重庆市2019年中考数学复习 第一轮 考点系统复习 第一章 数与式 第一节 实数(精练)课件PPT
中考数学总复习第一编教材知识梳理篇第一章数与式第三节代数式及整式运算精试题
第三节代数式及整式运算,怀化七年中考命题规律)年份题型题号考察点考察内容分值总分2021选择3乘法公式完全平方公式、平方差公式442021 选择2幂的运算性质以选择题形式考察同底数幂积的乘方、幂的乘方的性质442021选择1代数式求值直接用代入法求代数式的值332021填空1代数式求值代数式应先化简,再代入求值332021选择3幂的运算性质同底数幂相乘,幂的乘方,合并同类项332021选择3代数式求值可以直接代入求值,也可以先利用公式再求值33命题规律纵观怀化七年中考,代数式求值及整式运算属必考内容,题型一般以选择题、填空题形式出现,七年中有六年涉及到此内容,只有一年没涉及到此内容,此内容属于高频考点.命题预测预计2021年怀化中考求代数式的值及整式运算仍有涉及,故应对考点进展适当训练,做到考试中应对自如.,怀化七年中考真题及模拟)列代数式1.(2021 怀化三模)如下图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,那么第n(n是大于0的整数)个图形需要黑色棋子的个数是__n(n+2)__.代数式求值(3次)2.(2021怀化中考)m =1,n =0,那么代数式m +n 的值为( B ) A .-1 B .1 C .-2 D .23.(2021怀化中考)假设x =1,y =12,那么x 2+4xy +4y 2的值是( B )A .2B .4C .32D .124.(2021怀化中考)当x =1,y =15时,3x(2x +y)-2x(x -y)=__5__.整式的运算(3次)5.(2021怀化中考)以下计算正确的选项是( C ) A .(x +y)2=x 2+y 2B .(x -y)2=x 2-2xy -y 2C .(x +1)(x -1)=x 2-1D .(x -1)2=x 2-16.(2021 怀化中考)以下计算正确的选项是( D ) A .x 2+x 3=x 5 B .(x 3)3=x 6 C .x ·x 2=x 2 D .x(2x)2=4x 37.(2021怀化中考)以下运算正确的选项是( D ) A .a ·a 3=a 3 B .(ab)3=ab 3 C .a 3+a 3=a 6 D .(a 3)2=a 68.(2021 通道模拟)⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的二元一次方程3x =y +a 的解.求(a +1)(a -1)+7的值.解:a =3,值为9.,中考考点清单)代数式与整式的有关概念1.代数式:用运算符号(加、减、乘、除、乘方、开方)把__数__或表示__数的字母__连接而成的式子叫做代数式.2.代数式的值:用__数值__代替代数式里的字母,按照代数式里的运算关系,计算后所得的__结果__叫做代数式的值.3.代数式的分类:代数式⎩⎪⎨⎪⎧有理式⎩⎪⎨⎪⎧整式⎩⎪⎨⎪⎧ 单项式 多项式 分式无理式【温馨提示】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式.(2)列代数式的关键是正确分析数量关系,掌握文字语言与、差、积、商、乘以、除以等在数学语言中的含义.(3)注意书写规那么:a×b 通常写作a·b 或ab ;1÷a 通常写作1a ;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.整式的相关概念 单项式概念由数及字母的①__积__组成的代数式叫做单项式(单独的一个数或一个②__字母__也是单项式).系数单项式中的③__数字__因数叫做这个单项式的系数.次数 单项式中的所有字母的④__指数的与__叫做这个单项式的次数.多项式概念 几个单项式的⑤__与__叫做多项式.项多项式中的每个单项式叫做多项式的项.次数一个多项式中,⑥__最高次__的项的次数叫做这个多项式的次数.整式 单项式及⑦__多项式__统称为整式.同类项所含字母⑧__一样__并且一样字母的指数也⑨__分别一样__的项叫做同类项.所有的常数项都是⑩__同类__项.整式的运算类别 法那么整式加减 (1)去括号;(2)合并①__同类项__.