太原市2021年中考数学试卷(II)卷

合集下载

2021年数学中考试卷与答案

2021年数学中考试卷与答案

高中段招生统一考试 数学试卷卷 I一. 选择题(本题有10小题;每小题3分;共30分)1. 2的倒数是( ) A. 21 B.-21C. -2D. 0.22. 正方形是轴对称图形;它的对称轴共有( )A. 2条B. 3条C. 4条D. 6条3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 圆柱的底面半径为5cm;高为12cm;则该圆柱的侧面积等于( )A. 60cm 2B. 60πcm 2C. 120cm 2D. 120πcm 25. 如图;在Rt △ABC 中;∠C=90°;CD ⊥AB;垂足为D;AD=8;DB=2;则CD 的长为( )A. 4B. 16C. 25D. 456. 已知⊙O 1与⊙O 2的半径分别为5cm 和3cm;圆心距O 1O 2=7cm;则⊙O 1与⊙O 2的位置关系为( )A. 外离B. 外切C. 内切D. 相交7. 已知一元二次方程x 2+3x-4=0的两个根为x 1;x 2;则x 1·x 2的值是( )A. 4B. -4C. 3D. –38. 方程组⎩⎨⎧=++=-03212y x y x 的解是( )⎩⎨⎧-==⎩⎨⎧==⎩⎨⎧-=-=⎩⎨⎧=-=12012121y x D y x C y x B y x A9. 已知抛物线和直线l 在同一直角坐标系中的图象如图所示;抛物线的对称轴为直线x=-1;P 1(x 1;y 1);P 2(x 2;y 2)是抛物线上的点;P 3(x 3;y 3)是直线l 上的点;且-1<x 1<x 2;x 3<-1;则y 1;y 2;y 3的大小关系为( )A. y 1<y 2<y 3B. y 3<y 1<y 2C. y 3<y 2<y 1D. y 2<y 1<y 310. 小强拿了一张正方形的纸如图(1);沿虚线对折一次得图(2);再对折一次得图(3);然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角;再打开后的形状应是( )卷 II二. 填空题(本题有10小题;每小题3分;共30分)11. -1的相反数是 。

2020山西省中考数学试题(word版,含答案)(共3套)

2020山西省中考数学试题(word版,含答案)(共3套)
3.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心称图形但是不是轴对称图形的是()
4.如图,在△ABC中,点D,E分别是边AB,BC的中点,若
△DBE的周长是6,则△的周长是()。
A.8 B.10 C.12 D.14
5.我们解一元二次方程 时,可以运用因式分解法,将
此方程化为 ,从而得到两 个一元一次方程:
山西省中考数学参考答案
山西省中考数学试题(二)
一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.(2016·山西) 的相反数是()
A. B.-6C.6D.
2.(2016·山西)不等式组 的解集是()
A.x>5B.x<3C.-5<x<3D.x<5
且点B的横坐标为1.过点A作AC⊥y轴交反比例函数 (k≠0)的图象于
点C,连接BC。
(1)求反比例函 数的表达式。
(2)求△ABC的面积。
20.(本题8分)
随着互联网、移动终端的迅速发展,数字化阅读
越来越普及,公交、地铁上的“低头族”越来越多。
某研究机构针对“您如何看待数字化阅读”问题进
行了随机问卷调查(问卷调查表如右图所示),并将
调查结果绘制成图1和图2所示的统计图(均不完整)。
请根据统计图中提供的信息,解答下列问题:
(1补充完整
(3)在扇形统计图中,观点E的百分比是,表示观点B的扇形的圆心角度为度。
(4)假如你是该研究机构的成员,请根据以上调查结果,就 人们如何对待数字化阅读提出建议。
任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其

山西省太原市小店区志达中学2024届中考数学考试模拟冲刺卷含解析

山西省太原市小店区志达中学2024届中考数学考试模拟冲刺卷含解析

山西省太原市小店区志达中学2024届中考数学考试模拟冲刺卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步2.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是()A.B.C.D.3.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是()A .12∠=∠B .34∠=∠C .D 5∠∠= D .B BAD 180∠∠+=5.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( )A .55×106B .0.55×108C .5.5×106D .5.5×1076.下面计算中,正确的是( )A .(a+b )2=a 2+b 2B .3a+4a=7a 2C .(ab )3=ab 3D .a 2•a 5=a 77.如图,在等腰直角△ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .53B .35C .222D .238.一艘轮船和一艘渔船同时沿各自的航向从港口O 出发,如图所示,轮船从港口O 沿北偏西20°的方向行60海里到达点M 处,同一时刻渔船已航行到与港口O 相距80海里的点N 处,若M 、N 两点相距100海里,则∠NOF 的度数为( )A .50°B .60°C .70°D .80° 9.π这个数是( )A .整数B .分数C .有理数D .无理数10.如图,在矩形ABCD 中,连接BD ,点O 是BD 的中点,若点M 在AD 边上,连接MO 并延长交BC 边于点M’,连接MB,DM’则图中的全等三角形共有( )A.3对B.4对C.5对D.6对二、填空题(共7小题,每小题3分,满分21分)11.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.12.一个正四边形的内切圆半径与外接圆半径之比为:_________________13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.15.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD 上,且DE=EF,则AB的长为_____.16.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.17.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.三、解答题(共7小题,满分69分)18.(10分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A 型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.()1求每辆A,B两种自行车的进价分别是多少?()2现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.19.(5分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i=的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)20.(8分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.(1)求证:∠CBE=12∠F;(2)若⊙O的半径是23,点D是OC中点,∠CBE=15°,求线段EF的长.21.(10分)已知:如图,AB为⊙O的直径,C,D是⊙O直径AB异侧的两点,AC=DC,过点C与⊙O相切的直线CF交弦DB的延长线于点E.(1)试判断直线DE与CF的位置关系,并说明理由;(2)若∠A=30°,AB=4,求CD的长.22.(10分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整..图象:当时,写出的取值范围.23.(1282016)0+|﹣3|﹣4cos45°.24.(14分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】2281517+=,则该直角三角形能容纳的圆形(内切圆)半径8151732r+-==(步),即直径为6步,故选C2、D【解题分析】根据函数的图象和所给出的图形分别对每一项进行判断即可.【题目详解】由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.故选: D.【题目点拨】本题主要考查函数模型及其应用.3、C【解题分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【题目详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【解题分析】利用平行线的判定方法判断即可得到结果.【题目详解】∵∠1=∠2,∴AB∥CD,选项A符合题意;∵∠3=∠4,∴AD∥BC,选项B不合题意;∵∠D=∠5,∴AD∥BC,选项C不合题意;∵∠B+∠BAD=180°,∴AD∥BC,选项D不合题意,故选A.【题目点拨】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.5、D【解题分析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数6、D【解题分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【题目详解】A. (a+b)2=a2+b2+2ab,故此选项错误;B. 3a+4a=7a,故此选项错误;C. (ab)3=a3b3,故此选项错误;D. a2⋅a5=a7,正确。

2021年山西省太原市万柏林区中考数学综合检测试卷(附答案详解)

2021年山西省太原市万柏林区中考数学综合检测试卷(附答案详解)

