部编版人教初中数学九年级上册《25.2 概率的简单计算 教学设计》最新精品优秀完美教案
人教版数学九年级上册25.1.2《概率》教学设计
人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
九年级数学上册25.1.2概率教案1(新版)新人教版 (2)
概率1.知道随机事件发生的可能性是有大小的.2.理解、掌握概率的意义及计算.3.会进行简单的概率计算及应用.一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是否公平.二、合作探究探究点一:可能性的大小【类型一】可能性大小的意义的理解气象台预报“本市明天降雨可能性是80%”.对此信息,下列说法正确的是( ) A.本市明天将有80%的地区降雨B.本市明天将有80%的时间降雨C.本市明天肯定下雨D.本市明天降水的可能性比较大解析:一个事件的发生的可能性的范围在0~1,80%应该是比较大,所以“本市明天降雨可能性是80%”是指“本市明天降雨的可能性比较大”.故选D.方法总结:某事发生的可能性大小是指其发生的概率大小.【类型二】利用面积关系判断可能性大小(2014·江苏南通)在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填A或B或C).解析:先分别算出A,B,C三部分的面积,面积最大的就是豆子落入可能性最大的.S C =π×22=4π,S B=π(42-22)=12π,S A =π(62-42)=20π,由此可见,A的面积最大,则豆子落入可能性最大,故填A.探究点二:概率【类型一】概率的简单计算(2014·湖南益阳)小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A.120B.15C.14D.13解析:总共有20种情况,抽中数学题有5种可能,所以是520=14,故选择C.方法总结:等可能性事件的概率的计算公式:P(A)=nm,其中m是总的结果数,n是该事件成立包含的结果数.【类型二】利用面积求概率(2014·四川绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( ) A.13 B.12 C.34 D.23解析:观察这个图可知:阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A.方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目;二者的比值就是其发生的概率. 三、板书设计教学过程中,强调简单的概率的计算应确定事件总数及事件A 包含的数目.事件A 发生的概率P (A )的大小范围是0≤P (A )≤1.。
人教版数学九年级上册25.2日常生活中的概率问题教案
一、教学内容
人教版数学九年级上册25.2日常生活中的概率问题教案:
1.了解概率的定义,理解概率是描述事件发生可能性大小的数值。
2.掌握计算简单事件概率的公式,并能运用到实际问题中。
3.分析日常生活中的概率问题,培养学生的逻辑思维能力和解决实际问题的能力。
此外,课堂总结环节,学生提出了不少疑问,这说明他们在学习过程中认真思考,勇于质疑。我鼓励他们提问,并给予耐心解答。为了加强学生对知识点的掌握,我计划在下一节课开始时,对今天的知识点进行简要回顾,巩固他们的记忆。
-实际问题中的应用:将概率知识应用于日常生活中的问题,如抛硬币、掷骰子等。
举例解释:
-在抛硬币实验中,重点是让学生理解正面朝上的概率是1/2,这是通过实验观察和理论计算相结合得出的。
-在掷骰子实验中,重点是计算每个点数出现的概率,理解每个点数出现的概率都是1/6,并抽象的概念,学生可能难以理解“可能性”的大小。
课堂上,我注意到有些学生在理解概率定义时还存在一定的困难。为了帮助他们更好地把握这个概念,我通过举例和直观演示,让学生感受概率值的范围和计算方法。在接下来的教学过程中,我需要继续关注这部分学生的理解情况,适时给予个别指导。
在讲授重点和难点时,我尽量使用简练明了的语言,结合实际案例进行分析。通过小组讨论和实验操作,学生能够将理论知识与实际问题相结合,加深对概率计算和应用的理解。但同时,我也发现部分学生在小组讨论中参与度不高,可能是因为他们对问题缺乏深入思考。在今后的教学中,我要更加注重引导学生主动探究,提高他们的独立思考能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与日常生活中的概率问题相关的实际问题。
最新人教版初三数学九年级上册第25章 概率初步 全单元教案设计
