气相色谱与液相色谱-的比较(总结)

合集下载

气相色谱和液相色谱仪的区别

气相色谱和液相色谱仪的区别

气相色谱和液相色谱仪的区别一、分离原理:1.气相:气相色谱是一种物理的分离方法。

利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。

2.液相:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

二、应用范围:1.气相:气相色谱法具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。

一般对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。

2.液相:高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。

对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。

据统计,三、仪器构造:1.气相:由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。

进样部分、色谱柱和检测器的温度均在控制状态。

1.1 柱箱:色谱柱是气相色谱仪的心脏,样品中的各个组份在色谱柱中经过反复多次分配后得到分离,从而达到分析的目的,柱箱的作用就是安装色谱柱。

由于色谱柱的两端分别连接进样器和检测器,因此进样器和检测器的下端(接头)均插入柱箱。

柱箱能够安装各种填充柱和毛细管柱,并且操作方便。

色谱柱(样品)需要在一定的温度条件下工作,因此采用微机对柱箱进行温度控制。

并且由于设计合理,柱箱内的梯度很小。

对于一些成份复杂、沸程较宽的样品,柱箱还可进行三阶程序升温控制。

高效液相色谱法与气相色谱法的异同点

高效液相色谱法与气相色谱法的异同点

高效液相色谱法与气相色谱法的异同点
高效液相色谱法(HPLC)和气相色谱法(GC)是两种常用的色谱分析技术,它们在很多方面有着相似之处,但也存在一些重要的异同点。

相同点:
1. 原理基础:HPLC和GC都是基于色谱技术原理进行分析的方法,通过样品在固定相上的分离和柱后检测,以实现对样品组分的定性和定量分析。

2. 色谱柱:两种方法都需要使用色谱柱,根据分析需要选择合适的柱材、柱长、柱内填料等参数。

异同点:
1. 原理差异:HPLC使用液相作为流动相,样品在固定相上通过向下流动的方式进行分离;GC使用气相作为流动相,样品在固定相上通过向上升华/蒸发的方式进行分离。

2. 适用性差异:HPLC适用于溶解性较好的化合物,包括有机化合物、药物、天然产物等;GC主要适用于易挥发性和热稳定性较好的样品,如气体、揮發性有机物等。

3. 检测器差异:HPLC常用的检测器包括紫外可见光谱检测器、荧光检测器、电化学检测器等;GC常用的检测器包括火焰离子检测器(FID)、氮磷检测器(NPD)、质谱检测器等。

4. 分离效果差异:由于液体的性质更容易充分覆盖样品分子的各种结构,使得HPLC的分离效果更好;而气相色谱的分离效果较差,相对于HPLC而言,GC
更加适合分离在液相色谱中无法分离的化学物质。

5. 分析速度差异:HPLC分析速度相对较慢,通常需要几分钟到几十分钟不等;GC分析速度较快,通常只需要几秒到几分钟不等。

综上所述,HPLC和GC方法在原理、适用性、检测器、分离效果和分析速度等方面存在一定的异同点,根据不同的分析需求和样品特性选择合适的方法进行分析。

仪器分析(第四版)课后答案

仪器分析(第四版)课后答案

第二章习题解答1.简要说明气相色谱分析的基本原理借在两相间分配原理而使混合物中各组分分离。

气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。

组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。

2.气相色谱仪的基本设备包括哪几部分?各有什么作用?气路系统、进样系统、分离系统、温控系统以及检测和记录系统。

气相色谱仪具有一个让载气连续运行、管路密闭的气路系统;进样系统包括进样装置和气化室,其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中;分离系统包括分离柱和柱箱;温控系统;检测系统包括检测器和放大器;记录和数据处理系统用积分仪或色谱工作站。

16.色谱定性的依据是什么?主要有那些定性方法?解:根据组分在色谱柱中保留值的不同进行定性。

主要的定性方法主要有以下几种:(1)直接根据色谱保留值进行定性(2)利用相对保留值r21进行定性(3)保留指数法17.何谓保留指数?应用保留指数作定性指标有什么优点?用两个紧靠近待测物质的标准物(一般选用两个相邻的正构烷烃)标定被测物质,并使用均一标度(即不用对数),用下式定义:X为保留值(tR’, VR ’,或相应的记录纸距离),下脚标i为被测物质,Z,Z+1为正构烷烃的碳原子数,XZ < Xi < XZ+1,IZ = Z × 100优点:准确度高,可根据固定相和柱温直接与文献值对照而不必使用标准试样。

19.有哪些常用的色谱定量方法? 试比较它们的优缺点和使用范围?1.外标法(标准曲线法)外标法是色谱定量分析中较简易的方法.该法是将欲测组份的纯物质配制成不同浓度的标准溶液。

使浓度与待测组份相近。

然后取固定量的上述溶液进行色谱分析.得到标准样品的对应色谱团,以峰高或峰面积对浓度作图(取直线部分)。

分析样品时,在上述完全相同的色谱条件下,取制作标准曲线时同样量的试样分析、测得该试样的响应讯号后.由标谁曲线即可查出其百分含量.此法的优点是操作简单,适用基体简单的样品;结果的准确度取决于进样量的重现性和操作条件的稳定性.2.内标法当只需测定试样中某几个组份,或试样中所有组份不可能全部出峰时,可采用内标法。

什么叫色谱,气相色谱仪,液相色谱仪,气质,液质联用仪

什么叫色谱,气相色谱仪,液相色谱仪,气质,液质联用仪

第一课色谱法概述色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反复分配而实现分离。

在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。

固定相可以装在柱内,也可以做成薄层。

前者叫柱色谱,后者叫薄层色谱。

根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。

色谱法的创始人是俄国的植物学家茨维特。

1905年,他将从植物色素提取的石油醚提取液倒人一根装有碳酸钙的玻璃管顶端,然后用石油醚淋洗,结果使不同色素得到分离,在管内显示出不同的色带,色谱一词也由此得名。

