高中数学椭圆、双曲线、抛物线
高中数学有关圆-椭圆-双曲线-抛物线的详细知识点
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
高考数学中的常见圆锥曲线
高考数学中的常见圆锥曲线圆锥曲线是高中数学中重要的一章内容,也是高考中经常出现的考点之一。
圆锥曲线是平面解析几何的基础,对于学习解析几何和进一步学习微积分等数学课程具有重要的意义。
在高考数学中,常见的圆锥曲线有椭圆、双曲线和抛物线。
接下来,我们将对每种圆锥曲线进行详细的介绍。
一、椭圆椭圆是圆锥曲线中的一种,其定义为到定点F1和F2的距离之和等于定长2a的点P的轨迹。
其中,F1和F2是称为焦点的点,2a称为椭圆的长轴。
椭圆的其他要素有:1. 焦距:定义为焦点之间的距离,记作2c。
2. 离心率:定义为焦距与长轴之比,记作e。
在椭圆中,离心率小于1。
3. 扁压比:定义为短轴与长轴之比,记作b/a。
在椭圆中,扁压比小于1。
椭圆的方程可以通过坐标系中点P(x,y)到焦点F1、F2的距离之和等于定长2a来表示。
椭圆的标准方程为:(x-x0)^2/a^2 + (y-y0)^2/b^2 = 1在高考中,关于椭圆的考点主要包括椭圆的性质和椭圆的方程与图像等方面的题目。
二、双曲线双曲线是圆锥曲线中的另一种,其定义为到定点F1和F2的距离之差等于定常2a的点P的轨迹。
其中,F1和F2是称为焦点的点,2a称为双曲线的距。
双曲线的其他要素有:1. 焦距:定义为焦点之间的距离,记作2c。
2. 离心率:定义为焦距与距之比,记作e。
在双曲线中,离心率大于1。
3. 长半轴:定义为从顶点到较远焦点的距离,记作a。
4. 短半轴:定义为从顶点到双曲线与x轴或y轴的交点的距离,记作b。
在双曲线中,短半轴小于距。
双曲线的标准方程为:(x-x0)^2/a^2 - (y-y0)^2/b^2 = 1在高考中,关于双曲线的考点主要包括双曲线的性质和双曲线的方程与图像等方面的题目。
三、抛物线抛物线是圆锥曲线中的最后一种,其定义为点P到定直线(直矩)的距离等于点P到定直线(焦准)的距离。
抛物线的定直线称为准线,定直线的焦点称为焦点,焦距的两倍称为抛物线的焦距。
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线是数学中的重要概念,它们的知识点汇总如下:
首先是椭圆,它是一种抛物线,其特征是两个轴的长度不相等,形状像一个椭圆。
它的方程式为:x2/a2 + y2/b2 = 1,其中a为椭圆的长轴,b为椭圆的短轴。
其次是双曲线,它也是一种抛物线,其特征是两个轴的长度相等,形状像一个双曲线。
它的方程式为:x2/a2 - y2/b2 = 1,其中a为双曲线的长轴,b为双曲线的短轴。
最后是抛物线,它是一种曲线,其特征是一个轴的长度为零,形状像一个抛物线。
它的方程式为:y2 = 2px,其中p为抛物线的焦点距离。
椭圆双曲线抛物线是数学中重要的概念,它们的方程式分别为:x2/a2 + y2/b2 = 1(椭圆),x2/a2 - y2/b2 = 1(双曲线),y2 = 2px(抛物线)。
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。
1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
对称性:椭圆关于 x 轴、y 轴和原点对称。
顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。
3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。
高中椭圆双曲线抛物线知识点汇总
高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。
2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。
3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。
二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。
2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。
3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。
三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。
2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。
3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。
四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。
2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。
3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。
五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。
高考数学:专题五 第二讲 椭圆、双曲线、抛物线课件
考点与考题
第二讲
本 讲 栏 目 开 关
图形
考点与考题
范围 顶点 对称性 |x|≤a,|y|≤b (± a,0)(0,± b) |x|≥a (± a,0) x≥0 (0,0)
第二讲
关于 x 轴,y 轴和原点对称 (± c,0) 长轴长 2a, 短轴长 2b c e=a b2 = 1- 2 a (0<e<1) 实轴长 2a, 虚轴长 2b c e=a b2 = 1+ 2 a (e>1)
解析 由 x2-y2=2 知,a2=2,b2=2,c2=a2+b2=4,
∴a= 2,c=2.