2021年山西省太原市万柏林区中考数学综合检测试卷1.计算:−3+1的结果为()A. −4B. −2C. 4D. 22.第二十四届冬季奥林匹克运动会将于2022年在北京举行,北京将成为历史上一座既举办过夏季奥林匹克运动会,又举办过冬季奥林匹克运动会的城市.下面的图案是冬季奥林匹克运动会会徽中的图案,其中是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. 2a×3a2=5a2B. (a2)3=a5C. (a−b)2=a2−b2D. (ab2)2=a2b44.如图是由4个大小相同的小正方体摆成的几何体,它的左视图是()A.B.C.D.5.已知直线a//b,一个含30°的直角三角板如图放置,∠1=40°,则∠2的度数是()A. 85°B. 80°C. 50°D. 40°6.化简4aa2−4+22−a的结果是()A. 1a+2B. 2a+2C. 2a−2D. 2a−47.国内生产总值(GDP)成了国际上通用的衡量国家经济发展水平的一个方式.根据官方发布的数据显示,中国在2020年的GDP达101.6万亿元,首次突破100万亿元,比去年增长2.3%,在世界排名第二,仅次于美国,则数据101.6万亿元用科学记数法表示为()A. 10.16×1013元B. 1.016×1013元C. 0.1016×1014元D. 1.016×1014元8.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2015−2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A. 2015年末至2019年末,农村贫困发生率逐年降低B. 2019年末,农村贫困人口比上年末减少551万人C. 2017年末至2018年末,农村贫困人口减少人数最多D. 2015年末至2019年末,连续5年每年农村贫困人口减少1000万人以上9.山西交城骏枣是山西四大名枣之一,誉为“枣后”,素有“八个一尺,十个一斤”之称,畅销山西乃至全国各地.甲、乙两辆运输车将骏枣运往距离180千米的A地,已知乙车的速度是甲车的速度的1.5倍,甲车比乙车早出发0.5小时,结果甲车比乙车晚到0.5小时.求甲、乙两车的速度分别是多少?设甲车的速度是x千米/时,则根据题意列方程为()A. 180x =1801.5x+12B. 180x=1801.5x−12C. 180x =1801.5x+12−12D. 180x=1801.5x+12+1210.如图,在扇形AOB中,OA=2,∠AOB=90°,C是OA的中点,D是AB⏜的中点,连接BC,CD.则阴影部分的面积为()A. 1B. 12π−√22C. 12π+√22−1D. π−√2211.不等式组{3−x>012x≥1的解集为______.12.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要______根火柴棒.13.如图,AB是半圆O的直径,点C在半圆O上,过点C作半圆O的切线交AB的延长线于点D,过点O作OE//BC交切线DC于点E,若∠D=20°,则∠E的度数为______.14.如图,直线y=12x−1与x轴交于点A,与反比例函数y=kx(k>0)图象交于点B,过点A作x轴的垂线交该反比例函数图象于点C,连接BC,若BC=AB,则k的值为______.15.如图,在△ABC中,∠C=90°,AC=3,BC=4,将△ABC沿DE折叠,点A恰好落在BC中点A′处,DE为折痕,则AE的长为______.16.(1)计算:(2021−π)0+√18−(−12)−1−√3×tan60°;(2)因式分解:2(x−1)2+4x−20.17.下面是小明设计的“三角形一边上的高”的尺规作图:已知:△ABC求作:△ABC的边BC上的高AD作法:(1)分别以B和C为圆心,BA,CA为半径作弧,两弧相交于点E,(2)作直线AE交BC于点D所以,线段AD就是所求作的高根据小明的作法解决下面问题:(1)利用直尺和圆规补全图形(要求保留作图痕迹)(2)小明给出作图设计的理由如下:连接BE,CE.∵BA=BE,∴点B在线段AE的垂直平分线上(依据1),同理可证:点C也在线段AE的垂直平分线上.∴BC垂直平分AE(依据2).∴线段AD是△ABC的边BC上的高.上面说理过程中的“依据1”,“依据2”分别指什么?依据1:______;依据2:______.18.为庆祝中国共产党建党100周年,某校组织七、八、九年级学生参加了“颂党恩,跟党走”作文大赛.该校对参赛作文分年级进行了统计,并绘制了图1和图2不完整的统计图.请根据图中信息回答下面的问题:(1)参赛作文的篇数共______篇;(2)图中:m=______,扇形统计图中九年级所对应的圆心角度数为______°;(3)把条形统计图补充完整;(4)经过评审,全校共有4篇作文获得特等奖,其中有一篇来自七年级,学校准备从特等奖作文中选取2篇刊登在学校校报上,请用树状图或列表法求七年级特等奖作文被刊登在校报上的概率.19.茶为国饮,茶文化是中国传统文化的重要组成部分,这也带动了茶艺、茶具、茶服等相关文化的延伸及产业的发展,在“春季茶叶节”期间,某茶具店老板购进了A、B两种不同的茶具.若购进A种茶具1套和B种茶具2套,需要250元;若购进A 种茶具3套和B种茶具4套,需要600元.(1)A、B两种茶具每套进价分别为多少元?(2)由于茶具畅销,茶具店老板决定再次购进A、B两种茶具共80套,茶具厂对这两种类型的茶具进行了价格调整,A种茶具的进价比第一次购进时提高了8%,B种茶具的进价按第一次购进时进价的八折.如果茶具店老板此次用于购进A、B两种茶具的总费用不超过6240元,则茶具店老板最多能购进A种茶具多少套?20.如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC=DE= 20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距离(精确到0.1cm).(参考数据:√3≈1.732,√6≈2.449)21.阅读与思考:三等分角古希腊有三大几何问题:立方倍积、三等分角和画圆为方.下面是三等分角的作法之一:如图1,任意锐角ABC可被取作矩形BCAD的对角线BA与边BC的夹角,以B为端点的射线交CA于点E,交DA的延长线于点F,若EF=2AB,则射线BF是∠ABC 的一条三等分线.证明:如图2,取EF的中点G,连接AG.∵四边形BCAD是矩形,∴∠DAC=90°,AD//BC.在Rt△AEF中,点G是EF的中点.EF(依据1).∴AG=12∵EF=2AB,∴AB=AG.∴∠ABG=∠AGB(依据2).…任务一:上面证明过程中的“依据1”,“依据2”分别指什么?依据1:______;依据2:______.任务二:完成材料证明中的剩余部分;任务三:如图3,矩形ABCD中,AB=2,对角线BD与外角∠DCF的平分线交于BD,则CE的长为______.点E,若CE=1222.主题背景在课外小组活动中,“创新小组”对“正方形旋转”问题进行了探究.如图1,正方形ABCD的顶点A在正方形EFGH的对角线EG上,正方形EFGH的顶点E是正方形ABCD对角线的交点.AD与EF相交于点P,AB与EH相交于点Q,连接BF和CH.猜想证明(1)猜想线段BF和CH有怎样的数量关系和位置关系?并说明理由;深入探究(2)如图2,正方形EFGH固定不动,将正方形ABCD绕点E顺时针方向旋转角α(0<α<45°),延长FE,HE分别交BC,CD于点M,N,连接MN,NP,PQ,QM,求证:四边形MNPQ是正方形;拓展延伸(3)已知,正方形ABCD的边长为2,正方形EFGH的边长为3,在正方形ABCD旋转过程中,若BA的延长线恰好经过点F,请你直接写出AP的长.23.如图1,一次函数y=√3x−4√3的图象分别与x轴,y轴交于B,C两点,二次函数y=ax2−√3x+c的图象过B,C两点,且与x轴交于另一点A.(1)求二次函数的表达式;(2)点P是二次函数图象的一个动点,设点P的横坐标为m,若∠ABC=2∠ABP.求m的值;(3)如图2,过点C作CD//x轴交抛物线于点D.点M是直线BC上一动点,在坐标平面内是否存在点N,使得以点C,D,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:−3+1=−2.故选:B.根据有理数的加法法则,首先确定符号是负号,再用绝对值相减即可求得.此题考查了有理数的加法.首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】A【解析】解:A.是中心对称图形,故本选项符合题意;B.不是中心对称图形,故本选项不合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不符合题意.故选:A.一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】D【解析】解:A、2a×3a2=6a3,故不符合题意.B、(a2)3=a6,故不符合题意.C、(a−b)2=a2−2ab+b2,故不符合题意.D、(ab2)2=a2b4,故符合题意.