芳香性判断技巧修订版
芳香性
苯等一些化合物的结构及芳香性苯的结构一、凯库勒(Kekule)式1865年凯库勒从苯的分子式出发,根据苯的一元取代物只有一种,说明六个氢原子是等同的事实,提出了苯的环状构造式。
因为碳原子是四价的,故再把它写成简写为称为:这个式子虽然可以说明苯分子的组成以及原子间连接的次序,但这个式子仍存在着缺点,它不能说明下列问题第一、既然含有三个双键,为什么苯不起类似烯烃的加成反应?第二、根据上式,苯的邻二元取代物应当有两种,然而实际上只有一种。
凯库勒曾用两个式子来表示苯的结构,并且设想这两个式子之间的摆动代表着苯的真实结构:由此可见,凯库勒式并不能确切地反映苯的真实情况。
二、苯的稳定性氢化热是衡量分子内能大小尺度。
氢化热越大分子内能越高,越不稳定;氢化热越低,分子内能越低,分子越稳定。
1、的氢化热为119.6kj/mol2、如果苯的构造式用凯库勒式表示的话,苯的氢化热为环己烯氢化热的三倍。
119.6*3=358.8KJ/mol3、实际上苯的氢化热是208.4KJ/mol,比预计的数值低150.4KJ/mol.这是由于苯环中存在共轭体系,π电子高度离域的结果,这部分能量为苯的共轭能或离域能。
从上所述,我们可以认识到苯分子具有较低的内能,分子稳定,是一种具有特殊稳定性的物质。
三、苯分子结构的价键观点根据现代物理方法(如X射线法,光谱法等)证明了苯分子是一个平面正六边形构型,键角都是120o ,碳碳键的键长都是0.1397nm。
按照轨道杂化理论,苯分子中六个碳原子都以sp2杂化轨道互相沿对称轴的方向重叠形成六个C-C σ键,组成一个正六边形。
每个碳原子各以一个sp2杂化轨道分别与氢原子1s轨道沿对称轴方向重叠形成六个C-H σ键。
由于是sp2杂化,所以键角都是120o,所有碳原子和氢原子都在同一平面上。
每个碳原子还有一个垂直于σ键平面的p轨道,每个p轨道上有一个p电子,六个p轨道组成了大π键。
四、苯的分子轨道模型分子轨道法认为六个p 轨道线性组合成六个π分子轨道,其中三个成键轨ψ1ψ2ψ3 和三个反键轨道ψ4ψ5ψ6 。
芳香性
有机化学基本理论主讲人:史达清3. 芳香性芳香性化合物的特点:(1)较高的碳/氢比例;(2)键长的平均化;(3)分子的共平面性;(4)共轭能;(5)特征光谱(在1H NMR 出现环电流,使环上质子化学位移移向低场);(6)化学性质(结构具有特殊稳定性,易被取代,不易被加成和氧化)。
芳香性的判据休克尔(Hückel)规则:在由sp2杂化碳原子组成的平面单环体系中,含有4n+2 个π 电子的体系将具有与惰性气体相类似的闭壳层结构,从而显示出芳香性。
在具体判断时,不能仅从4n+2 个π电子数进行判断。
一般要同时满足以下三个条件才具有芳香性:(1)闭环共轭体系;(2)成环的所有的原子在同一个平面上(即共平面) ;(3)4n+2 个π 电子举例:(1)环丙烯衍生物(2)环丁二烯衍生物(3)环戊二烯衍生物(4)环庚三烯衍生物(5)环辛四烯衍生物(6)轮烯类化合物其实对于单环共轭多烯,只有当成键轨道或非键轨道完全填充满电子时,才具有闭壳层结构。
如下图所示:(7)稠环芳烃一般,4n+2 规则只适用于平面单环体系,不适用于稠环体系。
对于稠环体系只能用分子轨道法经计算后确定成键轨道、非键轨道和反键轨道数目来看能否形成封闭的π 电子壳层而确定。
对较为简单的多环体系,其中没有三个以上的环所共用的原子,如果π 电子数为4n+2 ,则可以判别该体系是芳香性的。
(8)杂芳环化合物杂芳香性化合物是环上有杂原子取代的具有4n+2 个π 电子并显示芳香特点的化合物,它可以分为两类,一类是利用体系中杂原子上未共享电子对的一些化合物。
例如呋喃、噻吩、吡咯、噻唑、咪唑等。
这些化合物中的氧、氮或硫原子上的未共享电子对和二烯部分的四个π 电子结合得到一个 6 π 电子的4n+2 离域体系。
它们的芳香性大小是:噻吩>吡咯>呋喃。
另外一类是环上杂原子上的未共享电子对并未参与芳香性稳定化作用,例如吡啶、嘧啶等。
此外,还有一些以氮为中心原子的周边共轭体系,例如环[3.2.2]嗪、环[4.4.3]嗪也都是稳定的芳香性化合物。
芳香性和反芳香性
• 用一个原子代替两个氢原子得 ,6-桥-[10]用一个原子代替两个氢原子得1, 桥 环共轭多烯,有芳香性: 环共轭多烯,有芳香性:
O X
(D)
(E) X= O, CH2, NH, NCH3
• [14]-轮烯 轮烯
H H H H
A:
有两对氢原子会发生相互作用,共轭能不高, 芳香稳定性不明显
B:
H H
• 3 .化合物芳香性的判断 化合物芳香性的判断 ①轮烯
[10]-轮烯
H H
(A)
(B)
(C)
• A是全顺式,B是反 顺,顺,顺,顺式,C是反 是全顺式, 是反 是反,顺 顺 顺 顺式 顺式, 是反 是反, 是全顺式 顺式. 顺,反,顺,顺式.都没有芳香性. 反 顺 顺式 都没有芳香性. • 原因:角张力及环内两个氢的排斥力影响 原因: 分子的共平面性; 分子的共平面性;[10]-环的不稳定性表现 环的不稳定性表现 容易热环化为双环体系。 为:容易热环化为双环体系
H
有3个环内H彼此干扰,共轭能也不 个环内H彼此干扰, 高.
