高数函数极限方法总结
高数求极限运算法则
高数求极限运算法则极限(Limit)是高等数学中非常重要的数学概念,是对函数在某一特定变量无穷接近某个值的概念,是理解微积分及其它研究的基础。
极限的求取是高数教学的重要内容,它不仅提高了学生的数学思维能力,还有助于培养其创新能力。
因此,高数求极限的运算法则的掌握就显得尤为重要。
一、定义极限又称无穷小,是指分母函数值趋近于无穷小,且分子函数值恒不变时,分母函数不变时其商函数极限,记作:$$lim_{xto a}f(x)=L$$其中$xto a$(x逼近a)表示x不断逼近a,当$xto a$时,$f(x)=L$。
二、极限的计算1、无穷小的消去法即在极限的运算中,若分母中出现无穷小,可让其消去,即$lim_{xto a}f(x)=f(a)$,$f(a)$为极限值。
2、无穷大的消去法即若极限运算中出现无穷大,首先判断一下分子和分母的大小,根据大小将分母合理改写,使无穷大可以化简消去,然后将合理改写后的分母和分子相除,得到极限的值。
3、积分型极限计算法则即若函数形式为$frac{f(x_0)+f(x_1)+f(x_2)+cdots+f(x_n)}{x_0+x_1+x_2+cdots+x_n}$,此时函数的极限可以用随机积分法求出。
4、指数函数极限计算法则即若函数形式为$a^x$,其中a为任意正数,当$xto infty$时极限值为无穷大;当$xto -infty$时极限值为0。
5、三角函数极限计算法则即当函数形式为$sin x$或$cos x$等三角函数的极限时,可以运用三角恒等公式,将它们改写成有限值表达式,求出其极限值。
6、指数型函数极限计算法则即当函数形式为$a^x$,其中a为任意正数,此时函数的极限可以用对数函数法求出,其计算方法是将该函数改写成对数函数形式,再用极限运算法则加以求解。
三、总结1、极限定义:极限是指函数在某一特定变量无穷接近某个值的概念,记作:$$lim_{xto a}f(x)=L$$2、求极限的方法:包括无穷小的消去法、无穷大的消去法、积分型极限计算法则、指数函数极限计算法则、三角函数极限计算法则、指数型函数极限计算法则等,其中各种方法有其特色,使用了正确的方法可以满足不同的求解要求。
考研高数求极限的方法总结
考研高数求极限的方法总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--考研高数求极限的方法总结这是一篇由网络搜集整理的关于2017考研高数求极限的方法总结的文档,希望对你能有帮助。
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
高数中求极限的16种方法
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高数部分知识点总结
高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
高数极限证明方法
高数极限证明方法在高等数学中,极限是一个十分重要的概念。
极限是函数趋于某个点或无穷时的一种特殊情况,它能够描述函数在该点的局部特性,如连续性、可导性等。
在证明高数极限的过程中,有一些基本的方法和原则可以被应用。
首先,我们先来看一下高数中的一些极限基本定理,它们是证明极限的基础:1.极限的唯一性定理:如果函数f(x)的极限存在,则该极限是唯一的。
也就是说,一个函数只能趋于一个极限。
2.有界收敛定理:如果一个函数在某个点a 的某个去心领域中有界且有极限,那么这个函数在该点必然有极限。
3.夹逼定理:如果对于所有的x∈X,都有g(x)≤f(x)≤h(x),并且g(x)和h(x)的极限都为L,那么f(x)的极限也为L。
4.极限的四则运算法则:如果函数f(x)和g(x)在点a处有极限,那么它们的和、差、积以及商(只要g(a)≠0)在该点也有极限,并且极限值等于对应的运算。
掌握了以上基本定理后,我们可以运用以下几种证明方法来证明高数中的极限问题:1.ε-δ方法:这是一种直接证明的方法,通过选取合适的δ,使得当0<|x-a|<δ时,相应地有|f(x) - L| <ε,其中ε为一个正数。
该方法常用于连续函数的极限证明。
2.夹逼法:当无法直接计算函数的极限时,我们可以使用夹逼法来确定极限值。
夹逼法的关键是找到两个已知函数,使得它们的极限都等于L,并且函数f(x)一直被这两个函数夹在中间。
3.断点法:当函数在某个点a处无极限时,我们可以考虑将该点变成一个极限点,并引入无穷大或无穷小,从而计算出极限。
此时,我们需要观察并分析函数在该点的性质,如左极限和右极限是否存在。
4.局部性质法:当要证明函数在某个点a处有极限时,我们可以先观察该点的局部性质,如连续性、可导性等,然后利用这些性质推导出极限。
总结一下,证明高数极限时,我们可以采用ε-δ方法来直接证明,也可以用夹逼法来确定极限值,还可以使用断点法来处理无极限的情况,最后可以利用函数的局部性质来推导极限。
2-4高数极限运算法则
[ f ( x) g( x)] ( A B) 0. (1)成立.
