IF电路系统中,AGC电路的优劣直接影响着系统的性能。
因此设计了AD603和AD590构成的3~75dBAGC电路,并用于低压载波扩频通信系统中的数据集中器。
在很多信号采集系统中,信号变化的幅度都比较大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应调整放大器的增益。
在自动化程度要求较高的系统中,希望能够在程序中用软件控制放大器的增益,或者放大器本身能自动将增益调整到适当的范围。
AD603正是这样一种具有程控增益调整功能的芯片。
它是美国ADI公司的专利产品,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。
管脚间的连接方式决定了可编程的增益范围,增益在-11~+30dB时的带宽为90Mhz,增益在+9~+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。
该集成电路可应用于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统。
AD603的特点、内部结构和工作原理(1)AD603的特点AD603是美国AD公司继AD600后推出的宽频带、低噪声、低畸变、高增益精度的压控VGA芯片。
可用于RF/IF系统中的AGC电路、视频增益控制、A/D范围扩展和信号测量等系统中。
(2)ad603引脚排列是、功能及极限参数AD603的引脚排列如图1所示,表1所列为其引脚功能。
引脚1 增益控制输入“高”电压端(正电压控制)引脚2 增益控制输入“低”电压端(负电压控制)引脚3 运放输入引脚4 运放公共端引脚5 反馈端引脚6 负电源输入引脚7 运放输出引脚8 正电源输入●电源电压Vs:±7.5V;●输入信号幅度VINP:+2V;●增益控制端电压GNEG和GPOS:±Vs;●功耗:400mW;●工作温度范围;AD603A:-40℃~85℃;AD603S:-55℃~+125℃;●存储温度:-65℃~150℃(3)AD603内部结构及原理AD603内部结构图如图2所示。
自动增益放大系统的简易设计
自动增益放大系统的简易设计司马明【摘要】本设计以程控增益放大器AD603为核心,通过单片机STC89C52控制各模块,实现了输入信号及环境噪声幅度自动调节音量的自动增益控制音响放大器。
文章重点介绍了程控放大模块、噪声采集模块、有效值检测模块等主要电路模块。
系统从mp3或信号源输入音频(100 Hz~10 k Hz)信号给程控增益放大器AD603,将信号放大输出,通过峰值检测电路检测出输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对AD603的增益控制电压,从而实现带动600Ω负载或驱动8Ω喇叭。
【期刊名称】《企业技术开发:下旬刊》【年(卷),期】2016(035)001【总页数】2页(P11-12)【关键词】AD603 STC89C52 自动增益控制【作者】司马明【作者单位】武昌工学院,湖北武汉430065【正文语种】中文【中图分类】TN721.1控制方案的论证与选择方案一:采用AD603和运放构成电压比较减法电路实现。
将输入电压与理想电压的误差经相应的幅值和极性处理后作为AD603的控制信号,从而实现放大倍数的自动调节,实现输出电压的恒定。
该方案结构简单,制作容易成本低,但控制精度不够,适用性不强。
方案二:以单片机作为控制器件,通过单片机对输入信号进行AD采样,与理想输出信号比较得到误差,根据误差调整AD603增益控制电压,从而实现对AD603放大倍数的精确控制,实现输出电压的恒定。
该方案控制精确,控制速度快,系统整体稳定性高,功能改变和增加容易。
但系统的设计稍复杂。
通过对两个方案的综合对比,我们选用方案二。
1.2程控增益放大论证与选择方案一:使用多个高速运放和模拟开关构成程控增益放大。