但是,NMR表明有反磁环流,键长也没有交替现象, 但是,NMR表明有反磁环流,键长也没有交替现象,说明 ,NMR表明有反磁环流 有芳香性. 有芳香性. 注意: 有机化学》 五师大合编)说无芳香性。 注意:《有机化学》(五师大合编)说无芳香性。
第五章: 第五章:芳香性和芳香化合物的取代反应 本章主要内容: 本章主要内容: 一.芳香性 1.芳香性的一般讨论 1.芳香性的一般讨论 2.Hückel 4n+2规则 2. 规则 3 .化合物芳香性的判断(轮烯体系,带电荷 化合物芳香性的判断( 化合物芳香性的判断 轮烯体系, 环, 稠环体系,杂环及稠杂环体系) 稠环体系,杂环及稠杂环体系)
芳香性判断技巧
芳香性判断技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位 2,2,6,6,符合 4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为 10 和 14,符合 Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用 Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,。
芳香性和构型的判断依据
从休克尔规则我们可以得知,具有芳香性的通常是具有如下四个特点的分子:
(1)它们是包括若干数目键的环状体系,具有(4n+2)个π电子(这里n是大于或等于零的整数),换句话说,不在环状体系中的双键不要算在里面;
2.费舍尔(Fischer)式中判断依据:
在费舍尔(Fischer)式中如何快速的判断R/S呢?当最小的基团处在横轴方向上时,其他基团从大到小按顺时针方向旋转,是S,按逆时针时,是R;当最小的基团处在竖轴的方向上时,其他基团从大到小按顺时针方向旋转,是R,按逆时针时,是S.(记忆方法,与立体状态下判断依据相比,竖同横不同。)
例如: ,所以是R构型。
2011年9月18日
例如: 中i双键不算在内,该化合物具有芳香性。
(2)它们具有平面结构,或至少非常接近平面(平面扭转不大于0.1nm);
例如: 不具有芳香性,因为1,2号碳上的氢的排斥力使两个苯环不在同一个平面上
(3)环上的每一个原子必须是sp2杂化(某些情况也可以是sp杂化);
例如: 不具有芳香性,1号碳是sp3杂化,变成 就具有芳香性了。
(4)环上的电子能够发生离域。
按照上面的几点判断,能够解决绝大多数考试题目了,但并不是所以的芳香性判断问题。
二.关于R/S构型的判断
1.立体状态下判断依据:将与手性碳相连的四个基团按顺序排列大小(关于大小次序一般的教材上有,自己查找),将最小的基团放在力离眼睛最远的地方,其他三个基团按由大到小的方向旋转,顺时针的为R,逆时针的为S.(可以这么记忆,顺时针就是箭头向右转,right的首字母是R,相对的,是S。)
芳香性
A (C4H8) + B (C2HOCl3)
AlCl3
H3 Cபைடு நூலகம்
SO3H
OH
CH3
Cl3CCHCH2C=CH2
Cl3CCHCH=CCH3
C
Cl CH3 CH3C(OC2H5)3 Cl2C=CHCHCCH2COOCH2CH3 Cl CH3 CH3CH2ONa C2H5OH Cl
D
COOCH2CH3
MeLi CH3OCH2CH2OCH3
[C10H6]2- 2Li+
+ C 2Li
- 78 C
o
7-1 A的结构简式: 7-2 B的结构简式:
7-3 B的结构简式:
7-4 B是否具有芳香性?为什么?
