勤学早九年级数学(上)第21章《一元二次方程》周测(一)
人教版九年级数学上册《第二十一章 一元二次方程》检测题-带答案
![人教版九年级数学上册《第二十一章 一元二次方程》检测题-带答案](https://img.taocdn.com/s3/m/2f828469ec630b1c59eef8c75fbfc77da26997ff.png)
人教版九年级数学上册《第二十一章 一元二次方程》检测题-带答案核心知识1一元二次方程及其根1.(2022春•任城区期末)若关于x 的一元二次方程220(0)ax bx a ++=≠有一根为2022x = 则一元二次方程2(1)2a x bx b -+-=-必有一根为( ) A .2020B .2021C .2022D .2023【分析】对于一元二次方程2(1)(1)20a x b x -+-+= 设1t x =-得到220at bt ++= 利用220at bt ++=有一个根为2022t =得到12022x -= 从而可判断一元二次方程2(1)(1)2a x b x -+-=-必有一根为2023x =. 【解答】解:对于一元二次方程2(1)2a x bx b -+-=-即2(1)(1)20a x b x -+-+= 设1t x =- 所以220at bt ++=而关于x 的一元二次方程220(0)ax bx a ++=≠有一根为2022x = 所以220at bt ++=有一个根为2022t = 则12022x -= 解得2023x =所以一元二次方程2(1)2a x bx b -+-=-必有一根为2023x =. 故选:D .【点评】本题考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.(2022春•平桂区期末)下列方程中 不是一元二次方程的是( ) A .21x x =+B .276x x -=C .24573x x -=-D .2650x --=【分析】根据一元二次方程的定义解决此题.【解答】解:A .根据一元二次方程的定义 21x x =+是一元二次方程 那么A 不符合题意.B .根据一元二次方程的定义 276x x -=是一元二次方程 那么B 不符合题意.C .根据一元二次方程的定义 24573x x -=-不是一元二次方程 那么C 符合题意.D .根据一元二次方程的定义 2650x --=是一元二次方程 那么D 不符合题意.故选:C .【点评】本题主要考查一元二次方程的定义 熟练掌握一元二次方程的定义是解决本题的关键. 3.(2022春•桐城市期末)若a 为方程2240x x +-=的解 则2368a a +-的值为( ) A .4B .2C .4-D .12-【分析】由题意可得224a a += 再由223683(2)8a a a a +-=+- 代入求值即可. 【解答】解:a 为方程2240x x +-=的解 2240a a ∴+-= 224a a ∴+=223683(2)83484a a a a ∴+-=+-=⨯-= 故选:A .【点评】本题考查一元二次方程的解 熟练掌握一元二次方程的解与一元二次方程的关系是解题的关键. 4.(2022春•瑶海区期末)如果关于x 的一元二次方程210ax bx ++=的一个解是1x = 则代数式a b +的值为( ) A .1-B .1C .2-D .2【分析】把1x =代入方程210ax bx ++= 即可得到a b +的值. 【解答】解:关于x 的一元二次方程210ax bx ++=的一个解是1x = 10a b ∴++= 1a b ∴+=-.故选:A .【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(2022春•包河区期末)一元二次方程(2)(3)0x x -+=化为一般形式后 常数项为( ) A .6B .6-C .1D .1-【分析】方程整理为一般形式 找出常数项即可.【解答】解:方程整理得:260x x +-= 则常数项为6-. 故选:B .【点评】此题考查了一元二次方程的一般形式 一元二次方程的一般形式是:20(ax bx c a ++= b c 是常数且0)a ≠.在一般形式中2ax 叫二次项 bx 叫一次项 c 是常数项.其中a b c 分别叫二次项系数一次项系数 常数项.核心知识2.解一元二次方程6.(2022春•张店区期末)用配方法解一元二次方程22210x x --= 下列配方正确的是( ) A .213()44x -=B .213()42x -=C .213()24x -=D .213()22x -=【分析】方程整理后 利用完全平方公式配方得到结果 即可作出判断. 【解答】解:方程22210x x --= 整理得:212x x -=配方得:21344x x -+= 即213()24x -=. 故选:C .【点评】此题考查了解一元二次方程-配方法 熟练掌握完全平方公式是解本题的关键. 7.(2022春•姜堰区期末)用配方法解一元二次方程2430x x --= 配方正确的是( ) A .2(2)7x -=B .2(2)6x -=C .2(4)3x -=D .2(4)9x -=【分析】利用解一元二次方程-配方法 进行计算即可解答. 【解答】解:2430x x --= 243x x -= 24434x x -+=+2(2)7x -= 故选:A .【点评】本题考查了解一元二次方程-配方法 熟练掌握解一元二次方程-配方法是解题的关键. 8.(2021秋•陵水县期末)将一元二次方程2230x x --=化成2()x h k +=的形式 则k 等于( ) A .1B .2C .3D .4【分析】利用配方法进行计算即可解答. 【解答】解:2230x x --= 223x x -=22131x x -+=+2(1)4x -= 4k ∴=故选:D .【点评】本题考查了解一元二次方程-配方法 熟练掌握解一元二次方程-配方法是解题的关键.9.(2022春•莱芜区期末)以x =( ) A .240x x c --=B .240x x c +-=C .240x x c -+=D .240x x c ++=【分析】根据求根公式逐一判断即可.【解答】解:A .此方程的根为x =符合题意;B .此方程的根为x =不符合题意;C .此方程的根为x =不符合题意;D .此方程的根为x =不符合题意;故选:A .【点评】本题主要考查解一元二次方程—公式法 解题的关键是掌握求根公式.10.(2022•山西模拟)在用配方法解方程2340x x +-=时 可以将方程转化为2325()24x += 其中所依据的一个数学公式是( ) A .22()()a b a b a b -=+-B .2222()a ab b a b ++=+C .2222()a ab b a b -+=-D .x =【分析】利用完全平方公式判断即可.【解答】解:在用配方法解方程2340x x +-=时 可以将方程转化为2325()24x += 其中所依据的一个数学公式是2222()a ab b a b ++=+. 故选:B .【点评】此题考查了解一元二次方程-公式法 熟练掌握求根公式的推导过程是解本题的关键. 11.(2022春•泰山区期末)下列一元二次方程最适合用因式分解法来解的是( )A .(2)(5)1x x -+=B .223(2)4x x -=-C .2310x x -+=D .29(1)5x -=【分析】本题可对方程进行化简 看能否将方程化为左边是两个式子相乘 右边是0的形式 即可应用因式分解法来解.【解答】解:A 、(2)(5)1x x -+=适合于公式法解方程 故本选项不符合题意;B 、由原方程得到2680x x -+= 适合于因式分解法解方程 故本选项符合题意;C 、2310x x -+=适合于公式法解方程 故本选项不符合题意;D 、由原方程得到29(1)5x -= 最适合于直接开平方法解方程 故本选项不符合题意;故选:B .【点评】本题考查了解一元二次方程--因式分解法.因式分解法就是先把方程的右边化为0 再把左边通过因式分解化为两个一次因式的积的形式 那么这两个因式的值就都有可能为0 这就能得到两个一元一次方程的解 这样也就把原方程进行了降次 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12.(2022•临沂)方程22240x x --=的根是( ) A .16x = 24x =B .16x = 24x =-C .16x =- 24x =D .16x =- 24x =-【分析】利用十字相乘法因式分解即可. 【解答】解:22240x x --= (6)(4)0x x -+= 60x -=或40x +=解得16x = 24x =- 故选:B .【点评】本题考查了利用因式分解法解一元二次方程 掌握十字相乘法因式分解是解答本题的关键.核心知识3.根的判别与韦达定理13.(2022•息县模拟)若关于x 的方程260x mx -+=没有实数根 则m 的值可以是( ) A .7B .6C .5D .4【分析】先根据根的判别式的意义得到△2()460m =--⨯< 然后对各选项进行判断. 【解答】解:根据题意得△2()460m =--⨯<即224m < 所以m 可以取4. 故选:D .【点评】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时 方程有两个不相等的实数根;当△0=时 方程有两个相等的实数根;当△0<时 方程无实数根. 14.(2022•虞城县三模)关于x 的方程2230x mx --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定【分析】先计算根的判别式的值 利用非负数的性质得到△0> 然后根据根的判别式的意义判断方程根的情况.【解答】解:△22()42(3)240m m =--⨯⨯-=+>∴方程有两个不相等的实数根.故选:A .【点评】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时 方程有两个不相等的实数根;当△0=时 方程有两个相等的实数根;当△0<时 方程无实数根. 15.(2022•洛阳模拟)关于x 的一元二次方程2210ax x +-=有两个实数根 则a 的取值范围是( ) A .1a -且0a ≠B .1a -且0a ≠C .1a <D .1a >-【分析】根据一元二次方程的定义和根的判别式的意义得到0a ≠且△224(1)0a =-⨯- 然后求出两不等式的公共部分即可.【解答】解:根据题意得0a ≠且△224(1)0a =-⨯- 解得1a -且0a ≠. 故选:B .【点评】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时 方程有两个不相等的实数根;当△0=时 方程有两个相等的实数根;当△0<时 方程无实数根. 16.(2022•荆门)若函数21(y ax x a =-+为常数)的图象与x 轴只有一个交点 那么a 满足( ) A .14a =B .14aC .0a =或14a =-D .0a =或14a =【分析】由题意分两种情况:①函数为二次函数 函数21y ax x =-+的图象与x 轴恰有一个交点 可得△0= 从而解出a 值;②函数为一次函数 此时0a = 从而求解. 【解答】解:①函数为二次函数 21(0)y ax x a =-+≠∴△140a =-=14a ∴=②函数为一次函数 0a ∴= a ∴的值为14或0; 故选:D .【点评】此题考查根的判别式 一次函数的性质 对函数的情况进行分类讨论是解题的关键.17.(2022春•栖霞市期末)若一元二次方程22(23)0x m x m -++=有两个不相等的实数根1x 2x 且1212x x x x += 则m 的值是( )A .1-B .3C .2或1-D .3-或1【分析】由根与系数的关系 可得1223x x m +=+ 212x x m ⋅= 又由1212x x x x +=⋅ 即可求得m 的值. 【解答】解:关于x 的一元二次方程22(23)0x m x m -++=的两个不相等的实数根∴△22(23)41290m m m =+-=+>34m ∴>-1223x x m +=+ 212x x m ⋅=又1212x x x x +=⋅223m m ∴+=解得:1m =-或3m = 34m >-3m ∴=故选:B .【点评】此题考查了一元二次方程根与系数的关系与判别式的应用.此题难度适中 注意掌握如果1x 2x 是一元二次方程20ax bx c ++=的两根 那么有12b x x a +=- 12cx x a=的应用.18.(2022春•丽水期末)已知关于x 的一元二次方程230x mx ++=的一个根是1 则方程的另一个根是() A .3-B .2C .3D .4-【分析】设方程的一个根11x = 另一个根为2x 再根据根与系数的关系进行解答即可. 【解答】解:设方程的一个根11x = 另一个根为2x 根据题意得: 123x x ⨯=将11x =代入 得23x =. 故选:C .【点评】本题考查了根与系数的关系 熟练掌握根与系数的关系的相关知识是解题的关键.19.(2022春•海阳市期末)若1x 2x 是方程2420220x x --=的两个实数根 则代数式211222x x x -+的值等于( ) A .2022B .2026C .2030D .2034【分析】先根据一元二次方程的定义得到21142022x x =+ 则211222x x x -+可化为1220222()x x ++ 再根据根与系数的关系得到124x x += 然后利用整体代入的方法计算. 【解答】解:1x 是方程2420220x x --=的实数根211420220x x ∴--= 21142022x x ∴=+21121121222420222220222()x x x x x x x x ∴-+=+-+=++ 1x 2x 是方程2420220x x --=的两个实数根 124x x ∴+=2112222022242030x x x ∴-+=+⨯=. 故选:C .【点评】本题考查了根与系数的关系:若1x 2x 是一元二次方程20(0)ax bx c a ++=≠的两根时 12b x x a +=- 12cx x a=.也考查了一元二次方程的解.20.(2022•牟平区一模)已知一元二次方程2202210x x -+=的两个根分别为1x 2x 则21220221x x -+的值为( ) A .1-B .0C .2022-D .2021-【分析】先根据一元二次方程根的定义得到21112022x x += 则21220221x x -+变形为12212022x x x -⨯ 再根据根与系数的关系得到121x x = 然后利用整体的方法计算即可. 【解答】解:1x x =为方程2202210x x -+=的根211202210x x ∴-+= 21112022x x ∴+= 21211222120222022120222022x x x x x x x -∴-+=-=⨯ 方程2202210x x -+=的两个根分别为1x 2x 121x x ∴=2122202211120220x x x -∴-+=⨯=. 故选:B .【点评】本题考查了根与系数的关系:若1x 2x 是一元二次方程20(0)ax bx c a ++=≠的两根 则12b x x a +=- 12cx x a=.核心知识4.一元二次方程的应用21.(2022•定远县模拟)某农机厂四月份生产零件50万个 第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x 那么x 满足的方程是( ) A .250(1)182x +=B .25050(1)50(1)182x x ++++=C .250(1)50(1)182x x +++=D .5050(1)182x ++=【分析】由题意根据增长后的量=增长前的量(1⨯+增长率) 如果该厂五、六月份平均每月的增长率为x 那么可以用x 分别表示五、六月份的产量 进而即可得出方程.【解答】解:设该厂五、六月份平均每月的增长率为x 那么得五、六月份的产量分别为50(1)x +、250(1)x +根据题意得:25050(1)50(1)182x x ++++=. 故选:B .【点评】本题考查由实际问题抽象出一元二次方程的增长率问题 注意掌握其一般形式为2(1)a x b += a 为起始时间的有关数量 b 为终止时间的有关数量 x 为增长率.22.(2022•南通)李师傅家的超市今年1月盈利3000元 3月盈利3630元.若从1月到3月 每月盈利的平均增长率都相同 则这个平均增长率是( ) A .10.5%B .10%C .20%D .21%【分析】设该商店的月平均增长率为x 根据等量关系:1月份盈利额(1⨯+增长率)23=月份的盈利额列出方程求解即可.【解答】解:设从1月到3月 每月盈利的平均增长率为x 由题意可得:23000(1)3630x +=解得:10.110%x == 2 2.1x =-(舍去) 答:每月盈利的平均增长率为10%. 故答案为:B .【点评】此题主要考查了一元二次方程的应用 属于增长率的问题 增长率=增长数量/原数量100%⨯.如:若原数是a 每次增长的百分率为x 则第一次增长后为(1)a x +;第二次增长后为2(1)a x + 即 原数(1⨯+增长百分率)2=后来数.23.