第二十五概率初步25.1 随机事件与概率25.1.1 随机事件教学目标:知识技能了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.教学设计说明现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.25.1.2 概率教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2抛掷次数n50 100 150 200 250 300 350 400 450 500“正面向上”的频数mm“正面向上”的频率n想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动. 想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P 141表25-3).0.5 1 正面向上的频率nm投掷次数n10050 250150500450300 350 200图25.1-1表25-3试验者抛掷次数(n)“正面朝上”次数(m)“正面向上”频率(m/n)棣莫弗2048 1061 0.518布丰4040 2048 0.5069费勒10000 4979 0.4979皮尔逊12000 6019 0.5016皮尔逊24000 12012 0.5005通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率中,如果事件A发生的频率n(probability), 记作P(A)= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.25.2 用列举法求概率第1课时运用直接列举或列表法求概率1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.用列表法求概率.一、情境导入希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.二、合作探究探究点一:用列表法求概率【类型一】摸球问题(2014·江苏宿迁)一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:1 21(1,1)(1,2)2(1,2)(2,2)由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P=34,故选D.【类型二】学科内综合题(2014·四川甘孜州)从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:01 20——(0,1)(0,2)1(1,0)——(1,2)2(2,0)(2,1)——共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果. 【类型三】学科间综合题(2014·广西柳州)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A .0.25B .0.5C .0.75D .0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:灯泡1发光 灯泡1不发光 灯泡2发光 (发光,发光) (不发光,发光) 灯泡2不发光(发光,不发光)(不发光,不发光)根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P (至少有一个灯泡发光)=34,故选择C.方法总结:求事件A 的概率,首先列举出所有可能的结果,并从中找出事件A 包含的可能结果,再根据概率公式计算.【类型四】判断游戏是否公平(2014·湖南怀化)甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.解:(1)P(标号是1)=1 3.(2)这个游戏不公平,理由如下:把游戏可能出现标号的所有可能性(两次标号之和)列表如下:第一次和第二次12 3123 4234 5345 6∴P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平.方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.三、板书设计教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.第2课时用树状图求概率教学目标1.让学生在具体情境中了解概率的意义,运用画树状图来计算简单事件发生的概率。
九年级数学上册 25.1.2 概率教案 新人教版
25.1.2概率中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
九年级数学上册第二十五章概率初步25.2用列举法求概率第1课时用列表法求概率教案新人教版(2021
2018-2019学年九年级数学上册第二十五章概率初步25.2 用列举法求概率第1课时用列表法求概率教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十五章概率初步25.2 用列举法求概率第1课时用列表法求概率教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十五章概率初步25.2 用列举法求概率第1课时用列表法求概率教案(新版)新人教版的全部内容。