(以上各2分)
2009年全国高中学生化学竞赛(初赛)第10题 (15分) 高效低毒杀虫剂氯菊酯(I)可通过下列合成路线制备:
10-3 由化合物E生成化合物F经历了 每步反应的反应类别分别是 。
步反应,
10-4 在化合物E转化成化合物F的反应中,能否 用NaOH/C2H5OH代替C2H5ONa/C2H5OH
溶液?为什么?
10-5 (1) 化合物G和H反应生成化合物I、N(CH2CH3)3
和NaCl,由此可推断: H的结构简式 H分子中氧原子至少与 个原子共平面。
第32章 芳香性
(P.736-744)
休克尔规律 芳香性的判断标准
1. 芳香性和休克尔规律
休克尔规律(4n+2规律)(只计算π分子轨道的能级)
当π电子数= 4n+2(n≥ 0)时,所有π电子正好填满成键轨 道,环多烯烃的能量比相应的直链多烯烃低;环具有芳香性, 热力学稳定性好; 当π电子数= 4n(n≥ 1)时,p电子除了填满成键轨道外, 还有两个在非成键轨道上,环多烯烃的能量反而比相应的直 链多烯烃高;环具有反芳香性或非芳香性,热力学稳定性差; 简化分子轨道法:用顶角向下的内接正多边形表示,计算平 面环多烯烃的π分子轨道的能级
芳香性及其判据摘要以及莫比乌斯芳香性
芳香性及其判据的发展
随着人们对于芳香化合物认识的不断深入,芳 香性一词的使用范围日益扩大,从最初的苯系化合 物扩充到非苯系化合物;由中性分子扩充到离子; 由碳环化合物扩充到含杂原子的环状有机物,乃至不 含碳的无机环状化合物。 为了判别有机化合物的芳香性,早在1931 年, Huckel就提出了著名的“4n+2”规则:一个具有平面 密闭共轭体系的单环多烯化合物,当π电子数为4n+2 时( n = 0 ,1 ,2 ,3 ,⋯) 才可能有芳香性。 但传统的Huckel规则只适用于平面或近乎平面 的环状共轭体系,且对于n>5单环多烯时,Huckel 规则也不适用。
1964 年, Heilbronner在Huckel分子轨道理论的基础上提出了 “Mobius 芳香性”。与Huckel [4n]体系相比,Mobius [4n] 体系因为有着 闭壳结构而稳定。近些年,人们和发现合成出具有Mobius 芳香性的化 合物。
例如,Ajami, Herges等人合成了一个中性的符合Mobius 拓扑结构的[4n]轮烯衍生物分子a,而同时得到的另一个 Hockel结构的异构体b。
目前较为广泛使用的芳香性判据是核磁共振化 学位移,常用1H-NMR,用无量纲量δ表示。 以苯为例,当苯分子处在垂直于其平面的外加 磁场Ho作用下,离域的π电子在一定方向上产生环 电流,又因环电流而建立起一个垂直于分子平面的 感应磁场Hi。 在环的外测,Hi和外加磁场Ho相同,应此质子 所受磁场(H= Ho + Hi )比外加磁场Ho大,这时质 子就可以在一个较低的外加磁场Ho下发生共振,即 移向低场。 在环的内侧刚好相反, Hi和外加磁场Ho相反, 质子所受磁场(H= Ho - Hi )比外加磁场Ho小,质 子在一个较高的外加磁场Ho下发生共振,即移向高 场。
芳香性判断技巧
芳香性判断技巧The final revision was on November 23, 2020一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn?)又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位 2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为 10 和 14,符合 Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用 Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用 Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合 Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,。
芳香性判断技巧范文
芳香性判断技巧范文芳香性是指物质具有可感知的香味,对于人们来说,通过感知香味可以判断物质的成分、性质和质量。
掌握芳香性判断技巧可以帮助我们更好地了解物质,下面是一些常用的芳香性判断技巧。
1.嗅闻物质时要避免强烈的刺激性香味,可以在空气中摆动手指,然后将香味带到鼻子附近闻,避免香味被刺激的患处。
2.嗅闻物质时不可过量,适量嗅闻一次,避免过多刺激感官。