幂的 运算同底数幂相乘 a m ·a n =②__a m +n __(m 、n 都是整数) 幂的乘方 (a m )n =③__a mn __(m 、n 都是整数)积的乘方 (ab)n =④__a n b n __(n 是整数)同底数幂相除a m ÷a n =⑤__a m -n __(a≠0,m 、n 都是整数)整式的 乘法单项式乘以多项式 m(a +b)=⑥__am +bm__多项式乘以多项式(a +b)(m +n)=⑦__am +an +bm +bn__乘法 公式平方差公式 (a +b)(a -b)=⑧__a 2-b 2__ 完全平方公式(a±b)2=⑨__a 2±2ab +b 2__【易错警示】(1)在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为0;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式).合并同类项的关键:正确判断同类项.(2)同底数幂的除法及同底数幂的乘法互为逆运算,可用同底数幂的乘法检验同底数幂的除法是否正确.(3)遇到幂的乘方时,需要注意:当括号内有“-〞号时,(-a m )n =⎩⎪⎨⎪⎧-a mn ,n 为奇数,a mn ,n 为偶数.【方法技巧】求代数式值的方法主要有两种:一种是直接代入法;另一种是整体代入法.对于整体代入求值的,要注意从整体上分析代数式及欲求代数式之间构造的异同,从整体上把握解题思路,寻求解题的方法.,中考重难点突破)列代数式【例1】(1)如下图是一组有规律的图案,第1个图案由4个根底图形组成,第2个图案由7个根底图形组成,……,第n(n是正整数)个图案中的根底图形个数为________.(用含n的式子表示)(2)把四张形状大小完全一样的小长方形卡片[如图(1)]不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部[如图(2)].盒子底面未被卡片覆盖的局部用阴影表示,那么图(2)中两块阴影局部周长与为( )A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm【解析】由图形观察可知:第一个阴影水平长度及第二个阴影竖直高与为n cm,第一个阴影竖直高及第二个阴影水平长度与也为n cm,因此可以求出阴影局部周长.【学生解答】(1)3n+1;50;(2)B【点拨】(1)列代数式关键是明白题目中给定的数或数量关系.(2)对于给定图形要善于观察,找出图中隐藏的相关信息.1.图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状与大小都一样的小长方形,然后按图2那样拼成一个正方形,那么中间空的局部的面积是( C)A.2ab B.(a+b)2C.(a-b)2D.a2-b2代数式求值【例2】(2021扬州中考)假设a2-3b=6,那么6b-2a2+2 016=________.【解析】把6b-2a2+2 016变形为2(3b-a2)+2 016,把a2-3b=6化为3b-a2=-6后代入求值.【学生解答】2 004【点拨】求代数式的值时,常采用以下两种方法:①应用整体代入求值;②把的式子化为一个字母用另外的字母表示,代入所求代数式,进展化简求值.2.(2021湖州中考)当x=1时,代数式4-3x的值是( A)A.1 B.2 C.3 D.43.x2-2x=5,那么代数式2x2-4x-1的值为__9__.4.假设a是一元二次方程-2x2+3x+8=18的根,那么代数式9a-6a2+2=__32__.整式的概念及运算【例3】(1)假设x3y m-4及x n+1y5是同类项,那么m2+n2=________.(2)以下计算正确的选项是( )A .a 2+a 2=2a 4B .(-a 2b)3=-a 6b 3C .a 2·a 3=a 6D .a 8÷a 2=a 4(3)先化简,再求值:(a +b)(a -b)+b(a +2b)-b 2,其中a =1,b =-2.【学生解答】解:(1)85;(2)B ;(3)原式=a 2-b 2+ab +2b 2-b 2=a 2+ab ;当a =1,b =-2时,原式=12+1×(-2)=1-2=-1.5.(2021常德中考)假设-x 3y a 及x b y 是同类项,那么a +b 的值为( C ) A .2 B .3 C .4 D .5 6.(2021娄底中考)以下运算正确的选项是( C ) A .a 2·a 3=a 6 B .5a -2a =3a 2 C .(a 3)4=a 12 D .(x +y)2=x 2+y 27.(2021毕节中考)以下运算正确的选项是( D ) A .-2(a +b)=-2a +2b B .(a 2)3=a 5C .a 3+4a =14a 3D .3a 2·2a 3=6a 58.(2021南充中考)如果x 2+mx +1=(x +n)2,且m>0,那么n 的值是__1__.。
中考数学总复习第一章数与式课件
点的距离⑥相等 .