25.2 第1课时用列表法求概率01 教学目标1.理解并掌握用列举法(列表法)求概率的方法.2.利用列举法(列表法)求概率解决问题.02 预习反馈1.在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.2.当一次试验要涉及两个因素并且可能出现的结果数较多时,为不重不漏地列出所有可能的结果,通常采用列表法.3.有A,B两只不透明的口袋,每只口袋装有两个相同的球,A袋中的两个球上分别写了“细”和“致"的字样,B袋中的两个球上分别写了“信”和“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概率是错误!.4.袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为错误!.03 新课讲授类型1 用列举法求概率例1(教材P136例1)同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.【解答】列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反.所有可能的结果共有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A)的结果只有1种,即“正正”,所以P(A)=错误!.(2)两枚硬币全部反面向上(记为事件B)的结果也只有1种,即“反反”,所以P(B)=错误!.(3)一枚硬币正面向上、一枚硬币反面向上(记为事件C)的结果共有2种,即“反正”“正反”,所以P(C)=错误!=错误!。
九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】
概率初步一、内容及内容解析1.内容用试验估计“豆子落在区域C”“每个同学抽到黑桃”的概率.2.内容解析活动1中“豆子落在区域C”的概率可以用几何概型求得.几何概型是另一种等可能概型,它与古典概型的区别在于试验结果是无限个.只要把半径为6的圆内部所有点作为试验的全部结果,区域C内的所有点作为事件W的结果,则根据公式P(W)=构成事件W的区域面积/试验的全部结果所构成的区域面积,可求得相应事件的概率.因此,“豆子落在区域C的概率”等于半径为2的圆的面积与半径为6的圆的面积的比,但学生没有学过此概率模型.活动2“每个同学抽到黑桃”试验,是想通过频率估计概率的方法,去验证现实生活中常用的抓阄的方法是否公平.其实,把3个人都抽完一次签作为一次试验,通过古典概型可计算每个同学抽到黑桃的概率是相等的,但这里列基本事件对学生来说有点难度.由于这两种试验发生的概率,以学生现有的知识不容易通过计算获得,因此只能通过用频率估计概率.通过这两个数学活动,可以帮助学生进一步理解概率的意义,拓宽对概率的认识,并且进一步体会到频率估计概率方法应用的广泛性以及概率在实际生活中的作用.基于以上分析,确定本课的教学重点是:估计活动1与活动2的概率,体会频率估计概率应用的广泛性以及在实际生活中的作用.二、目标和目标解析1.目标(1)通过试验,获得“豆子落在区域C”“每个同学抽到黑桃”的概率.(2)通过试验,体会频率估计概率应用的广泛性以及在实际生活中的作用.2.目标解析达成目标(1)的标志是:学生分组多次重复试验,统计每次试验落在A,B,C三个区域中豆子数的比,并分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法.学生通过分组进行多次重复试验,统计每次试验抽中的人,最终计算每个人抽中的频率,估计出“每个同学抽到黑桃”的概率.达成目标(2)的标志是:学生初步发现区域面积与概率的关系,并认识到用频率估计概率的方法的应用范围更广,更具有一般性,同时体会到用概率帮助解释如“抓阄是否公平”等生活实际中的疑问.三、教学问题诊断这两个活动都没有原始数据,需要学生自己首先从事收集数据的活动,然后对数据进行处理,最后运用统计知识进行分析数据,这样的活动都具有较强的实践性和综合性.因此,需要教师对如何试验,进行哪些操作给以帮助和指导.对于分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法,学生没有相关的知识与经验,此时需要教师设计问题予以启发.基于以上分析,确定本节课的教学重点是:通过试验获得“豆子落在区域C”“每个同学抽到黑桃”的概率.四、教学过程设计1.完成活动1的试验问题1 在如图所示的图形中随机撒一把豆子,计算落在A,B,C三个区域中豆子数的比.多次重复这个试验,你能否发现上述比与A,B,C三个区域的面积有何关系?师生活动:学生观察思考,教师先指导学生记录试验结果,然后教师组织学生分组进行试验.每组试验20次,并将各组的试验结果统计在一起.然后提问:(1)对照多次试验的结果,落在A,B,C三个区域中豆子数的比是否具有一定的稳定性?(2)上述比与A,B,C三个区域的面积有何关系?(3)这表明落在A,B,C三个区域中豆子数的多少与什么有关?设计意图:让学生亲自动手试验,获得真实数据,并对数据收集、整理、分析,发现落在A,B,C三个区域中豆子数的多少与每个区域的面积大小有关.体会随机事件的随机性与稳定性特征.问题2 如果将“豆子落在区域C”记作事件W,请估计事件W的概率.师生活动:教师提出问题,学生思考.根据频率估计概率,落在区域C中的豆子数与落在A,B,C三个区域中豆子总数之比,可以作为“豆子落在区域C”的概率.设计意图:通过频率估计几何概型试验中的概率,使学生体会频率估计概率是求概率的一般方法.2.完成活动2的试验问题3 3张扑克牌中只有1张黑桃,3为同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?