3.嗅闻物质时要注意区分短暂的刺激性香味和持久的清淡香味。
刺激性香味常常意味着物质含有刺激性或有毒性成分,而清淡香味则反映了物质可能的化学性质。
4.对于芳香性判断,通常通过观察变化来帮助判断。
一些物质在受热或氧化作用下会产生特殊的香味,例如苯酚加热会发出酚或苯酚烧灼味。
5.薄荷或柠檬酸的含有物质往往具有清凉的香味,而柠檬酸常用于防腐剂,因此柠檬酸的香味往往伴随着有保鲜或防腐作用的物质。
6.氧化物质通常具有淡淡的芳香性,例如酸性氧化剂一氧化二氮、一氧化硫等。
7.一些香味可用于判断物质的品质。
例如,蔗糖具有甜味,如果发现物质具有类似蔗糖的香味,可能表明物质属于糖类。
再比如,纯净的咖啡豆应该具有浓郁的咖啡香味,而受潮变质的咖啡豆会失去香味。
8.通过比较不同物质之间的香味可以判断它们的差异。
例如,同样是水果类的香味,苹果的香味通常酸甜而清爽,橙子的香味则更加醇厚和温暖。
9.香草、草本植物往往具有浓郁的芳香性,而一些花朵则具有独特的香气,如玫瑰花具有浓郁的花香味。
总之,芳香性判断技巧需要通过嗅闻物质并结合观察和经验来进行判断。
掌握这些技巧可以帮助我们更好地了解不同物质的特性和性质,但需要注意不要用嗅觉直接接触一些有害物质,以免对身体造成损害。
有机化学-芳香性概述
芳香性概述内容提要1. 芳香性1.1芳香性的定义与基本判据1.2芳香化合物的基本化学性质1.3芳香化合物的基本结构特征1.4芳香化合物的核磁共振性质和芳香性的检验手段1.4.1核磁共振原理1.4.2 电磁屏蔽效应1.4.3 全反式[18]轮烯的核磁共振1.4.4 芳香化合物的核磁共振性质1.4.5 芳香性的检验手段1.5芳香性的定性判据——休克尔规则1.5.1休克尔规则的表述1.5.2. 休克尔规则的应用举例1.5.3适用休克尔规则的常见非苯芳香化合物1.6周边修正1.6.1萘和薁1.6.2芘1.6.3双键修正在周边修正中的应用1.7芳香性定性判据的局限性2. 反芳香性2.1反芳香性的定义与基本判据2.2典型的反芳香化合物2.2.1 环丁二烯2.2.2 环戊二烯正离子3. 非芳香性4. 同芳香性4.1环辛四烯正离子4.2其它典型的同芳香性分子4.2.1环戊烯-4-正离子4.2.2降冰片烯-7-正离子4.2.3亚甲叉[10]轮烯5. Y芳香性6. 休克尔分子轨道理论6.1变分法概述6.2尝试波函数的构建方法6.3尝试波函数Ψ = c A A + c B B的构建举例6.4同核双原子分子的变分法构建结果6.5异核双原子分子的变分法构建结果6.6 αA和αB的差值对成键和反键轨道能E+和E-的影响6.7休克尔分子轨道法7. 富烯7.1线性π体系分子轨道能量的计算公式7.2使用休克尔分子轨道法简便求解分子轨道能和轨道系数的举例:1,3-丁二烯7.3富烯与1,3,5-己三烯7.3.1 富烯7.3.2 1,3,5-己三烯7.3.3 富烯与1,3,5-己三烯的比较7.3.4 休克尔分子轨道法的局限性8. 环丁二烯与姜泰勒畸变8.1单一环状π体系分子轨道能量的计算公式8.2多边形法则8.3休克尔分子轨道法对环丁二烯的处理8.4环丁二烯的真实情况与姜-泰勒畸变8.4.1 环丁二烯的真实情况8.4.2 姜-泰勒畸变正文1.芳香性(Aromaticity)1.1芳香性的定义与基本判据芳香化合物一词,最早源于苯的合成,天然产物安息香胶中,含有苯甲酸(俗称安息香酸),苯甲酸与碱共热可脱去羧基得到苯,其带有芬芳气味[1]最初,芳香化合物的范围仅限于苯与其同系物,后来随着人们对芳香性的认识不断加深,芳香性的概念也不断被扩展和重新定义公元1931年,德国物理学家和物理化学家艾瑞克·休克尔(Erich Hückel)提出,离域π电子数符合4n + 2规则的平面共轭多烯,具有芳香性,其中n是非负整数[2]。
副本(1)7 第七章 有机化合物的芳香性
(CH)10
H H
十碳五烯, 10-轮烯 或 [10]轮烯
2021/7/9
18
3.判别轮烯芳香性的原则
(1)轮烯是非扩张环,有环内氢与环外氢。环内氢在高场, 环外氢在低场时有芳香性。
(2)环碳必须处在同一平面内。
(3)符合4n+2规则。
HH
HH HH
10-轮烯因环内氢 的相互作用,使 C不能同处在同 一平面内,无芳 香性。
2021/7/9
11
+ FeCl2 MgBr
C2H5Br
C2H5 Fe
C2H5
H2SO4/ HO Ac
SO3H Fe
Fe
SO3H
Ac2O AlCl3
C O C H3
Fe C O C H3
HNO 3 [O ]
+
Fe
➢解释
2021/7/9
杯烯
为何具有芳香性?