[ f ( x) g( x)] ( A B) ( A )(B ) AB
例5
求
lim
x
2x3 7x3
3x2 4x2
5 1
.
(型)
解 x 时, 分子,分母的极限都是无穷大.
先用x 3去除分子分母 , 分出无穷小, 再求极限.
lim
x
2x3 7x3
3x2 4x2
ห้องสมุดไป่ตู้ 1
2 lim
x
7
3 x 4 x
5 x3 1 x3
2. 7
二、求极限方法举例
例1
求
lim
x2
x2
x3 1 3x
5
.
解 lim( x 2 3x 5) lim x 2 lim 3x lim 5
x2
x2
x2
x2
(lim x)2 3 lim x lim 5
x2
x2
x2
22 3 2 5 3 0,
令 u (x) a lim ( x)
x x0
lim f (u)
ua
例8
求
lim
xa
3
3
x3 a xa
.
解: 原式 lim
x a3 (x a)2
xa x a (3 x2 3 ax 3 a2 )
高数中求极限的16种方法
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高数中求极限的16种方法
千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
高数常用极限结论
高数常用极限结论高等数学中的极限是一个重要的概念,常常在各个数学领域中应用。
在学习高等数学时,我们经常会遇到一些常用的极限结论。
本文将介绍一些常见的高数极限结论,并对其应用做一些简单的说明。
1. 极限的唯一性:如果一个函数在某点存在极限,那么该极限是唯一的。
这个结论告诉我们,在计算极限时,我们可以放心地使用不同的方法,只要得到的极限是相同的,就可以认为是正确的。
2. 极限的四则运算:如果两个函数在某点都存在极限,那么它们的和、差、积、商的极限也存在,并且可以通过已知函数的极限来计算。
这个结论在计算复杂函数的极限时非常有用,可以简化计算过程。
3. 极限的保号性:如果一个函数在某点存在极限,并且极限大于(或小于)零,那么在该点附近,函数的取值也大于(或小于)零。
这个结论在研究函数的正负性质时非常有用,可以帮助我们判断函数在某点附近的取值情况。
4. 极限的夹逼定理:如果一个函数在某点附近被两个函数夹住,并且这两个函数的极限相等,那么该函数在该点也存在极限,并且极限等于这两个函数的极限。
这个结论在计算一些复杂函数的极限时非常有用,可以将其转化为已知函数的极限来计算。
5. 无穷小的性质:如果一个函数在某点存在极限,并且极限等于零,那么该函数在该点附近的取值都非常接近零,可以看作是无穷小。
这个结论在研究函数在某点的光滑程度时非常有用,可以帮助我们判断函数在该点的变化情况。
6. 极限的收敛性:如果一个函数在某点附近有界,并且存在一个数列趋于该点,那么该函数在该点存在极限。
这个结论在研究一些复杂函数的极限时非常有用,可以通过找到趋于该点的数列来计算极限。
7. 极限的换元法:如果一个函数在某点存在极限,并且通过某个函数进行换元后,可以得到另一个函数的极限,那么原函数也存在极限,并且极限相等。
这个结论在计算复杂函数的极限时非常有用,可以通过换元简化计算过程。
8. 极限的级数展开:如果一个函数在某点附近可以展开成幂级数,那么该函数在该点存在极限,并且极限等于幂级数的和。
高数求极限的方法小结
解令 ,则原式 ,
所以在 时, 与 等价,因此,原式 .
