一元一次方程方案问题(分配-配套-调配-方案)
一元一次方程(调配、分配)
2.甲队人数是乙队人数的2倍,从甲队 调12人到乙队后,甲队剩下来的人数 是原乙队人数的一半还多15人。求甲、 乙两队原有人数各多少人?
解:设乙队原有x人,则甲队有2x人,
由题意得:
1 2
x
15
2x
12
解之,得
x=18 ∴2x=2×18=36(人)
答:甲、乙两队原来分别有36人、
18人。
3.甲、乙两车间各有工人若干,如果从 乙车间调100人到甲车间,那么甲车 间的人数是乙车间剩余人数的6倍; 如果从甲车间调100人到乙车间,这 时两车间的人数相等,求原来甲乙车 间的人数。
一元一次方程的应用(调配)
一、调配问题
1.某厂一车间有64人,二车间有56人。 现因工作需要,要求第一车间人数是 第二车间人数的一半。问需从第一车 间调多少人到第二车间?
解:设需从第一车间调x人到第二车 间,由题意得:
2(64-x)=56+x 解之,得
x=24 答:需从第一车间调24人到第二车间。
解:设共有x辆汽车,则共有(45x+28)
名学生,由题意得:
50(x-2)+38=45x+28 解之,得
x=18 ∴45x+28=45×18+28=838(名) 答:共有18辆汽车,有838名学生。
3.小明看书若干日,若每日读书32页, 尚余31页;若每日读36页,则最后一 日需要读39页,才能读完,求书的页 数。
解:设甲车间原有x人,则乙车间原有 (x-200)人,由题意得: x+100=6(x-200-100) 解之,得 x=380 ∴x-200=380-200=180(人)
答:甲车间原有380人,乙车间原有
一元一次方程应用_调配问题含答案
一元一次方程应用——分配问题1.课外活动中一些学生分组参加活动.原来每组6人.后来重新编组.每组10人.这样比原来减少4组.问这些学生共有多少人?2.一个车间加工轴杆和轴承.每人每天平均可以加工轴杆12根或者轴承16个.1根轴杆与2个轴承为一套.该车间共有90人.应该怎样调配人力.才能使每天生产的轴承和轴杆正好配套?3.皖蒙食品加工厂收购了一批质量为1000kg的某种山货.根据市场需求对其进行粗加工和精加工处理.已知精加的这种山货质量比粗加工的质量的3倍还多200kg.求粗加工的这种山货的质量.4.马年新年即将来临.七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个.那么比计划多了7个;如果每人做5个.那么比计划少了13个.该小组计划做多少个“中国结”?5.某车间有22名工人.每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.应安排生产螺钉和螺母的工人各多少名?6.某人原计划用26天生产一批零件.工作两天后因改变了操作方法.每天比原来多生产5个零件结果提前4天完成任务.问原来每天生产多少个零件?这批零件有多少个?7.把一些图书分给某班学生阅读.如果每人分3本.则剩余20本;如果每人分4本.则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?8.《九章算术》中有一道阐述“盈不足术”的问题.原文如下:今有人共买物.人出八.盈三;人出七.不足四.问人数.物价各几何?译文为:现有一些人共同买一个物品.每人出8元.还盈余3元;每人出7元.则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)10.在手工制作课上.老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人.其中男生人数比女生人数少2人.并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底.为了使每小时剪出的筒身与筒底刚好配套.应该分配多少名学生剪筒身.多少名学生剪筒底?11.某校组织学生种植芽苗菜.三个年级共种植909盆.初二年级种植的数量比初一年级的2倍少3盆.初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?12.为迎接6月5日的“世界环境日”.某校团委开展“光盘行动”.倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加.七(1)班参加的人数比七(2)班多10人.请问七(1)班和七(2)班各有多少人参加“光盘行动”?13.列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?14.暑假.某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动.如图是划船须知.(1)他们一共租了10条船.并且每条船都坐满了人.那么大、小船各租了几只?(2)他们租船一共花了多少元钱?15.列方程或方程组解应用题:在“五一”期间.小明、小亮等同学随家长一同到某公园游玩.下面是购买门票时.小明与他爸爸的对话(如图).试根据图中的信息.解答下列问题:(1)小明他们一共去了几个成人.几个学生?(2)请你帮助小明算一算.用哪种方式购票更省钱?参考答案与试题解析1.【分析】设这些学生共有x人.先表示出原来和后来各多少组.其等量关系为后来的比原来的少2组.根据此列方程求解.【解答】解:设这些学生共有x人.根据题意.得﹣=4.解得x=60.答:这些学生共有60人.【点评】此题考查的知识点是一元一次方程的应用.其关键是找出等量关系及表示原来和后来各多少组.难度一般.2.【分析】设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据1根轴杆与2个轴承为一套列出方程.求出方程的解即可得到结果.【解答】解:设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据题意得:12x×2=16(90﹣x).去括号得:24x=1440﹣16x.移项合并得:40x=1440.解得:x=36.则调配36个人加工轴杆.54个人加工轴承.才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用.找出题中的等量关系是解本题的关键.3.【分析】等量关系为:精加工的山货总质量+粗加工的山货总质量=1000kg.把相关数值代入计算即可.【解答】解:设粗加工的该种山货质量为x千克.则精加工(3x+200)千克.由题意得:x+(3x+200)=1000.解得:x=200.答:粗加工的该种山货质量为200千克.【点评】本题考查一元一次方程的应用.得到山货总质量的等量关系是解决本题的关键.难度一般.4.【分析】设小组成员共有x名.由题意可知计划做的中国结个数为:(6x﹣7)或(5x+13)个.令二者相等.即可求得x的值.可得小组成员个数及计划做的中国结个数.【解答】解:设小组成员共有x名.则计划做的中国结个数为:(6x﹣7)或(5x+13)个∴6x﹣7=5x+13解得:x=20.∴6x﹣7=113.答:计划做113个中国结.