+-
……….
12
7.1.3 .2 中环芳烃结构
3. 反同芳香性
反同芳香性是指:共平面,π电子数与p电子总数为4n,
共平面的原子均为sp2或sp杂化的轮烯,带有不与轮烯共平面 的取代基或桥。
通常情况下,具有芳香结构或同芳香结构的物质4n+2体 系,不易得到或失去电子成为反芳香结构或反同芳香结构的 4n体系,因为芳香结构和同芳香结构比反芳香结构和反同芳 香结构的稳定性好。
1
89 2
7
3610+45薁
1.0D
+
五元环和七元环均 有芳香性,亲电取 代反应主要在五元 环上发生,1,3位 易被取代。
2021/7/9
15
2. 八元环
环辛四烯是非芳香性的。在金属钾的作用下,环辛四烯可转 变为环辛四烯负离子。分子的形状由非平面型转化成平面八边形, π电子数为10,符合Huckle规则,构成了芳香体系。
芳香性判断技巧
一,芳香性判据——Hu ckel规则H u ckel规则:一个单环化合物只要具有平面离域体系,它的n电子数为4n+2(n=0,1,3, ••整数),就有芳香性(当n>7时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了•非苯芳烃:凡符合Huckel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等•二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n》10的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Huckei规则判断,首先看环上的碳原子是否均处于一个平面内,其次看n 电子数是否符合4n+2.[18]轮烯环上碳原子基本上在一个平面内,n电子数为4n+2(n=4),因此具有芳香性.又如[10]轮烯,n电子数符合4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性•如环戊二烯无芳香性,但形成负离子后,不仅组成环的5个碳原子在同一个平面上,且有6个n电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性•因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有10个n电子(n二2),故有芳香性环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(I),环丁二烯两价正离子(n)和两价负离子(川),环庚三烯正离子(W ).因为它们都具有平面结构,且n电子数分别位2,2,6,6,符合4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蔥,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且n电子数分别为10和14,符合Huckel规则,具有芳香性. 虽然萘,蔥,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用Huckel规则来判断其芳香性.与萘,蔥,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围n 电子,也可用Huckel规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围n电子有10个,相当于[10]轮烯,符合Huckel规则(n=2),也具有芳香性.三• n电子数的计算也许你在做题目的时候对于n电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢•我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个n电子, 有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个n电子有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个n电子这种结构的也具有芳香性, 看起来这个七元环没有达到共轭结构, 我的也是经验两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算n电子数,也是 6 个. 注意: 若隔的是碳负离子就不能这样了, 一定要是碳正离子才可以这样算.这个和上面那个有点相似, 但隔的是碳负离子, 一个碳负离子算2个电子, 图中有2个碳负离子,还有3个双键,有10个n电子.图中左边, 一双键连接两个环, 可以写出它的共振体, 当然尽量往有芳香性的写, 而且芳香性的环稳定,贡献大.这样下面的五元环有6 n电子,上面的三元环有2n 电子. 都有芳香性.因为三键中两n键互相垂直,孤只有一个能与其他双键共轭,。
有机化合物的芳香性.
环戊二烯负离子轨道表示式
环戊二烯负离子轨道结构
环庚三烯正离子
环庚三烯正离子盐如溴化物具有芳香性。环庚三烯正离子 是容易从氯化环庚三烯得到的,它的水溶性和IR光谱都表明了 它的稳定性和对称性。
Br
现在我们知道,在芳香性分子中的芳环上,每个碳原 子各以 sp2杂化轨道相互交盖连结,构成环状平面,处在同
一环平面上的每个碳原子还剩下一个未杂化的 p原子轨道,
这些p轨道轴相互平行,于是相互间发生交盖重叠,构成所 谓“芳香大 π 键”,所有的 π 电子成为环绕整个环平面上下
运动的电子流,完全失去了它的定域性。这种芳香大π键又
薁具有明显的 极性,其中五元环 是负电性的,七元 环是正电性的。
+
_
NMR研究证明蓝烃的芳香性。蓝烃分子的化学活性相当 于一个活泼的芳香化合物。亲电取代很容易地发生在 1(3)位置 上,亲核取代发生在 4(8)位置上。蓝烃似乎不发生加成反应。 这样的化学活性也表明此烃的芳香性。
多环芳烃电子数的计算方法
杯烯(Calicene)
富勒烯与C60
称为非定域键(离域键).由于芳香大π键中的π电子离域的结果, 导致体系能量降低,键长平均化,环稳定性增加。这就是所
谓的芳香性。但目前,芳香性这个概念早已扩大到了非苯型
体系。
2. 休克尔规则