故选:D.根据幂的乘方与积的乘方,完全平方公式以及单项式乘单项式进行计算.本题主要考查了幂的乘方与积的乘方,完全平方公式以及单项式乘单项式等知识点,属于基础题.【解析】【分析】此题主要考查了几何体的三视图;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.根据左视图即从物体的左面观察得得到的视图,进而得出答案.【解答】解:如图所示,该几何体的左视图是:.故选:C.5.【答案】B【解析】解:如图,根据题意得∠3=60°,∵∠1=40°,∴∠4=∠1+∠3=40°+60°=100°,∴∠5=180°−∠4=180°−100°=80°,∵a//b,∴∠2=∠5=80°.故选:B.根据题意可得∠3=60°,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠4的度数,再根据邻补角求出∠5的度数,最后根据两直线平行,同位角相等可得∠2=∠5.本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.【解析】解:原式=4a(a+2)(a−2)−2(a+2)(a+2(a−2)=4a−2a−4(a+2)(a−2)=2(a−2)(a+2)(a−2)=2a+2,故选:B.根据分式异分母加减法法则计算可求解.本题主要考查分式的加减,掌握通分的技巧和平方差公式的结构是解题关键.7.【答案】D【解析】解:101.6万亿=101600000000000=1.016×1014,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】B【解析】解:A.由统计图可知,2015年末至2019年末,农村贫困发生率逐年降低,故本选项不合题意;B.2019年末,农村贫困人口比上年末减少至551万人,原说法错误,故本选项符合题意;C.2015年末至2016年末,农村贫困人口减少人数为:5575−4335=1240(万人);2016年末至2017年末,农村贫困人口减少人数为:4335−3046=1289(万人);2017年末至2018年末,农村贫困人口减少人数为:3046−1660=1386(万人);2018至2019年末,农村贫困人口减少人数为:1600−551=1049(万人);所以2017年末至2018年末,农村贫困人口减少人数最多,故本选项不合题意;D.2015年末至2019年末,连续5年每年农村贫困人口减少1000万人以上,故本选项不合题意;故选:B.根据条形统计图中每年末贫困人口的数量,结合各选项逐一分析判断可得答案.本题主要考查条形统计图,解题的关键是根据条形统计图得出解题所需的具体数据.9.【答案】D【解析】解:设甲车的速度是x千米/时,根据题意列方程为180 x =1801.5x+12+12,故选:D.设甲车的速度是x千米/小时,根据从A地开往B地时,乙车的速度是甲车的速度的1.5倍,甲车比乙车早出发0.5小时,结果甲车比乙车晚到0.5小时,可列方程求解.本题考查了由实际问题抽象出方式方程,找准等量关系,正确列出分式方程是解题的关键.10.【答案】C【解析】解:连接OD,过D作DH⊥OA于H,∵∠AOB=90°,D是AB⏜的中点,∴∠AOD=∠BOD=45°,∵OD=OA=2,∴DH=√22OC=√2,∵C是OA的中点,∴OC=1,∴阴影部分的面积=S扇形DOB +S△CDO−S△BCO=45⋅π×22360+12×√2×1−12×1×2=π2+√22−1,故选:C.连接OD,过D作DH⊥OA于H,求得DH=√22OC=√2,根据扇形和三角形的面积公式即可得到结论.本题考查了扇形面积的计算,等腰直角三角形的判定和性质,三角形的面积的计算,正确的作出辅助线构造直角三角形是解题的关键.11.【答案】2≤x<3【解析】解:解不等式3−x>0,得:x<3,x≥1,得:x≥2,解不等式12∴不等式组的解集为2≤x<3.故答案为:2≤x<3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.【答案】7n+1【解析】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n−1)=7n+1根;故答案为:7n+1.根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n−1)=7n+1根.此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.13.【答案】20°【解析】解:连接OC,如图所示:∵AB为⊙O的直径,∴∠ACB=∠ACO+∠OCB=90°.∵DE是⊙O的切线,∴∠OCD=∠BCO+∠BCD=90°,∴∠OCA=∠BCD,∵OA,OC是⊙O的半径,∴OA=OC,∴∠A=∠OBB,∵OE//BC,∴∠BCD=∠E,∴∠D=∠E,∵∠D=20°,∴∠E=20°,故答案为:20°.连接OC,由切线的性质与圆周角定理易证∠OCA=∠BCD,由等腰三角形的性质得出∠A=∠OCA,由平行线的性质得出∠BCD=∠E,即可得出结论.本题考查了等腰三角形的性质、切线的性质、圆周角定理等知识;熟练掌握切线的性质是解题的关键.14.【答案】4x−1=0,解得x=2,【解析】解:当y=0时,12∴A点坐标为(2,0);a−1),作BD⊥AC于D,如图,设B(a,12∵AB=BC,∴AD=CD,∴C(2,a−2),∵点B、点C都在反比例函数图象上,a−1)=2(a−2),∴a(12整理得a2−6a+8=0,解得a1=2(舍去),a2=4,∴C(2,2),得k=2×2=4,把C(2,2)代入y=kx故答案为4.利用一次函数解析式可求出A 点,作BD ⊥AC 于D ,如图,设B(a,12a −1),利用等腰三角形的性质得AD =CD ,则可表示出C(2,a −2),再利用反比例函数图象上点的坐标特征得到a(12a −1)=2(a −2),解方程求出a 得到C(2,2),然后把C 点坐标代入y =k x 中即可求出k 的值.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.15.【答案】6534【解析】解:过点A′作A′M ⊥AB ,垂足为M ,在△ABC 中,∵∠C =90°,AC =3,BC =4,∴AB =√32+42=5,∵点A′是BC 的中点,∴A′C =A′B =12BC =2,由翻折变换可得,AE =A′E ,AD =A′D ,∵∠A′MN =∠C =90°,∠B =∠B ,∴△A′MB∽△ACB ,∴A′M AC =BM BC =A′BAB ,即A′M3=BM4=25,解得A′M =65,BM =85,设AE =x ,则A′E =x ,EM =5−85−x =175−x ,在Rt △A′EM 中,由勾股定理得,A′E 2=A′M 2+EM 2,即x 2=(65)2+(175−x)2,解得x =6534,故答案为:6534.根据勾股定理求出AB,由中点可得A′C=A′B=2,利用相似三角形的判定和性质求出A′M,BM,再利用直角三角形的勾股定理即可求出答案.本题考查翻折变换,直角三角形的勾股定理以及相似三角形的判定和性质,掌握翻折变换的性质,相似三角形的判定和性质以及勾股定理是解决问题的关键.)−1−√3×tan60°16.【答案】解:(1)(2021−π)0+√18−(−12=1+3√2−(−2)−√3×√3=1+3√2+2−3=3√2;(2)2(x−1)2+4x−20=2x2−4x+2+4x−20=2x2−18=2(x2−9)=2(x+3)(x−3).【解析】(1)根据零指数幂、算术平方根、负整数指数幂和特殊角的三角函数值即可解答本题;(2)先化简,然后提公因式,再根据平方差公式即可将式子因式分解.本题考查二次根式的混合运算、因式分解,解答本题的关键是明确零指数幂、算术平方根、负整数指数幂的计算方法.17.【答案】垂直平分线上任意一点,到线段两端点的距离相等两点确定一条直线【解析】解:(1)补全的图形如图,(2)依据1:垂直平分线上任意一点,到线段两端点的距离相等;依据2:两点确定一条直线.故答案为:垂直平分线上任意一点,到线段两端点的距离相等;两点确定一条直线.(1)根据作图过程即可补全图形;(2)根据垂直平分线上任意一点,到线段两端点的距离相等;两点确定一条直线,即可填空.本题考查了作图−基本作图,线段垂直平分线的性质,解决本题的关键是掌握线段垂直平分线的性质.18.【答案】100 45 126【解析】解:(1)参赛作文的篇数共20÷20%=100(篇),故答案为:100;(2)m%=100−20−35100×100%=45%,∴m=45,扇形统计图中九年级所对应的圆心角度数为:360°×35100=126°,故答案为:45,126;(3)八年级参加的作文篇数为:100−20−35=45,补全的条形统计图如右图所示;(4)设七年级的那一篇记为A,八年级和九年级的三篇记为B,树状图如下图所示:由上可得,一共有12种可能性,其中七年级特等奖作文被刊登在校报上的可能性有6种,故七年级特等奖作文被刊登在校报上的概率为612=12.