又∵|PF1|-|PF2|=2a,|PF1|=2|PF2|,
∴|PF1|=4 2,|PF2|=2 2.
又∵|F1F2|=2c=4,
4 22+2 22-42 ∴由余弦定理得 cos∠F1PF2= 2×4 2×2 2 3 = . 4
∴直线 AF 的方程为 y=2 2(x-1). y=2 2x-1, 联立直线与抛物线的方程 2 y =4x,
1 x=2, x= , 2 解之得 或 y=2 2. y=- 2 1 由图知 B2,- 2,
考点与考题
1 1 ∴S△AOB= |OF|· A-yB|= ×1×|2 2+ 2| |y 2 2 3 = 2.故选 C. 2
答案 2 7-5
题型与方法
第二讲
方法提炼 何性质.
研究圆锥曲线的几何性质,实质是求参数a、b、c或者
建立a、b、c的关系式(等式或不等式),然后根据概念讨论相应的几
本 讲 栏 目 开 关
题型与方法
第二讲
本 讲 栏 目 开 关
变式训练 2 (1)若点 P 为共焦点的椭圆 C1 和双曲线 C2 的一个交点, F1、F2 分别是它们的左、右焦点,设椭圆离心率为 e1,双曲线离心率 1 1 → → 为 e2,若PF1· 2=0,则 2+ 2等于 PF (B ) e1 e2 A.1 B.2 C.3 D.4
高中圆锥曲线公式总结大全
高中圆锥曲线公式总结大全
高中数学中,圆锥曲线是一个重要的内容,包括椭圆、双曲线和抛物线。
这些曲线的公式是
几何、物理、工程等领域中常用的,下面是圆锥曲线公式总结:
1. 椭圆公式
椭圆的标准方程为:((x-h)^2)/a^2 + ((y-k)^2)/b^2 = 1。
其中,(h,k)表示椭圆的中心坐标,a和b分别表示椭圆在x和y方向上的半轴长度。
2. 双曲线公式
双曲线的标准方程为:((x-h)^2)/a^2 - ((y-k)^2)/b^2 = 1。
其中,(h,k)表示双曲线的中心坐标,a和b分别表示双曲线在x和y方向上的半轴长度。
3. 抛物线公式
抛物线的标准方程为:y = ax^2 + bx + c。
其中,a、b和c分别为常数,a表示抛物线的开口方向、大小,b表示抛物线水平方向位置,c表示抛物线的最低点(也就是y轴截距)。
4. 曲率半径公式
曲线在某一点的曲率半径R可以使用以下公式计算:R = [(1+(y')^2)^(3/2)]/|y''|。
其中,y'和y''分别表示曲线在该点处的一阶和二阶导数。
5. 弧长公式
曲线在两点之间的弧长可以使用以下公式计算:L = ∫(a to b)[((1+(y')^2)^(1/2)]dx。
其中,a和b分别代表起点和终点,在这个区间内,x的取值范围满足 a≤x≤b。
总之,圆锥曲线的公式是高中数学中的重要内容,不仅在理论研究方面有着广泛的应用,也
在实际问题的建模和解决中具有重要意义。
8.12椭圆、双曲线、抛物线的统一定义
8.7椭圆、双曲线、抛物线的统一定义1.椭圆、双曲线、抛物线的统一定义是在平面上,若动点 M 与一个定点F 及M 到一条定直线(定点 M 不在定直线上)距离之比等于常数 f ,当0<e <i 时,点M 的轨迹是椭圆;当 e >i 时,点M 的轨迹为双 曲线;当e = 1时,点M 的轨迹为抛物线.2 22 .椭圆 笃+当=1(a Ab>0)上点 M ( x 0,y 0)的左焦点半径+ ,右焦点半径a bx 2y2MF ?] =a —ex o ,椭圆手 p =1(a >b >0)上点P ( X o , y o )的下焦点半径 PF 』=a + ey °,上焦点 a b半径PF 2 =a-ey o .希望注意双曲线的焦半径与椭圆的焦半径的区别.2 2X y3•双曲线— 牙=1上一点P ( X o ,y o )的焦半径公式a b(1) x o >o , PF l=ex )+a , PF^ex^ - a ;(2) X o <o , PF 1 = —(ex o + a), PF 2 — —(ex o — a).4 .抛物线y 2二2px(p o)和抛物线x 2二2py(p o)的焦半径公式:如图所示,已知椭圆C 的焦点是3,o ), F 2C 3,0),点F 1到相应的准线的距离为 过F 2点且倾斜角为锐角的直线 l 与椭圆C 交于A 、B 两点,使得,F 2B =3F 2A .