直升机飞行原理(图解)
直升机桨叶工作原理动图
![直升机桨叶工作原理动图](https://img.taocdn.com/s3/m/e5f651c2b04e852458fb770bf78a6529647d356b.png)
直升机桨叶⼯作原理动图越⼤型的直升机,动⼒系统驱动主旋翼所产⽣的扭矩通常也越⼤,需要更强的反扭矩系统才能加以平衡,但为了把涵道式尾桨“塞”到尺⼨有限的机尾垂直尾开孔结构内,涵道式尾桨的桨叶直径并不像传统尾桨那样容易放⼤,以便得到更⼤的侧向拉⼒〔或推⼒)。
与应⽤在同级直升机上的传统尾桨相⽐,涵道式尾桨的桨叶直径通常只有传统尾桨的40%~50%,但叶⽚数量更多〖传统尾桨多为2⼀5叶,涵道式尾桨则为8⼀13叶),转速也更⾼如果为了提供更⼤的侧向⼒量⽽进⼀步放⼤涵道式尾桨桨叶尺⼨,那么外覆整流罩的尺⼨也需随之放⼤,以致抵消其在减振、降噪与安全性⽅⾯原理如采⽤传统尾桨。
取代尾旋翼作为抵消主旋翼扭⽮巨的反扭⽮巨系统,实际作法是在尾梁根部安装I台由发动机驱动的可变螺距风扇,这台风扇可以超过5000rprn的转速、将从尾梁根部表⾯进⽓吸⼊的空⽓,加压后吹向尾梁后端,然后从尾梁后端⽯下侧的⼀或两条狭长排⽓缝隙排出,前着主旋翼下洗⽓流.同沿着尾梁表⾯流下,利⽤翼下洗⽓流⼀过司沿着尾梁表⾯流下,利⽤康达效应的附⾯作⽤,让沿着尾梁表⾯流动的⽓流发⽣偏转并加速,形成吹向机⾝左侧的环流控制⽓流,从⽽提供平衡主旋翼扭詎所需的侧向⼒量。
尾梁末端还没有⼀套喷流助推器,由可转动的外环与固定内环组成,内环左右两侧都开有排⽓槽,没有从尾梁排⽓缝隙流出的加压空⽓,可从这两个排⽓嘈中排出,形成助推喷流。
驾驶员可像操纵传统尾桨⼀样,利⽤脚蹬来转动喷流助睢器外环,利⽤外环遮盖在内环排⽓槽上的不同位置,控制从喷流助推閤排出的喷⽓流量:桨叶在环形过程中相对于其他桨叶有⼀定的挥舞外,材质也必须具有弹性,这就是为什么直升机停在地⾯时,桨叶总是“耷拉”着的原因。
但机械铰链磨损⼤,可靠性不好,德国 MBB⽤弹性元件取代了挥舞铰,研制成功⽆铰桨叶,第⼀个应⽤⽆铰桨叶的是 MBB Bo-105。
直升机飞行操控的基本原理
![直升机飞行操控的基本原理](https://img.taocdn.com/s3/m/d7db313f8e9951e79b8927f4.png)
直升机飞行操控的基本原理图 1 直升机飞行操纵系统- 概要图(a)(b)图2 直升机操纵原理示意图1.改变旋翼拉力的大小2.改变旋翼拉力的方向3.改变尾桨的拉力飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。
如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。
一、周期变距操纵系统周期操纵系统用于操纵旋翼桨叶的桨距周期改变。
当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。
纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。
周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。
1.右侧周期变距操纵杆3.左侧周期变距操纵杆2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件13.总距拉杆14.与复合摇臂相连接的拉杆15.伺服机构16.伺服机构(横滚+总距)17.伺服机构(俯仰+总距)18.可调拉杆图 3 直升机周期变距操纵系统(一)纵向操纵情况当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。
飞机飞行的原理图解
![飞机飞行的原理图解](https://img.taocdn.com/s3/m/bffe1202b9f3f90f77c61bd0.png)
飞机飞行的原理图解飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。
飞机飞行原理:1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。
2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。
3、当飞机前进的速度越大,这个压强差,即升力也就越大。
所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。
当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。
飞机的组成:大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。
机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。
在机翼上一般安装有副翼和襟翼。
操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。
另外,机翼上还可安装发动机、起落架和油箱等。
1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。
2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。
水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。
尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。
3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
4.动力装置:主要用来产生拉力和推力,使飞机前进。
其次还可为飞机上的其他用电设备提供电源等。
除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
直升机飞行原理(图解)
![直升机飞行原理(图解)](https://img.taocdn.com/s3/m/ab3f6d7bd4d8d15abf234e3d.png)