1931年,德国化学家休克尔(E. Hü ckel)用简单的分子轨 道计算指出,只有当π电子为4n+2的体系,它们的成键轨道在 基态时全部充满电子(有的还充满非键轨道),具有与惰性气 体相类似的结构,使体系趋于稳定,具有芳香性,从而提出了 一个判断芳香性体系的规则,称为休克尔规则,也叫做休克尔 4n+2规则。 休克尔提出,单环多烯烃要有芳香性,必须满足三个条件。 成环原子共平面或接近于平面,平面扭转不大于0.1nm; 环状闭合共轭体系; 环上π电子为4n+2的体系(n= 0、1、2、3……);
芳香性判断技巧
一,芳香性判据——Hückel规则Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.二,一些非苯芳烃1.环多烯烃:(通式CnHn )又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环xx,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环xx的碳原子是否均处于一个平面内,其次看π 电子数是否符合 4n+2.[18]轮烯环xx碳原子基本xx在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环xx碳原子不能在一个平面内,故无芳香性.2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面xx,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.环戊二烯负离子其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环xx两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π电子数分别位 2,2,6,6,符合 4n+2(n 分别位0,0,1,1).具有芳香性的离子也属于非苯芳烃.3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面xx,且π 电子数分别为 10 和14,符合Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环xx,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性.与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合Hückel 规则(n=2),也具有芳香性.三.π 电子数的计算也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子xx的杂原子是N,其他原子类推.吡咯的N的孤对电子要算进去,在家两双键xx的4个电子,共有6电子,有芳香性.吡啶xxN原子xx连有双键,Nxx孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.两个N都与双键相连,孤对电子也都不算,还是6个π电子有一个N与双键相连,有一个没有.按以xx的思路,与双键相连的Nxx的孤对电子不算进去,而右边的N原子xx的孤对电子要算进去,结果也是6个π电子这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键xx间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.这个和xx面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图xx有2个碳负离子,还有3个双键,有10个π电子.图xx左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,xx面的三元环有2π电子.都有芳香性.因为三键xx两π键互相垂直,孤只有一个能与其他双键共轭,。
高等有机3芳香性和芳香化合物取代反应的定位法则
mj=2cos[jπ/(n+1)]
• 它们的分子轨道能级也表示为:E=α+ mjβ 只是 mj=2cos [2jπ/n] j = 0,±1, ±2,…,{±[(n-1)/2], n为奇数时; j = 0, ±1, ±2,…,{±(n/2), n为偶数时。 • n是环中碳原子的数目。 休克尔规则:如果一个质体是由排成平面单环形 的原子组成,而每个原子为π体系贡献一个p轨道, 并且在那个 π 体系中电子的总数等于 4n+2 个( n 是整数),那么这个质体就是芳香性的。
-
+
+2
苯的离域能DE苯 == 6 8 (6 6 ) 2
2 真实并不是一个真实可测的物理量,它是 真实分子和假想的定域模型分子之间比 较的一种差值,不同于氢化热.
试计算1,3,5,7- 辛四烯 或环辛四烯的分子能量。
离域能除以电子数得到每个电子的离域能(REPE)
键型ij 12
E 0.466
H2C
CH
HC
CH
22
2.0699
C H
C
11
0.4362
H
C C
C C
21 20
2.1083 2.1116
C
C
10
0.4358
H2C
C
22'
2.0
化合物
E非定域能
定域能
离域能
REPE
8 4 9.656
7.61 5.07 10.1436
0.39 -1.07 -0.4876
+ H H H
+
二茂铁[Fe(C5H5)2]
•
二茂铁[Fe(C5H5)2]是芳香性的环戊二烯负离子 的另一特例。二茂铁是π络合物类的金属有机化合 物,由两个环戊二烯负离子与亚铁离子构成一种夹 心结构,桔红色,熔点173℃。可以用环戊二烯钠 与氯化亚铁在四氢呋喃中反应或用环戊二烯在二乙 胺存在下直接与亚铁盐反应制备。
芳香性优秀PPT文档
休克尔提出,单环多烯烃要有芳香性,必须满足三个条件。 (1) 成环原子共平面或接近于平面,平面扭转不大于0.1nm; (2) 环状闭合共轭体系; (3) 环上π电子数为4n+2 (n= 0、1、2、3……); 符合上述三个条件的环状化合物,就有芳香性,这就是休克 尔规则。
芳香性(Aromaticity):在闭合共轭多烯体系 中; 成环原子共平面; 电子数符合 4n + 2
1.
+
3.
+
-
2.
4.