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系列出方程.再求解.5.【分析】设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系.就可以列出方程求出即可.【解答】解:设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由题意得2000x=2×1200(22﹣x).解得:x=12.则22﹣x=10.答:应安排生产螺钉和螺母的工人10名.12名.【点评】此题主要考查了一元一次方程的应用.列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.【分析】设原来每天生产x个零件.表示出所有零件的个数.进而得出等式求出即可.【解答】解:设原来每天生产x个零件.根据题意可得:26x=2x+(x+5)×20.解得:x=25.故26×25=650(个).答:原来每天生产25个零件.这批零件有650个.【点评】此题主要考查了一元一次方程的应用.根据题意表示出零件的总个数是解题关键.7.【分析】(1)设这个班有x名学生.根据这个班人数一定.可得:3x+20=4x﹣25.解方程即可;(2)代入方程的左边或右边的代数式即可.【解答】解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生.这批图书共有155本.【点评】解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程.再求解.8.【分析】根据这个物品的价格不变.列出一元一次方程进行求解即可.【解答】解:设共有x人.可列方程为:8x﹣3=7x+4.解得x=7.∴8x﹣3=53(元).答:共有7人.这个物品的价格是53元.【点评】本题考查了一元一次方程的应用.解题的关键是明确题意.找出合适的等量关系.列出相应的方程.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)【分析】(1)先设该单位参加旅游的职工有x人.利用人数不变.车的辆数相差1.可列出一元一次方程求出.(2)可根据租用两种汽车时.利用假设一种车的辆数.进而得出另一种车的数量求出即可.【解答】解:(1)设该单位参加旅游的职工有x人.由题意得方程:.解得x=360;答:该单位参加旅游的职工有360人.(2)有可能.因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人.正好坐满.【点评】此题主要考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程再求解.10.【分析】(1)设七年级(2)班有女生x人.则男生(x﹣2)人.根据全班共有44人建立方程求出其解即可;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由筒身与筒底的数量关系建立方程求出其解即可.【解答】解:(1)设七年级(2)班有女生x人.则男生(x﹣2)人.由题意.得x+(x﹣2)=44.解得:x=23.∴男生有:44﹣23=21人.答:七年级(2)班有女生23人.则男生21人;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由题意.得50a×2=120(44﹣a).解得:a=24.∴生产筒底的有20人.答:分配24人生产筒身.20人生产筒底.【点评】本题考查了列一元一次方程解实际问题的运用.一元一次方程的解法的运用.解答时分别总人数为44人和筒底与筒身的数量关系建立方程是关键.11.【分析】设初一年级种植x盆.则初二年级种植(2x﹣3)盆.初三年级种植(2x ﹣3+25)盆.根据“三个年级共种植909盆”列出方程并解答.【解答】解:设初一年级种植x盆.依题意得:x+(2x﹣3)+(2x﹣3+25)=909.解得.x=178.∴2x﹣3=3532x﹣3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆.【点评】本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量.直接设要求的未知量或间接设一关键的未知量为x.然后用含x的式子表示相关的量.找出之间的相等关系列方程、求解、作答.即设、列、解、答.12.【分析】首先确定相等关系:该校七年级(1)、(2)、(3)三个班共128人参加了活动.由此列一元一次方程求解.【解答】解:设七(2)班有x人参加“光盘行动”.则七(1)班有(x+10)人参加“光盘行动”.依题意有(x+10)+x+48=128.解得x=35.则x+10=45.答:七(1)班有45人参加“光盘行动”.七(2)班有35人参加“光盘行动”.【点评】此题考查的知识点是一元一次方程组的应用.关键是先确定相等关系.然后列方程求解.13.【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(元).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.14.【分析】(1)设大船租了x只.则小船租了(10﹣x)只.那么6x+4(10﹣x)就等于该班总人数;(2)他们租船一共花了10x+8×(10﹣5)元.【解答】解:(1)设大船租了x只.则小船租了(10﹣x)只.则6x+4(10﹣x)=50解得:x=5.答:大、小船各租了5只;(2)他们租船一共花了10×5+8×5=90元.答:他们租船一共花了90元.【点评】列方程解应用题的关键是正确找出题目中的相等关系.用代数式表示出相等关系中的各个部分.把列方程的问题转化为列代数式的问题.15.【分析】(1)设去了x个成人.则去了(12﹣x)个学生.根据爸爸说的话.可确定相等关系为:成人的票价+学生的票价=400元.据此列方程求解;(2)计算团体票所需费用.和400元比较即可求解.【解答】解:(1)设去了x个成人.则去了(12﹣x)个学生.依题意得40x+20(12﹣x)=400.解得x=8.12﹣x=4;答:小明他们一共去了8个成人.4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400.∴按团体票购票更省钱.【点评】考查利用方程模型解决实际问题.关键在于设求知数.列方程.此类题目贴近生活.有利于培养学生应用数学解决生活中实际问题的能力.。
一元一次方程应用题(配套、调配、工程)
12月10日
• 1、分一批图书,如果每人分3本, 则余20本;如果每人分4本,则缺 25本。共有多少个人? • 2、学校分配学生住宿,若每室住8 人,还少12个床位,若每室住9人, 则空出两间房。求房间的个数和学 生的人数。
12月10日
• 3、学校春游,如果每辆汽车坐45 人,则有28人没有上车;如果每辆 坐50人,则空出一辆汽车,并且有 一辆车还可以坐12人,问共有多少 学生,多少汽车? • 4、一条凳子坐3人,有25人坐不 下,一条凳子坐4人,正好空4条凳 子。有几个人?几条凳?