通过控制模拟开关选择不同的反馈电阻实现可控增益。
这种方案结构简单,易实现,但由于模拟开关其导通电阻很大,使得各通道信号容易相互干扰,甚至影响通频带宽,同时若要实现增益连续可调,整体结构复杂,调试麻烦。
增益可自动变换放大器课程设计
《模拟电子线路基础》课程设计报告增益可自动变换放大器专业班级学生姓名实验台号指导教师提交日期电话号码目录第一部分系统设计1.1 设计题目及要求 (2)1.2 总体设计方案 (2)1.2.1 设计思路 (2)1.2.2 设计方案 (2)1.2.3 方案论证与比较 (4)第二部分单元电路设计2.1各单元电路及其工作原理或功能说明 (5)2.2各单元电路元件的选取与计算 (9)第三部分整机电路3.1 整机电路图 (13)3.2 元件清单 (14)第四部分性能测量4.1 电路调试 (15)4.1.1 测试使用的仪器 (15)4.1.2指标测试步骤及测量数据 (15)4.1.3 故障分析及处理 (17)4.2电路实现的功能和系统使用说明 (18)第四部分课程设计总结 (20)第一部分设计任务1.1设计题目及要求设计制作一个增益可自动变换的交流放大器。
1、放大器增益可在1倍 2倍 3倍 4倍四档间巡回切换,切换频率为1Hz;2、能够对任意一种增益进行选择和保持(演示:控制某个增益保持时间为4S)。
3、通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示1、2、3、4倍即可。
4、电源采用+5V单电源供电。
5. 能够对任意指定的增益倍数进行保持4秒后恢复到自动切换的巡回状态。
1.2总体设计方案说明1.21 设计方案分析论证1.电压增益可通过由集成运放构成的反相运算电路实现,采用uA324四通用单电源运算放大器。
2.放大器的电压增益由反馈电阻控制,因此只要改变反馈电阻就能切换不同的增益范围。
3.增益的自动切换,可通过译码器输出信号,控制模拟开关来实现不同反馈电阻的接入。
4.模拟开关可以用4052。
5.对某一种增益的选择、保持通常由芯片的地址输入和使能端控制;在进行巡回检测时,其增益的切换频率由时钟脉冲决定。
6.切换的频率由时钟频率决定,时钟脉冲可用由555构成的多谐振荡器产生。
7.保持的功能可以通过由555构成的单稳态电路实现,也可以用161计数器计时。
智能仪器期末试题及答案
智能仪器期末试题及答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】一、填空题1.在电子设备的抗干扰设计中,接地技术是一个重要环节,高频电路应选择(多)点接地,低频电路应选择(单)点接地。
2.智能仪器的键盘常采用非编码式键盘结构,有独立式键盘和(矩阵)式键盘,若系统需要4个按键,应采用(独立式)键盘结构。
大于8个时采用矩阵式键盘3.智能仪器的显示器件常用( LED )数码管或液晶显示器,其中(LED数码)更适合用于电池供电的便携式智能仪器。
4.智能仪器的模拟量输入通道一般由多路模拟开关、(放大器)、滤波器、(采样保持器)和A/D转换器等几个主要部分所组成。
5.对电子设备形成干扰,必须具备三个条件,即( 干扰源)、(传输或耦合的通道)和对干扰敏感的接收电路。
6.干扰侵入智能仪器的耦合方式一般可归纳为:(传导)耦合、公共阻抗耦合、静电耦合和(电磁)耦合。
7.RS-232C标准串行接口总线的电气特性规定,驱动器的输出电平逻辑“0”为( +5 ~+15 )V, 逻辑“1”为( -5 ~ -15 )V。
8.智能仪器的随机误差越小,表明测量的(精确)度越高;系统误差越小,表明测量的(准确)度越高。
9.智能仪器的故障自检方式主要有(开机)自检、(周期性)自检和键控自检三方式。
10.双积分型A/D转换器的技术特点是:转换速度(较慢),抗干扰能力(强)。
11.智能仪器修正系统误差最常用的方法有3种:即利用(误差模型)、(校正数据表)或通过曲线拟合来修正系统误差。