(1)根据七年级的作文篇数和所占的百分比,可以计算出参赛作文的总篇数;(2)根据统计图中的数据,可以计算出m的值和扇形统计图中九年级所对应的圆心角度数;(3)根据(1)中的结果和条形统计图中的数据,可以计算出八年级参赛作文的篇数,从而可以将条形统计图补充完整;(4)根据题意,可以画出相应的树状图,从而可以求得七年级特等奖作文被刊登在校报上的概率.本题考查列表法与树状图法、扇形统计图、条形统计图,利用数形结合的思想解答是解答本题的关键.19.【答案】解:(1)设A 种茶具每套的进价为x 元,B 种茶具每套进价为y 元,由题意得:{x +2y =2503x +4y =600, 解得:{x =100y =75, 答:A 种茶具每套的进价为100元,B 种茶具每套进价为75元;(2)设茶具店老板最多能购进A 种茶具m 套,则购进B 种茶具(80−m)套, 由题意得:100(1+8%)m +75×0.8(80−m)≤6240,解得:m ≤30,答:茶具店老板最多能购进A 种茶具30套.【解析】(1)设A 种茶具每套的进价为x 元,B 种茶具每套进价为y 元,由题意:若购进A 种茶具1套和B 种茶具2套,需要250元;若购进A 种茶具3套和B 种茶具4套,需要600元.列出方程组,解方程组即可;(2)设茶具店老板最多能购进A 种茶具m 套,则购进B 种茶具(80−m)套,由题意:A 种茶具的进价比第一次购进时提高了8%,B 种茶具的进价按第一次购进时进价的八折.如果茶具店老板此次用于购进A 、B 两种茶具的总费用不超过6240元,列出一元一次不等式,解不等式即可.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.20.【答案】解:(1)∵AC =DE =20cm ,AE =CD =10cm ,∴四边形ACDE 是平行四边形,∴AC//DE ,∴∠DFB =∠CAB ,∵∠CAB =85°,∴∠DFB =85°;(2)作CG⊥AB于点G,∵AC=20,∠CGA=90°,∠CAB=60°,∴CG=10√3,AG=10,∵BD=40,CD=10,∴CB=30,∴BG=√302−(10√3)2=10√6,∴AB=AG+BG=10+10√6≈10+10×2.449=34.49≈34.5cm,即A、B之间的距离为34.5cm.【解析】本题考查平行四边形的判定与性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据平行四边形的判定和性质可以解答本题;(2)先根据30度角所对的直角边等于斜边的一半可得AG的长,再根据勾股定理和题意可以求得CG和BG的长,从而可以解答本题.21.【答案】直角三角形斜边的中线等于斜边的一半等边对等角√2+√6【解析】(1)证明:如图2,取EF的中点G,连接AG.∵四边形BCAD是矩形,∴∠DAC=90°,AD//BC.在Rt△AEF中,点G是EF的中点.EF(直角三角形斜边的中线等于斜边的一半).∴AG=12∵EF=2AB,∴AB=AG.∴∠ABG=∠AGB(等边对等角).∴∠ABG=∠AGB=∠F+∠GAF=2∠F=2∠CBF,∴∠ABC=3∠CBF,∴射线BF是∠ABC的一条三等分线;故答案为:直角三角形斜边的中线等于斜边的一半,等边对等角;(2)解:取BD的中点H,连接BH,如图2所示:∵四边形BCAD是矩形,∴∠BCD=∠DCF=90°,∵CE是∠DCF的角平分线,∴∠ECF=12∠DCF=12×90°=45°,∵∠ECF=∠DBC+∠E,∴∠E+∠DBC=45°,∵∠CBA=90°,点H是AC的中点,∴BH=DH=CE=12BD,∴∠HBC=∠HCB,∠CHE=∠E,∴∠CHE=2∠HAC,∴∠E=2∠HBC,∴∠DBC=12∠E,∴12∠E+∠E=45°,∴∠E=30°,∵AB=CD=2,△DCT是等腰直角三角形,∴DT=CT=√2,∴ET=√3DT=√6,∴CE=CT+ET=√2+√6.故答案为:√2+√6.(1)取EF的中点G,连接AG,证∠F=∠CBF,再由直角三角形斜边上的中线性质得AG= FG,则AG=AB,得∠F=∠GAF,然后证∠ABG=∠AGB=∠F+∠GAF=2∠F=2∠CBF,即可得出结论;(2)取AC的中点H,连接BH,过点D作DT⊥CE于T,证明∠E=30°,求出DT=CT,ET,可得结论.本题属于四边形综合题,考查了矩形的性质,直角三角形斜边中线的性质,等腰直角三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形斜边中线,利用直角三角形斜边中线等于斜边的一半解决问题.22.【答案】(1)解:结论:BF=CH,BF⊥CH.理由:连接EC,EB,设BF交CH于点K,交EH于点J.∵点E是正方形ABCD的对角线的交点,∴AE=EC=BE,BE⊥AC,∵四边形EFGH是正方形,∴EF=EH,∠GEF=∠GEH=45°,∴∠CEH=135°,∵∠BEG=90°,∴∠BEF=∠BEG+∠FEG=135°,∴∠CEH=∠BEF,∴△CEH≌△BEF(SAS),∴CH=BF,∠CHE=BFE,∵∠BFE+∠EJF=90°,∠FJE=∠BJH,∴∠CHE+∠BJH=90°,∴∠BKJ=90°,∴CH⊥BF.(2)证明:如图2中,连接EC.∵四边形ABCD是正方形,∴∠EAP=∠EBQ=45°,AE⊥BE,AE=EB,∵四边形EFGH是正方形,∴∠FEH=∠AEB=90°,∴∠PEA=∠QEB,∴△PAE≌△QBE(ASA),∴EP=EQ,同法可证EQ=EM,EM=EN,∴EP=EM,EQ=EN,∴四边形MNPQ是平行四边形,∵NQ=PM,NQ⊥PM,∴四边形MNPQ是正方形.(3)解:如图3中,过点E作EW⊥BF于点W.∵△AEB是等腰直角三角形,EW⊥AB,∴AW=WB=1,∴EW =12AB =1,在Rt △EFW 中,FW =√EF 2−EW 2=√32−12=2√2,∴AF =FW −AW =2√2−1,∵PA//EW ,∴PA EW =AF FW ,∴PA 1=√2−12√2, ∴PA =1−√24.【解析】(1)结论:BF =CH ,BF ⊥CH.连接EC ,EB ,设BF 交CH 于点K ,交EH 于点J.证明△CEH≌△BEF(SAS),推出CH =BF ,∠CHE =BFE ,可得结论.(2)利用全等三角形的性质证明EP =EQ ,同法可证EQ =EM ,EM =EN ,可得结论.(3)如图3中,过点E 作EW ⊥BF 于点W.解直角三角形求出FW ,AF ,EW ,再利用平行线分线段成比例定理,求解即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)对直线y =√3x −4√3,当x =0时,y =−4√3;当y =0时,x =4, ∴C(0,−4√3),B(4,0),将点B 、C 代入y =ax 2−√3x +c 得:{c =−4√316a −4√3+c =0, ∴{a =√32c =−4√3, ∴抛物线的解析式为y =√32x 2−√3x −4√3; (2)∵C(0,−4√3),B(4,0),∴OC =4√3,OB =4,∴tan∠ABC =OC OB =4√34=√3,∴∠ABC =60°,∵∠ABC =2∠ABP ,∴∠ABP =30°,如图1,过点P 作PH ⊥x 轴于点H ,∵点P 的横坐标为m ,∴BH =4−m ,PH =|√32m 2−√3m −4√3|, ∴tan∠ABP =PH BH =|√32m 2−√3m−4√3|4−m=tan30°=√33, 解得:m =4(舍)或m =−83或m =−43,∴m 的值为−83或m =−43;(3)由y =√32x 2−√3x −4√3可知对称轴为直线x =1, ∵C(0,−4√3),∴D(2,−4√3),∵以点C ,D ,M ,N 为顶点的四边形是菱形,设M(x,√3x −4√3),①如图2,以CD 为对角线时,MN 垂直平分CD ,∴点M 的横坐标为1,当x =1时,y =√3−4√3=−3√3,∴M(1,−3√3),∴N 1(1,−5√3),②以CM 为对角线时,CD =MD ,∵C(0,−4√3),D(2,−4√3),∴22=(x −2)2+(√3x)2,解得:x =0(舍)或x =1,∴M(1,−3√3),∴N 2(−1,−3√3),③如备用图,以CN 为对角线时,CM =CD =2,∴22=x2+(√3x)2,解得:x=1或x=−1,∴M(1,−3√3)或M(−1,−5√3),∴N3(3,−3√3),N4(1,−5√3),综上所述,存在,N1(1,−5√3),N2(−1,−3√3),N3(3,−3√3),N4(1,−5√3),【解析】(1)令x=0、y=0,求出点B和点C的坐标,把B、C坐标代入抛物线求a,c,得到抛物线的解析式;(2)由点B和点C的坐标求出OB和OC长度,得到∠CBO=60°,从而可知∠ABP=30°,然后设点P的坐标,结合30°角的正切值列出方程,求m的值;(3)由CD平行x轴求点D,设点M,利用菱形的性质“邻边相等”进列出方程求点M,然后再进一步确定点N.本题考查了一次函数图象上点的坐标特征、待定系数法求二次函数的解析式、特殊角的三角函数值、菱形的性质和勾股定理,在做存在类题型的时候可以先画出对应的几何图形然后利用菱形的邻边相等的性质求解.。