飞行原理(图解)直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。
旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。
旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题.直升机主旋翼反扭力的示意图没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法直升机抵消反扭力的方案有很多,最常规的是采用尾桨。
主旋翼顺时针转,对机身就产生逆时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力.抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。
有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。
各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。
尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。
极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆.尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。
为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性.尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制.在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。
直升机飞行原理
![直升机飞行原理](https://img.taocdn.com/s3/m/c80c7deca417866fb84a8ebf.png)
直升机与旋翼机的飞行原理直升机的飞行原理1. 概况与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。
一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。
这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。
直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。
桨叶片的数量随着直升机的起飞重量而有所不同。
重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在以下,一般只有两片桨叶。
直升机飞行的特点是:(1) 它能垂直起降,对起降场地要求较低;(2) 能够在空中悬停。
即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势;(3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。
2. 直升机旋翼的工作原理直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。
旋翼的截面形状是一个翼型,如图所示。
翼型弦线与垂直于桨毂旋转轴平面(称为桨毂旋转平面)之间的夹角称为桨叶的安装角,以表示,有时简称安装角或桨距。
各片桨叶的桨距的平均值称为旋翼的总距。
驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2º~14º。
气流V 与翼弦之间的夹角即为该剖面的迎角。
显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。
旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。
前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。
对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。
使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。
直升机飞行原理及平衡课件
![直升机飞行原理及平衡课件](https://img.taocdn.com/s3/m/97a31ae83186bceb19e8bba0.png)
……
• 图中的实线④为上述三项之和,即总的平飞需 用功率P平需随平飞速度的变化而变化。 它是一 条马鞍形的曲线:小速度平飞时,废阻功率很小, 但这时诱导功率很大,所以总的乎 飞需用功率仍 然很大。但比悬停时要小些。在一定速度范围内, 随着平飞速度的增加,由于 诱导功率急剧下降, 而废阻功率的增量不大,因此总的平飞需用功率 随乎飞速度的增加呈下 降趋势,但这种下降趋势 随 V的增加逐渐减缓。速度继续增加则由于废阻 功率随平飞速度 增加急剧增加。平飞需用功率随 V的增加在达到平飞需用功率的最低点后增加;总 的平飞 需用功率随 V的变化则呈上升趋势,而且 变得愈来愈明显
的飞行 纸飞机飞行中的 水桶中的回旋力 直升机中的回旋力
直升机平衡
平飞时的平衡 平飞时力的平衡 平飞需用其随速度的变化功率
及 平飞需用功率及其随速度的变
化 平飞需用功率随速度的变化 直升机的后飞 直升机的侧飞 直升机的转动惯量
• X轴:T2=X身
• Y轴: T1=G
• Z轴:T3约等于T尾
•
其中 Tl, T2, T3分别为旋翼拉力在 X, Y,Z
三个方向的分量。 对于单旋翼带尾桨直升机,由
于尾桨轴线通常不在旋翼的旋转平面内,为保持 侧向力矩 平衡,直升机稍带坡度角 r,故尾桨推 力与水平面之间的夹角为 y,T尾与T3方向不完全 一致,因为 y角很小,即cosr约等于1,故Z向力采 用近似等号。
平飞时的平衡...