12.为防止从电源系统引入干扰,在智能仪器的供电系统中可设置交流稳压器、(隔离变压器)、(低通滤波器)和高性能直流稳压电源。
13.为减小随机误差对测量结果的影响,软件上常采用(算数平均)滤波法,当系统要求测量速度较高时,可采用(递推平均)滤波法。
14.随着现代科技和智能仪器技术的不断发展,出现了以个人计算机为核心构成的(个人)仪器和(虚拟)仪器等新型智能仪器。
光纤通信第7章光放大器讲解学习
SOA也是一种 重要的光放大 器,其结构类 似于普通的半 导体激光器。
I
R1
R2
半导体光放大器示意图
•半导体光放大器的放大特性主要决定于激光腔的反射特性与 有源层的介质特性。
•根据光放大器端面反射率和工作偏置条件,将半导体光放大 器分为:----法布里-珀罗放大器(FP-SOA)
EDFA + 均衡器 → 合成增益
增益平坦/均衡技术(2)
2. 新型宽谱带掺杂光纤: 如掺铒氟化物玻璃光纤(30nm平坦带宽)、
铒/铝共掺杂光纤(20nm)等, 静态增益谱的 平坦,掺杂工艺复杂。
3. 声光滤波调节: 根据各信道功率,反馈控制放大器输出端的
多通道声光带阻滤波器,调节各信道输出功率使 之均衡,动态均衡需要解复用、光电转换、结构 复杂,实用性受限
增益钳制技术(1)
电控:监测EDFA的输入光功率,根据其大小调整 泵浦功率,从而实现增益钳制,是目前最为成熟的
方法。
In
Out
EDFA
LD Pump
泵浦控制均衡放大器(电控)
增益钳制技术(2)
在系统中附加一波长信道,根据其它信道的功率, 改变附加波长的功率,而实现增益钳制。
注入激光
四、EDFA的大功率化(1)
=1.3%
=0.7%
用于制作大功率EDFA 的双包层光纤结构图
芯层:5m 内包层: 50m 芯层(掺铒),传播信号层(SM) 内包层,传播泵浦光(MM)
7.1 光放大器
7.1.1 光放大器概述 7.1.2 掺铒光纤放大器EDFA 7.1.3 半导体光放大器SOA 7.1.4 光纤拉曼放大器FRA
7.1.3 半导体光放大器SOA
输出信号光功率 输入信号光功率
自动调零放大电路的原理及应用
自动调零放大电路的原理及应用摘要:自动调零放大器在现代科学技术中有越来越广泛的应用。
通过对自动调零放大电路的原理及应用的介绍,使对自动调零放大电路有初步的了解。
关键字:自动调零放大电路;原理;应用The principle and application of automaticzeroing amplifier circuitAbstract: Automatic zeroing amplifier is widely used in modern science and technology. By introducing the principle and application of automatic zeroing amplifier circuit, which makes we have a preliminary understanding.Key words: automatic zeroing amplifier circuit; The principle; application1.引言自动调零放大电路又称动态校零放大电路,能够消除运算放大器输入失调电压的电路,使运算放大器实现自动调零。
许多精密测量仪表,存在因放大器的不稳定而引起的误差,它的输出电压决定于输入网络及反馈网络元器件的精度及稳定度。
如果再加上自动调零,则还能解决元器件及放大器漂移引起的误差。
这种自动调零电路大多采用定时自动校零的办法,随时校准测量电路的失衡及由于元器件及电源不稳定而引起的零点漂移现象。
在许多测试仪器仪表应用中,由于其所用传感器可能会受到环境温度、湿度,地理位置的影响,因此很多需要在现场测试前进行调零操作。
人工对仪器调零误差大而且耗费人力,自动调零放大电路很好的解决了这个难题。
2.自动调零放大电路的原理放大现象存在于各种场合。