12月7日
• 3、某厂生产一批西装,每2米布可以 裁上衣3件,或裁裤子4条,现有布240 米,为了使上衣和裤子配套,裁上衣 和裤子应该各用布多少米?
12月7日
• 4、某车间加工机轴和轴承,一个工人 每天平均可加工15个机轴或10个轴承。 该车间共有80人,一根机轴和两个轴 承配成一套,问应分配多少个工人加 工机轴或轴承,才能使每天生产的机 轴和轴承有22个工人,每人每天可以 生产1200个螺钉或2000个螺母。1个 螺钉需要配2个螺母,为使每天生产的 螺钉和螺母刚好配套,应该安排多少 人生产螺钉?多少人生产螺母?
12月7日
• 2、 包装厂有工人42人,每个工人平 均每小时可以生产圆形铁片120片,或 长方形铁片80片,将两张圆形铁片与 和一张长方形铁片可配套成一个密封 圆桶,问如何安排工人使每小时生产 圆形或长方形铁片能合理地将铁片配 套?
• 1、某地下管道由甲工程队单独铺设需要 12天,由乙工程 队单独铺设需要18天。如果由这两个工程队从两端同时相 向施工,要多少天可以铺好? • 2、某工作甲单独做3小时完成,乙单独做5小时完成,现 在要求两人合作这项工作的五分之四。求应该合做几小时? • 3、一件工作,甲单独做20小时完成,乙单独做12小时完 成。现在先由甲单独做4小时,剩下的部分由甲、乙合做。 剩下的部分需要几小时完成? • 4、将一批工业最新动态信息输入管理储存网络,甲独做 需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙 一起做,则甲、乙一起做还需多少小时才能完成工作?
一元一次方程的应用——调配与配套问题_
一元一次方程的应用——调配与配套问题一、选择题(本题共计 4 小题,每题 3 分,共计12分,)1. 某个工厂有技术工12人,平均每天每人可加工甲种零件24个或乙种零件15个,2个甲种零件和3个乙种零件可以配成一套,设安排x个技术工生产甲种零件,为使每天生产的甲乙零件刚好配套,则下面列出方程中正确的有( )个①24x2=15(1−x)3;②32×24x=15(12−x);③3×24x=2×15(12−x);④2×24x+3×15(12−x)=1.A.3B.2C.1D.02. 如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x名工人生产桌面,则下面所列方程正确的是()A.20x=3×300(24−x)B.300x=3×20(24−x)C.3×20x=300(24−x)D.20x=300(24−x)3. 某车间有33名工人,每人每天可以生产1200个螺钉或1800个螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有名工人生产螺钉,则可列方程为().A.B.C.D.4. 鸡兔同笼,上数有20个头,下数有50条腿,可知鸡兔和数量分别为()A.5和15B.15和5C.12和8D.8和12二、填空题(本题共计 5 小题,每题 3 分,共计15分,)5. 把一些图书分给某班学生阅读,如果每人分4本,则剩余19本;如果每人分5本,则还缺28本,则这个班有________名学生.6. 《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车无人乘坐,若每2人共乘一车,最终剩余9个人无车可乘,则有________辆车,________人.7. 我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有客房________间.8. 清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x人,由题意可列方程为:________.9. 列方程(组)解应用题:某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.则该店有客房________间.三、解答题(本题共计 10 小题,每题 10 分,共计100分,)10. 一个车间加工轴杆和轴承,每人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?11. 如图所示的是一个由1个茶壶和6只茶杯组成的茶具,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做4个茶壶或12只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少千克紫砂泥做茶杯,恰好配成这种茶具多少套?12. 某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.若购买这两类球的总金额为4600元,篮球,足球各买了多少个?13. 我国民间流传着许多趣味算题,它们多以顺口溜的形式表达,其中,《孙子算经》中记载了这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?14. 把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少学生?15. 古籍《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住满7人,那么有7人无房可住;如果每间客房都住满9人,那么正好空出一间房.则该店有客房几间,房客几人?16. 某机械厂加工车间有110名工人,平均每人每天加工大齿轮16个或者小齿轮12个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?17. 以绳测井.若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5米;如果将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?18. 我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?19. 《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?请用方程解答上述问题.参考答案与试题解析一元一次方程的应用——调配与配套问题一、选择题(本题共计 4 小题,每题 3 分,共计12分)1.【答案】A【考点】由实际问题抽象出一元一次方程【解析】利用生成的甲种零件个数:乙种零件个数=2:3,列出方程,变形即可得到答案. 【解答】解:设安排x个技术工生产甲种零件,则安排(12−x)个技术工生产乙种零件,由于2个甲种零件和3个乙种零件可以配成一套,故生成的甲种零件个数:乙种零件个数=2:3,故24x15(12−x)=23,化简可得24x2=15(12−x)3或32×24x=15(12−x)或3×24x=2×15(12−x),故①②③正确.故选A.2.【答案】C【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:设安排x名工人生产桌子面,则安排(24−x)名工人生产桌子腿,依题意,得:3×20x=300(24−x).故选C.3.【答案】B【考点】由实际问题抽象为分式方程由实际问题抽象出一元一次方程一元一次方程的应用——调配与配套问题【解析】由已知可得生产螺钉的工人为×人,则生产螺母的工人为(33−x)人,根据一个螺钉需两个螺母的数量关系找出螺钉与螺母的等量关系:螺母的总数为螺钉总数的两倍,即可求解.【解答】:生产螺钉的工人为∼人,工人总数为:33人,生产螺母的工人为(33−x)人,:一个螺钉需两个螺母配套,每人每天可生产螺钉1200个或螺母1800个,为使每天生产的螺钉和螺母刚好配套,则生产螺母的总数为螺钉总数的两倍,可列等量关系式为:2×1200x=1800×(33−x)故选:B.4.