2021年中考数学试题及答案(真题)

2021年中考数学试题及答案(真题)

2021年太原市中考数学试题及答案一、选择题(每题3分,共30分)1、下列四个数的绝对值比2大的是( )A.-3 B.0 C.1 D.22、在平面直角坐标系中,点P 的坐标为(-4,6),则点P 在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在中,,则的度数为( )A. B. C. D. 4、如图,在中,D,E 分别是边AB,AC 的中点,已知BC=10,则DE 的长为( )A.3 B.4 C.5 D.65、化简的结果是( )A.B. C. D. 6、今年5月16日我市普降大雨,基本解除了农田旱情。

以下是各县(市、区)的降水量分布情况(单位:㎜),这组数据的中位数,众数,极差分别是( )县(市、区)城区小店尖草坪娄烦阳曲清徐古交降水量2829.431.92728.834.129.4A. 29.4,29.4,2.5B. 29.4,29.4,7.1C. 27,29.4,7D. 28.8,28,2.57、下列图象中,以方程y-2x-2=0的解为坐标的点组成的图象是( )ABC 040,80B C ∠=∠=A ∠030040050060ABC 222m n m mn-+2m n m -m n m -m n m +m nm n-+8、如果三角形的两边分别为3和5,那么这个三角形的周长可能是( )A.15 B.16 C.8 D.79、右图是一个正方体的平面展开图,这个正方体是( )10、在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:行业名称计算机机械营销物流贸易应聘人数(单位:人)223120531546748659行业名称计算机营销机械建筑化工招聘人数(单位:人)12101030895763725如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A. 计算机行业好于其它行业B.贸易行业好于化工行业C. 机械行业好于营销行业D.建筑行业好于物流行业二、填空题(每题2分,共20分)11、在函数,自变量x 的取值范围是。

2021年山西省百校联考中考数学模拟试卷(二)

2021年山西省百校联考中考数学模拟试卷(二)

2021年山西省百校联考中考数学模拟试卷(二)学校: ____________ 姓名:______________班级:______________ 考号: _____________一.单选题1.已知实数。