(2022春•仓山区校级期末)一份摄影作品【七寸照片(长7英寸 宽5英寸)】 现将照片贴在一张矩形衬纸的正中央 照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的2倍.设照片四周外露衬纸的宽度为x 英寸(如图) 下面所列方程正确的是( )A .2(7)(5)75x x ++=⨯B .(7)(5)275x x ++=⨯⨯C .2(72)(52)75x x ++=⨯D .(72)(52)275x x ++=⨯⨯【分析】根据关键语句“矩形衬纸的面积为照片面积的3倍”列出方程求解即可.【解答】解:设照片四周外露衬纸的宽度为x 英寸 根据题意得:(72)(52)275x x ++=⨯⨯ 故选:D .【点评】本题考查了由实际问题抽象出一元二次方程的知识解题的关键是表示出大矩形的长与宽.24.(2022春•启东市期末)某校“研学”活动小组在一次野外实践时发现一种植物的主干长出若干数目的支干每个支干又长出同样数目的小分支主干、支干和小分支的总数是57 则这种植物每个支干长出的小分支个数是()A.8 B.7 C.6 D.5【分析】设这种植物每个支干长出的小分支个数是x根据主干、支干和小分支的总数是57 即可得出关于x的一元二次方程解之取其正值即可得出结论.【解答】解:设这种植物每个支干长出的小分支个数是x依题意得:2157x x++=整理得:2560x x+-=解得:17x=28x=-(不合题意舍去)∴这种植物每个支干长出的小分支个数是7.故选:B.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.25.(2022春•蜀山区期末)某超市销售一种商品其进价为每千克30元按每千克45元出售每天可售出300千克为让利于民超市采取降价措施当售价每千克降低1元时每天销量可增加50千克若每天的利润要达到5500元则实际售价应定为多少元?设售价每千克降低x元可列方程为() A.(4530)(30050)5500x x--+=B.(30)(30050)5500x x-+=C.(30)[30050(45)]5500x x-+-=D.(45)(30050)5500x x-+=【分析】根据利润=销售量⨯(售价-进价)即可列出一元二次方程.【解答】解:设售价每千克降低x元由题意得:(4530)(30050)5500x x--+=故选:A.【点评】本题主要考查了一元二次方程的应用掌握利润=销售量⨯(售价-进价)是解决问题的关键.26.(2022•泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱遣人去买几株椽.每株脚钱三文足无钱准与一株椽.”其大意为:现请人代买一批椽这批椽的价钱为6210文.如果每株椽的运费是3文那么少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱试问6210文能买多少株椽?设这批椽的数量为x株则符合题意的方程是()A.3(1)6210x x-=B.3(1)6210x-=C.(31)6210x x-=D.36210x=【分析】设这批椽的数量为x 株 则一株椽的价钱为3(1)x -文 利用总价=单价⨯数量 即可得出关于x 的一元二次方程 此题得解.【解答】解:这批椽的数量为x 株 每株椽的运费是3文 少拿一株椽后 剩下的椽的运费恰好等于一株椽的价钱∴一株椽的价钱为3(1)x -文.依题意得:3(1)6210x x -=.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程 找准等量关系 正确列出一元二次方程是解题的关键.27.(2022•沙坪坝区校级模拟)小北同学在学习了“一元二次方程”后 改编了苏轼的诗词《念奴娇⋅赤壁怀古》:“大江东去浪淘尽 千古风流人物.而立之年督东吴 早逝英年两位数.十位恰小个位三 个位平方与寿同.哪位学子算得快 多少年华数周瑜?”大意为:“周瑜去世时年龄为两位数 该数的十位数字比个位小3 个位的平方恰好等于该数.”若设周瑜去世时年龄的个位数字为x 则可列方程( )A .210(3)x x x ++=B .210(3)(3)x x x -+=-C .210(3)x x x -+=D .210(3)(3)x x x ++=-【分析】根据“该数的十位数字比个位小3 个位的平方恰好等于该数”列方程即可.【解答】解:根据题意 可得210(3)x x x -+=故选:C .【点评】本题考查了一元二次方程的实际应用题 理解题意并根据题意找到等量关系是解题的关键.。
人教版九年级数学上册第二十一章一元二次方程测试题(全章)
![人教版九年级数学上册第二十一章一元二次方程测试题(全章)](https://img.taocdn.com/s3/m/bfc880ee900ef12d2af90242a8956bec0975a50a.png)
第二十一章一元二次方程周周测6一、选择题(每题3分,共30分)1.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是() A.1 B.﹣1 C.0 D.无法确定2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0 3.一元二次方程(x﹣2)=x(x﹣2)的解是()A.x=1 B.x=0 C.x1=2,x2=0 D.x1=2,x2=14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1 D.k≥12且k≠15.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=16.下列关于x的方程有实数根的是()A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+l=07.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144C.144(1+x)2=100 D.100(1+x)2=1448.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣29.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤ B.m≤且m≠0 C.m<1 D.m<1且m≠0 10.若,a b是方程2220060x x+-=的两根,则23a a b++=()A.2006 B.2005 C.2004 D.2002第II卷(非选择题)二、填空题(每题3分,共18分)11.方程x2﹣2x=0的解为12.已知关于x的方程02=+-nmxx的两个根是0和3-,则m= ,n= .13.已知关于x的方程240x x a-+=有两个相同的实数根,则a的值是.14.已知一元二次方程22310x x--=的两根为12x x,,则=+2111xx___________.15.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是_ .16.已知关于x的一元二次方程01)1(2=++-xxm有实数根,则m的取值范围是.三、解答题(共112分)17.(共24分,每小题6分)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).(3) 022=+x x (4)02632=+-x x18.(12分)在实数范围内定义一种新运算“”,其规则为:a b =a 2-b 2,根据这个规则:(1)求43的值; (2)求(x +2)5=0中x 的值.19.(12分)已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。
人教版九年级数学上《第21章一元二次方程》单元检测题含答案解析
![人教版九年级数学上《第21章一元二次方程》单元检测题含答案解析](https://img.taocdn.com/s3/m/ef57bd8533d4b14e84246833.png)
《 一元二次方程》单元检测题一、单选题1.在下列方程中,有实数根的是( )A . x 2+3x+1=0B .=-1 C . x 2+2x+3=0 D .111x x x =-- 2.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( )A . 5个B . 6个C . 7个D . 8个 3.一元二次方程220x x +-=的根的情况是( )A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定 4.关于x 的一元二次方程 有两个不相等的实数根,则a 的取值范围是( ) A . B . 且 C . D . 且 5.下列一元二次方程中,没有实根的是( )A . x 2+2x -3=0B . x 2+x +14=0 C . x 2+1=0 D . -x 2+3=0 6.若方程(k -1)x 2+ x =1是关于x 的一元二次方程,则k 的取值范围是( ) A . k ≠1 B . k ≥0 C . k ≥0且k ≠1 D . k 为任意实数7.如果关于x 的方程x 2-ax +a 2-3=0至少有一个正根,则实数a 的取值范围是( ) A . -2<a <2 B . <a ≤2 C . − <a ≤2 D . − ≤a ≤28.如图,在长方形ABCD 中,AB =10cm ,BC =6cm ,动点P ,Q 分别从点A ,B 同时出发,点P 以3cm/s 的速度沿AB ,BC 向点C 运动,点Q 以1cm/s 的速度沿BC 向点C 运动.设P ,Q 运动的时间是t 秒,当点P 与点Q 重合时t 的值是( )A .52B . 4C . 5D . 6 9.有x 支球队参加 比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A . x (x —1)=45B . x (x +1)=45C .12x (x +1)=45 D. 12x (x —1)=45 10.“山野风”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( ) A . x(x+1)=210 B . x(x-1)=210 C . 2x(x-1)=210 D . 12x(x-1)=210 11.一元二次方程 2340x x ++= 的实数根为( )A . 没有实数根B . x 1=-4,x 2=1C . x 1=4,x 2=-1D . x 1=-4,x 2=-1 二、填空题12.已知两个数的差为3,它们的平方和等于65,设较小的数为x ,则可列出方程________. 13.已知方程(k-2)x2-3x+5=0有两个实数根,则k 的取值范围_______14.关于x 的一元二次方程ax 2﹣2x+1=0有实数根,则a 的取值范围是______.15.已知a ,b ,c 是△ABC 的三边长,若方程(a -c)x 2+2bx +a +c=0有两个相等的实数根,则△ABC 是 ____三角形.16.已知方程x 2+px+q=0有两个相等的实数,则p 与q 的关系是________. 三、解答题17.已知,αβ是关于x 的一元二次方程()22230x m x m +++=的两个不相等的实数根,且满足111αβ+=-,求m 的值.18.关于x 的一元二次方程(c+a )x 2+2bx+(c-a)=0,其中a 、b 、c 分别为△ABC 三边的长. (1)如果方程有两个相等的实数根,试判断△ABC 的形状并说明理由; (2)已知a:b:c=3:4:5,求该一元二次方程的根.19.当m 为何值时,一元二次方程(m 2-1)x 2+2(m -1)x +1=0: (1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根.20.已知关于x 的方程()2223410.x k x k k --+--=(1)若这个方程有实数根,求实数k 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足2212127x x x x +=+,求实数k 的值. 21.已知关于 的一元二次方程 的一根为2. (1)用含 的代数式表示 ;(2)试说明:关于 的一元二次方程 总有两个不相等的实数根.参考答案1.A【解析】根据一元二次方程根的判别式可知:A 、由方程知a=1,b=3,c=1,所以△= b 2-4ac=9-4=5>0,有两个不相等的实数根,故正确;B 、根据算术平方根的意义,可知结果不能为负,故不正确;C 、由方程知a=1,b=2,c=3,所以△= b 2-4ac=4-12=-8>0,无实数根,故不正确;D 、解分式方程,去分母得x=1,当x=1时,x-1=0,原分式方程无解,故不正确. 故选:A. 2.B【解析】设这个航空公司共有飞机场共有x 个. x (x−1)=15×2,解得x ₁=6,x ₂=−5(不合题意,舍去). 答:这个航空公司共有飞机场共有6个. 故选:B . 3.A【解析】∵在一元二次方程220x x +-=中, 112a b c ===-,,, ∴△=()2241412110b ac -=-⨯⨯-=>,∴原方程有两个不相等的实数根. 故选A. 4.B 【解析】解:∵关于x 的一元二次方程 ( ) 有两个不相等的实数根,∴ ,∴ ,解得:a >-5且a ≠-1.故选B . 点睛:本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 5.C【解析】选项A :∵△=b 2 -4ac=2 2 -4×1×(-3)=16>0,∴有两个不相等的实根; 选项B :∵△=b 2 -4ac=1 2 -4×1×14=0,∴有两个相等的实根;选项C:∵△=b 2 -4ac=)2 -4×1×1=-2<0,∴没有实数根;选项D:∵△=b 2 -4ac=0 2 -4×(-1)×3=12>0,∴有两个不相等的实根,故选C.6.C【解析】根据题意可得,解得k≥0且k≠1,故选C.【点睛】本题考查一元二次方程的定义,解本题的关键是要注意k要为非负数.7.C【解析】【分析】根据方程x2-ax+a2-3=0至少有一个正根,则方程一定有两个实数根,即△≥0,关于x的方程x2-ax+a2-3=0至少有一个正根?(1)当方程有两个相等的正根,(2)当方程有两个不相等的根,①若方程的两个根中只有一个正根,一个负根或零根,②若方程有两个正根,结合二次方程的根的情况可求.【详解】∵△=a2-4(a2-3)=12-3a2(1)当方程有两个相等的正根时,△=0,此时a=±2,若a=2,此时方程x2-2x+1=0的根x=1符合条件,若a=-2,此时方程x2+2x+1=0的根x=-1不符舍去,(2)当方程有两个根时,△>0可得-2<a<2,①若方程的两个根中只有一个正根,一个负根或零根,则有a2-3≤0,解可得-≤a≤,而a=-时不合题意,舍去.所以-<a≤符合条件,②若方程有两个正根,则,解可得 a>,综上可得,-<a≤2.故选:C【点睛】本题考查了一元二次方程根的判别式的应用以及一元二次方程根的应用,是一个综合性的题目,也是一个难度中等的题目. 8.C【解析】解:设当点P 与点Q 重合时t 的值是x 秒,由题意得:3x ﹣x =10,解得:x =5,故选C . 点睛:此题主要考查了一元一次方程的应用.解答本题的关键是,找出等量关系: 点P 与点Q 重合时,P 、Q 的路程之差等于AB . 9.D【解析】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为()112x x -,∴共比赛了45场,∴()11452x x -=,故选D . 点睛:此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系. 10.B【解析】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本; 则总共送出的图书为x(x−1); 又知实际互赠了210本图书, 则x(x−1)=210. 故选:B. 11.A【解析】试题解析: 22434470.b ac ∆=-=-⨯=-< 故方程没有实数根. 故选A.12.()22365x x ++=【解析】由较小的数为x 可知较大的数为x+3, 故它们的平方和为x 2+(x+3)2再根据它们的平方和是65可得x 2+(x+3)2=65, 故答案为:x 2+(x+3)2=65. 13.k≤4920且k≠2 【解析】∵方程()22350k x x --+=有两个实数根,∴()()220{34520k k -≠=--⨯⨯-≥ ,解得49k 20≤且k 2≠. 点睛:原方程有两个实数根,说明是一元二次方程,因此需满足两个条件:(1)二次项系数不为0;(2)根的判别式的值大于或等于0. 14.a≤1且a≠0【解析】∵一元二次方程ax 2﹣2x+1=0有实数根, ∴△=(﹣2)2﹣4a≥0,且a≠0, 解得:a≤1且a≠0, 故答案为:a≤1且a≠0. 15.直角 【解析】∵方程由两个相等的实数根,∴Δ=b 2-4ac =0,∴(2b )2-4(a -c )(a +c )=0,整理可得a 2=b 2+c 2,所以△ABC 是直角三角形. 