【答案】B【考点】一元一次方程的应用——调配与配套问题【解析】设鸡的数量为x只,兔的数量则为:(20−x)只,结合下数有50条腿,进而得出等式求出即可.【解答】解:设鸡的数量为x只,兔的数量则为:(20−x)只,根据题意可得:2x+4(20−x)=50,解得:x=15,则20−15=5,即鸡的数量为15只,兔的数量则为:5只.故选B.二、填空题(本题共计 5 小题,每题 3 分,共计15分)5.【答案】47【考点】一元一次方程的应用——工程进度问题一元一次方程的应用——调配与配套问题由实际问题抽象出一元一次方程【解析】可设有∼名学生,根据总本数相等和每人分4本,剩余19本,每人分5本,缺28本可列出方程,求解即可.【解答】解:设这个班有》名学生,根据题意得:4x+19=5x−28解得:x=47故答案为:47.6.【答案】15,39【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15,2x+9=2×15+9=39(人).故有39人,15辆车.故答案为:15;39.7.【答案】8【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x−9,解得x=8.故答案为:8.8.【答案】x 3+x4=364【考点】一元一次方程的应用——调配与配套问题【解析】读懂题中的诗句,找出条件,共有364只碗,三人共食一碗饭,四人共吃一碗羹.可以列出方程.【解答】解:设有和尚x人,则需要x3只碗装饭,x4只碗装粥,根据题意得x3+x4=364.故答案为:x3+x4=364.9.【答案】8【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x−9,解得x=8.故答案为:8.三、解答题(本题共计 10 小题,每题 10 分,共计100分)10.【答案】解:设x个人加工轴杆,(90−x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据题意得:12x×2=16(90−x),去括号得:24x=1440−16x,移项合并得:40x=1440,解得:x=36.则调配36个人加工轴杆,54个人加工轴承,才能使每天生产的轴承和轴杆正好配套.【考点】一元一次方程的应用——调配与配套问题【解析】设x个人加工轴杆,(90−x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据1根轴杆与2个轴承为一套列出方程,求出方程的解即可得到结果.【解答】解:设x个人加工轴杆,(90−x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据题意得:12x×2=16(90−x),去括号得:24x=1440−16x,移项合并得:40x=1440,解得:x=36.则调配36个人加工轴杆,54个人加工轴承,才能使每天生产的轴承和轴杆正好配套.11.【答案】解:设应用x千克紫砂泥做茶壶,(6−x)千克紫砂泥做茶杯,则4x×6=12(6−x),化简得:x=2.∴2×4=8(套).答:应用2千克紫砂泥做茶壶,4克紫砂泥做茶杯,恰好配成这种茶具8套.【考点】一元一次方程的应用——调配与配套问题【解析】设应用x千克紫砂泥做茶壶,y千克紫砂泥做茶杯,恰好配成这种茶具,根据题意列出方程组,即可解答.【解答】解:设应用x千克紫砂泥做茶壶,(6−x)千克紫砂泥做茶杯,则4x×6=12(6−x),化简得:x=2.∴2×4=8(套).答:应用2千克紫砂泥做茶壶,4克紫砂泥做茶杯,恰好配成这种茶具8套.12.【答案】解:设购买篮球x个,购买足球(60−x)个,依题意得:70x+80(60−x)=4600,即4800−10x=4600,解得x=20,60−x=60−20=40.答:购买篮球20个,购买足球40个.【考点】一元一次方程的应用——调配与配套问题【解析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60−a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:设购买篮球x个,购买足球(60−x)个,依题意得:70x+80(60−x)=4600,即4800−10x=4600,解得x=20,60−x=60−20=40.答:购买篮球20个,购买足球40个.13.【答案】解:设有x个老头,则有(x+1)个梨,由题意,得2x=x+1+2,解得x=3,x+1=4.答:有3个老头,4个梨.【考点】一元一次方程的应用——调配与配套问题【解析】设有x个老头,y个梨,根据“一人一个多一梨,一人两个少二梨”,即可得出关于x、y 的二元一次方程组,解之即可得出结论.【解答】解:设有x个老头,则有(x+1)个梨,由题意,得2x=x+1+2,解得x=3,x+1=4.答:有3个老头,4个梨.14.【答案】解:设这个班有x名学生,根据书的总量相等可得:3x+20=4x−25,解得:x=45.答:这个班有45名学生.【考点】一元一次方程的应用——调配与配套问题【解析】可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.【解答】解:设这个班有x名学生,根据书的总量相等可得:3x+20=4x−25,解得:x=45.答:这个班有45名学生.15.【答案】解:设该店有x间客房,由题意可得7x+7=9x−9,解得x=8,所以房客人数为7x+7=7×8+7=63.答:共有客房8间,房客63人.【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,由题意可得7x+7=9x−9,解得x=8,所以房客人数为7x+7=7×8+7=63.答:共有客房8间,房客63人.16.【答案】解:设每天加工的大齿轮的有x人,则每天加工的小齿轮的有(110−x)人,根据题意可得;2×16x=12(110−x),解得:x=30,则110−30=80(人).答:每天加工的大齿轮的有30人,每天加工的小齿轮的有80人.【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:设每天加工的大齿轮的有x人,则每天加工的小齿轮的有(110−x)人,根据题意可得;2×16x=12(110−x),解得:x=30,则110−30=80(人).答:每天加工的大齿轮的有30人,每天加工的小齿轮的有80人.17.【答案】解:设井深为x尺,则绳长为:3(x+5),依题意得:3(x+5)=4(x+1).解得x=11,则4(x+1)=48尺.故井深为11尺,绳长为48尺.【考点】一元一次方程的应用——调配与配套问题【解析】用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【解答】解:设井深为x尺,则绳长为:3(x+5),依题意得:3(x+5)=4(x+1).解得x=11,则4(x+1)=48尺.故井深为11尺,绳长为48尺.18.【答案】解:设该店有x间客房,则7x+7=9x−9,解得x=8.7x+7=7×8+7=63.答:共有客房8间,房客63人.【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x−9,解得x=8.7x+7=7×8+7=63.答:共有客房8间,房客63人.19.【答案】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15.2x+9=2×15+9=39(人).答:有39人,15辆车.【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15.2x+9=2×15+9=39(人).答:有39人,15辆车.。
列一元一次方程解应用题调配问题
思考2:用列表解决配套 问题要注意什么?你的困 惑和难点是什么?