⑦ a (a > 0),
几何意义:在数轴上表 |a|= ⑧ 0 (a = 0),
示数 a 的点与原点的距
⑨ -a (a < 0),
离,记作|a|.
绝对值具有非负性.
乘积是⑩ 1 的两 (1)ab=1⇔a,b 互为倒数;
个数互为倒数,非零实 (2)0 没有倒数;
数 a 的倒数为 1 a.
考点1 考点2 考点3 考点4 考点5
PART 02
方法帮
方法帮 命题角度 1 整式的运算
C
D
方法帮 命题角度 2 整式的化简求值
方法帮 命题角度 2 整式的化简求值
第三节 分 式
PART 01
考点帮
考点1 分式的有关概念 考点2 分式的性质 考点3 分式的运算
考点帮 分式的有关概念
考点1 考点2 考点3
考点帮
考点1 考点2 考点3 考点4 考点5 考点6
实数的运算
1.四则 运算法 则
运算名称 同号两数相加
加 法 异号两数相加
一个数同 0 相加 减法
运算法则
若 a>0,b>0,则 a+b=+(|a| + |b|); 若 a<0,b<0,则 a+b= - (|a|+|b|).
若 a>0,b<0,|a|>|b|,则 a+b=+(|a|-|b|); 若 a>0,b<0,|a|<|b|,则 a+b=-(|b|-|a|); 若 a,b 互为相反数,则 a+b=0.
题.
方法帮 命题角度 4 平方根、算术平方根、立方根
7.[2018 贵州安顺] 4的算术平方根是( B )
中考数学考点系统复习 第一章 数与式 第一节 实 数
(6)一个整数 3 212…0 用科学记数法表示为 3.212×108,则原数中“0”
有 5 5 个.
(7)(9.6×106)×(1.5×105)运算结果用科学记数法表示为 1.14.44×4×10112. 012
8.(数学文化)《九章算术》中注有“今两算得失相反,要令正负以名之”,
意思是:今有两数,若其意义相反,则分别叫做正数与负数.若气温为
(2)数据 2 000 000 用科学记数法表示为 2×10n,则 n= 6 6.
(3)用科学记数法表示的数是 1.69×105,则原来的数是 161969 000.
(4)2.05×10-3 用小数表示为 0.0.0000 205.
000
(5)把 0.081 3 写成 a×10n(1≤a≤20150,n 为整数)的形式,则 a 为 8 8.1.313.
命题点 1:实数的有关概念(近 6 年考查 2 次)
1.(2017·安徽第 1 题 4 分)12的相反数是
1
1
A.2 B.-2 C. 2 D.-2
( B)
2.(2013·安徽第 1 题 4 分)-2 的倒数是 A.-12 B.12 C.2 D.-2
(A)
3.(2021·安徽第 1 题 4 分)-9 的绝对值是 A.9 B.-9 C.19 D.-19
零上 10 ℃记作“+10 ℃”,则“-3 ℃”表示气温为
( B)
A.零上 3 ℃ B.零下 3 ℃ C.零上 7 ℃ D.零下 7 ℃
【考情分析】安徽近 6 年主要以填空题、选择题的形式考查实数的概念 及实数的大小比较;结合实际问题考查科学记数法;结合绝对值、算术 平方根、负指数幂等考查实数的混合运算.