故答案为直角.点睛:一元二次方程根的情况:(1)若b 2-4ac >0,则方程有两个不相等的实数根; (2)若b 2-4ac =0,则方程有两个相等的实数根; (3)若b 2-4ac <0,则方程没有实数根. 注:若一元二次方程有实数根,则b 2-4ac ≥0. 16.p 2-4q=0【解析】根据一元二次方程的根与系数的关系,可由方程无解,可得△=b 2-4ac <0,即p 2-4q=0. 故答案为:p 2-4q=0.点睛:此题主要考查了一元二次方程的根的判别式,解题时根据一元二次方程的根的判别式与根的个数的关系:当b 2-4ac >0时,有两个不相等的实数根,当b 2-4ac=0时,有两个相等的实数根,当b 2-4ac <0时,无实数根,解题关键是根据根的情况求出根的判别式的取值范围. 17.3m =【解析】试题分析:先求出两根之积与两根之和的值,再将11αβ+化简成两根之积与两根之和的形式,然后代入求值.试题解析:∵方程有两个不相等的实数根,∴()22Δ2m 34m 0=+->, 解得: 3m 4>-, 依题意得: ()2αβ2m 3αβm +=-+=,,∴()22m 311αβ1αβαβm-+++===-. 解得: 12m 1m 3=-=,,经检验: 12m 1m 3=-=,是原方程的解, ∵3m 4>-, ∴m 3=.18.(1)直角三角形;(2)x 1=x 2=12-【解析】试题分析:(1)根据方程有两个相等的实数根结合根的判别式可得出()()2440b c a c a =-+-=, 整理即可得出222c a b =+, 由此得出ABC 为直角三角形;(2)根据::3:4:5a b c =, 设3,4,5a t b t c t ===, 将其代入方程整理得24410x x ++=, 解方程求出x 值,此题得解.试题解析:(1)直角三角形,理由如下:∵方程()()220c a x bx c a +++-= 有两个相等的实数根,∴()()2440,b c a c a =-+-= 即222c a b =+,,∵a 、b 、c 分别为△ABC 三边的长, ∴△ABC 为直角三角形. (2)∵a :b :c =3:4:5, ∴设a =3t ,b =4t ,c =5t ,∴原方程可变为: 24410x x ++=, 解得: 121.2x x ==-19.(1) m>1且m≠-1;(2) 原方程不可能有两个相等的实数根;(3) m>1时原方程没有实数根. 【解析】试题分析:需要先求m 2-1 ,(1)判别式大于0.(2)判别式等于0.(3)判别式小于0.试题解析:(1) m2-1 ,m,∵Δ=()∴m>1且m≠-1(2)∵Δ=()∴m=1 ∵∴m≠1 ∴原方程不可能有两个相等的实数根.(3)当Δ=()时,m>1.∴m>1时原方程没有实数根.点睛:一元二次方程的根的判别式是,Δ=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.Δ>0说明方程有两个不同实数解,Δ=0说明方程有两个相等实数解,Δ<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.(2)已知方程根的情况,利用△的正负求参数的范围20.(1)k≤5;(2)4.【解析】试题分析:(1)根据方程有实根可得△≥0,进而可得[-2(k-3)]2-4×1×(k2-4k-1)≥0,再解即可;(2)根据根与系数的关系可得x1+x2=2(k-3),x1•x2=k2-4k-1,再由完全平方公式可得x12+x22=(x1+x2)2-2xx2,代入x1+x2=2(k-3),x1•x2= k2-4k-1可计算出m的值.1试题解析:(1)∵x2-2(k-3)x+k2-4k-1=0有实数根,∴△=4(k-3)2-4(k2-4k-1)=4k2-24k+36-4k2+16k+4=40-8k≥0,解得:k≤5;(2)∵方程的两实数根分别为x1,x2,∴x1+x2=2(k-3),x1•x2= k2-4k-1.∵x12+x22=x1x2+7,∴(x1+x2)2-3x1x2-7=0,∴k2-12k+32=0,解得:k1=4,k2=8.又∵k≤5,∴k=4.21.(1)n=﹣2m﹣5;(2)理由见解析.【解析】试题分析:(1)把x=2,代入原方程就可求出m、n的关系式;(2)利用根的判别式△=b2-4ac,可求具体数值,利用数值来说明方程总有两个不相等的实数根.试题解析:(1)把x=2,代入方程x2+mx+n+1=0得4+2m+n+1=0,则n=﹣2m﹣5;(2)∵△=b2﹣4ac=m2﹣4×1×n=m2﹣4(﹣2m﹣5)=m2+8m+20=(m+4)2+4>0,∴关于y的一元二次方程y2+my+n=0总有两个不相等的实数根.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的解的意义.熟练掌握和应用是关键.。
九年级上册数学 第二十一章《一元二次方程》单元测试卷含答案解析
![九年级上册数学 第二十一章《一元二次方程》单元测试卷含答案解析](https://img.taocdn.com/s3/m/15312b78be23482fb5da4c09.png)
第二十一章《一元二次方程》单元测试卷一、选择题(每小题只有一个正确答案)1.下列关于x的方程中,一定是一元二次方程的为()A. ax2+bx+c=0B. x2﹣2=(x+3)2C. 2x+3x﹣5=0D. x2﹣1=02.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A. k<1且k≠0 B. k≠0 C. k<1 D. k>13.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是()A. 1B. ﹣2C. 0D. ﹣14.用配方法解方程x2﹣2x﹣1=0,原方程应变形为()A. (x﹣1)2=2B. (x+1)2=2C. (x﹣1)2=1D. (x+1)2=15.方程x(x﹣1)=x的解是()A. x=0B. x=2C. x1=0,x2=1D. x1=0,x2=26.下列一元二次方程中,没有实数根的是()A. B. C. D.7.设x1,x2是一元二次方程x2-2x-3=0的两根,则=()A. 6B. 8C. 10D. 128.方程的根的情况是().A. 有两个不相等的实数根B. 有两个相等的实数根C. 有一个实数根D. 没有实数根9.关于x的方程的两根为-2和3,则m+n的值为A. 1B. -7C. -5D. -610.某商店6月份的利润是2500元,8月份的利润达到3600元.设平均每月利润增长的百分率是,则可以列出方程()A. B.C. D.11.某种童鞋原价为100元,由于店面转让要清仓,经过连续两次降价处理,现以64元销售,已知两次降价的百分率相同,则每次降价的百分率为()A. 19%B. 20%C. 21%D. 22%12.定义:如果一元二次方程满足,那么我们称这个方程为“蝴蝶”方程.已知关于的方程是“蝴蝶”方程,且有两个相等的实数根,则下列结论中正确的是()A. B. C. D.二、填空题13.若关于x的一元二次方程有实数根,则整数a的最大值是____.14.一元二次方程3x2-x=0的解是_____________________.15.x²-3x+____=(x-___)².16.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为__________________________. 17.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题18.若是方程的一个根,求代数式的值.19.用适当的方法解下列方程:(1)x2+2x+1=4;(2)x2-x=-.20.解方程(1)(x﹣5)2=16(直接开平方法)(2)x2﹣4x+1=0(配方法)(3)x2+3x﹣4=0(公式法)(4)x2+5x﹣3=0(配方法)21.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当△ABC 是等腰三角形,求此时m的值.22.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?23.要在长32m,宽20m的长方形绿地上修建宽度相同的道路,六块绿地面积共570m2,问道路宽应为多宽?参考答案1.D2.A【解析】分析:由方程有两个不相等的实数根,可知∆>0,且二次项系数不等于0,据此列式求解即可.详解:由题意得,,解之得,k<1且k≠0 .故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.3.D【解析】分析:一元二次方程ax2+bx+c=0中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.只需把x=﹣1代入一元二次方程ax2+bx+c=0中验证a﹣b+c=0即可.详解:把x=﹣1代入一元二次方程ax2+bx+c=0中得:a﹣b+c=0,所以当a﹣b+c=0,且a≠0,则一元二次方程ax2+bx+c=0必有一个定根是﹣1.故选D.点睛:本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是要掌握一元二次方程ax2+bx+c=0中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.4.A【解析】分析:先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全公式表示即可.详解:x2﹣2x=1,x2﹣2x +1=2,(x﹣1)2=2.故选A.点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5.D【解析】分析:首先移项,然后提取公因式x,即可得到x(x﹣1﹣1)=0,则可得到两个一次方程:x=0或x﹣2=0,继而求得答案.详解:∵x(x﹣1)=x,∴x(x﹣1)﹣x=0,∴x(x﹣1﹣1)=0,即x=0或x﹣2=0,解得:x1=0,x2=2.故选D.点睛:本题考查了因式分解法解一元二次方程.此题比较简单,解题的关键是找到公因式x,利用提取公因式法求解.6.D【解析】分析:由一元一次方程的系数,即可根据一元二次方程根的判别式△=b2-4ac求解判断即可.详解:①由a=1,b=0,c=-4,可得△=0+16=16>0,有两个不相等的实数根,故不正确;②由x(x-1)=0,可得x2-x=0,即a=1,b=-1,c=0,所以△=1>0,有两个不相等的实数根,故不正确;③由题意可得a=1,b=1,c=-1,所以△=1+4=5>0,故有两个不相等的实数根,故不正确;④由题意可得a=1,b=1,c=1,所以△=1-4=-3<0,方程没有实数根,故正确.故选:D.点睛:此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.7.C【解析】分析:首先根据韦达定理得出,,最后根据完全平方公式的转化得出答案.详解:根据题意可得:,,∴,故选C.点睛:本题主要考查的是一元二次方程的韦达定理以及完全平方公式的转化,属于中等难度的题型.本题的方程比较简单,我们也可以直接通过求解的方法得出方程的解,然后代入进行计算.8.A【解析】分析:判断方程的根的情况,只要看根的判别式△=b²-4ac 的值的符号就可以了.详解:∵a=1,b=-4,c=-3 ,∴△=b²-4ac=(-4)²-4×1×(-3)=28>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了根的判别式:一元二次方程的根与△=b²-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.B【解析】分析:根据一元二次方程根与系数关系可求出m和n的值,然后代入到m+n计算即可.详解: ∵-2+3=-m,∴m=-1.∵-2×3=n,∴n=-6,∴m+n=-1+(-6)=-7.故选B.点睛: 本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .10.C【解析】分析:代入利润类问题的公式:a(1+x)n=b(a表示的是起始数据,b表示最后达到的水平,x表示增长率,n表示增长的次数)即可.详解:每月利润增长的百分率为x,则7月份的利润为:2500×(1+x),8月份的利润为:2500×(1+x)(1+x)=2500×(1+x)2因为8月份的利润是3600,所以:2500×(1+x)2=3600故选:C.点睛:本题主要考查根据等量关系列出函数关系式.列函数关系式通常是利用“公式”或“方程的思想”来寻找等量关系的,同时还要注意哪个变量是自变量,哪个变量是因变量.列函数关系式时通常把因变量写在等号的左边,自变量和常数写在等号的右边,并把因变量的系数化为1. 11.B【解析】分析:设每次降价的百分率为x,第一次降价后价格变为100(1-x),第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.详解:设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元,根据题意,得100(1-x)2=64即(1-x)2=0.64解之,得x1=1.8,x2=0.2.因x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故选B.点睛:此题的关键在于分析降价后的价格,要注意降价的基础,另外还要注意解的取舍.12.C【解析】解:对于一元二次方程是蝴蝶方程知,又∵,∴,∴,∴,.故选.13.3【解析】分析:根据一元二次方程的定义和根的判别式列出不等式,解不等式求得a的取值范围,然后找出此范围内的最大整数即可.详解:∵关于x的一元二次方程有实数根,∴25-4(3+a)≥0,且a+3≠0,即且a≠-3.∴整数a的最大值是3.故答案为:3.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.x1=0,x2=【解析】分析:利用因式分解法解方程即可.详解:3x2-x=0,x(3x-1)=0,x=0或3x-1=0,∴x1=0,x2=.故答案为:x1=0,x2=.点睛:本题主要考查了一元二次方程的解法—因式分解法,用因式分解法解一元二次方程的步骤为:①将方程右边化为0,左边因式分解;②根据“若a·b=0,则a=0或b=0”,得到两个一元一次方程;这两个一元一次方程的根就是原方程的根.15.,【解析】分析:根据配方法可以解答本题.详解:∵x2﹣3x+=(x﹣)2,故答案为:,.点睛:本题考查了配方法的应用,解题的关键是熟练掌握配方法.16.x(x-1)=110x-件礼物,【解析】试题解析:有x个小朋友参加聚会,则每人送出()1x x-=由题意得, ()1110.x x-=故答案为:()1110.17.x2-7x+12=0或x2+7x+12=0【解析】分析:先根据“两数的积是12,这两数的平方和是25”求出这两个数的值,然后根据根与系数的关系写出所求方程.详解:设这两个数为α、β.由题意,得:αβ=12,α2+β2=25.又∵α2+β2+2αβ﹣2αβ=(α+β)2﹣2αβ=25,∴(α+β)2﹣2×12=25,解得:α+β=±7.根据根与系数的关系可得:x2﹣7x+12=0或x2+7x+12=0.故答案为:x2﹣7x+12=0或x2+7x+12=0.点睛:将根与系数的关系与代数式变形相结合是一种经常使用的解题方法.18.17.【解析】试题分析:由题意把x=2代入方程变形得到m2-4m=2,再将代数式用乘法公式变形得到,然后代入m2-4m=2,即可求得代数式的值.试题解析:将代入,得:∴,∴,,,,.19.(1)x1=-3,x2=1;(2)x1=x2=【解析】分析:(1)、将方程的左边进行配方,利用直接开平方法的方法可以得出答案;(2)、首先进行移项,然后利用配方法求出方程的解.详解:(1)、,则x+1=±2,x=-1±2,解得:,.(2)、,则,解得:.点睛:本题主要考查的是一元二次方程的解法,属于基础题型.理解各种解方程的方法是解决这个问题的关键.20.(1)x 1=9,x 2=1;(2)x 1,x 2=2(3)x 1=1,x 2=﹣4;(4)x 1,x 2. 【解析】试题分析:(1)按要求利用直接开平方法进行求解即可;(2)按要求利用配方法根据配方法的步骤进行求解即可;(3)按要求利用公式法进行求解即可;(4)按要求利用配方法根据配方法的步骤进行求解即可.试题解析:(1)(x ﹣5)2=16,x-5=±4,x-5=4或x-5=-4,∴x 1=9,x 2=1;(2)x 2﹣4x+1=0,x 2﹣4x=-1,x 2﹣4x+4=-1+4,(x-2)2=3,x-,∴x 1,x 2=2(3)x 2+3x ﹣4=0,a=1,b=3,c=-4,b 2-4ac=32-4×1×(-4)=25>0,352x -±==, ∴x 1=1,x 2=﹣4;(4)x 2+5x ﹣3=0,x 2+5x=3,x 2+5x+252⎛⎫ ⎪⎝⎭=3+252⎛⎫ ⎪⎝⎭,253724x ⎛⎫+= ⎪⎝⎭,52x +=∴x 1,x 2.21.(1)m =0或m =1; (2)当12m m =-=-或时,△ABC 是等腰三角形.【解析】(1)将x =2代入方程即可得到关于m 的方程,解之即可得出答案;(2)利用求根公式用含m 的式子表示出方程的两个根,再根据等腰三角形两边相等分类讨论,即可得出答案.(1)∵x =2是方程的一个根,∴22﹣2(2m +3)+m 2+3m +2=0.∴m 2-m =0,∴m =0,m =1.(2) ∵()()22234321m m m ⎡⎤∆=-+-++=⎣⎦ ∴()2312m x +±=, ∴x =m +2,x =m +1.∵AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC =m +2,AB =m +1.∵BC =,△ABC 是等腰三角形,∴当AB =BC 时,有1m +=∴1m =-当AC=BC 时,有+2m =2.m ∴=-综上所述,当12m m =-=-或时,△ABC 是等腰三角形.22.(1)10%;(2)不能,增加2名.【解析】试题分析:(1)设该快递公司投递快递总件数的月平均增长率为x ,根据今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据3月份完成投递的快递总件数结合完成投递的快递总件数即可算出今年4月份的快递投递总件数,再根据投递快递总件数=每人投递件数×人数即可算出该公司现有的21名快递投递业务员最多能够完成的任务量,二者比较后即可得出结论.试题解析:(1)设该快递公司投递快递总件数的月平均增长率为x ,由题意,得()210112.1x ⨯+=,解得: 1210%,210%.x x ==-答:该快递公司投递快递总件数的月平均增长率为10%.(2)4月:12.1×1.1=13.31(万件)21×0.6=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年4月份的快递投递任务。