的相反数是则4的值为()2.如图,在AABC中,ZABC=90° ,直线d U分别经过AABC的顶点人B, C,且h//h//h,若Zl=40° ,则Z2的度数为(3・下列计算正确的是()A.・0+卫=2・卍C.(x+y)2=x2+/4.方程W+3x - 1=0的根的情况是(A.有两个相等的实数根C.没有实数根5•国家体育局主办的第二届全国青年运动会于2021年在省城太原举行为筹办本届赛事,太原市将在汾河南延段建设“水上运动中心”,预计总投资额为31亿元.数据31亿元用科学记数法表示为()A. 31X109元 E. 31 X 10s元C. 3.1X10®元D. 3.1X105元6.《九章算术》是我国古代的数学著作,是《算经十书》中最重要的一种,大约成书于公元前200 -前50年《九章算术》不仅最早提到分数问题还详细记录了《方程》等内容的类型及详细解法,是当时世界上最为重要的数学文献.公元263年,为《九章算术》C.50°D. 60°E・x z-rx=x5D.(2=V6B.有两个不相等的实数根D・只有一个实数根作注本的数学家是()A.欧拉B.刘微7.卞列调查方式适合用普查的是(A.调查一批某种灯泡的使用寿命C. 了解一沓钞票中有没有假钞c・祖冲之D・华罗庚)B. 了解我国八年级学生的视力状况D.了解某市中学生的课外阅读量8・如图所示几何体的左视图是( )题的过程中体现的主要数学思想是()E. 数形结合思想 D.分类讨论思想10. 如图,正方形ABCD 的边长为8,分别以正方形的三边为直径在正方形内部作半圆,则阴影部分的面积之和是()二、填空題11. 计算(-2石—2) (2^5-2)的结果是_.12.已知反比例函数y=— 的图象在每一象限内y 随尤的增人而增大,则k 的取值范 x围是_. 13. 为了美化环境,培养中学生爱国主义情操,团省委组织部分中学的团员去西山植树, 某校团委领到一批树苗,若每人植4棵,还剩37棵,若每人植6棵,最后一人有树植, 但不足3棵,这批树苗共有—棵.14. 如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F, 再分别以点B 、F 为圆心,大于=BF 的相同长度为半径画弧,两弧交于点P :连接AP2并延长交BC 于点&连接EF.若四边形ABEF 的周长为16, ZC=6(T ,则四边形A S C. | ... |9.《庄子》一书里有: “一尺之極(木棍), 口取其半,万世不竭(尽,完)”这句话可以用数学符号表示:1 1 1 2+F + F 也可以用图形表示.上述研究问 A.函数思想C.公理化思想 A. 32 E. C. IO TT +2D. 8JI +1B.ABEF 的面积是—・15. 如图,在RtAABC 中,ZACB=90^ , AC=BC=6.点D 是AC 边上的一点,且AD=2,以AD 为直角边作等腰直角^ADE.连接BE 并取BE 的中点F,连接CF,则三、解答题16. (1)计算:(屁—£)xVJ+屁;(2)先化简,再求值:(1 +丄)十匸1,其中x=V3-lx-2 2x-417・解方程:3x (x ・4) =4x (x - 4),18. 今年省城各城区相继召开了创建全国文明城市推进人会.某校为了将"创城”工作 做到更好,教务处、团委和体育组联合组织成立三个新社团,分别是篮球社团、排球社将七、八年级同学报名情况绘制了卞面不完整的统计图•请解答卜列问题:七、八年诙社团超唱呪的 (1)七、八年级新社团的报名总人数是(2)请你把条形统计图补充完整: (3) _____________________________________________________ 在扇形统计图中,表示“排球”的扇形圆心角度数为 _________________________________________ :(4) 从报名八年级足球社团的学生“张明”“李力” “王华”3人中选取其中两人去 参加学校的社团年度表彰会,请用树状图或列表法求出“张明”和“王华” 一起被选中 的概率是多少?19. 传统文化与我们生活息息相关,中华传统文化包拾古文古诗、词语、乐曲、赋、民 族音乐、民族团、足球社团,经统计,! □八年簽1■ • A • ----------- 1..... T2 *; ..... T~I ■' aaaaaa | r a *注球咤 足菜龜 ADCF 的长为.戏剧、曲艺、国画、书法、对联、灯谜、射覆、酒令、歇后语等.在中华优秀传统文化进校园活动中,某校为学生请“戏曲进校园”和民族音乐”做节目演出,其中一场“戏曲进校园”的价格比一场“民族音乐”节目演出的价格贵600元,用20000元购买“戏曲进校园”的场数是用8800元购买“民族音乐节目演出场数的2倍, 求一场“民族音乐”节目演出的价格.20•阅读与思考:阿基米德(公元前287年一公元前212年),伟人的古希腊撫学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,阿基米德流传于世的著作有10余种,多为希腊文手稿卞面是《阿基米德全集》中记载的一个命题:AB是OO的弦,点C在O0上,且CD丄AB于点D,在弦AB上取点E,使AD=D£,点F是BC上的一点,且CF = C4,连接可得BF=BE.(1)将上述问题中弦AB改为直径AB,如图1所示,试证明(2)如图2所示,若直径AB=10, EO=t()B,作直线/与€)0相切于点F.过点B 作BPJJ于点P.求的长.21.为提升城市品味、改善居民生活环境,我省某市拟对某条河沿线十余个地块进行片区改造,其中道路改造是难度较人的工程如图是某段河道坡路的横截面,从点A到点从点B到点C是两段不同坡度的坡路,CM是一段水平路段,CM与水平地面AN的距离为12米.已知山坡路AB的路面长10米,坡角BAN =150 ,山坡路BC与水平面的夹角为30° ,为了降低坡度,方便通行,决定降低坡路BC的坡度,得到新的山坡AD, 降低后BD与CM相交于点D,点D A, 3在同一条直线上,即ZDAN=0 .为确定施工点D的位置,求整个山坡路AD的长和CD的长度(sml5° =0.26,cosl5° =0.97, tanl5° ~0.27,sin30° =0.50, cos30° =0.87, tan3O° =0.58 结果精确到0.1 米)如图1,抛物线y=A-2+—x+3与;i轴交于C、F两点(点C在点F左边),与y轴交于4点D, AD=2,点B坐标为(-4, 5),点E为AB上一点,且BE=ED,连接CD, CB, CE.(1)求点C、D、E的坐标;(2)如图2,延长交;I轴于点M,请判断ACEM的形状,并说明理由;(3)在图2的基础上,将△C£M沿着CE翻折,使点M落在点M处,请判断点M是否在此抛物线上,并说明理由.E1 图223.综合与实践:问题情境:(1)如图1,点E是正方形ABCD边CD上的一点,连接将ZDBE 绕点B顺针旋转90° ,旋转后角的两边分别与射线DA交于点F和点G.①线段BE和BF的数量关系是__________ ;②写出线段DE、DF和BD之间的数量关系,并说明理由:操作探究:(2)在菱形ABCD中,ZADC=60”,点E是菱形ABCD边CD所在直线上的一点,连接加、BE,将ZDBE绕点B顺时针旋转120° ,旋转后角的两边分别与射线D4交于点F和点G.①如图2,点E在线段DC上时,请探究线段DE、DF和BD之间的数量关系,写出结论并给出证明.②如图3,点E在线段CD的延长线上时,BE交射线DA于点M,若DE=DC=2a,直接写出线段FM和AG的长度.(图1)(图2)(图3)参考答案1. B【分析】由相反数的定义可以直接判断.【详解】由"的相反数是JI,得ci= -忑,故选B.【点睛】本题考查了相反数的概念,是基础题.2.C【解析】【分析】由平行线的性质得Z3 = 40。