(2)-122=
中考数学一轮优化复习 第一部分 教材同步复习 第一章 数与式 第2讲 实数的大小比较与运算课件
12/10/2021 第6页
第六页,共十七页。
2.实数的四则运算法则 (1)加法:同号两数相加,取相同的符号,并把绝对值⑳____相_加_____;绝对值不 相等的异号两数相加,取○21 ____绝_对__值_____较大的加数的符号,并用较大数的绝对值 减去较小数的○22 __绝__对__值______;互为相反数的两个数相加得 0;一个数同 0 相加,仍
12/10/2021
第十七页,共十七页。
得这个数. (2)减法:减去一个数,等于加上这个数的○23 __相__反__数______,即 a-b=a+(-b).
12/10/2021 第7页
第七页,共十七页。
(3)乘法:两数相乘,同号得○24 ____正____,异号得○25 ____负____,并把绝对值相乘; |a|·|b|a,b同号,
第一(dìyī)部 分
教材同步(tóngbù)复习
第一章 数与式
第2讲 实数的大小比较与运算
12/10/2021
第一页,共十七页。
知识要点·归纳
知识点一 实数的大小比较
直接比较法 正数>0>负数 数轴法 在数轴上,右边的点所表示的数总比左边的点所表示的数大 两个正数比较大小,绝对值大的数比较大;两个负数比较大小, 绝对值法 绝对值大的数反而小,即 a<0,b<0,若|a|>|b|,则 a<b 平方 对任意正实数 a, b,有:a2>b⇔a> b(适用于含有根式的数的 比较法 大小比较或二次根式的估值)
【正解】原式=-9+1--1122+4 =-9+1-4+4 =-8.
12/10/2021 第 14 页
第十四页,共十七页。
2.(2018·张家界)计算:( 3-1)0+(-1)-2-4sin60°+ 12.
中考数学第一轮(一)数与式鲁教版知识精讲
中考数学第一轮(一)数与式鲁教版知识精讲【本讲教育信息】一. 教学内容:中考第一轮(一)——数与式二. 教学目标:1. 掌握数与式的知识框架,复习并记忆各知识点.2. 强化基本运算,培养数感,形成理性的思维.3. 培养计算策略的选择和能力的提高.加强建立数学模型解题的能力.4. 开放探究类问题和有实际背景的应用问题,加强信息分析和判断,培养解题思路的多样化.三. 重点、难点:(一)重点:知识点的复习和基本运算能力的提高. (二)难点:深入理解知识点,培养解题思路的多样化.四. 教学过程: (一)知识点: 1. 知识框图数与式:、开方及混合运算加、减、乘、除、乘方平方根平方根、立方根、算术无理数负整数指数幂有效数字、零指数、科学记数法、近似数、绝对值、数轴、相反数、倒数、有理数实数⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧:: ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧运算化简性质定义二次根式——无理式运算基本性质概念分式因式分解乘法公式多项式乘法定义及相关内容多项式运算定义及相关内容单项式整式有理式代数式)(2. 知识概述(1)数轴:规定了原点,正方向,单位长度的直线叫数轴.(2)相反数:只有符号不同的两个数互为相反数,零的相反数是零. (3)倒数:两个数的积为1,则两数互为倒数.(4)绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a |a |(5)科学记数法:将一个数记作n10a ⨯(10|a |1<≤,n 是整数)的形式.(6)有效数字:一个数从左边第一个不是0的数字起,到右边精确到的数位止,所有的数字都叫这个数的有效数字.(7)去括号法则:括号前是“+”号,去掉括号和它前面的“+”号,括号里的各项都不变符号.括号前是“-”号,去掉括号和它前面的“-”号,括号里的各项都改变符号.(8)有理数加、减、乘、除、乘方、开方运算法则及混合运算(实数)及运算律. (9)无理数:无限不循环小数为无理数.