036.勤学早测试卷目录(16-17) 数学 九年级(上、下)
![036.勤学早测试卷目录(16-17) 数学 九年级(上、下)](https://img.taocdn.com/s3/m/afe36335aaea998fcc220e53.png)
勤学早测试卷(2016-2017)数学九年级(上、下)九年级数学(上册)1.九(上)第21章《一元一次方程》周测(一)2.九(上)第21章《一元二次方程》周测(二)3.九(上)第2l章《一元二次方程》单元检测题(月考一)4.九(上)第2l章《一元二次方程》专题一点通(一)(二)5.九(上)第22章《一次函数》周测(一)6.九(上)第22章《二次函数》周测(二)7.九(上)第22章《二次函数》单元检测题8.九(上)第22章《二次函数》专题一点通(一)(二)9.九(上)第22章《二次函数》专题一点通(三)10.九(上)月考(二)11.九(上)第23章《旋转》单元检测题12.九(上)第23章《旋转》专题一点通13.九(上)期中模拟题(月考三)14.九(上)第24章《圆》周测(一)15.九(上)第24章《圆》周测(二)16.九(上)第24章《圆》周测(三)17.九(上)第24章《圆》单元检测题18.九(上)第24章《圆》专题一点通19.九(上)月考(四)20.九(上)第25章《概率初步》单元检测题21.九(上)第25章《概率初步》专题一点通22.九(上)期末模拟题(月考五)九年级数学(下册)23.九(下)第26章《反比例函数》周测(一)24.九(下)第26章《反比例函数》周测(二)25.九(下)第26章《反比例函数》单元检测题(月考一)26.九(下)第26章《反比例函数》专题一点通27.九(下)第27章《相似》周测(一)28.九(下)第27章《相似》周测(二)29.九(下)第27章《相似》单元检测题30.九(下)第27章《相似》专题一点通31.九(下)月考(二)32.九(下)第28章《三角函数》周测(一)33.九(下)第28章《三角函数》单元检测题34.九(下)第28章《三角函数》专题一点通35.九(下)第29章《投影与视图》单元检测题36.九(下)月考(三)(中考模拟题)。
(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)
![(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)](https://img.taocdn.com/s3/m/89b7c8f851e79b8969022627.png)
go 18.设 x1,x2 是方程 x2-4x+m=0 的两个根,且 x1+x2-x1x2=1,
re 则 x1+x2= ,m=
.
a 19.关于 x 的一元二次方程 x2-2x+m-1=0 有两个相等的实数根,
ing 则 m 的值为
.
e 20.设 m,n 分别为一元二次方程 x2+2x-2 018=0 的两个实数根,
解得 x1=3,x2=9. 10.解:∵2☆a 的值小于 0,∴22a+a=5a<0,解得 a<0.在方程 2x2-bx+a=0 中,b2-4ac=(-b)2-8a≥-8a>0,∴方程 2x2-bx+a=0 有两个不相等的实数根. 11.A 12.B
3 13. C【解析】根据题意,将 x=-2 代入方程 x2+2ax-a2= 0, 得 4-3a-a2=0,即 a2+3a-4=0, 左边因式分解,得(a-1)(a+4) =0, ∴a=1 或-4.故选 C. 14.B 15. B【解析】∵(a-c)2=a2+c2-2ac>a2+c2, ∴ac<0.在方程 ax2+bx+c=0 中,b2-4ac≥-4ac>0, ∴方程 ax2+bx+c=0 有两个不相等的实数根.故选B.
ll th 的取值范围是( )
A 3 d A.m≥-4
B.m≥0
t a time an C.m≥1
D.m≥2
3 13.若 x=-2 是关于 x 的一元二次方程x2+2ax-a2=0 的一个根,则
a 的值为( )
A.-1 或 4 B.-1 或-4
C.1 或-4
D.1 或 4
14.若关于 x 的一元二次方程的两根为 x1=1,x2=2,则这个方程是( )
ome 18. 3【解析】∵x1,x2 是方程 x2-4x+m=0 的两个根, r s ∴x1+x2=4,x1x2=m.代入 x1+x2-x1x2=1,得 4-m=1,∴m=3.
2.勤学早九年级数学(上)第21章《一元二次方程》周测(二)
![2.勤学早九年级数学(上)第21章《一元二次方程》周测(二)](https://img.taocdn.com/s3/m/43832da71b37f111f18583d049649b6649d7095c.png)
2.勤学早九年级数学(上)第21章《一元二次方程》周测(二)2. 勤学早九年级数学(上)第21章《一元二次方程》周测(二)考试范围:第21.3实际问题与-元二次方程解答参考时问90分钟满分120分一、选择题(每小题3分,共30分)1.一个两位数等于它的个位数的平方,且个位数字比十位数宁大3,则这个两位数为( C )A .25 8 .36 C.25或36 D.无法确定2. 矩形周长为14cm,面积为122cm,则它的长和宽分别为( C )A .2cm,5cm B. 1cm,6cm C.3cm,4cm D . 2cm,6cm3.(2017巴中)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,设每次降价的百分率为x,下面所列的方程中正确的是( B )A. 560(l+x)2=315B.560(1-x)2=315C.560(1-2x)2=315D.560(l-x2)=3154.(2017呼伦贝尔)学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,下面所列方程正确的是( B )A . x2=21 B. 12x(x-1)=21 C.12x2=21 D. x(x-1)=215.(2017揭阳)一个数的平方是这个数的2倍,则这个数是( C )A .0B .2 C. 0或2 D.6 .(2017宁夏}如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道. 若设人行道的宽度为x米,则可以列出关于x 的方程是( C )A. x2+9x-8=0B. x2- 9x - 8 =0C. x2-9x+8=0D.2 x2-9x+8=07.(2017广州)某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查每降价1元,每星期可多卖出8件,店里每周利润要达到8450元,若设店主把该商品每件售价降低x元,则可列方程为( B )A. (80-x)(200+8x)=8450B. (40-x)(200+8x)=8450C. (40– x)(200 +40x) =8450D. (40 –x)( 200+x) =84508. (2017兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停. 已知一只股票某天跌停,之后两天时间,又涨回到原价. 若这两天此股票股价的平均增长率为x,则x满足的方程是( B )A. (1+x)2=1110B.(l+x)2=109C. l+2x=1110D. 1 +2x=1099. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,D点在BC上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重台,则CD 的长度是( B )A . 2cm B. 3cm C. 4cm D. 5cm10. 如图,要设计一本书的封面,封面长25cm,宽15cm. 正中央是一个与整个封面长宽比例相同的矩形,如果要使四周边衬所占面积是封面面积的925,且上、下边衬等宽,左、右边衬等宽,则上、下边衬的宽为( C )A. 1. 5cmB. 2cm C . 2 .5cm D . 5cm二、填空题(每小题3分,共18分)11.(2017和县)两个连续偶数的积为168,设较大的偶数为x,则得到关于x的方程是_______.[x(x-2)=18] 12. (2017南岗)某公司2月份的利润为160万元,4月份的利润250万元,则平均每月的增长率为_______. (25%)13.(2017道真)如果一个多边形的对角线共有14条,则这个多边形的边数是____. (7)14.(2017洪山)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若接此传染速度,第三轮传染后,患流感人数共有_____人.(1000) 15. 如图,将边长为4的正方形,沿两边剪去两个边长为x 的矩形,剩余部分的面积为9,则x=_____. (1)16. 阅读材料:对于任何实数,我们规定符号a bc d的意义是a bc d=ad-bc. 例如:1 23 4=1×4-2×3= - 2,按照这个规定计算:当2x -4x+4=0时,x+1 2x x-1 2x-3的值是____. (-1)三、解答题(共8题,共72分)17.(本题8分)两数之和为3,它们的平方和为5,求这两个数. (这两个数是2和1)18.(本题8分)从正方形铁片中截去2cm 宽的一条长方形,余下的面积是48cm 2,求原来的正方形铣片的面积.解:原来的正方形铁片边长为xcm ,则x (x-2)=48,得:2x -2x-48=0,∴1x =8,2x = -6(舍),∴2x =6419. (本题8分)(2017大连)制造一种产品,原来每件的成本是300元,由于连续两次降低成本,现在每件的成本是192元. 若两次降低成本的百分率相同. 求第一次降低成本后每件的售价是多少元?(240)20.(本题8分)已知等腰三角形两腰长分别是2x ,2x+3,底为3.求该三角形的周长.解:等腰三角形两腰长分别是2x ,2x+3,解得:x=3或x= -1(),当x=3时,2x =9,2x+3=2×3+3=9. ∴周长为:9+9+3=21.当x=-l 时,2x =l ,2x+3=1 ,1+1<3,不能组成三角形,舍去.故该三角形的周长为21.21.(本题8分)(2017崂山)如图,用长为39米的篱笆(虚线部分),一面靠墙围成矩形ABCD菜园(AB<="" ),且在边bc="">解:设AM=xm ,则x (40-2x )=128,∴1x =,4,2x =16(舍),∴AB=422.(本题10分)(2017淮安)如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)当通道宽a 为10米时,花圃的面积=__;(2)通道的面积与花圃的面积之比能否恰好等于3∶5?如果可以,试求出此时通道的宽.解:(1) 802m (2) (40-2a) (60-2a)=40×60×58,∴a=523.(本题10分)(2017西安)鑫都小商品市场以每副60元的价格购进800副羽毛球拍. 九月份以单价100元销售,售出了200副. 十月份如果销售单价不变,预计仍可售出200副,鑫都小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格. 十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元. 设十月份销售单价降低x 元.(1) 填表:(2) 如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?(80元)24.(本题12分)(2017改编题)等腰Rt △ABC 的直角边AB=BC=10cm .点P 、Q 分别从A 、C 两点同时出发,均以1 cm /秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D. 设P 点运动时间为t ,△PCQ 的面积为S.(1)分别写出O<t10时,S 与t 之间的等量关系式;</t(2) 当点P 运动几秒时,△PCQ 面积=△ABC 面积?(3) 作PE ⊥AC 于点E ,当点P 、Q 运动时,线段DE 的长度是否改变?若不变,求DE 的长;若改变,求DE 的取值范围.提示:(1)当t< bdsfid="227" p=""><>2t(10-t)=12(10t-2t);当t >10秒时,P在线段AB延长线上,此时CQ=t,PB=t -10,∴S=12(2t-10t).(2)∵△ABC面积=AB?BC=50,∴当t<10秒时,△PCQ面积=1 2(10t-2t)=50,整理得:2t-10t+100=0,无解;当t>10秒时,△PCQ面积=12(2t-10t)=50,整理得:2t-10t-100=0,解得:1x2x,∴当点P运动(PCQ面积=△ABC面积.(3)当点P、Q运动时,线段DE的长不会改变.过Q作QM⊥AC,交直线AC于点M,易证△APE≌△QCM,∴t,∴四边形PEQM是长方形,且DE是对角线EM的一半,又∵,∴,∴当点P、Q运动时,线段DE的长不会改变.。
4. 勤学早九年级数学(上)第21章《一元二次方程》专题一点通(一)(二)
![4. 勤学早九年级数学(上)第21章《一元二次方程》专题一点通(一)(二)](https://img.taocdn.com/s3/m/e1c59a826bec0975f465e29a.png)