试一试
(1)一个服装车间,共有90人,每人每小时加工 1件衣服或2条裤子,问怎样安排工作才能使衣服和 裤子正好配套?(一件衣服配一条裤子)
人数(人) 工效(件/人.h) 数量(件)
衣服
X
1
x
裤子
90-X
2
2(90-x)
问题2、一套仪器由一个A部件和三个B部件构成。用1立
去括号,得 44000 - 2000x = 2400x
移项,得
-2000x - 2400x = -44000
合并同类项,得 -4400x = -44000
系数化为1,得 x=10.
所以生产螺母的人数为:22-x=12(人).
答:分配10人生产螺钉,12人生产螺母.可使每天
生产的产品刚好配套。
思考1:用一元一次方程解决实
3×40X= 240(6-X)
试一试 (1)用白铁皮做罐头盒,每张铁皮可制盒身16个或
制盒底45个一个盒身与两个盒底配成一套罐头 盒.现有100张白铁皮,用多少张制盒身,多少 张制盒底,可以既使做出的盒身和盒底配套, 又能充分地利用白铁皮?
思考3:问题1与问题2的区别 和共同点是什么?
1,这节课你学会解决那类 问题的方 法?
方米钢材可做40个A部件或240个B部件。现要用6立 方米钢材制作这种仪器,应用多少钢材做A部件,多 少钢材做B部件,恰好配成这种仪器多少套?
钢材(m3) 个数(个/m3) 数量(个)
A部件
X
40
40x
B部件
6-X
240 240(6-x)
A 1 3 A 1 B
B3 3×A部件的数量 = B零件的数量
实际问题与一元一次方程(调配、配套、分配问题)
3 5
16x=
×10(66-x)
9
例题展示
2.例3.有一群鸽子和一些鸽笼,如果每个 鸽笼住6只鸽子,则剩余3只鸽子无鸽 笼可住;如果再飞来5只鸽子,连同原 来的鸽子,每个鸽笼刚好住8只鸽 子.原来多少只鸽子和多少个鸽笼?
10
变式
1种一批树,如果每人种10棵,则剩6棵 未种;如果每人种12棵,则缺6棵.有 多少人种树?
11
根据题意,得方程:
解方程得:x = 21
答:调往甲队21人。调往乙队5人。
3
变式 甲车队有50辆汽车,乙车队有41辆汽 车,如果要使乙队汽车数比甲队汽车 数的2倍还多1辆,应从甲队调多少辆 到乙车队?
4
例题展示
例1 某车间42名工人生产螺钉和螺 母,每人每天平均生产螺钉1000个 或螺母2000个,一个螺钉要配一个 螺母.为了使每天的产品刚好配套, 应该分配多少名工人生产螺钉,多 少名工人生产螺母?
1
甲队有32人,乙队有40人,现在从 甲队抽调x人到乙队,使得甲队的人 1 数是乙队人数的 ,依题意得方程 2
2
例题展示
例2.某部队开展支农活动,甲队27人,乙队19 人,现另调26人去支援,使甲队是乙队的2倍, 问应调往甲队、乙队各多少人?
解:设调往甲队x人,则调往乙队(26-x)人
27 x 219 26 x
2 螺钉的总数= 3 螺母的总数 2
1000x=
3
×2000(42-x)
7
趁热打铁
1.某服装加工车间有54人,每人每 天可加工上衣8件或裤子10条,应 怎样分配加工上衣和加工裤子的人 数,才能是每天加工的上衣和裤子 配套?
一元一次方程——调配和分配问题
一元一次方程应用题——调配和分配问题一、学习重点:调配和分配问题:1、找准调配前后的数量关系;2、找数量关系时可借助列表等形式。
需要注意人或者物品的流向,流动之后形成了一种什么样的关系,例如:从甲队调一些人去乙队,其中甲队要减去这些人,而乙队要加上这些人。
再根据题意中给的关系设未知数表示出来。
二、基础练习:1、有甲乙两个运输队,甲队32人,乙队28人,从甲调走5人到乙队,则甲队_____人,乙队____人。
2、有甲乙两个运输队,甲队32人,乙队28人,从甲调走x人到乙队,〔1〕使甲乙两队人数恰好相等,则x=______;〔2〕假设乙队人数恰好是甲队人数的2倍,则x=_____;〔3〕假设乙队人数比甲队人数的4倍还多5人,则x=_____。
例1、某厂一车间有64人,二车间有56人。
现因工作需要,需求第一车间人数是笫二车间人数的一半。
问需从第一车间调多少人到第二车间?练习:甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下來的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?做题:3、4例2、甲车队有15辆汽车,乙车队有28辆汽年,现调来10辆汽分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?练习:甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?做题:5、6例3、某班同学利用假期参加夏令营活动,分成几个小组,假设每组7人还余1人,假设每组8人还缺6人,问该班分成几个小组,共有多少名同学?练习:学校新进假设干箱教学设备,某班同学去运,假设每人运8箱,还余16箱;假设每人运9箱,还缺少32箱,这批设备共有多少箱?这个班有多少名同学?做题:7、8三、应用题: A卷3、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2倍还多1辆,应从甲车队调多少辆车到乙车队?4、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
一元一次方程应用题题型与解题方法归类
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt (2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。
(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?2、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
一元一次方程的实际问题-调运、配套、行程、工程、图表(答案)
2
4
x 400
答:A 县与 B 市之间的路程为 400 千米
(3)设 AB 的路程为 x 千米时,两种运输方式的费用相同
85 x 2400 = 53 x 1700
4
2
x 400 3
当 x< 400 时,汽车运输划算 3
当 x 400 两种运输方式费用相同 3
x> 400 时,火车运输划算 3
公司每日需付费用 1400 元,在规定的时间内:A、请甲工程队单独完成此项工程;
B、请乙工程队单独完成此项工程;C、请甲、乙两个工程队合作完成此项工程,
试问:以哪一种方案花钱最少?