• 相对于速度轴系平飞时, 作用在直升机上的力主要 有旋空拉力T,全机重力 G, 机体的废阻力 X身及尾桨 推力T尾。前飞时速度轴系 选取的原则是: X铀指向 飞行速度V方向; Y轴垂直 于X轴向上为正,2轴按右 手法则确定。保持直升机 等速直线平飞的力的平衡 条件
直升机飞行操控的基本原理
![直升机飞行操控的基本原理](https://img.taocdn.com/s3/m/5c260ee56294dd88d1d26b06.png)
直升机飞行操控的基本原理图 1 直升机飞行操纵系统- 概要图(a)(b)图2 直升机操纵原理示意图1.改变旋翼拉力的大小2.改变旋翼拉力的方向3.改变尾桨的拉力飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。
如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。
一、周期变距操纵系统周期操纵系统用于操纵旋翼桨叶的桨距周期改变。
当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。
纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。
周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。
1.右侧周期变距操纵杆3.左侧周期变距操纵杆2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件13.总距拉杆14.与复合摇臂相连接的拉杆15.伺服机构16.伺服机构(横滚+总距)17.伺服机构(俯仰+总距)18.可调拉杆图 3 直升机周期变距操纵系统(一)纵向操纵情况当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。
直升机飞行原理 2
![直升机飞行原理 2](https://img.taocdn.com/s3/m/63b53589ec3a87c24028c4c0.png)
双桨共轴
但是缺点也很明显。共轴双桨用套筒轴驱动 上下两副反转的旋翼,同样有串列双桨的上下旋 翼之间的间距问题,间距小了,上下旋翼有可能 打架;间距大了,不光阻力高,对驱动轴的刚度 要求也高,而大功率的套筒轴本来在机械上就难 度很大。套筒轴不光要传递功率,还要传递上面 旋翼的总距、周期距控制,在机械设计上有相当 的难度。例如俄罗斯卡 莫夫系列直升机在向左 上升转弯时必须小心, 否则上下 桨打架, 后果将是机毁人亡。
尾桨原理
前缘 b
Vq 桨毂旋转面 后缘 桨毂旋转轴线
Hale Waihona Puke 自动倾斜器构造驾驶杆操纵
与旋翼的自动倾斜器连接,带动整个旋翼倾斜 —— 直升机低头并向前运动; 向后 —— 抬头并向后退; 向左 —— 向左倾斜并向左侧运动; 向右 —— 向右倾斜并向右侧运动。
向前
双桨共轴
方便的维护无尾桨结构。由于上下旋翼反向旋转,形成了直升机水平 方向的力矩平衡,所以双桨共轴直升机不需要尾桨来平衡直升机水平 方向上的力矩。 气动特性对称,机动性好。在使用相同发动机的情况下,两副共轴式 旋翼的升力比单旋翼/尾桨布局的旋翼升力大12%。共轴式旋翼气动 力对称性显然优于单旋翼式,不存在各轴之间互相交连的影响,机动 飞行时易于操纵。改变航向时,共轴式直升机很容易保持直升机的飞 行高度,这在超低空飞行和飞越障碍物时尤其可贵,对飞行安全有重 要意义。
升力来源
直升机飞行原理和结构与飞机
不同飞机靠它的固定机翼产生 升力,而直升机是靠它头上的 桨叶(螺旋桨)旋转产生升力。 直升机的桨叶大概有2—3米长, 一般有5叶组成。普通飞机是靠 翅膀产生升力起飞的,而直升 飞机是靠螺旋桨转动,拨动空 气产生升力的。直升飞机起飞 时,螺旋桨越转越快,产生的 升力也越来越大,当升力比飞 机的重量还大时,飞机就起飞 了。在飞行中飞行员调节高度 时,就只要通过改变大螺旋桨 旋转的速度就可以了。
图解直升机原理
![图解直升机原理](https://img.taocdn.com/s3/m/256dc9db7f1922791688e87c.png)
图解直升机原理之一---涡轮轴发动机工作原理航空涡轮轴发动机航空涡轮轴发动机,或简称为涡铀发动机,是一种输出轴功率的涡轮喷气发动机。
法国是最先研制涡轴发动机的国家。
50年代初,透博梅卡公司研制成一种只有一级离心式叶轮压气机、两级涡轮的单转于、输出轴功率的直升机用发动机,功率达到了206kW(280hp),成为世界上第一台直升机用航空涡轮轴发动机,定名为“阿都斯特—l”(Artouste—1)。
首先装用这种发动机的直升机是美国贝尔直升机公司生产的Bell 47(编号为X H—13F),于1954年进行了首飞。
涡轴发动机的主要机件与一般航空喷气发动机一样,涡轴发动机也有进气装置、压气机、燃烧室、涡轮及排气装置等五大机件,涡轴发动机典型结构如下图所示。
进气装置由于直升机飞行速度不大,一般最大平飞速度在3 50km/h以下,故进气装置的内流进气道采用收敛形,以便气流在收敛形进气道内作加速流动,以改善气流流场的不均匀性。