[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]
高等数学中求极限的方法小结
2.求极限的常用方法
2.1利用等价无穷小求极限
#这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3]
例36 ,求 .
解 .
例37若函数 有连续二阶导数且 , , ,
则 .
A:不存在B:0 C:-1D:-2
解 .
所以,答案为D.
例38若 ,求 .
解
.
2.16利用连续性求极限[1]
例39设 在 处有连续的一阶导数,且 ,求 .
解原式
.
2.17数列极限转为函数极限求解
数列极限中是 趋近,而不是 趋近.面对数列极限时,先要转化成求 趋近情况下的极限,当然 趋近是 趋近的一种情况而已,是必要条件.(还有数列极限的 当然是趋于正无穷的).[1]
(1)定积分中值定理:如果函数 在积分区间 上连续,则在 上至少有一个点,使下列公式成立: ;
(2)设函数 在区间 上连续,取 ,如果极限 存在,则称此极限为函数 在无穷区间 上的反常积分,记作 ,即 ;
设 在区间 上连续且 ,求以曲线 为曲线,底为 的曲边梯形的面积 ,把这个面积 表示为定积分: 的步骤是:
首先,用任意一组的点把区间 分成长度为 的 个小区间,相应地把曲线梯形分成 个窄曲边梯形,第 个窄曲边梯形的面积设为 ,于是有 ;
其次,计算 的近似值 ;
高数极限1-6
∴ ( 2)成立.
f ( x ) A A + α A Bα − Aβ − = Q B α − A β → 0. − = g ( x ) B B + β B B( B + β )
又 Q β → 0, B ≠ 0, ∃ δ > 0, 当0 < x − x 0 < δ时,
1 1 B β < , ∴ B+β ≥ B − β > B − B = B 2 2 2
一、极限运算法则: 极限运算法则
定理1 在同一过程中,有限个无穷小的代数和仍是 定理 在同一过程中 有限个无穷小的代数和仍是 无穷小. 无穷小 注意 无穷多个无穷小的代数和未必是无穷小. 无穷多个无穷小的代数和未必是无穷小.
1 是无穷小, 例如, n → ∞时, 是无穷小, n
1 但 n个 之 和 为 1 不 是 无 穷 小 . n
u →a
则复合函数 f [φ ( x)] 当 x → x0 时的极限也存在,且
x → x0
lim f [φ ( x)] = lim f (u ) = A.
u →a
意义: 意义:x → 源自0lim f [ϕ ( x )]
令u = ϕ(x)
a = limϕ(x)
x→x0
lim f ( u)
u→a →
二、求极限方法举例
xm − xn 7、 lim m x →1 x + xn − 2
练习题答案
-5; 一、1、-5; 5、 5、0; 二、1、2; 1 5、 5、 ; 2 2、 2、3; 6、 6、0; 2、 2、 2 x ; 6、 6、0; 3、 3、2;
1 7、 7、 ; 2 3、-1; 3、-1; m−n 7、 7、 . m+n 1 4、 4、 ; 5 3 30 8、 8、( ) . 2 4、-2; 4、-2 ;
高数函数的极限知识点
高数函数的极限知识点一、极限的定义1. 数列极限数列 $\{a_n\}$ 极限为 $L$,记作 $\lim_{n \to \infty} a_n = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正整数 $N$,使得当 $n > N$ 时,不等式 $|a_n - L| < \epsilon$ 成立。
2. 函数极限函数 $f(x)$ 当 $x \to c$ 时的极限为 $L$,记作 $\lim_{x \to c} f(x) = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正数 $\delta$,使得当 $0 < |x - c| < \delta$ 时,不等式 $|f(x) - L| < \epsilon$ 成立。
二、极限的性质1. 唯一性如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} f(x) = M$ 都成立,则 $L = M$。
2. 局部有界性如果 $\lim_{x \to c} f(x) = L$,则 $f(x)$ 在 $c$ 的某个邻域内有界。
3. 局部保号性如果 $\lim_{x \to c} f(x) = L$ 且 $L > 0$,则存在 $c$ 的一个邻域,使得在这个邻域内 $f(x) > 0$。