这就是最初的色谱法。

后来,用色谱法分析的物质已极少为有色物质,但色谱一词仍沿用至今,在50年代,色谱法有了很大的发展。

1952年,詹姆斯和马丁以气体作为流动相分析了脂肪酸同系物并提出了塔板理论。

1956年范第姆特总结了前人的经验,提出了反映载气流速和柱效关系的范笨姆特方程,建立了初步的色谱理论。

同年,高莱(Golay)发明了毛细管拄,以后又相继发明了各种检测器,使色谱技术更加完善。

50年代末期,出现了气相色谱和质谱联用的仪器,克服了气相色谱不适于定性的缺点。

则年代,由于检测技术的提高和高压泵的出现,高效液相色谱迅远发展,使得色谱法的应用范围大大扩展。

目前,由于高效能的色谱往、高灵敏的检测器及微处理机的使用,使得色谱法已成为一种分析速度快、灵敏度高、应用范围广的分析仪器。

在这里主要介绍气相色谱分析法。

同时也适当介绍液相色谱法。

气相色谱法的基本理论和定性定量方法也适用于液相色谱法。

其不同之处在液相色谱法中介绍。

第二课气相色谱仪典型的气相色谱仪具有稳定流量的载气,将汽化的样品由汽化室带入色谱柱,在色谱柱中不同组分得到分离,并先后从色谱柱中流出,经过检测器和记录器,这些被分开的组分成为一个一个的色谱峰。

色谱仪通常由下列五个部分组成:载气系统(包括气源和流量的调节与测量元件等)进样系统(包括进样装置和汽化室两部分)1.分离系统(主要是色谱柱)2.检测、记录系统(包括检测器和记录器)3.辅助系统(包括温控系统、数据处理系统等)第三课气相色谱仪-载气系统载气通常为氮、氢和氢气,由高压气瓶供给。

最新气相色谱与液相色谱-的比较(总结)

最新气相色谱与液相色谱-的比较(总结)

液相色谱和气相色谱相比较,在以下几个方面具有优越性:(1)气相色谱不适用于不挥发物质和对热不稳定物质,而液相色谱却不受样品的挥发性和热稳定性的限制。

有些样品因为难以汽化而不能通过柱子,热不稳定的物质受热会发生分解,也不适用于气相色谱法。

这使气相色谱法的使用范围受到了限制。

据统计,目前气相色谱法所能分析的有机物,只占全部有机物的15%~20%。

另一方面,液相色谱却不受样品的挥发性和热稳定性的限制。

所以液相色谱非常适合于分离生物、医药有关的大分子和离子型化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定的化合物。

(2)对于很难分离的样品,用液相色谱常比用气相色谱容易完成分离,主要有以下三个方面的原因:①液相色谱中,由于流动相也影响分离过程,这就对分离的控制和改善提供了额外的因素。

而气相色谱中的载气一般不影响分配,也就是说,在液相色谱中,有两个相与样品分子发生选择性的相互作用。

②液相色谱中具有独特效能的柱填料(固定相)的种类较多,这样就使固定相的选择余地更大,从而增加了分离的可能性。

③液相色谱使用较低的分离温度,分子间的相互作用在低温时更为有效,因此降低温度一般会提高色谱分离效率。

(3)和气相色谱相比,液相色谱对样品的回收比较容易,而且是定量的,样品的各个组分很容易被分离出来。

因此,在很多场合,液相色谱不仅作为一种分析方法,而且可以作为一种分离手段,用以提纯和制备具有中等纯度的单一物质。

在气相色谱中所分离出的各样品组分虽也可以回收,但一般都不太方便,而且定量性差。

液相色谱法由于具有这些气相色谱法不具备的优点,因此在许多领域得到广泛的应用。

气相色谱和液相色谱相比各有什么特点呢?让我们从以下几个方面进行考察:一、流动相GC用气体作流动相,又叫载气。

常用的载气有氦气、氮气和氢气。

与HPLC相比,GC流动相的种类少,可选择范围小,载气的主要作用是将样品带入GC系统进行分离,其本身对分离结果的影响很有限。

而在HPLC中,流动相种类多,且对分离结果的贡献很大。

气相色谱质谱液相色谱质谱还有离子色谱几者之间的区别

气相色谱质谱液相色谱质谱还有离子色谱几者之间的区别

气相色谱质谱液相色谱质谱还有离子色谱几者之间的区别气相色谱常识一、气相色谱法有哪些特点?答:气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在分离分析方面,具有如下一些特点:1、高灵敏度:可检出10-10 克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。

2、高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。

3、高效能:可把组分复杂的样品分离成单组分。

4、速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。

5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。

6、所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。

7、设备和操作比较简单仪器价格便宜。

二、气相色谱的分离原理为何?答:气相色谱是一种物理的分离方法。

利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。

三、何谓气相色谱?它分几类?答:凡是以气相作为流动相的色谱技术,通称为气相色谱。

一般可按以下几方面分类:1、按固定相聚集态分类:(1)气固色谱:固定相是固体吸附剂,(2)气液色谱:固定相是涂在担体表面的液体。

2、按过程物理化学原理分类:(1)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。

(2)分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。

(3)其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度变化发展而来的热色谱等等。

3、按固定相类型分类:(1)柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。

(2)纸色谱:以滤纸为载体,(3)薄膜色谱:固定相为粉末压成的薄漠。

4、按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。

四、气相色谱法简单分析装置流程是什么?答:气相色谱法简单分析装置流程基本由四个部份组成:1、气源部分,2、进样装置,3、色谱柱,4、鉴定器和记录器.五、气相色谱法的一些常用术语及基本概念解释?答:1、相、固定相和流动相:一个体系中的某一均匀部分称为相;在色谱分离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。

气相色谱与液相色谱 的比较(总结)

气相色谱与液相色谱 的比较(总结)