(1)求椭圆C 的方程;(2)求直线l 的方程.PFPFy o •卫2、-3 3例2 已知双曲线b2x2- a2y2=a2b2的离心率的取值范围为e (1 • 2, •::),左、右焦点分别为F2,左准线为丨,能否在双曲线的左支上找到一点P,使得PF1是P到丨的距离d与PF2的等比中项?例3 如图所示.有一张长为8,宽为4的矩形纸片ABCD ,按图示的方法进行折叠,使每次折叠后点B都落在AD边上.此时将B记为B'(注:图中FE为折痕.点F也可落在边CD 上).过B'作B '// CD交EF于点T .求点T的轨迹方程.已知线段AB的两个端点在椭圆2 2—-红=1上滑动,且25 1632AB = m(——c m £10),5M为AB的中点,求M到y轴的最大距离.I1例6一动点到定直线 X = 3的距离是它到定点 F ( 4,0)的距离的-,求这个动点的轨迹方程.28.12椭圆、双曲线、抛物线的统一定义证:2 2例5 已知AB 是双曲线 冷一仝=1(a .o,b .0)过右焦点a 2b 21 AF ,1 BF ,为定值,并求出该定值.1-已知双曲线A m 2x 2=1(m >°)的一个顶点到它的一条渐近线的距离为5,则m=C . 3最小值为4MF +5MA 的最小值为最大值为 _________________解答题2.已知点P 是抛物线y 2 = 2x 上的一个动点,则点P 到点(0,2)的距离与 P 到该抛物线准线的距离之和的3.已知抛物线y 2= 2px (p>0),过焦点且斜率为 坐标为2,则该抛物线的准线方程为1的直线交抛物线于 A 、 B 两点,若线段 AB 的中点的纵A . x = 1 C . x = 2 D . x =- 24.过原点的直线B . x =- 12 2I 与双曲线x -73 =- 1交于两点,则直线l 的斜率的取值范围是4 3一亜一 2,-m ,-舟U 于,+o25. 设P 是双曲线x 2-= 1的右支上的动点,F 为双曲线的右焦点,已知 3A ( 3,1),则 |FA|+ |PF|的最小值为 ________ . 6. 如图,抛物线顶点在原点,圆 x 2+ y 2- 4x = 0的圆心恰是抛物线的焦点.(1) ______________________ 抛物线的方程为 ; (2) 一直线的斜率等于 2,且C 、D 四点,贝U |AB|+ |CD| = ________ .2 2x V7.已知椭圆的方程是 — 1(a 5),它的两个焦点分别为F 、F ,且F 1 F 2 =8,弦 AB 过 F ],则△ AB F 2的周长为 ___________________________&若点A 的坐标为(3, 2), F 为抛物线y 2 =2x 的焦点,点P 是抛物线上一动点,则 PA+|PF 取得最 小值时点P 的坐标是 ________________________________ .9.已知点F 为双曲线2 2x y 169=1的右焦点, M 是双曲线右支上一动点,定点 A 的坐标是(5, 1),则10. P ( x, y )是椭圆2 2X . y a 2b 2= 1(a b 0)上任意一点, F 1> F 2是它的左、右焦点,则PF 1 PF 2 的一oo,,C .2 2y x11 •如图所示,M ,N 是椭圆C l :22=1(a b ■ 0)的一条弦,A (1, -2)a b是MN 的中点,以A 为焦点,以椭圆 C 2的下准线丨为相应准线的双曲线 C 2与直 线MN 交于点B (- l ,- 4),设曲线 G, C 2的离心率分别为 e ,,e 2 •(1) 试求e 1的值,并用a 表示双曲线的离心率 e 2 ; (2) 当e )e 2 =1时,求MB 的值.2 2x y2 212 •如图,点P(0,-1)是椭圆2=1(a b 0)的一个顶点,G 的长轴是圆C 2:x y =4的直a b(1) 求椭圆G 的方程;(2) 求 ABD 面积取最大值时直线|1的方程.径• 11 ,1 2是过点P 且互相垂直的两条直线,其中h 交圆C 2于两点,12交椭圆G 于另一点D(第12题图)。
(完整版)椭圆,双曲线,抛物线知识点
标准
方程
(焦点在 轴)
(焦点在 轴)
定 义
第一定义:平面内与两个定点 , 的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。
第二定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数时,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线是椭圆的准线。