如何得到这个概率?师生活动:教师出示问题,然后组织学生进行讨论,最后发现用列举法求比较困难,于是选择用频率估计概率的方法.教师组织学生分组试验,每组记录好试验的次数,以及每次试验抽中黑桃的人数,每组试验20次,计算20次试验中,每个人抽中黑桃的次数,并计算频率,最后教师将全班同学试验次数,每个人抽中黑桃的次数进行汇总,并计算随着试验次数增加时,每个人抽中黑桃的频率,最后全班共同分析,随着试验次数的增加,每个人的频率稳定在13左右.因此,每个人抽到黑桃的概率跟抽取的顺序无关.设计意图:使学生经历用频率估计概率的过程,感受在大量重复试验中,随着试验次数的增加,频率趋于稳定性.问题4 抓阄是实际生活中常见的一种进行选择的方法,有人说这种方法公平,也有人说这种方法不公平,通过上述摸牌试验,你觉得这种方法公平吗?为什么?师生活动:教师出示问题,学生思考、讨论.设计意图:学生受到摸牌试验的启发,不难发现摸牌与抓阄是同类试验,因此每个人抽中的概率是相同的,因此抓阄是公平的.让学生体会到数学方法可以解释生活中很多现象的原因.3.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课中两个试验的概率是通过怎样的方法得到的?(2)你觉得试验在求概率中有何作用?(3)你觉得概率在生活中对你有何帮助?设计意图:通过小结,总结本节课所学内容,体会试验在求概率中的作用,以及概率在生活实际中的作用.4.布置作业就“抓阄公平吗?”采访一下自己的父母或朋友,用你所学的数学知识和他们进行交流.五、目标检测设计1.如图,在正方形ABCD 中随机选取一点,你能设计一个试验,用频率估计概率的方法,求出此点恰在△ABO 内部的概率吗?设计意图:考查学生能否设计试验利用频率估计概率.2.4张扑克牌中只有1张黑桃,4位同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?设计意图:考查学生是否了解了这种游戏的公平性.A B D C O。
人教版九年级数学上册25.1.2《概率》教学设计
人教版九年级数学上册25.1.2《概率》教学设计一. 教材分析人教版九年级数学上册25.1.2《概率》是概率统计部分的一个重要内容。
本节内容通过具体的实例,让学生理解概率的概念,掌握概率的计算方法,并能够运用概率解决实际问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要注重引导学生从具体实例中理解概率的概念,逐步过渡到概率的计算方法。
三. 教学目标1.理解概率的概念,掌握概率的计算方法。
2.能够运用概率解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和计算方法。
2.如何运用概率解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中理解概率的概念。
2.利用多媒体教学,通过动画和图片等形式,让学生更直观地理解概率的概念。
3.采用分组讨论和合作交流的方式,让学生在讨论中思考,在交流中学习。
4.注重练习,让学生在实践中掌握概率的计算方法。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考:抛硬币出现正面的概率是多少?让学生感受概率的存在,激发学生的学习兴趣。
2.呈现(10分钟)介绍概率的概念,讲解概率的计算方法。
以具体的例子为例,让学生理解概率的计算过程。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用所学的概率计算方法,解决实际问题。
可以安排一些练习题,让学生独立完成,教师批改并给予反馈。
5.拓展(10分钟)引导学生思考:如何提高事件的概率?以抛硬币实验为例,让学生探讨如何使抛硬币出现正面的概率增大。
人教版九年级数学上25.1.2《概率》名师教案
人教版九年级数学上册25.1.2《概率》核心素养目标:
1.培养学生逻辑推理能力,通过随机事件的分类,理解事件的逻辑关系,提高分析问题的能力。
2.培养学生数据分析观念,学会从实验或情境中收集数据,利用频率估计概率,培养数据敏感性。
3.培养学生数学抽象思维,理解概率的定义,掌握概率的计算方法,提高数学表达和交流能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是用来描述随机事件发生可能性的数学度量。它是帮助我们理解和预测不确定事件的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。比如抛硬币,出现正面和反面的概率都是1/2。这个案例展示了概率在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调随机事件的分类和概率的计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的抛硬币实验。这个实验将演示概率的基本原理。
1.教学重点
-理解并掌握随机事件的概念及其分类,这是学习概率的基础,需要重点讲解必然事件、不可能事件和可能事件的特点及区别。