三、极限的计算1. 极限的四则运算如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} g(x) = M$ 都存在,则:- $\lim_{x \to c} [f(x) + g(x)] = L + M$- $\lim_{x \to c} [f(x) - g(x)] = L - M$- $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M$- $\lim_{x \to c} [f(x) / g(x)] = L / M$,当 $M \neq 0$。
大一高数极限知识点笔记
大一高数极限知识点笔记一、基本概念:在数学中,极限是描述一个数列或者函数在逼近某一数值时的行为的概念。
在大一高数中,我们将会学习一些基本的极限知识点,让我们一起来看一看吧!1. 数列的极限数列的极限是指当n趋近于无穷大时,数列的项趋于某个常数L。
即当n趋近于无穷大时,数列的项与L的差趋近于零。
2. 函数的极限函数的极限是指当自变量x趋近于某个数a时,函数的值趋于某个常数L。
即当x趋近于a时,函数f(x)与L的差趋近于零。
二、常见的极限计算方法:在计算极限时,我们常常使用以下几种方法:1. 代入法对于一些简单的函数,在计算极限时我们可以直接将自变量的值代入函数中,得到极限的结果。
2. 分式的化简当函数为分式形式时,我们可以通过化简分式的形式,将其化为更简单的形式来计算极限。
3. 极限的性质极限具有一些基本的运算性质,比如极限的和、差、积、商的性质,我们可以利用这些性质来计算复杂函数的极限。
4. 夹逼定理夹逼定理是一种常用的极限计算方法,它的核心思想是通过找到两个函数夹住待求函数,并且这两个函数的极限相同,从而得到待求函数的极限。
三、常见的极限公式:在计算极限时,我们还可以利用一些常见的极限公式来简化计算,以下是一些常见的极限公式:1. 基本的极限公式- lim(x→0) sin(x)/x = 1- lim(x→∞) (1+1/x)^x = e2. 无穷小与无穷大的极限- lim(x→0) a^x - 1/x = ln(a)- lim(x→0) (1+x)^(1/x) = e3. 三角函数的极限- lim(x→0) (1-cos(x))/x^2 = 1/2- lim(x→0) (sin(x))/x = 1四、总结:通过学习大一高数的极限知识点,我们可以更好地理解数列和函数的极限行为,从而为后续的数学学习打下坚实的基础。
通过掌握极限的基本概念、常见的计算方法以及公式,我们可以更加高效地求解各种复杂的极限题目。
高数数学极限总结资料
高数数学极限总结资料一、定义:极限(limit)是高等数学中一个重要的概念,不管在何时何地,几乎所有的数学定理和实际应用中,都离不开极限的概念,极限的概念的出现,使得很多以前被认为无解的数学问题,得以有效解决。
二、速率极限:速率极限(Rate of Change Limit)是讨论函数变化率(rate of change)时使用的概念。
它指的是一个函数当它处于极限状态时,其变化率(rate of change)会几乎接近于零。
可以说,函数的某个点处的变化率越接近零,则函数处于越接近极限的状态。
速率极限是解决常微分方程的关键,可帮助理解函数的变化率是如何随着自变量的变化而变化的。
三、双边极限:双边极限是在一个定义域中植入一个“小数字”,使得函数趋近某个可观察值。
双边极限定义了曲线就在“极限值”上,即曲线非常接近这一“极限值”。
双边极限可以用来判断函数是否连续,可以用来判断两个函数是否相等、是否存在封闭集等。
双边极限也是解决无穷积分问题的关键。
四、无穷大极限:无穷大极限(infinity limit)是当函数在某一方向上的取值不断增加时,函数的值会几乎趋近于正无穷大或负无穷大,也可以把无穷大极限看做是一个函数在相应方向上的“极限值”。
无穷大极限的发现,使得很多以前无法解决的极大(或极小)量问题得以解决,是极限理论及应用取得巨大成就的基础。
五、极限定理:极限定理(Limit Theorem)是数学分析中,极限理论的更深层次的一个定义。
它是指当一个数序中的每一项都趋近于某个数时,其和也会趋近于这个数。
极限定理的宗旨是使数位的总和趋近于一数值,从而使所有数都趋近于此数值。
在微积分中,极限定理对许多定理,如泰勒公式、极大值定理等初步思想,均有重要作用。
高数上册归纳公式篇(完整)