顶点到准线的距离
焦点到准线的距离
焦点弦的几条性质
设直线过焦点F与抛物线 >0)交于 ,
则:(1) =
(2)
(3)通径长:
(4)焦点弦长
直线与抛物线的位置
抛物线 与直线 的位置关系:
利用 转化为一元二次方程用判别式确定。
切线
方程
焦点 ( )到准线 ( )的距离为
焦点 ( )到准线 ( )的距离为
椭圆上到焦点的最大(小)距离
最大距离为:
最小距离为:
相关应用题:远日距离
近日距离
椭圆的参数方程
( 为参数)
( 为参数)
椭圆上的点到给定直线的距离
利用参数方程简便:椭圆 ( 为参数)上一点到直线 的距离为:
直线和椭圆的位置
椭圆 与直线 的位置关系:
焦点 ( )到准线 ( )的距离为
焦点 ( )到准线 ( )的距离为
渐近线
方程
( )
( )
共渐近线的双曲线系方程
( )
( )
直线和双曲线的位置
双曲线 与直线 的位置关系:
利用 转化为一元二次方程用判别式确定。
二次方程二次项系数为零直线与渐近线平行。
相交弦AB的弦长
通径:
过双曲线上一点的切线
圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
椭圆、抛物线、双曲线的定义及性质
椭圆、抛物线、双曲线的定义及性质椭圆、抛物线、双曲线是高中数学中常见的三种二次曲线,它们的定义和性质对于我们理解数学和应用数学起着非常重要的作用。
本文将详细介绍这三种曲线的定义以及它们的一些重要性质。
一、椭圆的定义及性质椭圆是平面上到两个定点F1、F2距离之和为常数2a的所有点P的轨迹,这两个定点称为椭圆的焦点,椭圆的长轴为2a,短轴为2b,半径为c,满足 $a^2=b^2+c^2$。
椭圆的离心率$e=\frac{c}{a}$,离心率是描述椭圆扁平程度的一个参数,$0<e<1$,当离心率为0时,椭圆就退化成为一个圆。
椭圆具有如下性质:1.椭圆的中心在两个焦点的中垂线上;2.椭圆的两个焦点到圆心连线的夹角等于圆心到椭圆上任意一点P的切线与椭圆长轴之间的夹角;3.椭圆的周长和面积分别为 $C=4aE(e)$,$S=\pi a b$;其中$E(e)$为第二类完全椭圆积分。
二、抛物线的定义及性质抛物线是平面上到一个定点F到直线l距离等于点P到定点F 距离的所有点P的轨迹,这个定点F称为抛物线的焦点,直线l称为抛物线的准线。
抛物线具有如下性质:1.抛物线的焦点到抛物线顶点的距离等于抛物线定点F到准线距离的一半,称为抛物线的焦距;2.抛物线的汇聚点为无穷远处;3.对于平面上任意的一点P,直线FP与准线l的夹角等于点P 到抛物线顶点的切线与抛物线轴线的夹角相等。
三、双曲线的定义及性质双曲线是平面上到两个定点F1、F2距离之差为常数2a的所有点P的轨迹,这两个定点称为双曲线的焦点,而常数2a为双曲线的距离。
双曲线具有如下性质:1.双曲线的两个分支之间存在一对渐近线,渐近线与双曲线的距离趋近于无穷;2.双曲线的离心率$e=\frac{c}{a}>1$;3.双曲线没有汇聚点,但是有两个分支的顶点。
总之,椭圆、抛物线、双曲线是研究二次曲线非常重要的三种类型,它们都具有自己独特的定义及性质。
理解这些性质不仅有助于我们提高抽象思维和数学运用能力,还有助于我们在物理、工程、计算机等领域的具体应用中理解和解决实际问题。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、,焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<=e ace )10(<<=e ace 准线 2a x c=±2a y c=±参数方程与普22221x y a b +=的参数方程为 22221y x a b+=的参数方程为3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
椭圆、双曲线、抛物线的知识点总结
椭圆、双曲线、拋物线相关知识点总结—、椭圆的标准方程及其几何性质椭圆的定义:我们把平面内与两个定点尽耳的距离的和等于常数(大「I耳巧I)的点的轨迹叫傲椭圆。