-掌握概率的定义及表示方法,包括概率的分数、小数和百分比值,这是本节课的核心内容,需要学生能够准确理解和应用。
-学习利用频率估计概率的方法,通过实验或模拟活动,让学生体会概率的实际意义,并能够进行简单的概率计算。
实践活动环节,分组讨论和实验操作都进行得挺顺利。同学们能够积极参与,相互交流,这有助于他们更好地理解和应用概率知识。但在成果展示时,我发现有些小组的表达还不够清晰,可能是因为他们对问题的理解还不够深入或者是在组织语言上存在一些困难。
人教版九年级上册数学教案:25.1.2概率
25.1.2概率教学目标知识与能力:1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系2.理解概率的定义及计算公式P(A)= .过程与方法:经历试验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率的求法.情感态度价值观:理解概率的意义,渗透辩证思想,感受数学与现实生活的联系,体会数学在现实生活中的应用价值.教学重难点重点:随机事件的概率的定义;求概率的方法及运用.难点:了解概率的定义,理解概率计算的两个前提条件.教学方法讲授法、情境教学法、自主学习法、讨论法、合作探究法等。
教学过程教什么学生活动教师活动设计意图一、激情导入(3 分钟)同学们,我们一起玩一个游戏好不好?抛出你手中的硬币,记录抛出结果.抛掷硬币向上一面的结果有几种可能?正面和背面朝上的可能性大小是多少?二、明确目标(2分钟)1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系2.理解概率的定义及计算公式三、自主学习(15分钟)(1)进行试验:抛掷一枚质地均匀的骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?(2)从写有数字1,2,3,4,5的五个纸团中随机抽取一个,你能求出“抽到偶数”“抽到奇数”这两个事件的概率吗?学生抛掷硬币、回答学生齐读并领会内容学生思考、抢答学生思考、独立操作,教师在巡视过程中帮助有困难的学生.学生回答问题,教师进行纠正点拨.“抽到偶数”这个事件包含抽到2,4这两种可能的结果,在全部5种可能的结果中所占的教师引导学生注意到因为硬币质地均匀,所以每个面朝上的可能性大小相等并由此导出课题.老师解读教师引导学生注意到因为骰子形状规则、质地均匀,又是随机掷出,所以点数出现的可能性大小相等,我们用p表示每一种点数出现的可能性大小教师指出:刻画了试验中随机事件发生的可能性大小.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).教师适当引导,启发学生注意到对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率.以学生熟悉的抛掷硬币为例,让学生初步体会用数值刻画随机事件发生的可能性大小,以及用数值刻画的合理性,从定性分析到定量刻画.明白本节课的任务给出概率的定义,让学生通过抽签、掷骰子的实例初步了解概率的意义.以学生活动为核心,经历观察、猜想、证明、归纳的过程,让学生通过合作探索,学会运用分类讨论的数学思想研究问题,培养学生思维的深刻性.同归纳结论:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率P(A)=m/n.四、合作探究(10分钟)例(1)掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5. 例(2)如图所示的是一个可以自由转动的转盘,转盘分成7 个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.例(3)“扫雷”游戏在一个有9×9 个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷. 下一步应该点击A区域还是B区域?五、当堂检测(3分钟)见课件.六、课堂小结与小组评价反馈( 5 分钟)1.概率的定义:一般地,对比为于是“抽到偶数”的概率P(抽到偶数)=同理,“抽到奇数”的概率P(抽到奇数)=学生独立思考后,小组交流结果,并在小组内解决自己未解决的问题教师引导学生分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.学生仿照例1,完成解答过程.师生共同分析:下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算在两区域的任一方格内击中地雷的概率并加以比较就可以了.学生独立完成教师追问:对于具有上述特点的试验,如何求某事件的概率?教师注意引导学生关注本题的试验是否满足下列条件:①每一次试验中,可能出现的结果只有有限种;②每一次试验中,各种结果出现的可能性相等.教师要求学生思考每个小题中的m,n具体指什么,如何使用所学方法求得事件的概率.:教师及时引导学生,学生展示后,教师点评.师生共同完成解答过程:负责对答案时让学生学会由特殊到一般的数学方法,启发学生创造性地解决问题.概括抽签、掷骰子试验的特点,为探索在这类试验中求事件概率的方法做准备.