精心整理公式篇目录一、函数与极限1.常用双曲函数2.常用等价无穷小3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式2.n阶导数公式3.4.参数方程求导公式5.微分近似计算三、微分中值定理与导数的应用1.一阶中值定理2.高阶中值定理3.部分函数使用麦克劳林公式展开4.曲率四、定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、不定积分1.利用定积分计算极限2.积分上限函数的导数3.牛顿-4.三角相关定积分5.6.1.2.3.七、微分方程1.可降阶方程2.变系数线性微分方程3.常系数齐次线性方程的通解4.二阶常系数非齐次线性方程(特定形式)的特解形式5.特殊形式方程(选)一、函数与极限1.常用双曲函数(sh(x).ch(x).th(x))2.常用等价无穷小(x→0时)3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式(凡是“余”求导都带负号)2.n 阶导数公式特别地,若n =λ3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较函数的0阶导数可视为函数本身4.参数方程求导公式5.微分近似计算(x ∆很小时)(注意与拉格朗日中值定理比较)常用:(三、微分中值定理与导数的应用1.一阶中值定理()(x f 在],[b a 连续,),(b a 可导)罗尔定理(端点值相等()(f a f =拉格朗日中值定理柯西中值定理(0)('≠x g ≠0)2.)n R 为余项(ξ在x 和0x 之间)令00=x ,得到麦克劳林公式3.部分函数使用麦克劳林公式展开(皮亚诺型余项)4.曲率四、不定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、定积分1.利用定积分计算极限2.积分上限函数的导数推广得3.牛顿-莱布尼茨公式和积分中值定理(1)牛顿-莱布尼茨公式(微积分基本公式)(2)积分中值定理函数)a上可积[bf在],(x,a上的平均值f在][b(xf称为))(ξ4.三角相关定积分三角函数系的正交性5.典型反常积分的敛散性(1)无穷限的反常积分推论1(2)瑕积分(无界函数的反常积分)推论2Convergence:收敛,Divergence:发散6.Γ函数(选)(1)递推公式:推论:(2)欧拉反射公式(余元公式)六、定积分的应用1.平面图形面积(1)直角坐标:由曲线0ax==,y及x)(≥=xf(2)极坐标:ρ=有曲线(φ2.体积(1)绕x(2)平行截面(与x轴垂直)面积为)(xA3.弧微分公式(1)直角坐标:(2)极坐标:七、微分方程1.可降阶方程(1))()(x f y n =型n 次积分得(2))',("y x f y =型作换元'y p =得),('p x f p =得通解),(1C x p ϕ=则21),(C dx C x y +=⎰ϕ(3))',("y y f y =型作换元'y p =,),(,"p y f dxdp p dx dp p dx dp y ===得通解dx dy C y p ==),(1ϕ 则21),(C x C y dy +=⎰ϕ 2.变系数线性微分方程(1)一阶线性微分方程:)()('x Q y x P y =+对应齐次方程:0)('=+y x P y 原方程)()('x Q y x P y =+的通解为(2)0)(')(1=+++-y x P y x P n n若(),(21x y x y n 个线性无关解)()()(22x y C x y C x n n +++若)(*x y 为非齐次方程的一个特解则非齐次方程的通解为)(*)(x y x Y y +=3.常系数齐次线性方程的通解(1)二阶方程0"=++q py y特征方程为02=++q pr r①0>∆,两个不等实根a b r a b r 2,221∆+-=∆--=通解为x r x r e C e C y 2121+=②0=∆,两个相等实根221p r r -== 通解为x r e x C C y 1)(21+=③0<∆,一对共轭复根2,2,,21∆-=-=-=+=βαβαβαp i r i r通解为)sin cos (21x C x C e y x ββα+=(2)高阶方程0'1)1(1)(=++++--y p y p y p y n n n n 特征方程为0111=++++--n n n n p r p r p r 对于其中的根r 的对应项①实根r一个单实根:rx Ce一个k 重实根:rx k k C x C C (121-+++②复根i r βα±=2,1一对单复根:cos (21C x C e x βα+一对k 重复根]sin )(cos )1211x x D x D D x x C k k k k ββ--+++++ 4.)的特解形式 '"qy py y =++02=++q pr r (1))()(x P e x f m x λ=)(x P m 为x 的m 次多项式 特解形式为x m k e x Q x y λ)(*=)(x Q m 是x 的m 次多项式(2)]sin )(cos )([)()2()1(x x P x x P e x f n l x ωωλ+=)(),()2()1(x P x P n l 分别为x 的n l ,次多项式 特解形式为x m m k e x x R x x Q x y λωω]sin )(cos )([*+= },max{n l m =,)(),(x R x Q m m 为x 的m 次多项式记i z ωλ+=5.