例如,利用放大镜放大微小物体,利用杠杆原理用小力移动重物,利用变压器将低电压变换为高电压。
《高频电子线路》自动增益控制实验(AGC)
《高频电子线路》自动增益控制实验(AGC)一、实验目的1、掌握AGC工作原理。
2、掌握AGC主放大器的增益控制范围。
二、实验内容1、比较没有AGC和有AGC两种情况下输出电压的变化范围。
2、测量AGC的增益控制范围。
三、实验仪器1、1号模块1块2、6号模块1块3、2号模块1块4、双踪示波器1台四、实验原理图15-1是以MC1350作为小信号选频放大器并带有AGC的电路图,F1、F2为陶瓷滤波器(中心频率分别为4.5MHz和10.7MHz),选频放大器的输出信号通过耦合电容连接到输出插孔P4。
输出信号另一路通过检波二极管D1进入AGC反馈电路。
R14、C18为检波负载,这是一个简单的二极管包络检波器。
运算放大器U2B为直流放大器,其作用是提高控制灵敏度。
检波负载的时间常数C18•R14应远大于调制信号(音频)的一个周期,以便滤除调制信号,避免失真。
这样,控制电压是正比于载波幅度的。
时间常数过大也不好,因为那样的话,它将跟不上信号在传播过程中发生的随机变化。
跨接于运放U2B的输出端与反相输入端的电容C17,其作用是进一步滤除控制信号中的调制频率分量。
二极管D3可对U2B输出控制电压进行限幅。
W4提供比较电压,反相放大器U2A的2、3两端电位相等(虚短),等于W4提供的比较电压,只有当U2B输出的直流控制信号大于此比较电压时,U2A才能输出AGC控制电压。
图15-1 自动增益控制电路原理图(AGC)对接收机中AGC的要求是在接收机输入端的信号超过某一值后,输出信号几乎不再随输入信号的增大而增大。
根据这一要求,可以拟出实现AGC控制的方框图,如图15-2所示。
图15-2自动增益控制方框图图中,检波器将选频回路输出的高频信号变换为与高频载波幅度成比例的直流信号,经直流放大器放大后,和基准电压进行比较放大后作为接收机的增益调节电压。
不超过所设定的电压值时,直流放大器的输出电压也较小,加到比较器上的电压低于基准电压,此时环路断开,AGC电路不起控。
程控放大器
本科毕业论文(设计)题Fra bibliotek目程控增益放大器的设计
(中、英文)
The Design of programmable gain amplifier
作 者 姓 名 专 业 名 称 学 科 门 类 指 导 老 师 提交论文日期 成绩等级评定
高亚丽 电子信息科学与技术 理 学 余建权 二〇一六年五月
Key words:
control ;
gain programmable; Operational amplifier; feedback network; auto
II
目 录
摘 要.......................................................................................................................................................... I ABSTRACT.............................................................................................................................................II 目 录.......................................................................................................................................................III 1 引言.......................................