解:(1) 设甲的工作效率为 x
8x+18( 1 -x)=1,解得 x= 1
12
20
∴1-1 =1
12 20 30
答:甲工程队单独完成需 20 天,乙工程队单独完成需 30 天
B. 4x 18 5x 30
C. 4x 18 5x 30
D. 4x 18 5x 30
例 3.武汉市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上银杏树,
要求路的两端各栽一棵,并且每两棵树的问隔相等.如果每隔 5 米栽 1 棵,则树
苗缺 21 棵;如果每隔 6 米栽 1 棵,则树苗正好用完.设原有树苗 x 棵,则根据
题意列出方程正确的是( A )
A.5(x+21-1)=6(x-1)
B.5(x+21)=6(x-1)
C.5(x+21-1)=6x
D.5(x+21)=6x
例 4.油桶制造厂的某车间生产圆形铁片和长方形铁片,两个圆形铁片和一个长
方形铁片可以制造成一个油桶(如图).已知该车间有工人 42 人,每
个工人平均每小时可以生产圆形铁片 120 片或者长方形铁片 80 片.
人教版七年级上册一元一次方程6大类应用题解题思路与例题
一.行程问题三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1 )相遇问题:快行距+慢行距=原距(2 )追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计) 7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。
一元一次方程应用题解题方法与归类
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)(二)行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
流水问题有如下两个基本公式:顺水速度=船速+水速(V顺=V静+V水)逆水速度=船速-水速(V顺=V静-V水)例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(三)工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(四)和差倍分问题(生产、做工等各类问题)1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
一元一次方程方案问题(分配-配套-调配-方案)
1.配套问题例1.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?例2.某车间有28个工人,生产某种螺栓和螺母,已知一个螺栓的两头各配一个螺母组成一套零件。
如果每人每天生产12个螺栓或18个螺母。
安排多少个工人生产螺栓,多少个工人生产螺母,才能使这一天生产的螺栓和螺母正好配套?例3.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢280米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?例4.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?2.分配问题例1.将若干只鸡放入若干个笼子中,若每个笼子放4只,则有1只鸡无笼可放;若每个笼子放5只鸡,则有1笼无鸡可放,试问有多少只鸡,多少个笼子?例2.用一根绳子测水泥柱一周的尺寸,若绳子绕水泥柱4周,则绳子还多3尺;若绳子绕水泥柱5周,则绳子还少2尺,求绳子及水泥柱一周的长度。
例3.在一条马路旁种树,每隔3米种一棵,到头还剩3棵树;每隔2.5米种一棵,到头还缺77棵树。
问马路有多长?树有多少棵?例4.有人在林中散步,听到几个强盗在商量怎样分抢来布匹,一名强盗说:“没人分6匹,但剩下5匹。
”另一名强盗说:“每人分7匹,可又少8匹。
”问有几个强盗几匹布?3.调配问题例1.甲、乙两盒中各放着一些球,一共有9个,如果从甲盒中拿出5个放入乙盒,乙盒的球数是甲盒的2倍。
问甲、乙两盒中原来各放着多少个球?例2.甲仓库储粮35吨,乙仓库储粮19吨,现调入粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?例3.甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?例4.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数?例5.甲、乙、丙三人同做某种零件,已知在相同的时间内,甲、乙俩的完成零件的个数比是3:4,乙、丙完成零件的个数之比是5:4,现在甲乙丙三人共做了1581个零件,问甲乙丙三人各做了多少个零件?4.方案选择例1.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?例2.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。
2020年初一数学一元一次方程的13种应用题型全解析
一、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。
列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。
二、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。
543一元一次方程的应用三调配问题
2( 96+ x ) = 432- x
解这个方程得, x=80
答:应从甲煤场运80吨煤到乙煤场
▲甲、乙两处共有煤220吨,因供给需求,要从 甲处调往乙处45吨煤,使乙处煤的吨数比甲处多 两倍,问甲、乙两处原有多少煤?
解:设甲处原有煤x吨,根据题意,得 3(x-45)=(220-x)+45 解这个方程,得x=100 ∴220-x=220-100=120
解:23+(20-x)=2(17+x)
调配问题用列表分析数量关系 是常用方法。
• 变式、学校组织植树活动,已知在甲处 植树的有23人,乙处植树的有17人,现 调20人去支援,使甲处植树的人数是乙 处植树的人数3倍,应调往甲、乙两处各 多少人? 解:设调往甲处x人,根据题意,得
23+x=3〔17+(20-x)〕
3.每年3月12日是植树节,某校在植树活动中 种了杨树和杉树两类树。已知种植杨树的棵数 比总数的一半多56棵,杉树比总数的三分之一 少14棵。两类树各种多少棵?
解:两类树共种x棵. 根据题意,得
(
1 2
x+56)+(
1 3 x-14)=x
解这个方程,得x=252
1 2
X+56=182 杉树252-182=70
——调配问题、工程问题
劳力调配应用题
问题一
例5、学校组织植树活动,已知在甲处植
树的有23人,乙处植树的有17人,现调20 人去支援,使甲处植树的人数是乙处植树 的人数2倍,应调往甲、乙两处各多少人?