液相色谱和气相色谱相比较,在以下几个方面具有优越性:(1)气相色谱不适用于不挥发物质和对热不稳定物质,而液相色谱却不受样品的挥发性和热稳定性的限制。

有些样品因为难以汽化而不能通过柱子,热不稳定的物质受热会发生分解,也不适用于气相色谱法。

这使气相色谱法的使用范围受到了限制。

据统计,目前气相色谱法所能分析的有机物,只占全部有机物的15%~20%。

另一方面,液相色谱却不受样品的挥发性和热稳定性的限制。

所以液相色谱非常适合于分离生物、医药有关的大分子和离子型化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定的化合物。

(2)对于很难分离的样品,用液相色谱常比用气相色谱容易完成分离,主要有以下三个方面的原因:①液相色谱中,由于流动相也影响分离过程,这就对分离的控制和改善提供了额外的因素。

而气相色谱中的载气一般不影响分配,也就是说,在液相色谱中,有两个相与样品分子发生选择性的相互作用。

②液相色谱中具有独特效能的柱填料(固定相)的种类较多,这样就使固定相的选择余地更大,从而增加了分离的可能性。

③液相色谱使用较低的分离温度,分子间的相互作用在低温时更为有效,因此降低温度一般会提高色谱分离效率。

(3)和气相色谱相比,液相色谱对样品的回收比较容易,而且是定量的,样品的各个组分很容易被分离出来。

因此,在很多场合,液相色谱不仅作为一种分析方法,而且可以作为一种分离手段,用以提纯和制备具有中等纯度的单一物质。

在气相色谱中所分离出的各样品组分虽也可以回收,但一般都不太方便,而且定量性差。

液相色谱法由于具有这些气相色谱法不具备的优点,因此在许多领域得到广泛的应用。

气相色谱和液相色谱相比各有什么特点呢?让我们从以下几个方面进行考察:一、流动相GC用气体作流动相,又叫载气。

常用的载气有氦气、氮气和氢气。

与HPLC相比,GC流动相的种类少,可选择范围小,载气的主要作用是将样品带入GC系统进行分离,其本身对分离结果的影响很有限。

而在HPLC中,流动相种类多,且对分离结果的贡献很大。

高效液相色谱分析法和气相色谱法的区别

高效液相色谱分析法和气相色谱法的区别

高效液相色谱分析法和气相色谱法的区别高效液相色谱分析法(HPLC),它的基本概念及理论基础(如保留值、塔板理论、速率理论、容量因子、分离度等),与气相色谱是一致的,但又有不同之处:高效液相色谱与气相色谱的主要区别可归结于以下几点:
(1)进样方式的不同:高效液相色谱只要将样品制成溶液,而气相色谱需加热气化或裂解;
(2)流动相的不同,在被测组分与流动相之间、流动相与固定相之间都存在着一定的相互作用力;
(3)由于液体的粘度较气体大两个数量级,使被测组分在液体流动相中的扩散系数比在气体流动相中约小4~5个数量级;
(4)由于流动相的化学成分可进行广泛选择,并可配置成二元或多元体系,满足梯度洗脱的需要,因而提高了高效液相色谱的分辨率(柱效能);
(5)高效液相色谱采用5~10Lm细颗粒固定相,使流体相在色谱柱上渗透性大大缩小,流动阻力增大,必须借助高压泵输送流动相;
(6)高效液相色谱是在液相中进行,对被测组分的检测,通常采用灵敏的湿法光度检测器,例如,紫外光度检测器、示差折光检测器、荧光光度检测器等;
(7)液相色谱与气相色谱相比较,高效液相色谱同样具有高灵敏度、高效能和高速度的特点。

高效液相色谱的定性和定量分析,与气相色谱分析相似,在定性分析中,采用保留值定性,或与其他定性能力强的仪器分析法连用;在定量分析中,采用测量峰面积的归一化法、内标法或外标法等,但高效液相色谱在分离复杂组分式样时,有些组分常不能出峰,因此归一化法定量受到限制,而内标法定量则被广泛使用。

化学色谱分析实验报告与总结

化学色谱分析实验报告与总结

化学色谱分析实验报告与总结化学色谱分析实验报告与总结篇一:气相色谱法实验报告实验五—气相色谱法实验气相色谱法实验一、实验目的1.了解气相色谱仪的各部件的功能。

2.加深理解气相色谱的原理和应用。

3.掌握气相色谱分析的一般实验方法。

4.学会使用FID气相色谱对未知物进行分析。

二、实验原理1.气相色谱法基本原理气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。

当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。

吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。

如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。

气相色谱仪器框图如图1所示:图1.气相色谱仪器框图仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。

2.气相色谱法定性和定量分析原理在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。

也就是说,让分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。

然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。

它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。

它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。

图2.典型的色谱流动曲线3.FID的原理本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。

三.实验试剂和仪器(1)试剂:甲醇、异丙醇、异丁醇(2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪);氢-空发生器(SPH-300氢气发生器)、氮气钢瓶;色谱柱;微量注射器。

四.实验步骤1. 打开稳定电源。

气相色谱质谱液相色谱质谱还有离子色谱几者之间的区别

气相色谱质谱液相色谱质谱还有离子色谱几者之间的区别

气相色谱质谱液相色谱质谱还有离子色谱几者之间的区别气相色谱常识一、气相色谱法有哪些特点?答:气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在分离分析方面,具有如下一些特点:1、高灵敏度:可检出10-10 克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。