自动增益控制(AGC)
任务一自动增益控制(AGC)电路任务引入在调幅接收机接收电台信号时,由于各发射台功率有大有小,发射台离接收机的距离远近不一,无线电波传播过程中的多径效应和衰落等原因,使接收天线上感生的有用信号强度相差非常悬殊,而且往往有很大的起伏变化(约为~倍),有可能在接收微弱信号时造成某些电路(例如检波器)不能正常工作而丢失信号,而在接收强信号时造成放大电路的阻塞(非线性失真)。
为此在接收设备中几乎无例外的都必须采用自动增益控制电路,用来压缩有用信号强度的变化范围。
任务分析自动增益控制(AGC)电路的作用是能根据输入信号的电压的大小,自动调整放大器的增益,使得放大器的输出电压在一定范围内变化。
自动增益控制(AGC)电路是无线电接收设备中的重要电路,用来保证接收幅度的稳定。
它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器和可控增益放大器组成。
其中可控增益放大器是实现增益控制的关键。
相关知识一、自动增益控制电路(AGC)的工作原理1.AGC的作用自动增益控制电路的作用,是在输入信号幅度变化很大的情况下,自动保持输出信号幅度在很小范围内变化的一种自动控制电路。
2.AGC的组成框图自动增益控制电路的组成框图如图3-5-2所示。
图3-5-2 自动增益控制电路的组成框图由图可见,自动增益控制电路可以看成由反馈控制器和(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器和控制电压产生器组成,被控对象是可控增益放大器。
可控增益放大器的输入信号就是AGC电路的输入信号,其输出信号,其增益为增益受控制电压的控制,控制电压是由电压比较器产生的误差电压经控制电压产生器变换后得到的,增益可写成或,它是误差电压(或控制电压)的函数。
也可以直接用误差电压控制可控增益放大器的增益。
3.AGC各单元电路的功能与基本工作原理(1)电平检测器电平检测器的功能是检测出输出信号的电平值,通常由振幅检波器实现,它的输出与输入信号电平成线性关系,其输出电压为。
程控宽带直流放大器的设计
china_54@
3.1 设计任务书
3.1.4 设计及论文的时间安排
第一部分 第二部分 第三部分 第四部分 第五部分 第六部分 第七部分 阅读相关资料,学习相关理论知识(3周)。 设计系统的总体设计方案(3周)。 绘制PCB版图并完成硬件系统(3周)。 编制相应的软件设计(2周)。 系统各模块调试以及系统总体联调(2周)。 完成论文写作(3周)。 评阅及答辩。
第3章 程控宽带直流放大器的设计
china_54@
本章导读
本章将介绍一种增益可调、通频带可预置的程控宽带直流 放大器,其中包括了宽带直流放大器的原理、硬件的制作、 软件程序的编写及系统的调试等。
china_54@
3.1 设计任务书
设计任务书的作用是让设计者了解本系统设计的目的、意义,有关的 要求以及整个设计的时间安排,只有这样才能高质量地完成系统设计。
1. 可控增益放大器部分 方案一:用AD603进行两级放大。 方案二:用AD811和可控电阻权网络AD7520。 方案三:用增益可控直流放大器LMH6505。 综合上述方案,这里选择方案三。 2. 后级固定增益部分 方案一:使用分立元件自行搭建二级放大器。 方案二:使用集成电路芯片。 考虑到性能的稳定性和时间紧迫等因素,这里选择方案二。
china_54@
3.3 系统方案论证与理论分析
模拟电子技术中许多器件的物理特性往往是电类学习中的难点,想 要成为一名优秀的硬件工程师必须要对这些特性充分熟悉。在进行方案 设计之前需要对这些知识有个大概了解。
3.3.1 宽带直流放大器总体方案分析
与一般宽带放大器相比,宽带直流放大器要求具有良好的低频放大 特性,其幅频特征示意图如下图所示。所以在芯片选型时,其作用频率 范围要从0Hz开始。
电压自动切换
元器件说明:LM311以及2 kΩ电阻
(3)放大电路以及模拟开关:
工作原理:通过两个UA741运算放大器可以实现电压的正向放大,通过模拟开关选择运算放大器的负反馈通路来控制增益的数值。
参数选择:由于运算放大器的虚短、虚断的要求,因此输入电路的电阻为100 kΩ,负反馈电阻分别为10 kΩ、100 kΩ、1 MΩ,由此来实现3种增益的选择。
(6)调试中出现的故障、原因及排除方法:
在调试中,电路搭好后发现无法得到电压的自动增益转换,由于是直流电压源,于是,用万用表进行排查,后发现第二个反向的运算放大器居然不满足虚短、虚断的原则,后来,发现在面包板的一排没有给予负电压,导致了运算放大器没有正常工作,也就导致了自动增益的无法实现。
再次实验时,10与1时都可以实现了,但是,0.1却无法实现,或者说,增益不是0.1,而是0.01,于是,我检查增益为0.1的一条支路,发现应该使用10kΩ的电阻,我使用的是1 kΩ的电阻。换为10 kΩ的电阻后,实现了0.1的增益。
四、总结
(1)阐述设计中遇到的问题、原因分析及解决方法:
设计中主要的问题是如何实现比较与整流。
方法:通过查阅电子线路书发现LM311可以实现电压的比较,并且输出高电平,于 是通过使用LM311和4052实现了增益的自动切换。
整流是通过查阅网络,实现了交流信号转换为直流信号。
(2)总结设计电路和方案的优缺点:
(3):当5<V<10时,电压增益为0.1
2、当输入电压为交流电压时,通过交流整合电路和滤波电路得到交流电路的峰峰值, 通
过得到的电压选择放大增益,其增益的具体选择与直流电压时相同。
(2)性能指标:
在各个增益的需要范围内能够得到相应的增益输出,在增益跳变时要在0.5V和5V
2020年全国大学生电子竞赛练习题精编版
1 正弦波功率输出装置一、任务设计并制作一个正弦波功率输出装置。
二、要求1、基本要求①输入为单相市电;②输出频率范围为20Hz~100Hz的交流电,输出电压有效值为36V,负载为阻性负载;③输出电压波形应尽量接近正弦波,用示波器观察无明显失真;④当输入电压为198V~242V,负载电流有效值为0.1~2A时,输出电压有效值应保持在36V,误差的绝对值小于5%;⑤具有过流保护(输出电流有效值大于3A时动作),保护时自动切断输入交流电源。
2、发挥部分①当输入电压为198V~242V,负载电流有效值为0.5~3A时,输出电压有效值应保持在36V,误差的绝对值小于1%;②设计制作具有测量、显示该装置输出电压、电流、频率和功率的电路,测量误差的绝对值小于5%;③其它。
2 程控交流电压源1、基本要求(1)单、三相电压均可独立可调,每相输出电压30-150V程控连续可调,步进1V;(2)输出频率200-800Hz程控连续可调,步进1Hz;(3)每相输出功率不小于10W;(4)输出电压精度:±0.5V,输出频率精度:±1Hz;(5)波形失真度:<1%;(6)显示电压、频率精确到小数点后一位;(7)通讯方式自选。
2、发挥部分(1)三相交流程控电压源输出电压范围:5V-180V;(2)三相交流程控电压源每相输出功率:不小于20W;(3)三相交流程控电压源输出电压精度:±0.1V;(4)其它。
3 智能搬运小车一、设计任务设计并制作一个能自动搬运货物的智能电动车,其工作示意图如下。
图中,左边为停车区、货物存储区A 和货物存储区B,并有两个对应的射灯光源;距右边线30 cm 处共放置3 片白色或黑色的薄铁片,铁片之间的距离大于20cm。
二、要求1、基本要求(1)智能车从起跑线出发(车体不得超过起跑线),在无障碍物的情况下,可寻找并搬取铁片,按照不同颜色分送不同存储区,即在光源A 的引导下将黑色铁片搬运到货物存储区A 存放,或在光源B 的引导下将白色铁片搬运到存储区B 存放(装载方式不限制)。
增益可变运放AD603的原理及应用
山西电子技术2001年第3期应用实践增益可变运放AD 603的原理及应用杨世忠,邢丽娟(包头钢铁学院,内蒙古包头市014010) 摘 要:AD 603是一种低噪声、电压控制增益的新型运放,其传输带宽高达90M H Z ,增益最高可达51dB ,最低达211dB 。