进气装置进口唇边呈圆滑流线,适合亚音速流线要求,以避免气流在进口处突然方向折转,引起气流分离,为压气机稳定工作创造一个好的进气环境。
有的涡轴发动机将粒子分离器与进气道设计成一体,构成“多功能进气道”,以防止砂粒进入发动机内部磨损机件或者影响发动机稳定工作,这种多功能进气道利用惯性力场,使含有砂粒的空气沿着一定几何形状的通道流动。
由于砂粒质量较空气大,在弯道处使砂粒获得较大的惯性力,砂粒便聚集在一起并与空气分离,排出机外(见下图)。
压气机压气机的主要作用是将从进气道进入发动机的空气加以压缩,提高气流的压强,为燃烧创造有利条件。
根据压气机内气体流动的特点,可以分为轴流式和离心式两种。
轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。
涡轴发动机的压气机,其结构形式几经演变,从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。
当前,直升机的涡轴发动机大多采用的是若干级轴流加一级离心所构成的组合压气机。
直升机飞行操控的基本原理
![直升机飞行操控的基本原理](https://img.taocdn.com/s3/m/241f1d6302020740be1e9b9a.png)
直升机飞行操控的基本原理图1直升机飞行操纵系统-概要图(a)(b)图2直升机操纵原理示意图1.改变旋翼拉力的大小2.改变旋翼拉力的方向3.改变尾桨的拉力飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。
如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。
一、周期变距操纵系统周期操纵系统用于操纵旋翼桨叶的桨距周期改变。
当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。
纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。
周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15 )、伺服机构(横滚+总距)(16 )、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。
161.右侧周期变距操纵杆 3.左侧周期变距操纵杆2.可调摩擦装置 4.橡胶波纹套 5.俯仰止动件 6.复合摇臂7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件13.总距拉杆14.与复合摇臂相连接的拉杆15.伺服机构16.伺服机构(横滚+总距)17.伺服机构(俯仰+总距)18.可调拉杆图3直升机周期变距操纵系统(一)纵向操纵情况当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。
直升机原理
![直升机原理](https://img.taocdn.com/s3/m/4c561c7625c52cc58bd6be4e.png)
直升机VS固定翼
• 结构复杂 • 造价高昂,同等起飞 重量,比固定翼贵得 多。 • 燃油消耗率高 • 维护费用高 • 不宜操作 • 方便灵活 • 对机场条件要求低
直升机发展史
旋翼结构布局分类
旋翼结构布局分类
起落装置
• 起落装置主要作用是吸收着陆时的撞击能 量,以减小着陆时的机体受到的撞击载荷。 • 轮式 • 构架式 • 支柱式 • 摇臂式 • 前三点 • 后三点 • 滑撬式 • 浮筒式
摆振铰与哥氏力
• 哥氏力原理: • 物体做圆周运动,如果重心与运动中心 距离变小,会使物体产生加速运动的力, 反之,则产生使物体减速的力 • 桨叶在环形过程中,不断升高、降低, 翼尖离圆心的距离不断改变,引起哥里 奥利效应以补偿桨叶上下挥舞所造成的 科里奥利效应。
上下挥舞使重心不停改变
摆振运动与摆振铰接
直升机阻力
• • • • • 型状阻力 爬升阻力 诱导阻力 激波阻力 干扰阻力
诱导阻力
• 由于旋翼桨叶属机翼翼面,因此固定翼机 翼的诱导阻力也适用于直升机旋翼。
直升机诱导阻力与平飞速度的关系
旋翼
• 桨叶旋转所划过的面积,叫桨盘面积 • 旋翼类飞机的飞行重量与桨盘面积之比叫桨盘载 荷 • 各片桨叶实际占面积与整个桨盘面积之比,叫做 旋翼实度
桨叶安装角
• • • • 桨叶安装角:翼弦与浆毂旋转平面的夹角。 桨距:桨叶半径70%处的安装角 总距:各桨叶桨距的平均值 迎角:相对气流与翼弦之间的夹角。
桨叶受力
桨叶挥舞解决升力不均
• 前行桨叶升力较大, 但由于桨叶上挥幅度 大,迎角减小,升力 下降。 • 后行桨叶升力较小, 离心力的作用使桨叶 下挥,迎角增大,升 力增大。
直升机原理
直升机-原理PPT课件
![直升机-原理PPT课件](https://img.taocdn.com/s3/m/f713343e19e8b8f67d1cb96e.png)
2021/3/9
授课:XXX
1
直升机