2、高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。

3、高效能:可把组分复杂的样品分离成单组分。

4、速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。

5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。

6、所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。

7、设备和操作比较简单仪器价格便宜。

二、气相色谱的分离原理为何?答:气相色谱是一种物理的分离方法。

利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。

三、何谓气相色谱?它分几类?答:凡是以气相作为流动相的色谱技术,通称为气相色谱。

一般可按以下几方面分类:1、按固定相聚集态分类:(1)气固色谱:固定相是固体吸附剂,(2)气液色谱:固定相是涂在担体表面的液体。

2、按过程物理化学原理分类:(1)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。

(2)分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。

(3)其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度变化发展而来的热色谱等等。

3、按固定相类型分类:(1)柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。

(2)纸色谱:以滤纸为载体,(3)薄膜色谱:固定相为粉末压成的薄漠。

4、按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。

四、气相色谱法简单分析装置流程是什么?答:气相色谱法简单分析装置流程基本由四个部份组成:1、气源部分,2、进样装置,3、色谱柱,4、鉴定器和记录器.五、气相色谱法的一些常用术语及基本概念解释?答:1、相、固定相和流动相:一个体系中的某一均匀部分称为相;在色谱分离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。

高效液相色谱法与气相色谱法的比较

高效液相色谱法与气相色谱法的比较
应用范围
可分析低分子量低沸点样品;高沸点、中分子、高分子有机化合物(包括非极性、极性);离子型无机化合物;热不稳定,具有生物活性的生物分子。
可分析低分子量、低沸点有机化合物;永久性气体;配合程序升温可分析高沸点有机化合物;配合裂解技术可分析高聚物。
仪器组成
溶质在液相的扩散系数(10-5cm2·s-1)很小,因此在色谱柱以外的死空间应尽量小,以减少柱外效应对分离效果的影响。
2色谱柱:固定相粒度大小为5~10µm;填充柱内径为3~6mm,柱长10~25cm,柱效为103~104;毛细管柱内径为0.01~0.03mm,柱长5~10m,柱效为104~105;柱温为常温。
1分离机理:依据吸附,分配两种原理进行样品分离,可供选用的固定相种类较多;
2色谱柱:固定相粒度大小为0.1~0.5mm;填充柱内径为1~4mm,柱效为102~103;毛细管柱内径为0.1~0.3mm,柱长10~ 100m,柱效为103~104,柱温为常温~300℃。
溶质在气相的扩散系数(10-1cm2/s)大,柱外效应的影响较小,对毛细管气相色谱应尽量减小柱外效应对分离效果的影响
其中, UVD——紫外吸收检测器;PDAD——二极管阵列检测器;FD——荧光检测器;ECD——电化学检测器;RID——折光指数检测器;ELSD——蒸汽发散射检测器;TCD——热导池检测器;FID——氢火焰离子化检测器;ECD*——电子捕获检测器;FPD——火焰光度检测器;NPD——氮磷检测器。
1气体流动相为惰性气体,不与被分析的样品发生相互作用
2气体流动相动力粘度为10-5Pa·s,输送流动相压力仅为0.1~0.5MPa
2气体流动相动力粘度为10-5Pa·s,输送流动相压力仅为0.1~0.5MPa
固定相

液相色谱(GC)和气相色谱(LC)主要相同点和差异

液相色谱(GC)和气相色谱(LC)主要相同点和差异

液相色谱(GC)和气相色谱(LC)主要相同点和差异色谱法是一种常见的分离技术,按两相的物理状态,可以分为气相色谱法(GC)和液相色谱法(LC)。

在现代样品分析中,气相色谱和液相色谱都是普遍采用的分析方法,但两者具备不同的特性,这些特性也决定了它们不同的应用范围。

一、GC与LC的主要差异1.流动相区别GC:流动相为惰性气体,流动相与组分无亲合作用力,只与固定相有相互作用。

LC:流动相为液体,流动相与组分间有亲合作用。

2.色谱柱长度区别GC:色谱柱长度在几米到几十米不等。

气相色谱由于载气的相对分析量较低,分子间隙大,故粘度低,流动性好,组分在气相中流动速度快,因此可以增加柱长,以提高柱效。

LC:色谱柱通常在几十到几百毫米。

3.分析样品选择性GC:相对分子质量较小(一般小于1000),低沸点(一般小于500℃),易挥发,热稳定性。

LC:更适用于分析高沸点,难挥发,热稳定性差,分子质量较大(1000--2000)的液体化合物。

据统计,气相色谱能分析的有机物只占全部有机物的15%-20%,其可分析样品的范围小于液相色谱,但随着近几年技术的更新,如顶空进样和裂解进样等,进一步扩大了气相色谱的分析范围。

4.检测器差异GC:氢火焰离子化检测器(FID),热导检测器(TCD),电子捕获检测器(ECD),火焰光度检测器(FPD),氮磷检测器(NPD)。

LC:紫外检测器,荧光检测器,示差折光检测器。

5.其他方面GC:需要将样品在气化室气化,需要较高的检测温度,采用尖头进样针。

LC:不必对样品气化,常温即可检测,采用平头进样针。

二、GC与LC的主要相同点最基本的原理相同,都是吸附-脱附平衡,利用组分在固定相和流动相中的分配系数不同达到分离的目的。

也就是说,两者都是利用物质在流动相和固定相中的分配系数的差别,从而在两相间反复多次(1000-1000000次,甚至更多)的分配,使原来分配系数差别很小的各组分分离开来。

在本质上,都是利用“相似相溶”原理,利用色谱柱进行分离。

色谱知识点总结大全

色谱知识点总结大全

色谱知识点总结大全色谱是一种用于分离混合物中成分的分析方法。

它是利用物质在固定相和流动相之间相互作用的差异,以及在两相之间传质速率不同的原理进行分离的。

色谱方法已经广泛应用于化学、制药、环境监测、食品安全等领域。

本文将对色谱的相关知识进行总结,包括基本原理、分类、仪器、应用等方面。

一、色谱的基本原理色谱的基本原理是物质在固定相和流动相之间的相互作用,以及在两相之间传质速率不同的原理进行分离。

其中,流动相是指在固定相上流动的液态或气态物质,固定相是指固定在色谱柱或色谱板上的固体或液体。

当混合物中的成分通过色谱柱或色谱板时,由于各成分与固定相和流动相之间的相互作用不同,会导致逐渐分离出来。

具体地说,色谱分离依赖于成分在固定相和流动相之间的分配系数不同。

当混合物通过色谱柱或色谱板时,流动相会与固定相和样品分子发生相互作用,使得在固定相和流动相之间的平衡达到不同的分布系数,从而导致不同成分在流动相中的速度不同,最终实现分离的目的。