详细描述AD 603内部结构,功能特点和工作原理,并给出具体应用。
关键词:运放 增益 带宽中图分类号:T P 342 文献标识码:A AD 603是AD 公司研制的一种新型的运算放大器,它不但具有低噪声影响,高频带宽度,稳定性能好的特点,还具有电压控制的可变增益功能。
这种可变增益功能是其它运放所不能比拟的。
特殊的性能使该集成芯片取代原来由众多器件搭成的增益调整电路。
本文详细介绍AD 603的结构,特性、功能及其原理,并利用一个传统增益调整电路与AD 603比较来说明该芯片的优势所在,最后给出一个应用实例。
1 AD 603的原理框图[1]其原理图如图1所示:图1 AD 603原理图 原理图中内部结构分成3个功能区:增益控制区;无源输入率减区;固定增益运放区。
下面依次分析各区的作用。
111 增益控制区AD 603采用电压控制增益的方式,图中差动输入口GPO S 和GN EG 之间的电压差V G 就是控制电压。
该差动输入口呈高输入阻抗(50M 8),低偏流电流(200nA )。
增益和电压的换算系数是25mV dB ,即若V G 的变化范围为1V ,增益的变化范围为40dB 。
差动输入口允许使用差动控制电压或单电压,正负均可。
即差动输入口GPO S 和GN EG 可同时接不同的控制电压或一端接地另一端接控制电压,控制电压可正可负。
112 无源输入率减区AD 603采用一种专用的电路拓扑结构—X 2AM P (X 2AM P 是AD 公司的一种商标),该结构由一个可从0dB 到242114dB 变化的率减器组成,这个率减器与固定增益运放区中的固定增益运放相连。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增益可自动变换放大器的设计与实现
一、设计任务及指标:
设计一个增益可自动变换的交流放大器。
1、放大器增益可在1倍2倍3倍4倍四档间巡回切换,切换频率为1Hz;
2、对指定的任意一种增益进行选择和保持,保持后可返回巡回状态;
3、通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示1、2、3、4倍即可。
4、电源采用±5V电源供电。
二、设计原理以及内容:
1、时钟产生电路:
利用555电路组成多谐振
荡器,管脚3输出所产生的时
钟信号,其频率计算公式为:
F=1/T=1.44/C1(R1+2R2)
令C1=10uF,R1=R2,则带入公
式可求:
R1=R2=48k ohm
在multisim里所组成的电路
图如左:
2、序列产生电路:
用74LS161构成四位加法计
数器采用异步清零法,产生
QD QC QB QA :
0000-0001-0010-0011-0000
序列,使得增益循环变换。
将QC
通过非门接到CLR段,当QC为1
时,计数器异步清零。
3、译码电路:
将74LS161的四
个状态进行译码,1Y0
到1Y3输出端分别是
对增益1到4倍的选
择
4、选择保持电路:
手动实现4个增益状态的选择:
将74LS161的使能端与J3、U6A的使能端连接,并通过非门连到U4A的使能端,当J3为高电平的时候,74LS161与U4A 工作,实现增益的自动变换;当J3接地的时候,U6A工作,实现增益的选择与保持。
5、数码管显示电路:
1)由于74LS139工作时输出低
电平,不工作时输出高电平,所以
将两个74LS139的输出端分别与
非,使工作时ABCD输出高电平。
J3 J2J1 增益
0 00 1
01 2
10 3
11 4
1 自动控制
2)连接到数码管:
A B C D a bcd 显示 1000 0000 0 0100 0001 1 0010 0010 2 0001
0011
3
由上表可知: a=b=0 c:
c==
d:
d==
所以把a,b 接地,
用两个或非门实现c,d 的连接。
可得右图:
CD AB 00 01 11 10 00 X 1 X 1 01 0 X X X 11 X X X X 10 0
X
X
X