> > >=
-
15
【思考题】下列物质,哪些具有芳香性。
O
(1)
(2)
O
(4)
(5)
O
(3)
O
(6)
16
1.几种重要的有机反应活性中间体有————,————,———— ,—————,和—————。 2.下列卤化物中,哪个不是Lewis酸( ) A. SnCl4 B. BF3 C. SiF4 D. AlCl3
实NM际R上存,在它反的磁七环元流环:带有正电荷,五元环带有负电荷,是一个典型的极性分子,结构也可以表示如下:
Ⅳ. NMR存在反磁环流 : (S1o)n成dh环e原im子er共于平19面6或2年接首近次于合平成面,平面扭转不大于0.
芳香性的判断
14e
A
B
C
12e
D
E
F
14e
G
H
①双键与轮烯直接相连,计算电子数时,将双键写成 其共振的电荷结构,负电荷按2个电子计,正电荷按0 计,内部不计。如下面物质均有芳香性:
14e
同芳香性
• 同芳香性是指共平面,π电子数为4n+2,共面的 原子均为sp2或sp杂化的轮烯上带有不与轮烯共 平面的取代基或桥。如:
H
R
10e 14e
反同芳香性
• 反同芳香性是指共平面,π电子数为4n,共面的 原子均为sp2或sp杂化的轮烯上带有不与轮烯共 平面的取代基或桥。如:
4e
8e
同芳结构的物质得到或失去电子成为4n体系是很 难的,因为要生成更不稳定的反同芳结构。
结束语
谢谢大家聆听!!!
15
• 其要点是:化合物是轮烯,共平面, • 它的π电子数为4n+2 (n为0,1,2,3…,n整数), • 共面的原子均为sp2或sp杂化。
1954年伯朗特(Platt)提出了周边修正法,认为可 以忽略中间的桥键而直接计算外围的电子数,对 Hückel规则进行了完善和补充。
Hückel理论的修正
• 周边修正法 • 一些稠环烃可将之看成轮烯。 • 画经典结构式时,应使尽量多的双键处在轮
hckel画经典结构式时应使尽量多的双键处在轮烯上处在轮烯内外的双键写成其共振的正负电荷形式将出现在轮烯内外的单键忽略后再用hckelplatt规则判断芳香性
芳香性的判断
• 1931年德国化学家休克尔(Hückel)从分子轨道理论 的角度,对环状多烯烃(亦称轮烯)的芳香性提出了如 下规则,即Hückel规则。
芳香性理论
=
=
2K+
0.1462nm
成环 C 不在同一平面 π 电子 = 8 不能形成环状共轭体系
无 芳 性
成环 C 在同一平面 π 电子 = 10 n = 2 环状闭合共轭体系
有 无
芳 性
B. 薁
薁有明显的极性,其中五元环是负性的,七元环 是正性的,可表示如下:
薁有明显的芳香性,表现在能起亲电取代反应上。
芳香性的判断
在结构上:高度不饱和。
在物理性质上:①键长平均化,②环上 的原子在同一平面上。 在化学性质上:①容易起取代反应,②不容 易起加成反应,③环不容易被氧化而破裂。
(1)苯及其衍生物
它们是环状共轭多烯,成环原子都是sp2杂化,在同一 个平面内。 π电子数:
6
10
14
(2)非苯芳烃
A. 具有芳香性的离子 (a) 环戊二烯负离子
简写为芳香性的发展1866年erlenmeyer发现苯易取代substitution难加成addition1910年pascal发现苯具有极强的抗磁性exalteddiamagneticsusceptibility1925年armitrobinson发现苯的六电子结构electronsextet1936年hckel提出4n2电子规则芳香性在电磁领域得到发展并有了判定依据芳香性的发展1933年pauling的共振论1936年pauling提出苯的6个电子的环流诱导效应导致反磁体斥力的增强1937年london提出反磁性理论1956年pople利用核磁共振谱图nmr提出了新的环流理论用于解释质子的屏蔽现象和化学位移芳香性的发展自1958年起芳香性已不仅局限于苯结构和平面结构还存在于立体结构和离子中表现为三维立体性和各向同性并且轨道能参与电子芳香性的判断被分类为芳香性的化合物通常有以下的条件
复杂多环化合物芳香性的简单判定方法_袁履冰
1 2 3 4
考
文
献
袁履冰 . 物理有机化学导论 . 大连 : 大连理工大学出版社 , 1989 王文清 . 芳香性和非苯芳香性化合物 . 北京 : 高等教育出版社 , 1985 张彩云 . 大学化学 , 1995( 2) : 20 谷杨 , 袁履冰 . 大学化学 , 2002, 17( 3) : 53
以形成离域的
用这种方法检验 (
法检验芳香性的存在 , 例如(
断如( ) 这样的化合物时 , 其方法就有一定的偏差 , 因为它们周边的 规则 , 可是事实却证明( ) 具有芳香性。 例如 : ( 50 ) 中间的双键并没有参与到离域的共轭
可以这样理解周边修正法 , 只有在一定的条件下 , 它才可以正确地判断化合物的芳香性。 电子中去, 如果忽略双键, 则只是化合物的 构型有所改变, 周边仍然是离域共轭的 电子体系 , 并符合 4 n + 2 规则。这里 , 中间的双键只
因此, 可以得出结论 , 当稠环的中间双键不对体系的离域共轭
电子系有影响时, 即其只
为保持整个化合物的平面结构时, 这样的双键才可以被忽略 , 这时才可以正确地应用周边修正 法。 2. 2 双键修正法 这是 H ckel 理论的另一修正方法, 这种修正法就是忽略某些双键在芳环体系中的影响 , 即可以忽略其中间的双键 , 直接考虑其芳香性问题。 这种方法的实际应用并不如周边修正法的应用那样广泛 , 但是同样可以应用其解决复杂 稠环芳烃的芳香性判定问题。 例如化合物 ( ) , 既无法应用周边修正法来说明其是否具有芳香性, 其 电子数目也不符 合 4 n + 2 规则, 但此化合物却具有芳香性。用什么方法能作为其芳香性的判据呢? 这里可以 使用双键修正法。
52
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芳香性判断技巧
HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
一,芳香性判据——Hückel规则
Hückel规则:一个单环化合物只要具有平面离域体系,它的π 电子数为
4n+2(n=0,1,3,…整数),就有芳香性(当 n>7 时,有例外).