4. 勤学早九年级数学(上)第21章《一元二次方程》专题一点通(一)(二)勤学早九年级数学(上)第21章《一元二次方程》专题一点通(一)解一元二次方程1.选择适当方法解方程(1)(x+1)2=16 (2)5x 2+3x=0(3)x 2-5x-6=0 (4)3x (x-2)-2(2-x )=0(5)2x 2-6x 十l=0 (6) x 2-6= -2(x + l)(7)3x 2+5(2x+1)=0 (8)(3x-2)2=(2x-3)2解:(1)1x =3 2x = - 5 (2)1x = 35- 2x =0 (3)1x = 6 2x = -1 (4)1x =23- 2x =2 (5)1x2x= (6)1x2x(7)1x=2x= (8)1x = 1 2x = -1 二、根的判别式、根与系数的关系:2. 已知关于x 的一元二次方程x 2-2x-a=0有两个不相等的实数根,求a 的取值范围.解:∵△=4+4a >0,∴a >-13. 已知关于x 的一元二次方程(m-l) x 2+x+l=0有实数根,求m 的取值范围. (m ≤54且m ≠1)4. 已知方程x 2-3x+l=0的两根为1x ,2x ,且1x >2x ,不解方程,求下列各式的值:(1)(1x - 1)(2x -1); (2) 1x 22x +1x 2x 2; (3) 11x +21x ; (4) 1x 2+2x 2 ;(5)21x x 十12x x ; (6)(11x +1)(21x +1); 解:(1)-1 (2)3 (3)3 (4)7 (5)7 (6)5三、根的判别式、根与系数关系综台应用5. 关于x 的元二次方程x 2+2x+k+l=0的实数解是1x 和2x .(1)求k 的取值范围;(2) 如果1x +2x -1x 2x < -1且k 为整数,求k 的值.解:(1)△=22-4(k+1)≥0,∴k ≤0(2)∵1x +2x = -2,1x 2x =k+1,∴k >-2,∴-2<k ≤0,∵k 为整数,∴k= -1,06. 已知关于x 的方程x 2+(2k+1)x+2k -2=0的两实根的平方和等于11,求k 的值.解:∵1x +2x = -(2k+1),1x 2x =2k -2,又(2k+1)2-4(2k -2)=4k+9≥0, ∴k ≥94-. ∵1x 2+2x 2=11,∴(2k+1)2-2(2k -2)=11,∴k=1或-3; ∵k ≥94-,∴k=17. 已知关于x 的一元二次方程x 2+(2m-l)x+2m =0有两个实数根1x 和2x .(1) 求实数m 的取值范围;(2) 当1x 2-2x 2=0时,求m 的值.解:(1)m ≤14(2)由1x 2-2x 2=0得:(1x +2x )(1x -2x )=0,若1x +2x =0,即-(2m-1)=0,∴m=12,∵12>14,∴m=12舍去;若1x -2x =0,即1x =2x ,由(1)知m=14; 故当1x 2-2x 2=0时,m=14.勤学早九年级数学(上)第21章《一元二次方程》专题一点通(二)一元二次方程的实际应用(一)握手、礼品、球赛、传染问题和树干问题及其它问题l. 参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?解:设有x 人参加聚会,则()x x 12-=10,∴1x = -4(舍),2x =52. 要组织一场篮球联赛,每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛?解:应邀请x 个球队参加比赛,则x (x-1)=90,∴1x = -9(舍),2x =103. 新年里,一个有若干人的小组,若每人给小组的其它成员赠进一张贺年卡,则全组送贺年卡共72次,求此小组的人数.解:设此小组有x 人,则x (x-1)=72,∴1x = -8(舍),2x =94. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?解:1+x+ x 2=91,∴1x = -10(舍),2x =95.(2013襄阳)有一人患了流感,经过两轮传染后共有64 人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均每人传染了x 人,l+ x+ x(x+1)=64,∴1x = -9(舍),2x =7(2)64×7=448(人)(二)增长率问题6. 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2015年底三年共累计投资9. 5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若过两年内的建设成本不变,求到2015年底共建设了多少万平方米廉租房?解:(1)设每年市政府投资的增长率为x ,则2+2(1+x)+2(1+x )2=9. 5,整理的:x 2+3x-1.75=0,∴1x = -3. 5(舍),2x =0. 5(2)38(三)边框与面积问题7. 如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等. 设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积为_____平方米;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽.解:(1)150x.(2)依题意得:2×80x+150x-22x =18×'1201802×80,整理的:2x -155x+750=0, ∴1x = 150(舍),2x = 5,∴甬道的宽为5米.8.(2016改编题)在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /秒的速度移动;同时,点Q 从点B 出发沿BC 边向点C 以2cm/秒的速度移动. 如果P 、Q 两点在分别到达B 、C 两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,△PBQ 的面积等于82cm ?(2)当t=1.5时,判断△DPQ 的形状;(3)计算四边形DPBQ 的面积,井探索一个与计算结果有关的结论.解:(1)设经过x 秒,△PBQ 面积等于82cm ,则BP=6-t ,BQ=2t ,∴△PBQ 面积=12(6-t )×2t ,即2t -6t+8=0,可得:t=2或4. 即经过2秒或4秒,△PBQ 面积等于82cm .(2)当t=1.5时,AP=1.5,BP =4.5,CQ=9,∴DP 2=146.25,PQ 2= 29. 25,2DQ =117,∴PQ 2+ 2DQ = DP 2,∴△DPQ 为Rt △. (3)四边形DPBQ 面积=6×1 2-12t ×12-12×6(12-2t )=72-36=36, ∴四边形DPBQ 面积是固定值36。
勤学早九年级数学(上)第21章《一元二次方程》周测(一)
![勤学早九年级数学(上)第21章《一元二次方程》周测(一)](https://img.taocdn.com/s3/m/2669adc2b9f3f90f76c61b85.png)
勤学早九年级数学(上)第21章《一元二次方程》周测(一) (考试范围:第21.1(一元二次方程)和第21.2(解一元二次方程)解答参考时间:90分钟 满分120分)一、选择题(每小题3分,共30分)1.(2016曲靖)下列方程是一元二次方程的是( )A .3x 2+x1=0 B .2x -3y +1=0 C .(x -3)(x -2)=x 2 D .(3x -1)(3x +1)=3 2.(2015海淀)一元二次方程3x 2-4x -4=0的二次项系数、一次项系数、常数项分别是( )A .3,-4,-5B .3,-4,5C .3,4,5D .3,4,-53.(2016锦江)关于x 的一元二次方程x 2-4x +2m =0没有实数根,则实数m 的取值范围是( )A .m <2B .m >-2C .m >2D .m <-2 4.(2015江岸)如果x =3是一元二次方程ax 2=c 的一个根,则a c 的值是( ) A .3 B .-3 C .9 D .-95.已知m 和n 是方程2x 2-5x -3=0的两根,则m 1+n 1值是( ) A .-35 B .-415 C .25 D .-23 6.方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=2,x 2=3D .x 1=2,x 2=-37.(2015兰州)一元二次方程x 2-8x -1=0配方后可变形为( )A .(x +4)2=17B .(x +4)2=15C .(x -4)2=17D .(x -4)2=158.已知m 、n 是关于x 的一元二次方程x 2-3x +a =0的两个解,若(m -1)(n -1)=-6 ,则a 的值为( )A .-10B .4C .-4D .109.(2015安顺)三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对10.(2015南充)关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1,其中正确结论的个数是( )A .0个B .1个C .2个D .3个二、填空题(每小题3分,共18分)11.(2016曲靖)一元二次方程x (x -2)=0的解是_________________.12.(2016东台)若m 2-5m +2=0,则2m 2-10m +2016=_____________.13.填空:(1)x 2+6x +______=(x +______)2;(2)x 2-5x +______=(x -_____)2.14.(2015六合)已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m 3,则根据图中的条件,可列出方程:_______________.15.(2016锦江)小明设计了一个魔术盒,当任意实数对(a ,b )进入其中,会得到一个新的实数a 2-2b +3,若将实数对(x ,-2x )放入其中,得到一个新数为8,则x =___________.16.已知m ,n 是方程ax 2+bx +c =0的两个实数根,设s 1=m +n ,s 2=m 2+n 2,s 3=m 3+n 3,…,s 100=m 100+n 100,则as 2016+bs 2015+cs 2014的值为_________.三、解答题(共8题,共72分)17.(本题8分)用指定的方法解下列方程(1)x 2+3x =0(因式分解法); (2)x 2-4x +1=0(配方法);18.(本题8分)选择适当的方法解方程:(1)x 2+3x -2=0; (2)(2x -1)2-9=0;(3)5(x -3)2=x 2-9; (4)x 2-4x +2=0.19.(本题8分)(2016天津改)关于x 的方程kx 2+(k +2)x +4k =0没有实数根,求k 的取值范围.20.(本题8分)(2015武汉模拟)已知关于x 的方程x 2+2x +a -2=0.(1)若方程有一根为1,求a 的值;(2)若a =1,求方程的两根.21.(本题8分)(2015德州)向阳中学兴趣小组数学兴趣小组对关于x 的方程(m +1)x 12 m +(m -2)x -1=0提出了下列问题:(1)是否存在m 的值,使方程为一元二次方程?若存在,求出m 的值,并解此方程;(2)是否存在m 的值,使方程为一元一次方程?若存在,求出m 的值,并解此方程.22.(本题10分)(2015潜江改)已知关于x 的一元二次方程x 2-4x +m =0(k 为常数).(1)若方程没有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足x 1-x 2=-8,求实数m 的值.23.(本题10分)如图,正方形ABCD ,矩形EFGH 均位于第一象限内,它们的边平行于x 轴或y 轴,点A 、E 在直线OM 上,点C 、G 在直线ON 上,O 为坐标原点,点A 的坐标为(3,3),正方形ABCD 的边长为1.(1)求直线ON 的解析式;(2)若矩形EFGH 的周长为10,面积为6,求点F 的坐标.24.(本题12分)(2016武汉原创题)已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且关于x 的一元二次方程(b +c )x 2-2ax -(b -c )=0有两个相等的实数根.(1)判断此三角形的形状;(2)若a =b ,设点P 为AB 边上任一点,PE ⊥BC 于E ,M 为AP 的中点,过A 作BC 的平行线,MD ⊥ME 交此平行线于D ,当点P 在线段AB 上运动的时候,求MEMD 的值.。
人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)
![人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)](https://img.taocdn.com/s3/m/82aadc0853d380eb6294dd88d0d233d4b14e3f8b.png)
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
人教版数学九年级数学上册第21章《一元二次方程》单元测试卷及答案
![人教版数学九年级数学上册第21章《一元二次方程》单元测试卷及答案](https://img.taocdn.com/s3/m/5cfe1dd30508763231121263.png)
第21章《一元二次方程》单元测试卷一、单选题(每小题只有一个正确答案)1.下列方程是一元二次方程的是()A.+x2=0B.3x2﹣2xy=0C.x2+x﹣1=0D.ax2﹣bx=02.如果﹣1是方程x2﹣3x+k=0的一个根,则常数k的值为()A.4B.2C.﹣4D.﹣23.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0B.k≠0C.k<1 D.k>14.方程的解是A.x1=2,x2= 3B.x1=2,x2=1C.x=2D.x=35.已知关于x的方程有一个根为,则另一个根为A.5B.C.2D.6.若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断7.已知一元二次方程的两个解恰好分别是等腰的底边长和腰长,则的周长为A.13B.11或13C.11D.128.用配方法解一元二次方程,方程可变形为()A.B.C.D.9.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是().A.B.-C.-D.10.如图所示,AC是一根垂直于地面的木杆,B是木杆上的一点,且AB=2米,D是地面上一点,AD=3米.在B处有甲、乙两只猴子,D处有一堆食物.甲猴由B往下爬到A处再从地面直奔D处,乙猴则向上爬到木杆顶C处腾空直扑到D处,如果两猴所经过的距离相等,则木杆的长为()A.m B.2m C.3m D.5 m11.某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次.设每月的平均增长率为x,则可列方程为()A.B.C.D.12.若实数范围内定义一种运算“﹡”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为()A.-2B.-2,3C.,D.,二、填空题13.写出一个一元二次方程,使其有一个根为1,并且二次项系数也为1,方程为________.14.已知关于的方程有两个相等的实根,则的值是__________.15.已知是关于方程的一个根,则的值为______.16.关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=_____(一个即可).17.某商品经过连续两次降价,销售单价由原来的125元降到80元,设平均每次降价的百分率为x,则可列方程为________________________________.三、解答题18.关于x的一元二次方程有实数根,求m的取值范围;若方程有一个根为,求m的值和另一根.19.解方程(1)x2﹣2x﹣2=0 (2)(x+1)2=4(x﹣1)2.20.解方程:(1)x2-6x-6=0; (2)2x2-7x+3=0.21.解方程:方程已知x:y::2:3,求的值.22.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品牌玩具的销售单价为x元(x>40),请将销售利润w表示成销售单价x的函数;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.23.一块矩形场地,场地的长是宽的2倍.计划在矩形场地上修建宽都为2米的两条互相垂直的小路,如图,余下的四块小矩形场地建成草坪.四块小矩形草坪的面积之和为364平方米,求这个矩形场地的长和宽各是多少米?参考答案1.C【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证.A.不是整式方程,不是一元二次方程;B.含有两个未知数,不是一元二次方程;C.符合一元二次方程的定义,是一元二次方程;D.二次项系数a不知是否为0,不能确定是否是一元二次方程.故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.C【分析】把x=-1代入方程可得到关于k的方程,可求得k的值.【详解】∵-1是方程x2-3x+k=0的一个根,∴(-1)2-3×(-1)+k=0,解得k=-4,故选:C.【点睛】考查一元二次方程的解,把方程的解代入得到到关于k的方程是解题的关键.3.A分析:由方程有两个不相等的实数根,可知∆>0,且二次项系数不等于0,据此列式求解即可.详解:由题意得,,解之得,k<1且k≠0 .故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.4.A【分析】利用因式分解法求解即可.【详解】,移项得:(x-2)²-(x-2)=0,提公因式得:(x-2)(x-2-1)=0,解得:.故选A.【点睛】本题考查了一元二次方程的解法,解题的关键是根据方程的特点选择合适的方法求解即可.根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值.∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m=,解得:m=﹣1.故选B.【点睛】本题考查了根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.6.A【分析】计算根的判别式,利用k的取值范围进行判断其符号即可求得答案.【详解】∵x2+4x+k=0,∴△=42-4k=4(4-k),∵k>4,∴4-k<0,∴△<0,∴该方程没有实数根,故选:A.