特殊形式方程(选)(1)伯努利方程n y x Q y x P dxdy )()(=+(1,0≠n ) 令n y z -=1,dxdy y n dx dz n--=)1( 得通解),(C x z ϕ=(2)欧拉方程作变换t e x =或x t ln =,记dtd D = 将上各式代入原方程得到此为常系数线性微分方程 可得通解),,,,(21n C C C t y ϕ= 即可得原方程通解),,,,(21n C C C x y Φ=。
高数极限求解方法
高数极限求解方法极限是数学中一个重要的概念,它在微积分和其他数学领域中都有广泛的应用。
对于学习高等数学的学生来说,掌握好极限的求解方法是至关重要的。
本文将介绍一些常见的高等数学极限求解方法,帮助读者更好地理解和运用这一概念。
1. 极限的定义在介绍具体的求解方法之前,先来回顾一下极限的定义。
在数学中,当自变量趋于某个特定值时,函数的取值趋于某个确定的值,这个确定的值就称为极限。
一般用符号$\\lim_{x \\to a} f(x) = L$表示。
2. 重要极限求解方法2.1 代入法代入法是求解极限中最基础、最直观的方法之一。
当函数在某一点未定义,或者无法直接计算极限时,可以尝试通过代入法来解决。
即可将自变量代入函数中进行计算,得到极限值。
2.2 因式分解法在某些情况下,可以通过因式分解的方法来简化极限的求解过程。
将函数进行因式分解后,往往能够更容易地计算极限值。
2.3 洛必达法则洛必达法则是一种常用的极限求解方法,适用于求解$\\frac{0}{0}$或$\\frac{\\infty}{\\infty}$形式的极限。
通过对函数的导数进行比较来确定极限值。
2.4 三角函数化简法当遇到包含三角函数的极限问题时,可以尝试通过将三角函数化简为简单形式来解决。
常用的化简技巧包括倍角公式、和差化积公式等。
2.5 泰勒展开法泰勒展开法是一种高阶近似求解方法,通过将函数在某一点处展开成无穷级数,利用展开式的有限项来逼近函数在该点的极限值。
3. 实例分析下面通过几个具体的实例来演示以上介绍的极限求解方法:3.1 代入法计算$\\lim_{x \\to 2} (x^2 - 4)$。
直接将x代入函数得到$\\lim_{x \\to 2} (x^2 - 4) = 0$。
3.2 洛必达法则计算$\\lim_{x \\to 0} \\frac{e^x - 1}{x}$。
利用洛必达法则,对分子和分母同时求导,得到$\\lim_{x \\to 0} \\frac{e^x - 1}{x} = 1$。
大学数学如何求极限
高数求极限的方法⒈利用函数极限的四则运算法则来求极限定理1①:假设极限)(lim 0x f x x →和)(lim x g xx →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[])()()()(lim lim lim 0.0x g x f x g x f x x x x x →→→±=±②[])()()()(lim lim lim 0x g x f x g x f x x x x x x →→→⋅=⋅又假设0)(lim 0≠→x g x x ,则)()(x g x f 在0x x →时也存在,且有 )()()()(limlim lim 0x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如∞∞、00等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。
例1:求2422lim ---→x x x解:原式=()()()02222lim lim22=+=-+---→→x x x x x x⒉用两个重要的极限来求函数的极限①利用1sin lim=→xxx 来求极限 1sin lim 0=→x xx 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有()()1sin lim 0=→x g x g x x 或()()1sin lim =∞→x g x g x例2:xxx -→ππsin lim解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim==-→→t tx x t x ππ例3:求()11sin 21lim --→x x x解:原式=()()()()()()()211sin 1111sin 122121lim lim =--⋅+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)11(lim 来求极限e x x =+∞→)11(lim 的另一种形式为e =+→ααα1)1(lim .事实上,令.1x =α∞→x .0→⇔α所以=+=∞→x x x e )11(lim e =+→ααα10)1(lim例4: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lim e x x xx x =⎥⎦⎤+⋅⎢⎣⎡+→利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。