从随机事件概率的定义到概率的取值范围,都以学生交流活动为主线,符合学生的认知规律,同时也培养了学生的参与意识.求随机事件的概率,使学生进一步体会概率是如何定量刻画随机事件发生可能性大小的.问题、提高解决问题的能力.让学生明白:如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们就可以通过列举试验结果的方法,求出随机事件发生的概率.检测本课效果第2页共3页成功之处:本节课力求向学生提供从事数学活动的时间与空间,通过与他人合作探究,使学生自我主动修正错误,揭示概率的意义,总结概率的计算方法,从而逐步建立正确的随机观念,也为以后进一步学习概率的有关知识打下基础.不足之处:学生分组讨论的质量不佳、活动的时间把握不够好,以致后面学生的练习量不足,对学生的易错点发现的不够,关注学生的学习过程不够全面.再教设计:细化组内各成员的任务,提高小组活动效率.第3页共3页。
人教版九年级数学上册:25.1.2概率 教案(9)
通过学习,了解概率的起源和应用,体会数学在现实生活中的应用价值。
重点
能够运用概率的定义求简单随机事件发生的概率,并阐明理由。
难点
正确理解随机事件发生的可能性的大小。
教学过 意 图
[活动1]复习引入
提问:
下列事件中哪些事件是随机事件?哪些事件是必然事件?哪些是不可能事件?
学生初步会求随机事件的概率,从而用来解决实际问题,培养学生应用意识。
通过课后独立思考,自我评价学习效果,学会反思。
巩固概率求法
归纳提升,加强学生反思,帮助学生养成系统整理知识的习惯。
板书设计说明
25.1.2 概 率
一般地,对于一个随机事件A,把刻画其发生可能性大小的数值,称之为随机事件A发生的概率。记为P(A) = m/n
引起学生思考,展开教学。
从实际问题出发,使学生理解概率定义,理解概率是从数量上刻画了一个随机事件发生的大小。
问题与情境
师生行为
设 计 意 图
[活动3]例题学习
例1.掷一枚质地均匀骰子,观察向上一面的点数,求下列事件的概率:
①点数为2.
②点数为奇数。
③点数大于2且小于5.
例2.如图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置,(指针指向两个扇形的交线时,当作指向右边的扇形)求下列事件的概率:
一般地,对于一个随机事件A,把刻画其发生可能性大小的数值,称之为随机事件A发生的概率。记为P(A)= m/n
归 纳
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,
那么事件A发生的概率由m和n的含义可知0≤m≤n, 进而有
初三数学九年级上册25.1.2 概率教学设计
25.1.2 概率自学目标:1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义3.让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.重、难点:1.在具体情境中了解概率意义.2.对频率与概率关系的初步理解自学过程:一、课前准备:1、当A是必然事件时,P(A)= ;当A是不可能事件时,P(A)= ;任一事件A的概率P(A)的范围是;2.事件发生的可能性越大,则它的概率越接近________;反之,•事件发生的可能性越小,则它的概率越接近_________.3、一般地,在大量重复试验中,如果,那么这个常数p就叫做事件A的概率,记作。
4、在上面的定义中,m、n各代表什么含义?mn的范围如何?为什么?5.下列事件中哪些事件是随机事件?哪些事件是必然事件?哪些是不可能事件?(1)抛出的铅球会下落 (2)某运动员百米赛跑的成绩为2秒(3)买到的电影票,座位号为单号 (4)x2+1是正数(5)投掷硬币时,国徽朝上6.频率与概率有什么区别与联系?二、自主学习:1.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格;(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?2.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n100150 200 500 8001000 摸到白球的次数m58 96 116 295 484 601 摸到白球的频率nm0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只? 三、达标检测:1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是______.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为______.3.袋中有5个黑球,3个白球和2个红球,摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为______.4.袋子中装有24个黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?(要判断哪一个概率大,只要看哪一个可能性大.)5.设计如下游戏:将转盘分为A 、B 、C 区域(如图所示)转动转盘一次,•指针在A 区域小王得40分,小明失40分,指针在B 区域,小王失60分,小明得60分,指针转动转盘的次数n100 150 200 500 800 1000 落在“铅笔”的次数m68111 136 345 564 701落在“铅笔”的频率nm60BCA在C区域,小王失30分,小明得30分,这一游戏对小王有利吗?四、尝试小结:。