– 垂直起降 – 能够在空中悬停 – 发动机空中停车时,旋翼自转,仍可产
生一定升力,减缓下降趋势 – 可以沿任意方向飞行 – 飞行速度较低,航程相对来说也较短。
2021/3/9
授课:XXX
2
旋翼工作原理
2021/3/9
前缘
Vq
类同于机翼
授课:XXX
授课:XXX
12
直升机的构型
法国“小羚羊”武装直升机
美国西科斯基公司CH-54起重直升机
2021/3/9
授课:XXX
俄罗斯卡-50共轴双旋翼直升机
13
国CH 47串列双旋翼直升机
直升机的构型
2021/3/9
授课:XXX
14
直升机的构型
2021/3/9 西科斯基驾驶VS-300型直授课升:机XXX
授课:XXX
8
油门总距杆操纵
油门总距杆通常位于驾驶
员座椅的左方,由驾驶员左 手操纵,此杆可同时操纵旋 翼总距和发动机油门,实现 总距和油门联合操纵。
油门调节环位于油门总距杆的端部,在
不动总距油门杆的情况下,驾驶员左手拧 动油门调节环可以在较小的发动机转速范 围内调 整发动机功率。
2021/3/9
授课:XXX
9
脚蹬
座椅前下部
对于单旋翼带尾桨的 直升机,
蹬脚蹬
→ 尾桨变距
→ 改变尾桨推(拉)力
→ 机头指向
→ 航向
2021/3/9
授课:XXX
10
直升机的操纵
2021/3/9
授课:XXX
11
直升机的构型
力矩及力矩平衡问题
直升机原理ppt课件
![直升机原理ppt课件](https://img.taocdn.com/s3/m/051a85236137ee06eff918fe.png)
三、直升机结构
减速器 旋翼 桨毂 倾斜器 发动机 尾桨
机载设备 燃油箱 起落架 机身 传动装置
三、直升机结构
★ 旋翼系统:包括桨叶和桨毂
功用:产生升力、推力和操纵力。
三、直升机结构
旋翼
旋翼由桨叶和桨毂组成。一副旋翼 的桨叶最少有两片,最多可达七片。
根据桨叶与桨毂的连接方式,旋翼 形式有四种,即全铰式、半铰式、无铰式 和无轴承式。
无铰式是取消水平铰 和垂直铰,只保留轴向铰。
无轴承式是取消三个铰。桨叶的运动靠其 扭转变形和弯曲变形来实现。
三、直升机结构
★ 尾桨
尾桨是安装在直升机尾端的小螺旋桨,它产 生拉力,用以平衡旋翼旋转时给直升机的反作用扭 矩,保持预定的飞行方向;
发挥飞机安定面作用,保持直升机飞行过程 中的航向稳定。
三、直升机结构
前飞时由于左右两侧气流不对称,导致左右两侧桨叶 升力分布不对称,从而引起很大的周期变化的桨根弯矩。
二、直升机飞行原理
桨叶的挥舞运动 桨叶的摆振运动 桨叶的变距运动
挥舞铰(水平铰) 摆振铰(垂直铰) 变距铰(轴向铰)
二、直升机飞行原理
二、直升机飞行原理
二、分类
直升机按用途分为运输直升机、武装直升机、 反潜直升机
★ 操纵系统
操纵系统的功用是将驾驶员对驾驶杆和脚 蹬的操纵传到有关的操纵机构,以改变直升机 的飞行姿态和方向。
操纵系统主要由驾驶杆、脚蹬、油门变距 杆、自动倾斜器、液压助力器、加载机构、旋 翼刹车、连杆、摇臂等组成。
它可分为三部分:油门变距系统、脚操纵 系统和驾驶杆操纵系统。
三、直升机结构
★ 操纵系统
航空航天概论
——直升机
升力
阻力
直升机飞行原理及平衡
![直升机飞行原理及平衡](https://img.taocdn.com/s3/m/c0059bc2dd36a32d72758198.png)
直升机的后飞()
相对气流不对称,引起挥舞及桨叶迎角的变化
直升机的侧飞
侧飞是直升机特有的又一种飞行状态,它与悬停、小速度垂 直飞行及后飞 一起是实施某些特殊作业不可缺少的飞行性能 。一般侧飞是在悬停基础上实施 的飞行状态。其特点是要多 注意侧向力 的变化和平衡。由于直升机机体的侧向 投影面积 很大,机体在侧飞时其空气动 力阻力特别大,因此直升机侧 飞速度通 常很小。由于单旋翼带尾桨直升机的侧 向受力是不 对称的,因此左侧飞和右侧 飞受力各不相同。向后行桨叶一 侧侧飞,旋翼拉力向后行桨叶一例的水平分量大于向前行桨 叶一侧的尾桨推力,直 升机向后方向运动,会产生与水平分 量反向的空气动力阻力Z。当侧力平衡时,水平分量等于尾桨 推力与空气动力 阻力之和,能保持等速向后行桨叶一侧侧飞 。向前行桨叶一例侧飞时,旋翼拉 力的水平分量小于尾桨推 力,在剩余尾桨推力作用下,直升机向民桨推力方向一例运 动,空气动力阻力与尾桨推力反向,当侧力平衡时,保持等 速向前行桨叶一侧飞行。
率P废就可以近似认为与平飞速 度的三次方成正 比,如上图中的点划线③所示。
平飞时,诱导功率为P诱=TV,其中T为旋翼
拉力, vl为诱导速度。当飞行重量不变时,近似
认为旋翼拉力不变,诱导速度271随平飞速度 V的
增大而减小,因此平飞诱导功率 P诱随平飞速度V
的变化如上图中细实线②所示。
平飞型阻功率尸型则与桨叶平均迎角有关。 随平飞速度的增加其平均迎角变化不大。所以P型 随乎飞速度V的变化不大,如图中虚线①所示。
因为在竖直方向上有风对飞机向上的分力 的作用f1,从而减少重力对飞机作用。
而在水平方向上有f2的作用,
当 我们用力掷纸飞机时,飞机就轻而易举 的飞起来
而对于直升机的飞行还有一个“回旋力”的作 用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞行原理(图解)