高数第一章函数与极限知识点总结
1.2.1 数列极限的定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2
数列的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7.2
...................................... 5
1.7.3
定 ......................................... 5
1.8 函数的
与
...................................... 5
1.8.1 函数的
映射的定义
映射 g
映射的
g 的值域 Rg
f f 的定
1
义域
Rg ∈ D f
则
映射 g f 的
义
g◦ f
义
义
映射 f ◦ g 与 g ◦ f
映射 的 f ◦g f ◦g 与 g◦ f
1.1.2 函数
函数的概念
定义 1.4. 设数集 D ∈ R,则称映射 f : D → R 为定 义在 D 上的函数,通常简记为 y = f (x),x ∈ D, 其中 x 称为自变量,y 称为因变量,D 称为定义 域,记作 D f , 即 D f = D。
). 如果
lim f (x) = a
x→x0
且 a > 0(或 a < 0), 所以 ∃(正整数 N), 当 n > N, 都有 xn > 0(或 xn < 0).
高数讲义第一章第三节 函数的极限
问题: 的选取仅与 有关,与自变量 x 无关。
例3 证明: lim x2 4 . x2
请思考:为什么能这样? 为什么要这样?
证 f ( x) A x2 4 ( x 2)( x 2)
又 x 2, 不妨设 1 < x < 3, 则有 | x 2 | 5
x2 4 ( x 2)( x 2) 5 | x 2 |
总存在着正数 X ,使得对于适合不等式 x X 的一切 x, 所对应的函数值 f ( x)都满足不等式
f (x) A , 那末常数 A就叫函数 f ( x)当 x 时的极限,记作
lim f ( x) A 或 f ( x) A(当x )
x
" X"定义 lim f ( x) A x 0,X 0,使当x X时, 恒有 f ( x) A .
x0 x x0
定义: 0, 0,使当 x0 x x0 时, 恒有 f (x) A .
记作 lim f ( x) A 或 x x0
f ( x0 ) A.
定理 : lim x x0
f (x)
A
f ( x0 )
f ( x0 )
A.
例6 验证 lim x 不存在. x0 x
x
|x|
取X
1,
则当 x X时恒有 sin x 0 , 故 lim sin x 0.
x
x x
定义 : 如果 lim f ( x) c,则直线 y c 是函数 y f ( x)
x
的图形的水平渐近线.
例2 证明 lim ( 1 )x 0. x 2
y (1)x a
证 (1)x 0 (1)x
第三节 函数的极限
• 一、函数极限的定义 • 二、函数极限的性质 • 三、小结
高数求极限的方法总结
高数求极限的方法总结
求极限的方法总结如下:
1. 代入法:将极限中的变量代入函数中进行计算,看是否能得到确定的值。
2. 夹逼定理:当函数夹在两个其他已知函数之间时,如果这两个函数的极限相等,则函数的极限也相等。
3. 幂指函数的极限:根据函数的幂指形式,分别考虑底数和指数的极限。
4. 分子分母除以最高幂次项:将分子和分母都除以最高幂次项,可以简化计算,并得到函数的极限。
5. 极限的四则运算法则:对于四则运算中的极限,可以将它们分别计算求得极限,然后应用四则运算法则得到最终结果。
6. 奇偶函数的极限:奇函数的极限可表示为对称轴两侧的函数极限之和,偶函数的极限可表示为对称轴两侧的函数极限相等。
7. 自然对数的极限:自然对数的极限是1。
8. e的极限:e是一个常数,其极限是e。
9. 无穷小量的极限:无穷小量的极限为0。
10. 级数的极限:当级数的通项趋于0,且满足柯西准则时,级数收敛。