2019精选教育年秋人教版九年级数学上册2512 概率教案.doc
第二十五章概率初步25.1随机事件与概率25.1.2概率课题25.1.2概率授课人教学目标知识技能1.理解什么是随机事件的概率,认识概率是反映随机事件发生可能性大小的量;2.理解“事件A发生的概率是P(A)=mn(在一次试验中有n种等可能的结果,其中事件A包含其中的m种结果)”,并能求出简单问题的概率.数学思考学生自主探究、合作交流进行学习,注重动手操作、观察分析能力的培养.问题解决经历试验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率的求法.情感态度理解概率的意义,渗透辩证思想,感受数学与现实生活的联系,体会数学在现实生活中的应用价值.教学重点能够运用概率的定义求简单随机事件发生的概率,并阐明理由教学难点正确理解随机事件发生的可能性的大小授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】学习数学的人应该用数学的眼光看待周围的事物,如何用数学的眼光和思维看待“守株待兔”呢?师生活动:教师从随机事件的特点入手引起学生思考,学生动脑思考并阐述守株待兔的意义.从数学的角度引导学生思考古典成语故事,让学生觉得新奇有趣,瞬间抓住学生的兴趣点,将其带入数学课堂.活动二:活动一:在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画1.通过问题引导学生自学,初步感知本节课的教学目标,使学生实践探究交流新知呢?(请同学们自学教材130—133页)问题1:在抽签试验和掷骰子的试验中,试验的结果有什么特征呢?是有限个吗?每个结果出现的机会均等吗?师生活动:学生思考,尝试回答,理解每种结果的等可能性.问题2:你能类似求“点数是1”的概率的方法,由特殊上升到一般,总结出等可能事件的概率求法吗?问题3:你知道P(A)=mn中的m与n之间的大小关系吗?试着用公式来计算教材中的例1、例2,注意解题格式.师生活动:学生阅读问题,思考分析,弄明白问题符合“每一次试验中可能出现的结果只有有限个,每一次试验中,各种结果出现的可能性相等”,所以可以用P(A)=mn求概率.活动二:回顾上述掷骰子试验,有以下特点:(1)每一次试验中可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.对于具有上述特点的试验,可以从事件所包含的各种可能的结果数在全部可能的结果数中所占的比,分析出事件发生的概率.“点数是1”这个事件包含1种可能结果,在全部6种可能结果中所占的比为16.活动三:教师引导学生进行总结.师生活动:学生讨论,教师引导总结并板书:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=mn.在P(A)=mn中,由m和n的含义,可知0≤m≤n,进而有0≤mn≤1,因此,0≤P(A)≤1.特别地,当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.易知:事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.图25-1-12在讨论交流中获取知识.2.通过学生汇报,进一步对概率的定义有所理解.通过一个改编教材的例题,使同学们体会到日常生活中随机事件的普遍性,激发学生的求知欲望,并引导学生利用本节所学知识分析事件的特征,以及求具体事件的概率,进一步体会到随机事件发生的可能性是可以由具体的数值表示出来的,体会概率的意义,熟悉等可能事件概率的求法.活动三:开放训练体现应用【应用举例】例1掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.师生活动:教师引导学生进行分析,因为掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等,所以可用P(A)=mn来求解.图25-1-13例2如图25-1-13是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、黄、绿三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率;(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.师生活动:教师引导学生分析,问题中可能出现的结果有7种,即指针可能指向7个扇形中的任意一个.因为扇形的大小相等,所以指向每个扇形的可能性相等,所以根据概率公式,可以把符合条件的情况确定.通过对概率的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,并且使学生的数学理解能力有一次突破.活动四:课堂总结反思【达标测评】1.