CD AB 00 01 11 10 00 X 1 X 0 01 1 X X X 11 X X X X 10
X
X
X
三、仿真模拟。
将此部分与增益调节部分(朱珈娴同学负责部分)综合可得总实验图如下:
仿真结果:
1)自动增益调节结果:
2)手动增益为1时:
3)手动增益为2时:
4)手动增益为3时:
5)手动增益为4时:
四、硬件连接及测试结果:
(1)完成电板如下:
(2)信号输出截图(黄线为输入,蓝线为输出):(a)自动增益循环(J3=1):
(b)手动增益为1时(J3=0,J2J1=00,数码管显示为0):
(c)手动增益为2时(J3=0,J2J1=01,数码管显示为1):
(d)手动增益为3时(J3=0,J2J1=10,数码管显示为2):
(e)手动增益为4时(J3=0,J2J1=11,数码管显示为3):
五、误差分析
由于555电路产生的1HZ频率与实际函数信号发生器产生的频率有微小的差距不能完全相等,在自动增益过程中,使得由增益四倍变为一倍的时候,有小幅度失真。
此外,输入的交流信号过大或过小都容易使得输出信号失真,经调试,输入信号幅度在80mVpp时,输出信号基本不失真。
六﹑各主要集成芯片介绍
(1)NE555
它是一种广泛应用于数字电路中的集成定时器,各管脚功能如下:
(2)74LS161
它是一种四位二进制同步加法计数器,各管脚功能如下:
(3)74LS139
它是2-4译码器,各管脚功能如下:
(4)74LS04
它是六非门,各管脚功能如下:
(5)74LS48:
(6)SM4205
它是共阴极八段数码管,各管脚功能如下:
(7)LM324
它是带有真差动输入的四运算放大器,各管脚功能如下:
(8)CC4066
它是双向模拟开关,各管脚功能如下:
六、小结
本次设计将模电与数电知识相结合,这是之前实验没有碰到过的,所以思路开始并不是很开阔。
通过大量的查阅资料之后,发现之前自己很多想法的可行之处,所以才开始大胆地着手电路设计,当然设计及调试的过程并不是一帆风顺的,主要有以下几点:
1.设计电路前各部分功能电路设计并不困难,主要是如何将它们连接到
一起,所以在用MULTISIM画电路图之前,利用网络资源查找相应芯片
的功能表,管脚图显得尤为重要。
2.在电路调试过程中,由于4066自身有一定的内阻,使得放大倍数存在
一定的误差,不过相对于采用的电阻来说,内阻影响并不是很大,但
是由于其电源电压选择不当及试验箱电源电压不准确,使得芯片一直
不工作,花费了我几个晚上的时间才调试成功,最后通过使VEE端悬
空,才使得芯片正常工作。
3.电路正常工作以后,波形失真非常严重,经过几天的调试,发现使输
入电压稳定在80mVpp 左右时,失真消失。
4.由于之前实验没有自己连接过数码管,在领取器件的时候只领取了单
一的数码管,回去连电路的时候手足无措,查阅资料之后才知道需要
一个驱动芯片才能实验数码管的显示,经过筛选之后,选择了74LS48
作为驱动芯片。
通过这次课程设计我深深感受到实践的重要性,电路仿真很容易实现,但是真正连接好电路调试的时候就不是那么容易了,理论上没错的电路,由于器件电阻及工作电压问题,常常使电路不能正常工作,需要一步步利用万用表等工具细心检查,不放过每一个细节。
当然这次实验调试我就花了3个晚上和2个下午,开始时,波形不能正常显示,看到密密麻麻的电路,开始静不下心来检查,最后还是坚持了下去,不过让我最郁闷的是,面包板有大半部分短路,给调试带来了很多不必要的麻烦。
这次的课程设计的完成是我们组四位员共同努力地结果,我十分感谢各位组员的积极配合及各位老师的耐心指导。
七、参考文献
《Digital Fundamentals,Ninth Edition》Thomas L.Floyd著电子工业出版社;
《Electric Circuits,Eighth Edition》James W.Nilsson,Susan A.Riedel 著电子工业出版社;
《电子技术基础(模拟部分),第五版》康华光等著
高等教育出版社;
《电子技术基础(数字部分),第五版》康华光等著
高等教育出版社;。