二、色谱的分类色谱可以根据流动相的状态分为气相色谱和液相色谱两大类。

1. 气相色谱(Gas Chromatography,GC)气相色谱是利用气体作为流动相的色谱分离方法。

在气相色谱中,样品通过加热蒸发成气相,然后注入气相色谱柱,在高温下,样品成分在固定相上发生分离,再经过检测器进行检测。

气相色谱通常用于分离非极性或低极性物质,比如烃类、酯类、醚类等。

由于气相色谱操作简单、分离效果好,因此在化学、制药、环境监测和食品安全等领域应用广泛。

2. 液相色谱(Liquid Chromatography,LC)液相色谱是利用液体作为流动相的色谱分离方法。

在液相色谱中,样品通过溶解成液态,然后通过色谱柱,在柱内流动相的作用下,不同成分逐渐分离,并通过检测器进行检测。

液相色谱可根据固定相的性质分为几种类型,如反相液相色谱、离子交换色谱、大小分子排阻色谱、亲和色谱等。

液相色谱通常用于分离极性或高极性物质,如酸、碱、氨基酸等。

气相色谱法与液相色谱法分析比较

气相色谱法与液相色谱法分析比较

气相色谱法与液相色谱法分析比较引言气相色谱法(Gas Chromatography, GC)和液相色谱法(Liquid Chromatography, LC)是两种常用的分析技术,广泛应用于药物分析、环境监测、食品安全等领域。

本文旨在比较气相色谱法和液相色谱法在分析上的异同,以及各自的优缺点。

一、工作原理1. 气相色谱法气相色谱法是基于化学分离原理来进行分析的。

样品通过进样器进入气相色谱柱,其内填充有固定相材料,如聚硅氧烷。

样品组分在气相色谱柱中分离,通过对分离出的化合物进行检测,得到定性和定量分析结果。

2. 液相色谱法液相色谱法是基于溶液混合物的分配行为来进行分析的。

样品通过进样装置进入液相色谱柱,柱内填充有固定相材料,如硅胶或颗粒状聚合物。

样品组分在液相色谱柱中分离,通过对分离出的化合物进行检测,得到定性和定量分析结果。

二、分离机理1. 气相色谱法气相色谱法的分离机理主要通过固定相和气相之间的化学相互作用来实现。

样品组分根据其与固定相的亲疏性,在气相色谱柱中被分离开来。

主要的分离机制包括极性相互作用、氢键作用、范德华力等。

2. 液相色谱法液相色谱法的分离机理主要通过样品组分之间与固定相的相互作用来实现。

根据样品组分与固定相之间的亲疏性不同,分子将以不同速度通过柱床被分离。

主要的分离机制包括吸附作用、离子交换作用、凝胶层析作用等。

三、应用领域1. 气相色谱法气相色谱法适用于分析挥发性、热稳定性良好的化合物,例如石油化工产品、环境污染物、药物和香料等。

其高分辨率、灵敏度和速度使其在环境监测和毒理学研究中得到广泛应用。

2. 液相色谱法液相色谱法适用于分析疏水性化合物和溶液中的活性物质,例如药物、生化样品和天然产物等。

其分离能力强、适用范围广,广泛应用于药物分析、食品安全和生物领域。

四、优缺点比较1. 气相色谱法优点:- 高分辨率和快速分析速度,适用于高效分离。

- 较低的操作成本和易于自动化。

- 样品制备相对简单,适用于多样品批量分析。

气相色谱期末总结

气相色谱期末总结

气相色谱期末总结一、气相色谱的原理气相色谱的原理是基于化学物质在固定相(柱填料)和流动相(惰性气体)共同作用下的分离行为。

样品经过气相进样器进入GC柱,被固定相吸附或溶解,然后由流动相推动分离,并逐个通过检测器,最终由信号采集系统得到峰形图。

气相色谱的分离机理主要包括吸附、分配和离子交换等。

在吸附色谱中,样品成分在固定相表面吸附,并根据亲和力大小进行分离。

在分配色谱中,样品成分在流动相和固定相之间按照平衡分配系数的大小进行分离。

在离子交换色谱中,固定相上的离子交换基团与样品成分的带电部分发生离子交换反应,实现分离。

二、气相色谱的仪器气相色谱主要由进样系统、柱箱、检测器和信号采集系统等组成。

进样系统包括进样口、气化室、气道、进样针和进样阀等。

进样量的大小和均匀性对分析结果有很大影响,因此进样系统的设计和使用非常重要。

柱箱是气相色谱的核心部分,用于放置和温控柱子。

根据需要,柱子可以是毛细管柱、开管柱或厚膜柱等。

检测器是气相色谱的核心部分,用于将化学物质转化为可测量的信号。

常见的检测器有火焰离子化检测器(FID)、热导率检测器(TCD)、质谱检测器(MS)等。

信号采集系统用于接收检测器输出的信号,并将信号转换为可读的峰形图或数据。

三、气相色谱的方法气相色谱的方法主要包括站相法和程序升温法。

站相法是最早也是最简单的气相色谱方法,即柱子温度恒定,样品在柱子中各部分达到平衡后即得到分离结果。

该方法适用于样品成分相对简单的情况。

程序升温法则是针对样品成分复杂的情况设计的。

柱子温度会按照一定的升温速度进行升温,使样品成分在不同温度下分离出来。

该方法能够得到更好的分离效果,并且可以通过分析峰的保留时间确定样品成分。

四、气相色谱的应用气相色谱广泛应用于各个领域的化学分析,如环境检测、食品安全、制药和石油化工等。

在环境检测中,气相色谱常用于挥发性有机物(VOCs)的分析,如甲醛、苯系物、多氯联苯等。

通过气相色谱分析,可以对环境中有害物质的浓度进行定量分析,评估环境质量。

液相色谱法与气相色谱法的对比及其在环境检测中的运用

液相色谱法与气相色谱法的对比及其在环境检测中的运用

液相色谱法与气相色谱法的对比及其在环境检测中的运用作者:苏小云来源:《中国科技博览》2019年第01期[摘要]液相色谱法和气相色谱法是一种比较经典的分析与分离技术,在以往的发展过程中,因为其具有很强的分离效果与灵敏的检测能力,极大促进了环境检测技术的发展。