某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,任何人都有同样的当选机会,下列叙述正确的是(B)A.男生当选与女生当选的可能性相等B.男生当选的可能性大于女生当选的可能性C.男生当选的可能性小于女生当选的可能性D.无法确定2.从“1~9”这9个数字中,任意抽取1个,是2的倍数或是3的倍数的概率是__23__.3.有四条线段,其长度分别为3 cm,4 cm,5 cm,6 cm,从中任意抽取3条,能构成三角形的概率是__1__.达标测评是为了加深对所学知识的理解运用,在问题的选择上以基础为主、疑难点突出,增加开放4.在80件产品中,有50件一等品,20件二等品,10件三等品,从中任意取1件,取到哪种级别产品的可能性最大?取到哪种级别产品的可能性最小?请说明理由.师生活动:学生进行当堂检测,完成后,教师进行个别提问,并指导学生解释做题理由和做题方法,使学生在思考解答的基础上,共同交流、形成共识、确定答案.型、探究型问题,使学生思维得到拓展、能力得以提升.1.课堂总结:(1)你在本节课的学习中有哪些收获?有哪些进步?(2)学习本节课后,还存在哪些困惑?2.布置作业:教材第134页习题25.1第3题.巩固、梳理所学知识.对学生进行鼓励,并进行思想教育.(续表)活动四:课堂总结反思【知识网络】提纲挈领,重点突出【教学反思】①[授课流程反思]在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验.②[讲授效果反思]引导学生注意:(1)概率从数量上刻画了一个事件发生的可能性的大小.(2)计算有关面积问题的概率,首先应分析哪些事件的发生与哪部分面积有关,再根据面积的计算方法求有关的比值.③[师生互动反思]从课堂表现和教学效果分析,学生通过举例说明,理解问题的解答过程,积极性高,理解透彻,能圆满完成课题学习任务.④[习题反思]好题题号__________________________________________错题题号__________________________________________反思教学过程和教师表现,进一步提升操作流程和自身素质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)
25.2 用列举法求概率
教学内容
1.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能
性相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= m
n
.
2.利用上面的知识解决实际问题.教学目标
(1)理解P(A)= m
n
(在一次试验中有n种可能的结果,其中A包含m种)的
意义.
(2)应用P(A)解决一些实际问题.
复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法──列举法求概率的简便方法,然后应用这种方法解决一些实际问题.重难点、关键
1.重点:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=
m
n
,•以及运用它解决实际问题.
2.难点与关键:通过实验理解P(A)= m
n
并应用它解决一些具体题目.
教学过程
一、复习引入
(老师口问,学生口答)
1.什么叫概率?
2.P(A)的取值范围是什么?
3.在大量重复试验中,什么值会稳定在一个常数上?我们又把这个常数叫
做什么?
4.A=必然事件,B是不可能发生的事件,C是随机事件,•请你画出数轴把这三个量表示出来.
老师点评:1.(口述)一般地,在大量重复试验中,如果事件A发生的频率m n
会稳定在某一个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.2.(板书)0≤P(A)≤1.
3.(口述)频率、概率.
4.(板书)如图所示.
二、探索新知
不管求什么事件的概率,我们都可以做大量的试验,求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,•是否有比较简单的方法,这种方法就是我们今天要介绍的方法──列举法.把学生分为10组,按要求做试验并回答问题.
1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根,抽出的号码有多少种?其抽到1的概率为多少?
2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1•的概率是多少?
老师点评:1.可能结果有1,2,3,4,5等5种;由于纸签的形状、大小相同,又是随机抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是
1 5,∴其概率=
1
5
.
2.有1,2,3,4,5,6等6种可能.由于骰子的构造相同质地均匀,又
是随机掷出的,•所以我们可以断言:每个结果的可能性相等,都是,∴所求概率是.
以上两个试验有两个共同的特点:
1.一次试验中,可能出现的结果有限多个;
2.一次试验中,各种结果发生的可能性相等.
对于具有上述特点的试验,•我们可以从事件所包含的各种可能的结果在。