对能看懂这篇文章的人说:苯有有芳香性,那就是废话了.
非苯芳烃:凡符合Hückel规则,不含苯环的具有芳香性的烃类化合物,非苯芳烃包括一些环多烯和芳香离子等.
二,一些非苯芳烃
1.环多烯烃:(通式
CnHn?)又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯).环丁烯,苯,环辛四烯和环十八碳九烯分别称[4]轮烯,[6]轮烯,[8]轮烯和[18]轮烯.它们是否具有芳香性,可按Hückel规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合
4n+2.[18]轮烯环上碳原子基本上在一个平面内,π 电子数为 4n+2(n=4),因此具有芳香性.又如[10]轮烯,π 电子数符合 4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性.
2,芳香离子:某些烃无芳香性,但转变成离子后,则有可能显示芳香性.如环戊二烯无芳香性,但形成负离子后,不仅组成环的 5 个碳原子在同一个平面上,且有 6 个π 电子(n=1),故有芳香性.与此相似,环辛四烯的两价负离子也具有芳香性.因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有 10 个π 电子(n=2),故有芳香性.
环戊二烯负离子
其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负
离子(Ⅲ),环庚三烯正离子(Ⅳ).因为它们都具有平面结构,且π 电子数分别位 2,2,6,6,符合 4n+2(n 分别位0,0,1,1).
具有芳香性的离子也属于非苯芳烃.
3,稠环体系:与苯相似,萘,蒽,菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为 10 和 14,符合Hückel 规则,具有芳香性.虽然萘,蒽,菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性.
与萘,蒽,等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用Hückel 规则判断其芳香性.例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有 10 个,相当于[10]轮烯,符合Hückel 规则(n=2),也具
有芳香性.
三.π 电子数的计算
也许你在做题目的时候对于π 电子数的计算弄糊涂了,比如:觉得怎么同是N原子怎么有时候要把它的孤对电子算进去,有时候又不要呢.我以前就是这样的,现在基本知道判断芳
香性了,只是有点经验,有些具体原理我还是不懂.下面是我的一些心得体会,若有错误还请留言指正.下面用的例子中的杂原子是N,其他原子类推.
吡咯的N的孤对电子要算进去,在家两双键上的4个电子,共有6电子,有芳香性.
吡啶中N原子上连有双键,N上孤对电子不能算进去,三双键共轭,共有6个π电子,有芳香性.
两个N都与双键相连,孤对电子也都不算,还是6个π电子
有一个N与双键相连,有一个没有.按以上的思路,与双键相连的N上的孤对电子不算进去,而右边的N原子上的孤对电子要算进去,结果也是6个π电子
这种结构的也具有芳香性,看起来这个七元环没有达到共轭结构,我的也是经验,两双键中间隔了一个碳正离子,你就把这个碳正离子去掉再来计算π电子数,也是6个.注意:若隔的是碳负离子就不能这样了,一定要是碳正离子才可以这样算.
这个和上面那个有点相似,但隔的是碳负离子,一个碳负离子算2个电子,图中有2个碳负离子,还有3个双键,有10个π电子.
图中左边,一双键连接两个环,可以写出它的共振体,当然尽量往有芳香性的写,而且芳香性的环稳定,贡献大.这样下面的五元环有6π电子,上面的三元环有2π电子.都有芳香性.因为三键中两π键互相垂直,孤只有一个能与其他双键共轭,。