请注意,在应用这些方法时,需要注意条件的合理性和适用范围,并进行必要的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(来消掉中间的大多数) (对付的还是数列极限) 可以使用待定系数法来拆分化简函数
16、用罗必塔法则求极限(上下分别 求导)
【注】许多变动上显的积分表示的极限,常用罗必塔法则求解 LHopital 法则、洛必达法则 (所以面对数列极限时候先要转化成 求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必 要条件 ) (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无 穷!) (导数存在、极限存在) (必须是 0比0 无穷大比无穷大) (当然还要注意分母不能为0 ) 0乘以无穷 无穷减去无穷 ( 应为无穷大与无穷小成倒数的关系) 0 的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就 能把幂上的函数移下来了, 就是写成0与无穷的形式了 ,
17、对数恒等式、幂指函数
limf (x)g(x)
18、利用Taylor公式求极限
泰勒展开式公式 (含有e的x次方的时候 ,尤 其是含有正余弦的加减的时候要特别注意E
2
【说明】 (1) 等价无穷小量代换,只能代换极限式中的因式; (2)此方法在各种求极限的方法中应作为首选。 (3)只能在乘除时使用,但是不是说一定在加减的时候不能 用,但是前提要证明拆分后极限依然存在。
7、换元法、扩大
一.如果数列{Xn},{Yn}及{Zn}满足下列条件: (1)从某项起,即当n>n。,其中n。∈N,有Yn≤Xn≤Zn。 (n=n。+1,n。
先凑出1,再凑
1 X
,最后凑指数部分。
6.等价无穷小代换法 x 0 x ~ s x ~ t i x ~ a n a x n ~ r a c x ~ r l 1 s c n x ) ~ ei x t ( 1n an
1co x~s1x2,1abx1~abxa∧x—1~xlna(a是固定的,x是变量)
4.有限个无穷大之积是无穷大 5.无穷大与有界函数之和是无穷大,之积不一定 6.同号无穷大之和是无穷大
11、极限的四则运算性质
12、利用单侧极限
12、函数极限的定义
设函数f(x)在点x。的某一去心邻域内有定义,如果存在 常数A,对于任意给定的正数ε(无论它多么小),总存在正 数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值 f(x)都满足不等式: |f(x)-A|<ε
9、收敛数列的性质
1.收敛数列与其子数列收敛同一个数 2、(极限存在性定理)单调递增有上 界函数收敛,单调递减有下界函数收 敛。(证明) 利用每项数列趋于同一数方程求解。 (求出极限)
10、无穷小和无穷大的性质:
无穷小与有界函数的处理办法 尤其对正余旋的复杂函数与其他函数相乘的形式
相同极限条件下 1.有限个无穷小的和是无穷小,无限个不一定 2.无穷小与有界函数的乘积是无穷小 3.有限个、无限个无穷小的乘积是无穷小
5.应用两个重要极限公式(重要公式法)
sin x lim 1 x0 x
li(1 m 1 )x li(1 m 1 )n li(1 m x )1 x e
x n x
n
x 0
0
第一个重要极限
0
第二个重要极限(1+0)∧∞。
强行代入,定型定法
第二个重要极限主要搞清楚凑的步骤:
那么常数A就叫做函数f(x)当x→x。时的极限。
14、函数的连续性
15、特殊型
x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快 于 对数函数 (画图也能看出速率的快慢) 当x 趋近无穷的时候 他们的比值的极限一眼就能看出来 了
等比等差数列公式应用
(对付数列极限) (q绝对值符号要小于1)
高数函数极限方法总结
周凌伊
1、直接代入法
分母不为零
2.约去零因子法
0 0
3、抓大头法
一般分子分母同除最高次方;对于多项式函数
0
limanxn xbmxm
an1xn1 a0 bm1xm1 b0
an
bn
mn mn mn
4.分子(母)有理化法
分子或分母有理化求极限,是通过有理化化去无理式。 及时分离极限式中的非零因子是解题的关键
+2,……), (2)当n→∞,limYn =a;当n→∞ ,limZn =a, 那么,数列{Xn}的极限存在,且当 n→∞,limXn =a。
二.F(x)与G(x)在Xo连续且存在相同的极限A,
limF(x)=limG(x)=A 则若有函数f(x)在Xo的某邻域内恒有 F(x)≤f(x)≤G(x) 则当X趋近Xo,有limF(x)≤limf(x)≤limG(x) 即 A≤limf(x)≤A 故 limf(Xo)=A