因而,本文首先简要分析了色谱法的分离原理,然后对液相与气相色谱法的特征进行了对比,最后探讨了液相和气相色谱法在环境检测中的运用,以供相关人员参考。

[关键词]液相色谱法气相色谱法环境检测运用中图分类号:E231 文献标识码:A 文章编号:1009-914X(2019)01-0211-01众所周知,色谱法实际上就是一种比较高效的分离技术,色谱法的基本工作原理就是通过欲分离的诸组分在两相间的分配有差别,倘若两相进行相对运动的时候,组分在这两相中的分配重复开展,由几千次至百万次,就算组分分配系数仅仅为很小的差别,可是伴随流动相移动却存在着十分显著的差距,最终分离组分。

采用这样的分离技术,同时检测组分的方式就是色谱法。

色谱法两相进行相对运动的过程中,在这里面的一相为移动的,也就是流动相;还有一相就是固定的,因此是固定相。

按照流动相为气体或者液体,色谱法将其分成气相色谱法与液相色谱法。

在二十一世纪中,人们分析样品成分的时候,比较常用的分析法就是液相与气相色谱法,两者有很大的差别,这些差别决定了其的运用范围也是不相同的。

一、液相色谱法和气相色谱法的对比气相色谱法的特征表现在:第一,该色谱法的分离高效,快速,操作比较简单。

因为气体粘度不大,将其使用来当成流动相的时候样品组分在两相间可以快速分配:气体经过装有固定相管柱的阻力小,所以分离迅速。

一根长2米的色谱柱,通常可以有上千个理论塔板,而长柱有上百万个理论塔板,如此就可以让部分分配系数很接近与不容易分离的物质,通过分配平衡,快速分离。

第二,样品用量非常少,检测灵敏性比较高。

因为样品是在气态中分离以及在气体之中检测的,存在着很多的灵敏度高的检测仪器可以采用,虽然样品使用量不大,可是同样可以检测出。

气相与液相色谱的异同点

气相与液相色谱的异同点

气相色谱法与高效液相色谱法的异同点气相色谱法和高效液相色谱法是色谱法中的一种,因流动相物态不同,才有此分类。

一、气相色谱法与高效液相色谱法的不同点1、流动相气相色谱法的流动相是气体〔又称载气〕,液相色谱法的流动相为液相〔又称淋洗液〕。

2、分类〔按固定相不同〕气相色谱法中,按固定相不同可分为:气---固色谱法;气---液色谱法。

高效液相色谱法中,按固定相不同可分为:液---固色谱法;液---液色谱法。

3、固定相气固〔液固〕色谱的固定相:多孔性的固体吸附剂颗粒,如活性炭,活性氧化铝,硅胶等。

气液〔液液〕色谱的固定相:化学惰性的固体微粒〔担体〕,固定液+担体。

4、特点气相色谱法的特点:高效能、选择性好、灵敏度高、操作简单、应用广泛。

高效液相色谱法的特点:高压、高速、高效、高灵敏度。

5、应用范围气相色谱法的应用范围:对于难挥发和热不稳定的物质是不适用的。

高效液相色谱法的应用范围:从原那么上说,高沸点难挥发且相对分子质量大的有机物都适用。

6、别离机理〔1〕气相色谱法:气相色谱是一种物理的别离方法。

利用被测物质各组分在不同两相间分配系数〔溶解度〕的微小差异,当两相作相对运动时,这些物质在两相间进行反复屡次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到别离。

〔2〕液相色谱法:高效液相色谱法是在经典色谱法的根底上,引用了气相色谱的理论,在技术上,流动相改为高压输送;色谱柱是以特殊的方法用小粒径的填料填充而成,同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

概括为:气固色谱的别离机理: 吸附与脱附的不断重复过程;气液色谱的别离机理:气液(液液)两相间的反复屡次分配过程。

液固色谱的别离机理:溶质分子和溶剂分子对吸附剂活性外表的竞争吸附。

7、仪器构造〔1〕气相色谱法:由载气系统、进样系统、色谱柱、检测系统和数据处理系统组成。

进样系统、色谱柱和检测器的温度均在控制状态。

〔2〕液相色谱法:高效液相色谱仪主要由进样系统、输液系统、别离系统、检测系统和数据处理系统组成。

气相色谱法与液相色谱法的特点 液相色谱操作规程

气相色谱法与液相色谱法的特点 液相色谱操作规程

气相色谱法与液相色谱法的特点液相色谱操作规程气相色谱和液相色谱各有其优缺点和应用范围:气相色谱接受气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以接受长柱,例如毛细气相色谱和液相色谱各有其优缺点和应用范围:气相色谱接受气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以接受长柱,例如毛细管柱,所以分别效率高。

由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。

能和气相色谱分别相匹配的检测器种类很多,因而可用于各种物质的分别与检测。

特别是当使用质谱仪作为检测器时,气相色谱很简单把分别分析与定性鉴定结合起来,成为未知物质剖析的有力工具。

气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和很多高分子化合物气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。

液相色谱则不能分析在色谱条件下为气体的物质,但却能分别不挥发、在某溶剂中具有确定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。