(10)平方根、算术平方根:如果a x 2=则x 是a 的平方根,记作a ±,a 的非负平方根也称作它的算术平方根,记作a .(11)立方根:如果a x 3=,则x 是a 的立方根.(12)单项式:表示数与字母乘积的代数式为单项式(系数、次数)(13)多项式:几个单项式的代数和是多项式(项、项数、次数、常数项) (14)幂的基本运算:同底数幂乘(除)法、幂的乘方、积的乘方. (15)整式运算:合并同类项、单项式以及多项式的运算. (16)乘法公式:平方差公式,完全平方公式.(17)因式分解:把一个多项式写成几个整式积的形式. (18)分式的基本性质:M B M A B A ⨯⨯=,M B M A B A ÷÷=(M 为不等于零的整式)分式的基本运算:bd bc ad d c b a ±=±(异分母分式相加减,先通分) n n n b a )b a (bc ad c d b a d c b a bdac d c b a ==⋅=÷=⋅(19)零指数:1a 0=(0a ≠)(20)负整数指数:pp a 1a =-(0a ≠,p 为正整数) (21)二次根式:式子a (0a ≥)叫二次根式.(22)二次根式的性质:)0a (a )a (2≥=)0b ,0a (ba b a )0b ,0a (b a ab |a |a 2>≥=≥≥⋅==(23)最简二次根式:被开方数所含因数是整数,因式是整式,不含开得尽方的因数或因式的二次根式,叫最简二次根式.(24)二次根式的运算:加(减)、乘、除.(二)典型例题:例1. 计算:20)3()14.3(31313--π-+⨯÷分析:注意在不同级的运算中,应先乘方(开方),再算乘除,最后做加减.同级运算中,应按先后排列顺序进行运算;若是有括号,一般要先进行去括号计算.掌握)0a (1a 0≠=.解:原式913133-+⨯⨯=5913-=-+=例2. 在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材.4.581亿帕用科学记数法表示为_______帕(保留两位有效数字).分析:科学记数法就是把一个数写成:n10a ⨯(n ,10a 1<≤为整数)的形式.由精确度和有效数字的概念,得出结果为8106.4⨯。
中考数学复习数与式知识点总结
中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
中考数学第一轮复习精品课件第一章 第1讲实数
C.4.5×105
D.0.45×106
2.数轴上的点 A 到原点的距离是 3,则点 A 表示的数为 ( A ) A.3 或-3 C.-3
B.3
D.6 或-6
3.如果规定收入为正,支出为负.收入 500 元记作+500 元,那么支出 237 元应记作( B ) A.-500 元 C.237 元 B.-237 元 D.500 元
第一章
数与式
第1讲 实数
1.了解无理数和实数的概念,理解实数的意义,能用数轴 上的点表示实数,会比较实数的大小.知道实数与数轴上的点 一一对应. 2.借助数轴理解相反数和绝对值的意义,会求实数的相反 数与绝对值(绝对值符号内不含字母). 3.理解乘方的意义,会用科学记数法表示数,掌握实数的 加、减、乘、除、乘方及简单的混合运算(以三步为主).
4.0 的特殊性.
0 (1)0 的相反数是__________ .
0 (2)0 的绝对值是__________ .
倒 (3)0 没有________ 数.
【学有奇招】 1.对于实数的概念,关键记住无理数的概念.在实数中只 有无限不循环小数是无理数,其他都是有理数.常见的无理数 有三种:①有规律但不循环的数,例如:0.101 001 000 100
π 001…;②π 及其衍生出来的数,例如:3π,2等;③含有根号 2 但开不尽方的数,例如: 2, 5, 2 等. 3
2.有理数的加法运算口诀:同号相加一边倒;异号相加 “大”减“小”,符号跟着大的跑;绝对值相等“零”正好. 注意:“大”减“小”是指绝对值的大小.