【点睛】考查根的判别式,掌握方程根的情况与根的判别式的关系(①当>0时,方程有两个不相等的实数根;②当=0时,方程有两个相等的实数根;③当<0时,方程没有实数根)是解题的关键.7.B【分析】由一元二次方程的两个解恰好分别是等腰的底边长和腰长,利用因式分解法求解即可求得等腰的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.【详解】,,或,即,,一元二次方程的两个解恰好分别是等腰的底边长和腰长,当底边长和腰长分别为3和5时,,的周长为:;当底边长和腰长分别为5和3时,,的周长为:;的周长为:11或13.故选:B.【点睛】此题考查了因式分解法解一元二次方程、等腰三角形的性质以及三角形三边关系此题难度不大,注意分类讨论思想的应用.先把常数项7移到方程右边,然后把方程两边加上42即可.【详解】方程变形为:x2+8x=-7,方程两边加上42,得x2+8x+42=-7+42,∴(x+4)2=9.故选D.【点睛】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半,这样把方程变形为:(x-)2=.9.C【解析】分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选:C.点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.10.B【分析】设BC=x,AC=(2+x),从题意可得到AB+AD=BC+CD可得CD=5-x,AB=2,AD=3,把数据代入DC2=AC2+AD2,可得到一元二次方程.【详解】设BC的长为x米,∵AB+AD=BC+CD,∴CD=5-x,∵AC2+AD2= DC2,∴(2+x)2+32=(5-x) 2,∴x= ,AC=2+ =2m.故选B.【点睛】本题考查了一元二次方程的应用,勾股定理及数形结合的思想,通过图形找到等量关系然后列方程求解.11.A【分析】设平均每月的增长率为,则由题意可得9月份的游客人数为:,10月份的游客人数为:,这样结合10月份共接收游客64万人即可列出方程了.【详解】设平均每月的增长率为,根据题意可得:.故选A.【点睛】读懂题意,设平均每月的增长率为,由此表达出10月的游客人数为是解答本题的关键.12.D【分析】根据运算“﹡”的规则,可将所求的方程化为:(x+2+1)2-5(x+2)=0,然后解这个一元二次方程即可.【详解】依题意,可将所求方程转化为:(x+3)2-5(x+2)=0,化简得:x2+x-1=0解得x1=,x2=,故选:D【点睛】本题考核知识点:本题是一个阅读型的问题,弄清新运算的规则是解答此类题的关键.13.答案不唯一,如x2=1【分析】本题根据一元二次方程的根的定义,确定一元二次方程.【详解】一元二次方程的一般形式为ax2+bx+c=0(k≠0),一个二次项系数为1,即a=1,并且一个根也为1,可令b=0,c=-1,这样的一元二次方程是x2=1.故答案为:答案不唯一,如x2=1.【点睛】根据一元二次方程的定义,利用待定系数法求出方程的解析式.14.【解析】分析: 根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.详解::∵关于x的方程(k-1)x2-2kx+k-3=0有两个相等的实根,∴==,解得:k=.故答案为:.点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.16分析:先利用一元二次方程解的定义得到2-2=8,然后把变形为2(2-2),再利用整体代入的方法计算.详解:∵是关于方程的一个根,,∴2-2-8=0,∴2-2=8,∴=2(2-2)=2×8=16.故答案为:16.点睛:此题考查了一元二次方程的解,利用方程的解可以求方程中字母系数的值或与一元二次方程根有关的代数式的值,或将根代入方程,得到关于字母的代数式,充分利用含有这个字母的等量关系,将所求代数式变形或化简,求出其嗲数是的值,注意可利用整体代入思想. 16.﹣2【分析】先根据判别式的意义得到=42+8a≥0,解得a≥-2,然后在解集中找出负整数即可.【详解】∵关于x的方程ax2+4x-2=0(a≠0)有实数根,∴△=42+8a≥0,解得a≥-2,∴负整数a=-1或-2.故答案为-2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式=b2-4ac.当>0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当<0,方程没有实数根.17.125(1-x)2 =80.【解析】分析:等量关系为:原价×(1-下降率)2=80,把相关数值代入即可.详解:第一次降价后的价格为125×(1-x),第二次降价后的价格为125×(1-x)×(1-x)=55×(1-x)2,∴列的方程为125×(1-x)2=80,故答案为125×(1-x)2=80.点睛:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.18.;(2)m的值为,方程的另一根为1.【分析】若一元二次方程有实数根,则根的判别式,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0;将代入方程可求得m的值,解方程即可求得方程的另一根,即可解题.【详解】关于x的一元二次方程有实数根,,解之得;是这个方程的一个根,,,方程为:,整理得:,方程的根为1.故m的值为,方程的另一根为1.【点睛】本题考查了一元二次方程的求解,本题中代入求得m的值是解题的关键.19.(1)x1=1+,x2=1﹣;(2)x1=3,x2=.【分析】(1)配方法解;(2)因式分解法解.【详解】(1)x2﹣2x﹣2=0,x2﹣2x+1=2+1,(x﹣1)2=3,x﹣1=,x=1,x1=1,x2=1﹣,(2)(x+1)2=4(x﹣1)2.(x+1)2﹣4(x﹣1)2=0.(x+1)2﹣[2(x﹣1)]2=0.(x+1)2﹣(2x﹣2)2=0.(x+1﹣2x+2)(x+1+2x﹣2)=0.(﹣x+3)(3x﹣1)=0.x1=3,x2=.【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.20.(1)x1=3+,x2=3-(2)x1=,x2=3.【分析】【详解】解:(1)方程可化为x2-6x+9=6+9(x-3)2=15x-3=所以,x1=,x2=.(2)因为,a=2,b=-7,c=3>0所以,方程由两个不相等的实数根.所以, .所以,x1=,x2=3.【点睛】本题考核知识点:解一元二次方程. 解题关键点:熟练掌握一元二次方程的解法. 21.(1),;(2).【分析】(1)直接利用十字相乘法分解因式得出答案;(2)根据题意表示出x,y,z的值,进而代入求出答案.【详解】(1)x2+3x﹣4=0(x+4)(x﹣1)=0,则x1=﹣4,x2=1;(2)∵x:y:z=1:2:3,∴设x=a,则y=2a,z=3a,∴==﹣.【点睛】本题主要考查了比例的性质以及因式分解法解一元二次方程,正确分解因式是解题的关键.22.(1)w=﹣10x2+1300x﹣30000; (2)玩具销售单价为50元或80元时,可获得10000元销售利润,(3)销售价格定为65元时,可获得利润12250元.【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出w与x之间的关系式;(2)列出﹣10x2+1300x﹣30000=10000 的方程,求解即可;(3)把w=﹣10x2+1300x﹣30000化为顶点式,求出最大利润即可.【详解】(1)w=﹣10x2+1300x﹣30000;(2)依题意﹣10x2+1300x﹣30000=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)∵w =﹣10x2+1300x﹣30000=﹣10(x﹣65) 2+12250,∴当x=65,w取得最大值,∴销售价格定为65元时,可获得利润12250元.【点睛】本题考查了二次函数的应用及一元二次方程的实际应用,解题的关键是理解题意正确列出二次函数的解析式.23.这个矩形场地的宽为15米,长为30米.【分析】将两条小路分别平移至矩形场地的边上,则四块小矩形场地的面积和变为一块大矩形的面积,根据矩形的面积公式列方程即可得出答案.【详解】解:设这个矩形场地的宽为x米,长为2x米,根据题意可得:(2x﹣2)(x﹣2)=364,则x2﹣3x﹣180=0,(x﹣15)(x+12)=0,解得:x1=15,x2=﹣12(舍去),2x=30(m),答:这个矩形场地的宽为15米,长为30米.【点睛】本题考查了一元二次方程的应用,将两条小路平移至矩形的边上,使四块小矩形拼成一个大的矩形,然后利用矩形的面积公式列出方程是解决此题的关键.。
人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析
![人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析](https://img.taocdn.com/s3/m/1b5f535bb307e87101f69698.png)
7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)
人教版九年级数学上册第21章 一元二次方程 单元检测题及答案【精选】
![人教版九年级数学上册第21章 一元二次方程 单元检测题及答案【精选】](https://img.taocdn.com/s3/m/7eefe62edd3383c4ba4cd20b.png)
九年级数学人教版上册第21章检测题1带答案一. 精心选一选:(每题3分,18共分)1.有下列关于x 的方程:①ax 2+bx+c=0,②3x (x-4)=0③x 2+y-3=0④21x +x=2⑤x 3-3x+8=0⑥12x 2-5x+7=0.其中是一元二次方程的有( ) A .2 B 。
3 C.4 D.52.如果关于x 的方程(a-5) x 2-4 x-1=0有实数根,则a 满足条件是( )A .a ≠5B 。
a >1且a ≠5C 。
a≥1且a ≠5D 。
a ≥13.用配方法解方程x 2-2x-5=0,原方程应变为( )A .(x+1)2=6B 。
(x+2)2=9C 。
(x-1)2=6D 。
(x-2)2=9。
4.方程3 x (x-1)=5(x-1)的根为( )A .x =53B 。
x =1C 。
x 1 =1 x 2 =53 D. x 1 =1 x 2 =355.近几年我国物价一直上涨,已知原价为484元的新产品,经过连续两次涨价a ﹪后,现售价为625元,则根据题意列方程,正确的是( )A .484(1+ a ﹪)=625. B. 484(1+ a 2﹪)=625.C.484(1- a ﹪)=625.D.484(1+ a ﹪)2=625.6.如图, ABCD ,AE⊥BC 与E ,AE=EB=EC=a ,且a 是一元二次方程x 2+x-2=0的一个根,则 ABCD 的周长为( )。
A.B.C.D.二.细心填一填:(每题3分,共30分)7.一元二次方程3x 2=7x+1的二次项系数,一次项系数,及常数项依次是 .8.关于x 方程(m 2- m-2)x 2+ m x- m=0是一元二次方程的条件 。
9.关于x 方程ax 2+2x +1=0 有两个不相等的实数根。
实数a 的取值范围是 .10.请你给出一元二次方程x 2-4x + =0的常数项,使该方程无实数解。
这个常数项可以是11.请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是 .。
人教版初中九年级数学上册第二十一章《一元二次方程》测试卷(含答案解析)(1)
![人教版初中九年级数学上册第二十一章《一元二次方程》测试卷(含答案解析)(1)](https://img.taocdn.com/s3/m/5ad988907e21af45b207a892.png)
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 2.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1 3.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠ 4.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x += 5.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x += B .()238x += C .()2310x -= D .()238x -= 6.用配方法解方程2x 4x 70+-=,方程应变形为( )A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -=D .2()211x -= 7.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60508.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=9.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 10.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长 D .线段DF 的长11.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x12.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 13.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .0 14.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( ) A .4B .1C .﹣1D .﹣4 15.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( )A .2022B .2021C .2020D .2019 二、填空题16.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.17.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.18.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 19.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________. 20.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.21.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.22.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.23.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.24.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 25.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场26.若方程()22110a x ax -+-=的一个根为1x =,则a =_______. 三、解答题27.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.28.解方程:(1)x 2+6x ﹣2=0.(2)(2x ﹣1)2=x (3x +2)﹣7.29.解下列方程:(1)2320x x +-=(2)()220x x x -+-=30.解方程:212270x x -+=。
人教版九年级上册 第21章 一元二次方程实际应用 专项培优练习(一)(解析版)
![人教版九年级上册 第21章 一元二次方程实际应用 专项培优练习(一)(解析版)](https://img.taocdn.com/s3/m/fd69d39458fb770bf78a55d2.png)