—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。

相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。

液相色谱仪维护应当注意的事项液相色谱仪依据固定相是液体或是固体,又分为液—液色谱及液—固色谱。

现代液相色谱仪由高压输液泵、进样系统、温度掌控系统、色谱柱、检测器、信号记录系统等部分构成。

与经典液相柱色谱装置比较,具有高效、快速、灵敏等特点。

(最新整理)气相与液相的区别

(最新整理)气相与液相的区别

(完整)气相与液相的区别编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)气相与液相的区别)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)气相与液相的区别的全部内容。

气相色谱仪主要用来分析气相样品和易挥发的热稳定样品,如弱极性小分子有机物;而液相色谱主要用来分析高沸点或若不稳定样品,如核酸等。

两种色谱方法,液相色谱仪用液体作流动相,气相色谱仪用气体作为流动相.进样的话,液相色谱仪的液体样品直接进入色谱柱,气相色谱仪的液体样品必须气化才能进入.气相色谱仪现在所用色谱柱一般是空心的毛细管色谱柱,检测器也是破坏型的。

液相色谱仪的色谱柱一般是填充柱,检测器非破坏型。

一、分离原理:1.气相:气相色谱是一种物理的分离方法。

利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离.2。

液相:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4。

9´107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

二、应用范围:1.气相:气相色谱法具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析.一般对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法.2.液相:高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制.对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(些物质几乎占有机物总数的 75% ~ 80%)原则上都可应用高效液相色谱法来进行分离、分析。

高效液相色谱法和气相色谱法分析肟菌酯原药的方法比较

高效液相色谱法和气相色谱法分析肟菌酯原药的方法比较

高效液相色谱法和气相色谱法分析肟菌酯原药的方法比较陈颖;刘小锋;陈一萍;廖丽萍;傅洪涛
【期刊名称】《粮食科技与经济》
【年(卷),期】2024(49)1
【摘要】建立高效液相色谱法和气相色谱法,来测定肟菌酯原药有效成分的定量分析方法比较。

用Agilent C_(18)柱,采用甲醇和水为流动相,通过二极管阵列检测器波长为250 nm;AE.SE-30毛细管柱,以邻苯二甲酸二环己酯为内标物,FID检测器分别对肟菌酯有效成分进行定量分析。

高效液相色谱法和气相色谱法的线性相关系数分别为0.9999、0.9995,标准偏差分别为0.21、0.19,变异系数分别为0.21%、0.19%,平均回收率分别为99.74%和99.67%。

通过比较,两种方法都能很好地用于肟菌酯原药的定量分析。

【总页数】4页(P85-88)
【作者】陈颖;刘小锋;陈一萍;廖丽萍;傅洪涛
【作者单位】湖南化工研究院有限公司国家农药创制工程技术研究中心;湖南化肥农药质量监督检验授权站
【正文语种】中文
【中图分类】TQ450.7
【相关文献】
1.气相色谱法同时测定蔬菜中醚菌酯和肟菌酯残留量的方法研究
2.菌酯原药高效液相色谱分析方法研究
3.高效液相色谱法和气相色谱法分析茵草敌原药
4.泰禾子公
司拟投资1.09亿元,建设肟菌酯、丙硫菌唑原药项目5.肟菌酯原药高效液相色谱分析
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱与液相色谱-的比较(总结)液相色谱和气相色谱相比较,在以下几个方面具有优越性:(1) 气相色谱不适用于不挥发物质和对热不稳定物质,而液相色谱却不受样品的挥发性和热稳定性的限制。

有些样品因为难以汽化而不能通过柱子,热不稳定的物质受热会发生分解,也不适用于气相色谱法。

这使气相色谱法的使用范围受到了限制。

据统计,目前气相色谱法所能分析的有机物,只占全部有机物的15%-20%另一方面,液相色谱却不受样品的挥发性和热稳定性的限制。

所以液相色谱非常适合于分离生物、医药有关的大分子和离子型化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定的化合物。

(2) 对于很难分离的样品,用液相色谱常比用气相色谱容易完成分离,主要有以下三个方面的原因:①液相色谱中,由于流动相也影响分离过程,这就对分离的控制和改善提供了额外的因素。

而气相色谱中的载气一般不影响分配,也就是说,在液相色谱中,有两个相与样品分子发生选择性的相互作用。

②液相色谱中具有独特效能的柱填料 (固定相)的种类较多,这样就使固定相的选择余地更大,从而增加了分离的可能性。

③液相色谱使用较低的分离温度,分子间的相互作用在低温时更为有效,因此降低温度一般会提高色谱分离效率。

(3) 和气相色谱相比,液相色谱对样品的回收比较容易,而且是定量的,样品的各个组分很容易被分离出来。

因此,在很多场合,液相色谱不仅作为一种分析方法,而且可以作为一种分离手段,用以提纯和制备具有中等纯度的单一物质。

在气相色谱中所分离出的各样品组分虽也可以回收,但一般都不太方便,而且定量性差。

液相色谱法由于具有这些气相色谱法不具备的优点,因此在许多领域得到广泛的应用。

气相色谱和液相色谱相比各有什么特点呢?让我们从以下几个方面进行考察:一、流动相GC用气体作流动相,又叫载气。

常用的载气有氦气、氮气和氢气。

与HPLC1比,GC流动相的种类少,可选择范围小,载气的主要作用是将样品带入GC系统进行分离,其本身对分离结果的影响很有限。

而在HPLC中,流动相种类多,且对分离结果的贡献很大。

换一个角度看,GC的操作参数优化相对HPLC要简单一些。

此外,GC载气的成本要低于HPLC流动相的成本。

、固定相因为GC的载气种类相对少,故其分离选择性主要通过不同的固定相来改变,尤其在填充柱 GC中,固定相常由载体和涂敷在其表面的固定液组成,这对分离有决定性的影响,所以,导致了种类繁多的GC 固定相的开发研究。