1.5 月的某一天,参观上海世博会的人数达到 450 000, 用科学记数法表示这个数为( C ) A.45×104 B. 4.5×106
中考数学 专题01 实数的有关概念及运算(原卷版)
归纳 4:科学记数法与近似数 基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为 a×10n,其中 1≤|a|<10,n 为整数, 表示时关键要正确确定 a 的值以及 n 的值. 基本方法归纳:利用科学记数法表示一个数,在确定 n 的值时,看该数是大于或等于 1 还是小于 1.当该 数大于或等于 1 时,n 为它的整数位数减 1;当该数小于 1 时,-n 为它第一个有效数字前 0 的个数(含小
中考数学复习资料
的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是 ( )A.B.Fra bibliotek C.D.
3.(2019 内蒙古通辽市,第 1 题,3 分) 1 的相反数是( ) 2019
A.2019 B. 1 C.﹣2019 D. 1
( )
A.5×106 B.107 C.5×107 D.108 14.(2019 重庆 A,第 8 题,4 分)按如图所示的运算程序,能使输出 y 值为 1 的是( )
A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1
归纳 5:实数的混合运算 基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运 算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算 中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行 基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化 简、二次根式等内容,要熟练掌握这些知识. 注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错 的地方,在解答此类问题时要注意基本性质和运算的顺序.
第1节实数-中考数学一轮知识复习课件
6.(2020·封开一模)实数 a,b 在数轴上的对应点 的位置如图所示,把 a,b,0 按照从小到大的顺序排 列,正确的是( A )
A.a<0<b C.b<0<a
B.0<a<b D.0<b<a
7.(2020·蓬江区二模)在数轴上到原点距离等于 2
回归课本·温故知新
1.(实数的分类)下列各数中,负数有__2__个,整数 有__3__个,分数有__2__个,无理数有__1__个.
+6,-2,-0.9,35 ,0, 3 . 2.(相反数,绝对值,倒数) (1)6 的相反数是_-__6_; (2)-3.9 的绝对值是_3_._9_; (3)-0.5 的倒数是_-__2_. 3.(比较大小)比较下列各对数的大小: 3__>__-5;-2.5__<__0;-35 __>__-34 .
A.5
B.-15
C.-5
D.15
2.(2020·天河区一模)南、北为两个相反方向,如 果+4 m 表示一个物体向北运动 4 m,那么-3 m 表示 的是( B )
A.向东运动 3 m B.向南运动 3 m C.向西运动 3 m D.向北运动 3 m
3.(2018·广州)四个实数 0,1, 2 ,12 中,无理
经过 t 秒(1≤t≤10)传播的距离用科学记数法表示为 a
×10n 千米,则 n 可能为( C )
A.5
B.6
C.5 或 6
D.5 或 6 或 7
16.(2020·攀枝花)实数 a、b 在数轴上的位置如图 所 示 , 化 简 (a+1)2 + (b-1)2 -
(a-b)2 的结果是( A )
A.-2 B.0 C.-2a D.2b
第1章第2讲第1课时整式-中考数学一轮考点复习课件(共42张)
式
另一个多项式的每一项,再把所得的积相加,即(a
多项式乘
的
+b)(p+q)= ap+aq+bp+bq
多项式
乘
平方差公式:(a+b)(a-b)= a2-b2
法
完全平方公式:(a±b)2= a2±2ab+b2
单项式除 整式的 以单项式 除法 多项式除
以单项式
把系数和同底数幂分别相除作为商的因式,对于只在被除 式里含有的字母,则连同它的指数作为商的一个因式 先把这个多项式的每一项除以这个单项式,再把所得的商 相加
能进行简单的整式乘法运算(其中多项式相乘仅 北师:七上第三章P78~P104;
指一次式之间以及一次式与二次式相乘). 七下第一章P2~P36;
(3)能推导乘法公式:(a+b)(a-b)=a2-b2; 八下第四章P92~P106;
(a±b)2=a2±2ab+b2,了解公式的几何背景,并 华师:七上第3章P82~P118;八上第12章
(3)原式=26+6×25×-12+15×24×-122+ 20×23×-123+15×22×-124+6×2×-125+-126-2--126 =2-126--126-2 =326-126-2 =323-123323+123-2 =32-12×94+34+14×32+12×
94-34+14-2 =143×2×74-2 =2×131×6 7-1 =785.