第21章一元二次方程实际应用同步专项培优练习基础题训练(一):限时30分钟1.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y.(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?2.某租赁公司拥有汽车100辆.据统计,每辆车的月租金为4000元时,可全部租出,每辆车的月租金每增加100元,未租出的车将增加1辆,租出的车每辆每月的维护费为500元,未租出的车辆每月只需维护费100元.(1)当每辆车的月租金为4800元时,能租出多少辆?并计算此时租赁公司的月收益(租金收入扣除维护费)是多少万元?(2)规定每辆车月租金不能超过7200元,当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到40.4万元?3.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.4.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.5.悠悠食品店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A种菜品每天销售多少份?基础题训练(二):限时30分钟6.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?7.新定义:如果一个矩形,它的周长和面积分别是另外一个矩形的周长和面积的一半,则这个矩形是另一个矩形的“减半”矩形.(1)已知矩形ABCD的长12、宽2,矩形EFGH的长4、宽3,试说明矩形EFGH是矩形ABCD 的“减半”矩形.(2)矩形的长和宽分别为2,1时,它是否存在“减半”矩形?请作出判断,并请说明理由.8.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间距离是cm?9.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,重庆市某葡萄种植基地2017年种植“阳光玫瑰”100亩,到2019年“阳光玫瑰”的种植面积达到196亩.(1)求该基地这两年“阳光玫瑰”种植面积的平均增长率;(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为12元/千克,若使销售“阳光玫瑰”每天获利1750元,则售价应降低多少元?10.为抗击新型肺炎疫情,某服装厂及时引进了一条口罩生产线生产口罩,开工第一天生产10万件,第三天生产14.4万件,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?参考答案1.解:(1)设口罩每袋的售价为x元,日均销售量为y袋.由题意得,y=100﹣5(x﹣18)=﹣5x+190.(2)设每袋售价定为x元时,商店销售该款口罩所得的日均毛利润为720元.根据题意可得:(x﹣12)(﹣5x+190)=720.解得:x1=20,x2=30.∵该款口罩的每袋售价不得高于22元,∴x=30舍去.∴x=20.答:每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.2.解:(1)100﹣=92(辆),(4800﹣500)×92﹣100×(100﹣92)=394800(元),394800元=39.48万元.答:当每辆车的月租金为4800元时,能租出92辆,此时租赁公司的月收益是39.48万元.(2)40.4万元=404000元设上涨x个100元,由题意得:(4000+100x﹣500)(100﹣x)﹣100x=404000整理得:x2﹣64x+540=0解得:x1=54,x2=10∵规定每辆车月租金不能超过7200元,∴取x=10,则4000+10×100=5000(元)答:每辆车的月租金定为5000元时,租赁公司的月收益可达到40.4万元3.解:(1)设购进x台A型号暖风机,则购进(900﹣x)台B型号暖风机,依题意,得:600x+900(900﹣x)≥690000,解得:x≤400.答:至多购进400台A型号暖风机.(2)依题意,得:600(1﹣a%)×400(1+a%)+900(1﹣a%)×(900﹣400)(1+a%)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.4.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.5.(1)设该店每天卖出A、B两种菜品分别为x份、y份,根据题意得,.解得:.答:该店每天卖出这两种菜品共60份.(2)设A种菜品售价降0.5a元,即每天卖(20+a)份,则B种菜品卖(40﹣a)份,每份售价提高0.5a元.(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)=316.即a2﹣12a+36=0a 1=a2=6答:A种菜品每天销售26份.6.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.7.解:(1)由题意可知:矩形ABCD的周长=(12+2)×2=28,面积=12×2=24,矩形EFGH的周长=(4+3)×14,面积=3×4=12,所以矩形EFGH是矩形ABCD的“减半”矩形;(2)不存在.理由如下:假设存在,不妨设“减半”矩形的长和宽分别为x、y,则,由①得:y=﹣x③,把③代入②得:x2﹣x+1=0,b2﹣4ac=﹣4=﹣<0,所以不存在.8.解:(1)设经过x秒后,△PBQ的面积等于8cm2,则BP=(6﹣x)cm,BQ=2xcm,依题意,得:(6﹣x)×2x=8,化简,得:x2﹣6x+8=0,解得:x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2ycm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间距离是cm.9.解:(1)设该基地这两年“阳光玫瑰”种植面积的平均增长率为x,依题意,得:100(1+x)2=196,解得:x1=0.4=40%,x2=﹣2.4(不合题意,舍去).答:该基地这两年“阳光玫瑰”种植面积的平均增长率为40%.(2)设售价应降低y元,则每天可售出(200+50y)千克,依题意,得:(20﹣12﹣y)(200+50y)=1750,整理,得:y2﹣4y+3=0,解得:y1=1,y2=3.∵要尽量减少库存,∴y=3.答:售价应降低3元.10.解:(1)设每天增长的百分率为x,依题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%.(2)设应该增加m条生产线,则每条生产线的最大产能为(20﹣2m)万件/天,依题意,得:(1+m)(20﹣2m)=60,整理,得:m1=4,m2=5.又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线.。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)
![人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)](https://img.taocdn.com/s3/m/fc7f659bc67da26925c52cc58bd63186bceb928d.png)
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)题号 一 二 三总分 19 20 21 22 23 24分数一.选择题(共10小题,每题3分,共30分) 1.下列式子是一元二次方程的是( )A .3x 2-6x +2B .x 2-y +1=0 C .x 2=0D.1x 2+x =22.若方程2x 2+mx =4x +2不含x 的一次项,则m =( )A .1B .2C .3D .43.一元二次方程x 2-2x =0的根是( )A .x 1=0,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=-2D .x 1=0,x 2=24.用配方法解方程x 2-6x -8=0时,配方结果正确的是( )A .(x -3)2=17B .(x -3)2=14C .(x -6)2=44D .(x -3)2=1 5.若方程x 2﹣5x ﹣1=0的两根为x 1、x 2,则+的值为( )A .5B .C .﹣5D .6. 已知(m 2+n 2)(m 2+n 2+2)-8=0,则m 2+n 2的值为( )A. -4或2 B .-2或4 C. 4 D. 2 7、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .10%B .15%C .20%D .25%8、已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或39、上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A.168(1+a%)2=128 B.168(1-a%)2=128C.168(1-2a%)=128 D.168(1-a2%)=12810、《代数学》中记载,形如21039x x+=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x的方程260x x m++=时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.353 C.352 D.3 352二、填空题(每题3分,共24分)11.关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,则m的值为.12.把方程x2+x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k =.13.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.14.若一元二次方程mx+x2+2=0有两个相等的实数根,则m =.15.菱形的两条对角线的长分别是方程x2﹣mx+56=0的两个根,则菱形的面积是.16.长汀县体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请支球队参加比赛.17.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=.18.已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为12和4;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为﹣2和6,那么=.三.解答题(共46分,19题6分,20 ---24题8分)19.解方程:(1)x2+2x﹣3=0;(2)2(5x﹣1)2=5(5x﹣1);(3)(x+3)2﹣(2x﹣3)2=0;(4)3x2﹣4x﹣1=0.20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.23.如图,要利用一面墙(墙长为55m),用100m的围栏建羊圈,基本结构为三个大小相同的矩形.(1)如果围成的总面积为400m2,求羊圈的边AB,BC的长各为多少;(2) 保持羊圈的基本结构,羊圈总面积是否可以达到800m2?请说明理由.24.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市投入基础教育经费的年平均增长率.(2) 如果按(1) 中投入基础教育经费的年平均增长率计算,该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?参考答案一.选择题(共10小题)题号 1 2 3 4 5 6 7 8 9 10 答案 C D D A C B B C D A二.填空题(共8小题)11.解:∵关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,∴m﹣3=2,解得:m=5,故答案为:5.12.解;移项,得x2+x=﹣3,配方,得x2+x+=﹣3+,∴(x+)2=﹣.∴h=,k=﹣.故答案为:﹣.13.解:∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且Δ=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1.故答案为:a<﹣1.14.解:∵mx+x2+2=0,∴x2+mx+2=0,a=1,b=m,c=2,∵方程有两个相等的实数根,∴b2﹣4ac=0,∴m2﹣4×1×2=0,即m2=8,∴m=.故答案为:.15.解:设菱形的两条对角线的长为m、n,根据题意得mn=56,所以菱形的面积=mn=×56=28.故答案为28.16.解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.故答案为:8.17.解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.18.解:利用新方程有两个根为12和4构造1个一元二次方程为:x2﹣(12+4)x+12×4=0 即x2﹣16x+48=0,与ax2+bx+c=0对应.于是得到:b=﹣16k,c=48k.(其中k是不为0的整数.)从而原方程为:kx2﹣16kx+48k=0(方程从无根变有根,只能是改变系数a或c).同样再由另一个新方程的两个根﹣2和6,构造一个方程:x2﹣(﹣2+6)x+(﹣2)×6=0,即x2﹣4x﹣12=0.此方程两边同乘以4k,得 4kx2﹣16kx﹣48k=0,它与ax2﹣16kx+48k=0对应,得a=4k,从而原方程就是:4kx2﹣16kx+48k =0,所以==8.故答案为8.三.解答题(共7小题)19.解:(1)分解因式得:(x+3)(x﹣1)=0,可得x+3=0或x﹣1=0,解得:x1=﹣3,x2=1;(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,可得5x﹣1=0或10x﹣7=0,解得:x1=0.2,x2=0.7;(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,可得3x=0或﹣x+6=0,解得:x1=0,x2=6;(4)这里a=3,b=﹣4,c=﹣1,∵△=16+12=28>0,∴x==,解得:x1=,x2=.20.解:设方程另一个根为x1,根据题意得2x1=﹣6,解得x1=﹣3,即方程的另一个根是﹣3.21.解:(1)∵方程有两个实数根x1,x2,∴△=(2k﹣2)2﹣4k2≥0,解得k≤;(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,∵k≤,∴2k﹣2<0,又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.解得k=4(不合题意,舍去)或k=﹣6,∴k=﹣6.22.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4≠0,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34.23.【答案】(1)设AB=xm,则BC=(100-4x)m,100-4x55,x11.25.由题意知,x(100-4x)=400,即x2-25x+100=0,解得x1=20,x2=5(舍),AB=20m,BC=100-420=20m.答:羊圈的边AB长为20m,BC长为20m.(2)不能.理由:设AB=ym时,羊圈总面积可以达到800m2,由题意,得y(100-4y)=800,即y2-25y+200=0,a=1,b=-25,c=200,-4ac=(−25)2-41200=-175<0,方程无实数根,羊圈总面积不可能达到800m2.24.解:(1)设该市投入基础教育经费的年平均增长率为x,根据题意,得5000(1+x)2=7200,解得x1=0.2=20%,x2=-2.2(舍去).答:该市投入基础教育经费的年平均增长率为20%.(2)2021年投入基础教育经费为7200(1+20%)=8640(万元), 设购买电脑m台,则购买实物投影仪(1500-m)台,根据题意,得3500m+2000(1500-m)864000005%,解得m880. 答:最多可购买电脑880台.。
人教版九年级数学上册 第21章 一元二次方程 单元检测试题(有答案)
![人教版九年级数学上册 第21章 一元二次方程 单元检测试题(有答案)](https://img.taocdn.com/s3/m/f879140c7f1922791788e83d.png)