符号语言:\MF^\MFS=la(la>lc)将定义中的常数记为加,则:①.当加>|幷马|时,点的轨迹是Jffi® ________________焦点位置不确定的椭圆方程可设为:〃ZV 2 +〃丁2 =1(〃2>O 、〃>O,〃/H 〃)X 2 y 2与椭圆务+ 5=1共焦点的椭圆系方程可设为: a b 二、双曲线的标准方程及其几何性质双曲统的定义:我们把平面内与两个定点甩迟的距离的養的绝对值等于常数妙壬座i) 的点的轨迹叫做双曲线。
符号语言:| |抠可-]*倒][=2d(2d <2c)将定义中的常数记为2a ,则:①.当2迄<|幷刃时,点的轨迹是 双曲线 ______________ ②.当2a = |幷巧|时,点的轨迹是 两条射线 ③.当力>|幷期时,点的轨迹 不存在x 2£厂总=通径2p渐近线方程by = ±~xaa y=±~xb通径a焦点位置不确定的双曲线方程可设为:〃川一〃£ = i(〃,〃>o)与双曲^4-4=1共焦点的双曲线系方程可设为:-^---^- = i(-b2</c<a2)& / a2-k b2 + k ' )与双曲线扌劣=1共漸近线的双曲绫系方程可设为:召一审;1"工0)三、拋物线的标准方程及其几何性质拋物线的定义:我们把平面内与一个定点F和一条定直统Z (Z个经过点F)距离相等的点的轨迹叫做拋物线。
点F叫做拋物线的焦点,直线2叫做拋物线的准线。
标准方程护= 2”(P>0) y2=-lpx(p >0) x2 = 2py(p > 0) x2 =-2py(p >0) 焦点坐标(#,0)(-号,0) (0孑)(0,4)准线方程—£2—£2 T范围x>O.y eR x <0.7 wR y >0.x G R y <0,x e R 对称性关于天轴关于尹轴顶点坐标(0,0)焦半径M 代Jo)卜1=心+#IM = -Xo |M刃二儿\MF] = -yQ+^离心率e-=1直线与拋物线相交于A(吟,且直线过拋物线的焦点,则过焦点的弦长公式:图形AB\ = .* + £ + p = (a为弓么43的倾斜角)sin a直线与椭圆(或与双曲线、拋物线)相交于A(x1,y1),B(.x2,v2),则椭圆(或双曲线、拋物线)的弦长公式:|-4B| =卜 1 _“21J1+ P = J(•* + “2 )2 -4小2 J1 +严。
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线知识点汇总一、椭圆1、定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。
3、椭圆的性质(1)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(2)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(3)顶点:焦点在$x$轴上时,顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上时,顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。
(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),反映了椭圆的扁平程度。
4、椭圆中的重要结论(1)过椭圆焦点的弦长:若弦过焦点$F_1$,则弦长$|AB| = 2a e(x_1 + x_2)$。
(2)椭圆上一点到焦点的距离:设椭圆上一点$P(x_0, y_0)$,两焦点为$F_1$,$F_2$,则$|PF_1| = a + ex_0$,$|PF_2| = aex_0$。
二、双曲线1、定义平面内与两个定点$F_1$,$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$($a > 0$,$b > 0$),其中$c^2 = a^2 + b^2$。
椭圆双曲线抛物线公式汇总 椭圆双曲线抛物线公式