第一章 数与式
第2讲 整式和因式分解
第1课时 整 式
忆知识·奇妙导引 过考点·夯实基础 破重难·讲透练活 练好题·课堂达标
课标要求
版本导航
(1)了解整数指数幂的意义和基本性质.
(2)理解整式的概念,掌握合并同类项和去括号 人教:七上第二章P53~P76;
1中考数学第一轮复习精品讲解第一单元数与式(共126张PPT)
·新课标
第1讲 │归类示例
类型之二 实数的有关概念
命题角度: 1.数轴、相反数、倒数等概念 2.绝对值的概念及计算
填空题: (1)相反数等于它本身的数是_____0___. (2)倒数等于它本身的数是____±__1__. (3)平方等于它本身的数是___0_或__1__. (4)平方根等于它本身的数是____0____. (5)绝对值等于它本身的数是__非_负__数___.
7.数轴上的点A到原点的距离是6,则点A表示的数为( A )
A.6或-6
B.6
C.-6
D.3或-3
[解析] 数轴上到原点的距离是6的点有两个,分别位于原 点的左右两侧.
·新课标
第1讲 │ 考点随堂练
8.[2011·丽水]有四包真空小包装火腿,每包以标准克数(450 克)
为基数,超过的克数记作正数;不足的克数记作负数,以下数
第1讲 │归类示例
[解析] 指环的个数为5的倍数,而前面有8个,最后又有4个, 把四个选项中的数加上12,能被5整除的是2013,因为2013+12= 2025,故选D.
此类探究实数规律性问题的特点是给定一列数或等式或图形,进 行适当地计算,并观察、猜想、归纳、验证,利用从特殊到一般的数 学思想,分析特点,探索规律,总结结论.
有理数
负整数
实数
分数
正分数 有限小数或 负分数 无限循环小数
无理数
正负无无理理数数无限不循环小数
第1课时┃ 考点聚焦
2.按正负分类:
正有理数
正实数
正整数 正分数
实数
2019年中考数学专题复习第1讲《实数及有关概念》(含详细参考答案)
2019年中考数学精品专题复习第一章 数与式第一讲 实数及有关概念★★★核心知识回顾★★★知识点一、实数的分类 1.按实数的定义分类:⎧⎧⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎨⎪⎪⎨⎪⎪⎪⎩⎭⎪⎪⎪⎩⎪⎩整数有限小数或无限循环小数有理数实数:无限不循环小数 2.按实数的正负分类:⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正实数正无理数实数零负有理数负实数知识点二、实数的基本概念和性质1.数轴:规定了 、 、 的直线叫做数轴,实数和数轴上的点是一一对应的。
2.相反数:(1)只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ; (2)a+b=0⇔a 、b 互为 ;(3)在数轴上,表示相反数的两个点位于原点两侧,且到原点的距离 。
3.倒数:(1)乘积为 的两个数互为倒数,用数学语言表述为:1ab =,则a ,b 互为 ; (2)1和 的倒数还是它本身, 没有倒数。
4.绝对值:(1)一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。
(2)(0)||0(0)(0)a a a a >⎧⎪==⎨⎪<⎩(3)因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 和 。
知识点三、平方根、算术平方根、立方根 1.平方根: (1)一般地,如果一个数的 等于a ,那么这个数就叫做a 的平方根或二次方根,记作 ; (2)正数的平方根有两个,它们互为 ,0的平方根为 , 没有平方根。
2.算术平方根:(1)一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作 ;(2)正数的算术平方根为 ,0的算术平方根为 。
3.立方根: (1)一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根或三次方根,记作 ; (2)正数的立方根为 , 0的立方根为 ,负数立方根为 ;每个实数有且只有一个立方根。
知识点四、科学记数法科学记数法:把一个较大或较小的数写成写成10na ⨯的形式(其中a 大于或等于1且小于10,n 是正整数),使用的是科学记数法。