直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。
旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。
旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。
直升机主旋翼反扭力的示意图
没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法
直升机抵消反扭力的方案有很多,最常规的是采用尾桨。
主旋翼顺时针转,对机身就产生逆
时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。
抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。
有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。
各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。
尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。
极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。
尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。
为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。
尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。
在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。
即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。
在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。
尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。
虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。
尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右
面向直升机看,尾桨顺时针旋转),这样尾桨对主旋翼的气动干扰小,主旋翼的升力可以充分发挥。
尾桨也可以逆着主旋翼的方向旋转,也就是说,对于逆时针旋转的主旋翼,尾桨向后转(或者说,从右面向直升机看,尾桨逆时针旋转),这样尾桨和主旋翼之间形成一个互相干扰,主旋翼的升力受到损失,但尾桨的作用加强,所以可以缩小尺寸,或降低功率。
两者没有绝对的优劣,设计得当时,一般选择顺着转,只有设计不当、尾桨控制作用不够时,
才选择逆着转,像米-24直升机那样。
涵道尾桨(fenestron)将尾桨缩小,“隐藏”在尾撑端部的巨大开孔里,相当于给尾桨安上一个罩子,这样大大改善了安全性,不易打到周围的物体。
由于涵道尾桨的周边是遮蔽的,尾桨翼尖附近的气流情况大大简化,翼尖速度较高也不至于大大增加噪声。
罩子的屏蔽也使前后方向上的噪声大大减小。
涵道尾桨的缺点是风扇的包围结构带来较大的重量,这个问题随涵道尾桨直径增加而急剧恶化,所以涵道尾桨难以用到大型直升机上。
涵道尾桨只有法国直升机上采用,美国的下马了的Comanche 是法国之外少见的采用涵道尾桨的例子。
海豚直升机上的涵道尾桨/ 经典的采用涵道尾桨的EC-120 直升机,中国参加合作制造
已经下马的美国RAH-66“科曼奇”直升机同样采用涵道尾桨另一个取代尾桨的方案是NOTAR,NOTAR 是No Tail Rotor(意为无尾桨)的简称,用喷气引射和主旋翼下洗气流的有利交互作用形成反扭力。
主旋翼产生的下洗气流从尾撑两侧流经尾撑,发动机产生的压缩空气通过尾撑一侧的向下开槽喷出,促使这一侧的下洗气流向尾撑表面吸附并加速(即所谓射流效应或Coanda 效应),形成尾撑两侧气流的速度差,产生向一侧的侧推力,实现没有尾桨的反扭力。
尾撑顶端的直接喷气控制提供更精细的方向控制,但不提供主要的反扭力,不是不可以,而是用射流效应可以用较少的喷气就实现较大的反扭力。
从这个原理
推而广之,如果把尾撑的截面做成机翼一样,下洗气流本身就可产生侧推力,甚至可以在下侧安装类似襟翼的装置以控制侧推力,岂不更好?不知道为什么,没有人这样做。
NOTAR 的噪音比涵道风扇更低,安全性更好,在演示中,只要主旋翼不打到树枝,直接把尾撑捅到树丛里也照样安全飞行,但NOTAR 同样没有用到大型直升机上的例子。
NOTAR 只有麦道(现
波音)直升机上使用,可能是专利的缘故。
NOTAR 的原理简图
采用NOTAR 的MD600N直升机,不知道为什么,MD 直升机还是叫MD,不叫波音。