椭圆双曲线抛物线公式汇总椭圆双曲线抛物线公式双曲线的标准公式为: X /a - Y /b = 1(a>0,b>0) 而反比例函数的标准型是xy = c (c ≠ 0) 但是反比例函数确实是双曲线函数经过旋转得到的因为xy = c的对称轴是y=x, y=-x 而X /a - Y /b = 1的对称轴是x轴,y轴所以应该旋转45度设旋转的角度为a (a≠0,顺时针) (a为双曲线渐进线的倾斜角) 则有X = xcosa ysina Y = - xsina ycosa 取a = π/4 则X - Y = (xcos(π/4) ysin(π/4)) -(xsin(π/4) - ycos(π/4)) = (√2/2 x √2/2 y) -(√2/2 x - √2/2 y) = 4 (√2/2 x) (√2/2 y) = 2xy. 而xy=c 所以X /(2c) - Y /(2c) = 1 (c>0) Y /(-2c) - X /(-2c) = 1 (c 由此证得,反比例函数其实就是双曲线函数椭圆的面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。
如L = ∫[0,π/2]4a * sqrt(1-(e*cost) )dt≈2π√((a b )/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则e=PF/PL椭圆的准线方程x=±a /C椭圆的离心率公式e=c/a(e2c)椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x= a /C)的距离,数值=b /c椭圆焦半径公式|PF1|=a ex0 |PF2|=a-ex0椭圆过右焦点的半径r=a-ex过左焦点的半径r=a ex椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b /a点与椭圆位置关系点M(x0,y0) 椭圆x /a y /b =1点在圆内: x0 /a y0 /b点在圆上: x0 /a y0 /b =1点在圆外: x0 /a y0 /b >1直线与椭圆位置关系y=kx m ①x /a y /b =1 ②由①②可推出x /a (kx m) /b =1相切△=0相离△相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)|AB|=d = √(1 k )|x1-x2| = √(1 k )(x1-x2) = √(1 1/k )|y1-y2| = √(1 1/k )(y1-y2)椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b /a椭圆的斜率公式过椭圆上x /a y /b 上一点(x,y)的切线斜率为b *X/a y 抛物线的标准方程右开口抛物线:y =2px左开口抛物线:y =-2px上开口抛物线:x =2py下开口抛物线:x =-2pyp为焦准距(p>0)[编辑本段]3.抛物线相关参数(对于向右开口的抛物线)离心率:e=1焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P [编辑本段]4.它的解析式求法:以焦点在X轴上为例知道P(x0,y0)令所求为y =2px则有y0 =2px0∴2p=y0 /x0∴抛物线为y =(y0 /x0)x [编辑本段]5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆
第一定义:平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|的动点P的轨迹叫做椭圆。
即:│PF│+│PF'│=2a
其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。
第二定义:平面内与一个定点F的距离与到一条定直线间距离之比为常数e()的点轨迹叫做椭圆。
不在定直线上,该常数为小于1的正数)
二.椭圆的参数方程
三.点与椭圆
点P在椭圆内
点P在椭圆上
点P在椭圆外
四.直线与椭圆
1.位置关系
方程联立
△
△
△
2.所交弦长
五.附加
1.
2.求椭圆方程
方法:待定系数法、定义法
双曲线
双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹。
二性质补充
1.等轴双曲线
性质e=
渐近线方程
渐近线成角
三.点与双曲线
点P在双曲线开口内
点P在双曲线上
点P在双曲线开口外
四.附加
1.双曲线系方程
2.求双曲线方程
方法:待定系数法、定义法
抛物线
抛物线是指平面内到一个定点和一条定直线l距离相等的点的轨迹
三.点与抛物线
点P在抛物线开口内
点P在抛物线上
点P在抛物线开口外
四.直线与抛物线的位置关系
1.位置关系
方程联立
△
△
△
2.所交弦长。