2021年中考数学真题试卷(13)(解析版)

2021年中考数学真题试卷(13)(解析版)

第1页,共7页2021年中考数学真题试卷考试时间120分钟。

满分120分。

注意事项:1、答题前,考生需在答题卡左侧划线处完整填写自己的信息,并将自己的准考证号填写清楚,在准考证号区域用2B 铅笔填涂考号。

要求粘贴条形码的市、县(区),考生应认真核对条形码上的姓名、准考证号,将条形码粘贴在指定位置上。

2、答题时必须使用黑色中性(签字)笔或黑色墨迹钢笔书写,字迹工整,笔迹清楚。

3、按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持答题卡卡面清洁,不折叠,不破损。

一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各式中正确的是( )A.a 3·a 2=a 6B. 3ab-2ab=1C.123162+=+a a a D. a(a-3)= a 2-3a 2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是( )A.中位数是3,众数是2B. 众数是1,平均数是2C.中位数是2,众数是2D. 中位数是3,平均数是2.5人数(人) 4 6 ·· · ·E FA第2页,共7页3.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是( )A.41 B. 21 C. 53 D. 434. 如图摆放的一副学生用直角三角板∠F=30°,∠C=45°,AB 与DE 相交于点G ,当EF ∥BC 时,∠EGB 的度数是( )A.135°B. 120°C. 115°D. 105°5.如图,菱形ABCD 的边长为13,对角线AC=24,点E 、F 分别是边CD 、BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG=( )A.13B.10C.12D.56.已知:如图,等腰直角三角形ABC 中,∠C =90°,AC=2,以点C 为圆心画弧与斜边AB 相切于点D ,则图中阴影部分的面积为( )A.41π-B.41-π C.42π- D. 41π+AB GE D CF第5题·DACB第6题图FE第3页,共7页7.如图,函数11+=x y 与函数xy 22=的图象相交于点M (1,m ),N (-2,n ).若21y y >,则x 的取值范围是( )A.x <-2或0<x <1B. x <-2或x >1C.-2<x <0或0<x <1D. -2<x <0或x >18.如图2是图1长方体的三视图,若用S 表示面积,S 主=a 2,S 左=a 2+a ,则S 俯=( ) A. a 2+a B. 2a 2C. a 2+2a+1 D. 2a 2+a 二、填空题(本题共8小题,每小题3分,共24分) 9.分解因式:3a 2-6a+3=_________. 10.若二次函数k x xy ++-=22的图象与x 轴有两个交点,则k 的取值范围是________.11.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是_______.12.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小。

2021年山西省中考数学真题试卷(解析版)

2021年山西省中考数学真题试卷(解析版)

2021中考备战 年 山西省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2021中考备战 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河, 黄河壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后,再随机摸出一个 球 ,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种,∴ P ( 两 次 都 摸 到 黄 球 ) =498.如 图 ,在 Rt △ABC 中 ,∠ ACB=90°,∠ A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6 D.【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:+-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴+-1) =)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2021中考备战年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 为______.【答案】【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯2=∴AF = 2FG =15.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF =12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)2104362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .∠ A 的 度 数38°(1) 请帮助tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】 三 角 函 数 的 应 用 【解析】( 1) 解: 过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中, ∠ ADC=90°, ∠ A=38°.AD + BD = AB = 234 . ∴ 54x + 2x = 234.解得 x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2021中考备战 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐号”相比 ,“复 兴 号” 列车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 . 答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8 分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 :在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’ =Y’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交 BD 于点 Z.第 四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部 分 证明: 证明: A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ又 ∠A'BZ'=∠ABZ. ∴△BA ' Z△BAZ∴Z ' A ' = BZ ' .ZA BZ同 理 可 得 Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' .YZ BZ ZA YZZ ' A ' = Y ' Z ' , ∴ZA = YZ . ...任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / Z ∴A , 四边形 AXYZ 是 平 行 四 边 形 . ZA = YZ , ∴ AXYZ 是菱形 ( 2) 答 :证明: C D = C B , ∴∠1 = ∠2 ZY / / AC , ∴∠1 = ∠3 . ∴∠2=∠3 . ∴YB = YZ . 四边形 AXYZ 是 菱 形 , ∴AX=XY=YZ. ∴AX=BY=XY.(3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) .A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存 在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; (3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 . 【考点】 几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG=2FQ . PE ∥ AC , ∴ ∠1 = ∠2 . FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

2021年山西省中考数学试题(Word精校版带标准答案)

2021年山西省中考数学试题(Word精校版带标准答案)