例1、学校组织植树活动,已知在甲处植树的 有23人,乙处植树的有17人,现调20人去支 援,使甲处植树的人数是乙处植树的人数2倍, 应调往甲、乙两处各多少人?
七年级数学上册《列一元一次方程解应用题调配问题》教案、教学设计
3.个性化教学设想:
a.关注学生个体差异,针对不同学生的学习需求提供个性化指导。
b.鼓励学生提出自己的疑问,培养学生的批判性思维。
c.注重情感教育,鼓励学生克服困难,增强自信心。
四、教学内容与过程
(一)导入新课
1.教学内容:以学生熟悉的生活场景为背景,如学校的运动会筹备,引入调配问题。
3.培养学生的批判性思维和创新意识,鼓励学生在解决问题时提出不同的观点和方法,尊重每个学生的个性和创造性,让学生在数学学习中建立自信,形成正确的数学观。
二、学情分析
七年级的学生已经具备了一定的数学基础,掌握了一元一次方程的基本概念和解法,但在将现实问题抽象成数学模型方面仍需加强。学生对数学应用题的兴趣和信心各不相同,部分学生可能对应用题感到恐惧和困惑,需要教师耐心引导和鼓励。此外,学生在小组合作学习中,团队协作和交流表达能力有待提高。因此,本章节教学应注重激发学生的学习兴趣,加强学生对实际问题的分析指导,培养学生将现实问题转化为数学问题的能力,同时,关注学生个体差异,提供个性化指导,使每位学生都能在数学学习中得到成长和提升。
2.完成课本练习题:第5题、第6题和第7题。这三题分别涵盖了不同类型的调配问题,旨在让学生熟悉各种应用场景,提高解题技巧。
3.小组合作:请同学们以小组为单位,共同探讨以下问题:在实际生活中,还有哪些问题可以用一元一次方程来解决?请举例说明,并列出解题步骤。
4.写一篇数学日记,记录在本节课学习过程中,你是如何从实际问题中抽象出一元一次方程的?在解题过程中遇到了哪些困难?又是如何克服这些困难的?
5.预习下一节课内容:二元一次方程组的解法及应用。提前了解相关知识,为课堂学习做好准备。
七年级数学一元一次方程解应用题------配套、分配、数字问题专题练习
一元一次方程的应用------配套、分配、数字问题一、配套问题1、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?3、某车间每天能制作甲种零件500只,或者乙种零件250只,甲、乙两种各一只配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?4、制作一张桌子要用一个桌面和4条桌腿,1m的立方木材可制作20个桌面,或者制作400条桌腿,现有12m的立方木材,应怎样计划用料才能制作尽可能多的桌子?5、车间有22名工人,每人一天平均生产螺钉1200个或螺母2000个,一个螺钉配两螺母,为使每天的产品刚好配套则应该分配多少名工人生产螺钉?多少名工人生产螺母?6、一套仪器由一个A部件和三个B部件构成。
用1立方米钢材可做40个A部件或240个B 部件。
现要用6立方米钢材做这种仪器,应用多少钢材做A、B两种部件,恰好配成这种仪器多少套?7、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?8、包装厂有42人,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?9、铝片做听装饮料瓶,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?10、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?11、某车间有工人16名,每人每天可加工甲零件5个或乙零件4个,已知每加工一个甲零件可获利16元,美加工一个乙零件可获利24元,若此车间一共获利1440元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.配套问题
例 1.机械厂加工车间有85 名工人,平均每人每天加工大齿轮16 个或小齿轮10 个,已知2 个大齿轮与3 个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
例 2. 某车间有28 个工人,生产某种螺栓和螺母,已知一个螺栓的两头各配一个螺母组成一套零件。
如果每人每天生产12 个螺栓或18 个螺母。
安排多少个工人生产螺栓,多少个工人生产螺母,才能使这一天生产的螺栓和螺母正好配套?
例 3. 某厂生产一批西装,每 2 米布可以裁上衣 3 件,或裁裤子 4 条,现有花呢280 米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
例 4. 用白铁皮做罐头盒,每张铁皮可制盒身15 个,或制盒底42 个,一个盒身与两个盒底配成一套罐头盒,现有108 张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?
2. 分配问题
例 1. 将若干只鸡放入若干个笼子中,若每个笼子放 4 只,则有 1 只鸡无笼可放;若每个笼子放5只鸡,则有 1 笼无鸡可放,试问有多少只鸡,多少个笼子?
例 2. 用一根绳子测水泥柱一周的尺寸,若绳子绕水泥柱 4 周,则绳子还多 3 尺;若绳子绕水泥柱 5 周,则绳子还少 2 尺,求绳子及水泥柱一周的长度。
例
3. 在一条马路旁种树,每隔3 米种一棵,到头还剩3 棵树;每隔2.5 米种一棵,到头还缺77 棵树。
问马路有多长?树有多少棵?
例 4. 有人在林中散步,听到几个强盗在商量怎样分抢来布匹,一名强盗说:“没人分6匹,但剩下5匹。
”另一名强盗说:“每人分7 匹,可又少8匹。
” 问有几个强盗几匹布?
3.调配问题
例 1. 甲、乙两盒中各放着一些球,一共有9 个,如果从甲盒中拿出 5 个放入乙盒,乙盒的球数是甲盒的 2 倍。
问甲、乙两盒中原来各放着多少个球?
例 2.甲仓库储粮35 吨,乙仓库储粮19 吨,现调入粮食15 吨,应分配给两仓
库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?
例 3.甲车队有50 辆汽车,乙车队有41 辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?