第21章一元二次方程单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 关于的一元二次方程有一个根为,则的值为( )A. B. C.或 D.2. 已知,则的值是()A. B.或 C.或 D.3. 若用配方法解方程,则方程两边都加上()A. B. C. D.4. 一元二次方程的二次项系数、一次项系数、常数项依次是()A.,,B.,,C.,,D.,,5. 已知:,是一元二次方程的两根,且,,则、的值分别是()A.,B.,C.,D.,6. 已知是一元二次方程的一个根,则的值为()A. B. C. D.7. 为常数,且,则关于的方程根的情况是( )A.有两个相等的实数根B.有一根为C.无实数根D.有两个不相等的实数根8. 关于的一元二次方程有两个不相等的实数根,则的取值范围是( )A. B. C. D.且9. 如图,学校准备修建一个面积为的矩形花园.它的一边靠墙,其余三边利用长的围栏.已知墙长,问围成矩形的长为( )A. B. C. D.10. 如图,在宽为米,长为米的矩形地面上,修筑平行于矩形两边的同样宽的两条互相垂直的道路,余下的部分作为耕地,要使耕地的面积为平方米,道路的宽应是()A.米B.米C.米D.米二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若关于的方程的根是正整数,则整数的值可以是________.12. 一个一元二次方程,两根分别为和,这个方程可以是________.13. 九年级班第一小组名同学在庆祝年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡张,则的值是________.14. 关于的方程=有且仅有两个实数根,则实数的取值范围是________.15. 某药品原价每盒元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒元,则该药品平均每次降价的百分率是________.16. 政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒元调至元.已知两次降价的百分率相同,则每次降价的百分率为________.17. 中秋节当天,小明将收到的一条短信发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有人,则小明给________人发了短信.18. 关于的一元二次方程有实根,则的最大整数解是________.19. 平遥牛肉是我国美食文化的精华之一.已知某专卖店平遥牛肉的进价为每份元,现在的售价是每份元,每天可卖出份.据市场调查,每涨价元,每天要少卖出份.如果专卖店每天要想获得元的利润,且要尽可能的让利给顾客,那么售价应涨价________元.20. 为落实国务院房地产调控政策,某市加快了廉租房的建设力度.年市政府投资了亿元人民币建设廉租房,预计到年三年共累计投资亿元人民币建设廉租房,若每年市政府投资的增长率相同,设每年市政府投资的增长率为,则根据题意,可列方程为________.三、解答题(本题共计6 小题,共计60分,)21. 用适当方法解下列方程(1)=(2)=22. (配方法).23. 关于的一元二次方程有实数根.(1)求的最大整数值;(2)当取最大整数值时,求出该方程两根.24. 关于的一元二次方程有两个不相等的实数根.求的取值范围;写出一个满足条件的的值,并求此时方程的根.25. 某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示: .(1)求与之间的函数关系式;(2)函数图象中点表示的实际意义是 ;(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?26. 定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“特异数”.将一个“特异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为.例如:,对调个位数字与十位数字得到新两位数,新两位数与原两位数的和为,和与的商为,所以.根据以上定义,回答下列问题:(1)填空:①下列两位数:,,中,“特异数”为________.②计算:________,________,________.(2)如果一个“特异数”的十位数字比个位数字小,且,请求出“特异数”.(3)如果一个“特异数”的十位数字是,个位数字是,另一个“特异数”的十位数字,个位数字是,且满足,求满足条件的的值为________.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:∵一元二次方程有一个根为,∴,且,∴.故选.2.【答案】A【解答】解:设,原方程变形为,解得或,∵,∴,∴.故选.3.【答案】A【解答】解:用配方法解方程,则方程两边都加上,故选4.【答案】C【解答】解:一元二次方程的二次项系数是、一次项系数是、常数项是,故选:.5.【答案】D【解答】解:∵,是一元二次方程的两根,∴,,∵,,∴,,即,,故选.6.【答案】B【解答】解:根据题意得:把代入方程得:,即,则原式,故选7.【答案】D【解答】解:∵,∴在方程中,,∴方程有两个不相等的实数根.故选.8.【答案】D【解答】解:由已知得:解得:且.故选.9.【答案】A【解答】解:设宽为,则长为.由题意,得,解得,.当时,(舍去);当时,.∴围成矩形的长为,宽为.故选.10.【答案】B【解答】解:设道路的宽为米.依题意得:,解之得,(不合题意舍去)∴道路宽为.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】或或【解答】解:当时,方程为显然符合题意当时,,∴∴,.可知方程必有一根为,则另一根为,是正整数,∴是的正约数,即或,∴,,故填:或或.12.【答案】【解答】解:设该方程为,∵该方程的两根分别为和,∴,,∴,.当时,该一元二次方程为.故答案为:.13.【答案】【解答】解:依题意,得:,解得:,(不合题意,舍去).故答案为:.14.【答案】=或【解答】由原方程,得=,∴该函数图象为:根据图示知,实数的取值范围是=或.15.【答案】【解答】解:设该药品平均每次降价的百分率为,由题意可知经过连续两次降价,现在售价每盒元,故,解得或(不合题意,舍去),故该药品平均每次降价的百分率为.故答案为:.16.【答案】【解答】解:设每次降价的百分率为,则第二次降价后的价格为,由题意,得,变形为:,解得:(舍去),,故答案为:.17.【答案】【解答】解:设小明发短信给个人,由题意得:,解得:,(不合题意舍去),即小明给人发了短信.故答案为:.18.【答案】【解答】解:∵关于的一元二次方程有实根,∴,且,解得,且,则的最大整数解是,故答案为:.19.【答案】【解答】解:设涨价元,,解得,(舍).故答案为:.20.【答案】【解答】解:根据题意,每年市政府投资的增长率为,得:.故答案为:.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】这里=,=,=,===∴,;==即=∴=或=∴=,.【解答】这里=,=,=,===∴,;==即=∴=或=∴=,.22.【答案】解:,,,,,.【解答】解:,,,,,.23.【答案】解:(1)∵关于的一元二次方程有实数根,∴,且,即,解得,∴的取值范围为且,所以的最大整数值为;(2)将代入,得,∵,∴.【解答】解:(1)∵关于的一元二次方程有实数根,∴,且,即,解得,∴的取值范围为且,所以的最大整数值为;(2)将代入,得,∵,∴.24.【答案】解:有两个不相等的实数根,△,即,△.答:要大于.设为.△答:.【解答】解:有两个不相等的实数根,△,即,△.答:要大于.设为.△答:.25.【答案】(1);(2)当为,,即这种干果没有降价,以每千克元的价格销售时,销售量是千克;(3)商贸公司要想获利元,则这种干果每千克应降价元.【解答】(1)设一次函数解析式为:当当.,解得:…与之间的函数关系式为(2)函数图象中点表示的实际意义是当为,即这种干果没有降价,以每千克元的价格销售时,销售量是千克.(3)由题意得:整理得:,解得::让顾客得到更大的实惠,∴答:商贸公司要想获利元,则这种干果每千克应降价元.26.【答案】①.,②,,,,.解:设的个位数字为,十位数字为,依题意得:;解得.则.故“特异数”的值为..【解答】解:①由题知特异数的定义是:对任意一个两位数,如果满足各位数字和十位数字互不相同,且都不为零,那么称这个两位数为“特异数”,故为中的特异数;②其中,对调个位数字与十位数字得到新两位数,把这个新两位数与原两位数的和与的商记为,则.故答案为:.设的个位数字为,十位数字为,依题意得:;解得.则.故“特异数”的值为.由题意得:,∴其新两位数为,.,∴其新两位数为,,,解得.又,的值为.。
3 .勤学早九年级数学(上)第21章《一元二次方程》单元检测题(月考一)
![3 .勤学早九年级数学(上)第21章《一元二次方程》单元检测题(月考一)](https://img.taocdn.com/s3/m/ced93962a6c30c2258019e2d.png)
3 勤学早九年级数学(上)第21章《一元二次方程》单元检测题(月考一)(考试范围:全章综合测试解答参考时间:120分钟满分120分)一、选择题(每小题3分,共30分)1.(2015天津)关于x的方程(2a-1)2x+x-2=0是一元二次方程,则a满足(C)A. a≠lB. a≠lC. a≠l且a≠lD.为任意实数2.(2015武汉模拟)用公式法解一元二次方程32x-2x+3=0时,首先要确定a、b、c的值,下列叙述正确的是(D)c=34.(( B)5.(6.9.数为( B)A. 8人B. 9人C.10人D.11人10.定义[a、b、c]方程a2x+bx+c=0的特征数,下面给出特征数为[2m,l-m,-l-m]的方程的一些结论:①m=l时,方程的根为±1;②若方程的两根互为倒数,则m=13-;③无论m为何值,方程总有两个实数根;④无论m为何值,方程总有一个根等于1;其中正确的有( B )A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共18分)11. 一元二次方程2x =16的解是____________. (1x =4,2x = -4)12. 若方程32x -5x-2=0有一根是a ,则62a -10a 的值是_____. (4)13. 已知关于x 的一元二次方程2x +bx+b-l=0有两个相等的实数根,则b 的值是____. (2)14.(2015牡丹江)现有一块长80cm 、宽60cm 的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为15002cm 的无盖的长方体盒子,根据题意列方程,化简可得)15. 36)16.17.2= 2))34) (2) 4)20.(10)21.A 、C P 运∴16-5x=±8,∴1x =1.6,2x =4.822. (本题l0分)如图1,用篱笆靠墙围成矩形花圃ABCD ,墙可利用的最大长度为15m ,一面利用旧墙,其余三面用篱笆围,篱笆长为24m ,设平行于墙的BC 边长为xm.(1)若围成的花圃面积为402m 时,求BC 的长;(2)如图2,若计划在花圃中间用一道篱笆隔成两个小矩形,且花圃面积为502m .请你判断能否围成花圃. 如果能,求BC 的长;如果不能,请说明理由.提示:(1)依题意可知AB=24x 2-m ,则24x 2-×x=40,解得:1x =20,2x =4. ∵墙可利用的最大长度为15m ,∴1x =20舍去,∴BC 长为4m.(2)不能围成花圃. 2x -24x +l50=0.∵△<0,∴方程无实数根,∴不能围成花圃.23.(本题10分)(2015安岳)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)24.两点,.PGFB ,,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勤学早九年级数学(上)第21章《一元二次方程》周测(一)
(考试范围:第21.1(一元二次方程)和第21.2(解一元二次方程)
解答参考时间:90分钟 满分120分)
一、选择题(每小题3分,共30分)
1.(2016·曲靖)下列方程是一元二次方程的是( )
A .3x 2+x 1=0
B .2x -3y +1=0
C .(x -3)(x -2)=x 2
D .(3x -1)(3x +1)=3
2.(2015·海淀)一元二次方程3x 2-4x -5=0的二次项系数、一次项系数、常数项分别是( )
A .3,-4,-5
B .3,-4,5
C .3,4,5
D .3,4,-5 3.(2016·锦江)关于x 的一元二次方程x 2-4x +2m =0没有实数根,则实数m 的取值范围是( )
A .m <2
B .m >-2
C .m >2
D .m <-2 4.(2015·江岸)如果x =3是一元二次方程ax 2=c 的一个根,则
a c 的值是( ) A .3 B .-3 C .9
D .-9 5.已知m 和n 是方程2x 2-5x -3=0的两根,则
n m 11+值是( ) A .35- B .415- C .25 D .2
3- 6.方程(x -2)(x +3)=0的解是( )
A .x =2
B .x =-3
C .x 1=2,x 2=3
D .x 1=2,x 2=-3 7.(2015·兰州)一元二次方程x 2-8x -1=0配方后可变形为( ) A .(x +4)2=17
B .(x +4)2=15
C .(x -4)2=17
D .(x -4)2=15 8.已知m 、n 是关于x 的一元二次方程x 2-3x +a =0的两个解.若(m -1)(n -1)=-6,则a 的
值为( )
A .-10
B .4
C .-4
D .10 9.(2015·安顺)三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长为( )
A .14
B .12
C .12或14
D .以上都不对
10.(2015·南充)关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正,给出三个结论:① 这两个方程的根都负根;② (m -1)2+(n -1)2≥2;③ -1≤2m -2n ≤1,其中正确结论的个数是( )
A .0个
B .1个
C .2个
D .3个
二、填空题(每小题3分,共18分)
11.(2016·曲靖)一元二次方程x (x -2)=0的解是_____________
12.(2016·东台)若m 2-5m +2=0,则2m 2-10m +2016=_____________
13.填空:(1) x 2+6x +____=(x +____)2;(2) x 2-5x +_____=(x -_____)2
14.(2015·六合)已知如图所示的图形是一无盖长方体的铁盒平面展开图,
若铁盒的容积为3 m 3,则根据图中的条件,可列出方程:_______________
15.(2016·锦江)小明设计了一个魔术盒,当任意实数对(a ,b )进入其中,会得到一个新的实数a 2-2b +3.若将实数对(x ,-2x )放入其中,得到一个新数为8,则x =___________
16.已知m ,n 是方程ax 2+bx +c =0的两个实数根,设s 1=m +n ,s 2=m 2+n 2,s 3=m 3+n 3,…,s 100=m 100+n 100,则as 2016+bs 2015+cs 2014的值为___________
三、解答题(共8题,共72分)
17.(本题8分)用指定的方法解下列方程:
(1) x 2+3x =0(因式分解法)
(2) x 2-4x +1=0(配方法)
18.(本题8分)选择适当的方法解方程:
(1) x 2-4=0
(2) (2x -1)2-9=0
(3) x 2-3x +2=0
(4) x 2-4x +2=0
19.(2016·天津改)(本题8分)关于x 的方程kx 2+(k +2)x +
4
k =0没有实数根,求k 的取值范围
20.(2015·武汉模拟)(本题8分)已知关于x 的方程x 2+2x +a -2=0
(1) 若方程有一根为1,求a 的值
(2) 若a =1,求方程的两根
21.(2015·德州)(本题8分)巨人学校童老师数学兴趣小组对关于x 的方程(m +1)12 m
x +(m -
2)x -1=0提出了下列问题:
(1) 是否存在m 的值,使方程为一元二次方程?若存在,求出m 的值,并解此方程
(2) 是否存在m 的值,使方程为一元一次方程?若存在,求出m 的值,并解此方程
22.(2015·潜江改)(本题10分)已知关于x 的一元二次方程x 2-4x +m =0(k 为常数)
(1) 若方程有实数根,求实数m 的取值范围
(2) 若方程两实数根为x 1、x 2,且满足x 1-x 2=-8,求实数m 的值
23.(本题10分)如图,正方形ABCD ,矩形EFGH 均位于第一象限内,它们的边平行于x 轴或y 轴,点A 、E 在直线OM 上,点C 、G 在直线ON 上,O 为坐标原点,点A 的坐标为(3,3),正方形ABCD 的边长为1
(1) 求直线ON 的解析式
(2) 若矩形EFGH 的周长为10,面积为6,求点F 的坐标
24.(本题12分)已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且关于x 的一元二次方程(b +c )x 2-2ax -(b -c )=0有两个相等的实数根
(1) 判断此三角形的形状
(2) 若a =b ,设点P 为AB 边上任一点,PE ⊥BC 于E ,M 为AP 的中点,过A 作BC 的平行线,MD ⊥ME 交此平行线于D .当点P 在线段AB 上运动的时候,求ME
MD 的值。