迄今已有数百种 GC固定相可供我们选择使用,但常用的HPLC固定相也就十几种。

故LC在很大程度上要靠选用不同的流动相来改变分离选择性。

当然,毛细管 GC常用的固定相也不过十几种。

在实际分析中,GC一般是选用一种载气,然后通过改变色谱柱(即固定相)以及操作参数(柱温和载气流速等)来优化分离,而LC则往往是选定色谱柱后,通过改变流动相的种类和组成以及操作参数(柱温和流动相流速等)来优化分离。

三、分析对象GC所能直接分离的样品是可挥发、且热稳定的,沸点一般不超过500C。

据有关资料统计,在目前已知的化合物中,有20%-25%可用GC直接分析,其余原则上均可用LC分析。

也就是说GC的分析对象远没有LC多。

需要指出的是,有些虽然不能用 GC直接分析的样品,通过特殊的进样技术,如顶空进样和裂解进样,也可用GC间接分析。

比如高分子材料的裂解色谱就是如此。

这在一定程度上扩大了GC分析对象的范围。

此外,GC比 LC更适合于永久气体的分析。

四、检测技术GC常用的检测技术有多种,比如热导检测器(TCD、火焰离子化检测器(FID)、电子俘获检测器(ECD、氮磷检测器(NPD等,其中FID对大部分有机化合物均有响应,且灵敏度相当高,最小检测限可达纳克级。

而在LC中尚无通用性这么好的高灵敏度检测器。

商品LC 仪器常配的也就是紫外-可见光吸收检测器(UV-Vis、和示差折光检测器(RI)。

前者的通用性远不及GC中的FID,后者的灵敏度又较低,且不适于梯度洗脱。

当然,不论 GC还是LC,都有一些高灵敏度的选择性检测器,GC有 ECD和NPD等, LC有荧光和电化学检测器。

较为理想的检测器应该首推 MS但在这一点上,GC目前要优于LG因为 GC流动相的特点,它与MS 的在线联用已不存在任何问题,特别是毛细管GC与MS的联用已成为常规分析方法。

而LC与MS的联用就受到了流动相的限制。

虽然目前已有多种接口,如离子束、热喷雾、电喷雾等,但流动相的选择还是受到明显的限制。

五、制备分离在新产品的研究开发过程中,或在未知物的定性鉴定工作中,常需要收集色谱分离后的组分作进一步分析,而某些高纯度的生化试剂则是直接用色谱分离来制备的。

就这一点而言,GC在原理上应该是有优势的,因为收集馏分后载气很容易除去。

然而,由于GC的柱容量远不及LC,如果用GC作制备,那是相当费时的。

因此,制备 GC的实用价值很有限。

制备LC则有很广泛的应用。

比较气相色谱法与高效液相色谱法怎样区别比较气相色谱法与高效液相色谱法怎样区别一、分离原理:1.气相:气相色谱是一种物理的分离方法。

利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。

2. 液相:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9'107P a);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

二、应用范围:1.气相:气相色谱法具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。

一般对 5 00 C以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。

2.液相:高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。

对于高沸点、热稳定性差、相对分子量大(大于400以上)的有机物(些物质几乎占有机物总数的7 5%〜80% )原则上都可应用高效液相色谱法来进行分离、分析。

据统计,在已知化合物中,能用气相色谱分析的约占20%而能用液相色谱分析的约占70〜80%三、仪器构造:1. 气相:由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。

进样部分、色谱柱和检测器的温度均在控制状态。

1.1柱箱:色谱柱是气相色谱仪的心脏,样品中的各个组份在色谱柱中经过反复多次分配后得到分离,从而达到分析的目的,柱箱的作用就是安装色谱柱。

由于色谱柱的两端分别连接进样器和检测器,因此进样器和检测器的下端(接头)均插入柱箱。

柱箱能够安装各种填充柱和毛细管柱,并且操作方便。

色谱柱(样品)需要在一定的温度条件下工作,因此采用微机对柱箱进行温度控制。

并且由于设计合理,柱箱内的梯度很小。

对于一些成份复杂、沸程较宽的样品,柱箱还可进行三阶程序升温控制。

且程序设定后自动运行无需人工干预,降温时还能自动后开门排热。

1.2进样器:进样器的作用是将样品送入色谱柱。

如果是液体样品,进样器还必须将其汽化,因此采用微机对进样器进行温度控制。

根据不同种类的色谱柱及不同的进样方式,共有五种进样器可供选择:1.填充柱进样器2.毛细管不分流进样器附件3.毛细管分流进样器附件4.毛细管分流/不分流进样器5.六通阀气体进样器1.3检测器:检测器的作用是将样品的化学信号转化为物理信号(电信号)。

检测器也需要在一定的温度条件下才能正常工作,因此采用微机对检测器进行温度控制。

根据各种样品的化学物理特性,共有五种检测器可供选择:1.氢火焰离子化检测器(FID)2. 热导检测器(TCD)3.电子捕获检测器(ECD)4.氮磷检测器(NPD)5. 火焰光度检测器(FPD)1.4数据处理系统该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。

2. 液相:高效液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统组成。

2.1进样系统一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。

这对提高分析样品的重复性是有益的。

2.2输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。

高压泵的一般压强为1.47〜4.4X107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。

流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。

这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。

2.3分离系统该系统包括色谱柱、连接管和恒温器等。

色谱柱一般长度为10〜50cm(需要两根连用时,可在二者之间加一连接管), 内径为2〜5mm由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5〜10卩m粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。

因此,这类固定相对结构不同的物质有良好的选择性。

例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。

另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。

基质粒度小,微孔浅,样品在微孔区内传质短。

这些对缩小谱带宽度、提高分辨率是有益的。

根据柱效理论分析,基质粒度小,塔板理论数N就越大。

这也进一步证明基质粒度小,会提高分辨率的道理。

再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。

2.4检测系统高效液相色谱常用的检测器有紫外检测器、示差折光检测器和荧光检测器三种。

(1)紫外检测器该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。

其特点:使用面广(如蛋白质、核酸、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10g/ml);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。

(2)示差折光检测器凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。

,糖类化合物的检测使用此检测系统。

相关文档
最新文档