例 4. 甲、乙两车间各有工人若干,如果从乙车间调100 人到甲车间,那么甲车间的人数是乙车间剩余人数的 6 倍;如果从甲车间调100 人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数?
例 5. 甲、乙、丙三人同做某种零件,已知在相同的时间内,甲、乙俩的完成零件的个数比是3:4,乙、丙完成零件的个数之比是5:4,现在甲乙丙三人共做了1581 个零件,问甲乙丙三人各做了多少个零件?
4. 方案选择
例 1.已知:我市出租车收费标准如下:乘车里程不超过 2 公里的一律收费 2 元;乘车里程超过 2 公里的,除了收费 2 元外超过部分按每公里 1.4元计费.
(1)如果有人乘出租车行驶了x 公里(x>2),那么他应付多少车费?(列代数式,不化简)(2)某游客乘出租车从客运中心到三星堆,付了车费10.4 元,试估算从客运中心到三星堆大约有多少公里?
例 2. 我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为
1000 元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500 元。
当地一家农工商企业收购这种蔬菜140 吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16 吨,如果进行细加工,每天可以加工 6 吨,但两种加工方式不能同时进行。
受季节条件限制,企业必须在15 天的时
间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15 天。
你认为哪种方案获利最多?为什么?
例 3. 牛奶加工厂现有鲜奶8 吨,若在市场上直接销售鲜奶(每天可销售8 吨),每吨可获利润500元;制成酸奶销售,每加工 1 吨鲜奶可获利润1200 元;制成奶片销售,每加工 1 吨鲜奶可获利润2000 元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工 1 吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在 4 天内全部销售或加工完毕.
请你帮牛奶加工厂设计一种方案,使这8 吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润?
例 4.某市剧院举办大型文艺演出,其门票价格为:一等席300 元/人,二等席200 元/人,三等席150 元/人, 某公司组织员工36 人去观看,计划用5850 元购买 2 种门票,请你帮助公司设计可能的购票方案。
例 5. 有一些相同的房间需要粉刷,一天 3 名师傅去粉刷8 个房间,结果其中有40m2 墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。
每名师傅比徒弟一天多刷30m2 的墙面。
(1)求每个房间需要粉刷的墙面面积;
(2)张老板现有36 个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?(3)已知每名师傅,徒弟每天的工资分别是85 元,65 元,张老板要求在3天内完成,问如何在这8 个人中雇用人员,才合算呢?
3、通过活动,使学生养成博览群书的好习惯。
B比率分析法和比较分析法不能测算出各因素的影响程度。
V
C采用约当产量比例法,分配原材料费用与分配加工费用所用的完工率都是一致的。
X
C采用直接分配法分配辅助生产费用时,应考虑各辅助生产车间之间相互提供产品或劳务的情况。
错C产品的实际生产成本包括废品损失和停工损失。
V
C成本报表是对外报告的会计报表。
X
C成本分析的首要程序是发现问题、分析原因。
X
C成本会计的对象是指成本核算。
X
C成本计算的辅助方法一般应与基本方法结合使用而不单独使用。
V
C成本计算方法中的最基本的方法是分步法。
X
D当车间生产多种产品时,废品损失” 停工损失”的借方余额,月末均直接记入该产品的产品成本中。
X
D 定额法是为了简化成本计算而采用的一种成本计算方法。
X
F废品损失”账户月末没有余额。
V
F废品损失是指在生产过程中发现和入库后发现的不可修复废品的生产成本和可修复废品的修复费用。
X F分步法的一个重要特点是各步骤之间要进行成本结转。
(V)
G各月末在产品数量变化不大的产品,可不计算月末在产品成本。
错
G工资费用就是成本项目。
(X )
G归集在基本生产车间的制造费用最后均应分配计入产品成本中。
对
J计算计时工资费用,应以考勤记录中的工作时间记录为依据。
(V)
J简化的分批法就是不计算在产品成本的分批法。
(X)
J简化分批法是不分批计算在产品成本的方法。
对
J加班加点工资既可能是直接计人费用,又可能是间接计人费用。
V
J接生产工艺过程的特点,工业企业的生产可分为大量生产、成批生产和单件生产三种,X
K可修复废品是指技术上可以修复使用的废品。
错
K可修复废品是指经过修理可以使用,而不管修复费用在经济上是否合算的废品。
X
P品种法只适用于大量大批的单步骤生产的企业。
X
Q企业的制造费用一定要通过制造费用”科目核算。
X
Q企业职工的医药费、医务部门、职工浴室等部门职工的工资,均应通过应付工资”科目核算。
X S生产车间耗用的材料,全部计入直接材料”成本项目。
X
S适应生产特点和管理要求,采用适当的成本计算方法,是成本核算的基础工作。
(X )
W 完工产品费用等于月初在产品费用加本月生产费用减月末在产品费用。
对
丫预提费用”可能出现借方余额,其性质属于资产,实际上是待摊费用。
对
Y引起资产和负债同时减少的支出是费用性支出。
X 丫以应付票据去偿付购买材料的费用,是成本性支出。
X
丫原材料分工序一次投入与原材料在每道工序陆续投入,其完工率的计算方法是完全一致的。
X
丫运用连环替代法进行分析,即使随意改变各构成因素的替换顺序,各因素的影响结果加总后仍等于指标的总差
异,因此更换各因索替换顺序,不会影响分析的结果。
(X)
Z在产品品种规格繁多的情况下,应该采用分类法计算产品成本。
对
Z 直接生产费用就是直接计人费用。
X
Z逐步结转分步法也称为计列半成品分步法。
V
A 按年度计划分配率分配制造费用,“制造费用”账户月末(可能有月末余额/ 可能有借方余额/ 可能有贷方余额/ 可能无月末余额)。
A 按年度计划分配率分配制造费用的方法适用于(季节性生产企业)。