2021年山西省中考数学试题第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算−2+8的结果是()A.−6B.6C.−10D.102.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()3.下列运算正确的是()A.(−m2n) 3=−m6n3B.m5−m3=m2C.(m+2) 2=m2+4D.(12m4−3m)÷3m=4m34.《中国核能发展报告2020》蓝皮书显示,2020年我国核能发电量为3662.43亿千瓦时,相当于造林77.14万公顷.己知1公顷=104平方米,则数据77.14万公顷用科学记数法表示为()A.77.14×l04平方米B.7.714×107平方米C.77.14×l08平方米D.7.714×109平方米5.己知反比例函数y= 6x,则下列描述不正确的是()A.图象位于第一、第三象限B.图象必经过点(4, 3 2 )C.图象不可能与坐标轴相交D.y随x的增大而减小6. 每天登录“学习强国”App 进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()星期 一 二 三 四 五 六 日 收入(点) 15212727213021A .27点,21点B .21点,27点C .21点,21点D .24点,21点7. 如图在⊙O 中,AB 切⊙O 于点A ,连接OB 交⊙O 于点C ,过点A 作AD //OB 交⊙O 于点D ,连接CD .若∠B =50°,则∠OCD 为( ) A .15° B .20° C .25° D .30°8. 在勾股定理的学习过程中,我们已经学会了运用以下图形,验证著名的勾股定理.这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是 A .统计思想 B .分类思想 C .数形结合思想D .函数思想9. 如图,正六边形ABCDEF 的边长为2,以A 为圆心,AC 的长为半径画孤,得EC ︵,连接AC 、AE ,则图中阴影部分的面积为( ) A .2π B .4πC .33 πD .233 π10.抛物线的函数表达式为y =3(x −2)2+1,若将工轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( ) A .y =3(x +1)2+3 B .y =3(x −5)2+3 C .y =3(x −5)2−1 D .y =3(x +1)2−1第II 卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分) 11.计算:12+27= .12.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A ,B 两点的坐标分别为(− 2,2),(− 3,0), 则叶杆“底部”点C 的坐标为 .13.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,BD =8,AC=6,OE //AB ,交BC 于点E ,则OE 的长为 .14.太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯AB 的坡度i =5:12(i 为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A 以0.5米/秒的速度用时40秒到达扶梯顶端B ,则王老师上升的铅直高度BC 为 米.15.如图,在△ABC 中,点D 是AB 边上的一点,且AD =3BD ,连接CD 并取CD 的中点E ,连接BE ,若∠ACD =∠BED =45°,且CD =62,则AB 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分)(1)计算:(−1)4×|−8|+(−2)3×( 12 )2(2)下面是小明同学解不等式的过程,请认真阅读并完成响应任务. 2x -1 3 > 3x -2 2 − 1解:2(2x – 1)>3(3x – 2) − 6 ……………………第一步 4x −2>9x − 6 − 6 ……………………第二步 4x −9x >− 6 − 6+2 ……………………第三步 −5x >−10 ……………………第四步 x >2……………………第五步任务一:填空:①以上解题过程中,第二步是依据 (运算律)进行变形的;②第 步开始出现错误,这一步错误的原因是 _______________________________; 任务二:请直接写出该不等式的正确解集.17.(本题6分)2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).18.(本题7分)太原武宿国际机场简称”太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太榆路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的 5 3 倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.19.(本题10分)近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典诵读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为A ,B ,C ,D ).为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成如下所示的统计图和统计表(均不完整).请根据图表提供的信息,解答下列问题:(1)参与本次问卷调查的总人数为 人,统计表中C 的百分比m 为 ; (2)请补全统计图;(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示C 类比赛的扇形圆心角的度数;若不可行,请说明理由; (4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为C ,X ,Q ,D ),由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解.请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.20.(本题8分)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F= 95 C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式 1R=1R1+1R2求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性.①用公式 1R=1R1+1R2计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,角AOB=120°,OC是△AOB的角分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.21.(本题8分)某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌.某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得AB=100 cm,BC=80 cm,∠ABC=120°,∠BCD=75°,四边形DEFG 为矩形,且DE=5 cm.请帮助该小组求出指示牌最高点A到地面EF的距离(结果精确到0.1 cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,2≈1.41).22.(本题13分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在□ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将□ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C',连接DC' 并延长交AB于点G,请判断AG与BG的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将□ABCD沿过点B的直线折叠,如图③,点A的对应点为A',使A'B⊥CD于点H,折痕交AD于点M,连接A'M,交CD于点N.该小组提出一个向题:若此□ABCD的面积为20,边长AB=5,BC=25,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.23.(本题13分)综合与探究如图,抛物线y= 12 x2+2x − 6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A,B,C三点的坐标并直接写出直线AC,BC的函数表达式;(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN =S△AOC时,请直接写出DM的长.参考答案1.B2.B3.A4.D5.D6.C7.B8.C9.A10.C11.5312.(2,-3)13. 5 214. 100 1315.41316.(1)(2)乘法分配律(或分配律);五;不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);x<217.18.19.(1)120;50%(2)(3)20.(1)答案不唯一,如:图算法方便,只直观;或不用公式计算即可得出结果等。

2021年中考一模考试《数学卷》含答案解析

2021年中考一模考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。

2021年中考数学试卷(含答案)

2021年中考数学试卷(含答案)

2021年高中阶段学校招生考试数学试卷本试卷满分150分,考试时间120分钟。

注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡上,并检查条形码粘贴是否正确。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.) 1. -2021的绝对值是A .-2021B .2021C .2021±D .120212.下列计算中,正确的是A .2239a a +=+() B . 842a a a ÷=C . 22a b a b -=-() D . 2222a a a += 3.如右图所示的几何体是由6个完全相同的小正方体搭成,其主视图是A .B .C .D .4. 国家统计局2021年5月11日公布了第七次全国人口普查结果,全国总人口约14.1亿人, 将14.1亿用科学记数法表示为A. 14.1×108 B . 1.41×108 C . 1.41×109D . 0.141×10105. 如右图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为A .12cm 2B .9cm 2C .6cm 2D .3cm 2 6. 下列说法正确的是A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式141298523x x b y a a π++,,,,,中,142x b a aπ+,,是分式D. 若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是47. 不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是 A. B .C .D .8. 如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是 A . 1 B .43C .32D . 539. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为43,∠CDF =15°,则阴影部分的面积为 A .16123π- B .16243π- C .20123π- D .20243π-10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ≠);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2. 其中正确的结论有 A. 2个B . 3个 C .4个D . 5个二、填空题(本大题共5个小题,每小题4分,共20分) 11. 若20a a b -++=,则ab =▲.12. 如右图,在△ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则△ABD 的周长是▲.13. 已知关于x ,y 的二元一次方程组235423x y ax y a +=⎧⎨+=+⎩满足x -y >0,则a 的取值范围是▲. 14. 下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第▲个图形共有210个小球.15. 如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:①ABF=DBE ∠∠②ABF DBE ∽③AF BD ⊥④22BG BH BD = ⑤若CE:DE=1:3,则BH:DH=17:16 你认为其中正确是▲(填写序号)三、计算或解答题(本大题共10个小题,共90分) 16.(7分)计算:11tan 60233122-⎛⎫-+︒--+-- ⎪⎝⎭(π)▲17.(7分)先化简,再求值:⎪⎭⎫ ⎝⎛++-÷+--339442223m m m m m m ,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数.▲18.(8分)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F . (1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形, 并说明理由.▲19.(9分)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加。

2021-2022学年山西省太原市八年级(上)期中数学试卷-附答案详解

2021-2022学年山西省太原市八年级(上)期中数学试卷-附答案详解

2021-2022学年山西省太原市八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.16的平方根是()A. ±16B. ±8C. ±4D. ±22.如图,Rt△ABC中,∠ACB=90°,图中三个正方形的面积S1,S2,S3之间的关系为()A. S2+S3=S1B. S1+S3=S2C. S1+S2=S3D. S12+S22=S323.平面直角坐标系中,点A在x轴正半轴上,且距离原点4个单位长度,则点A的坐标为()A. (4,0)B. (0,4)C. (−4,0)D. (0,−4)4.在平面直角坐标系中,正比例函数y=−3x的图象经过的象限是()A. 第一、三象限B. 第二、四象限C. 第一、四象限D. 第二、三象限5.面积为5的正方形的边长是()A. 有理数B. 无理数C. 整数D. 分数6.今年7月11日至18日,第十四届国际数学教育大会(ICME14)在上海举行.如图是ICME14的会标,包含了大量的中国数学元素--河图、洛书、弦图、八卦等,其中的“弦图”也是中国数学会的徽标.下列中国古代数学成就中,与“弦图”有关的是()A. 天元术B. 正负术C. 勾股定理D. 杨辉三角7.下列各式正确的是()3=−2A. √9=±3B. |−√3|=−√3C. √(−2)2=−2D. √(−2)38.下列图象中,表示一次函数的是()A. B.C. D.9.如图,平面直角坐标系中,长方形OABC的顶点O为坐标原点,顶点A的坐标为(0,2),顶点B在第二象限.若长方形OABC的面积为6,则点B的坐标为()A. (−3,2)B. (−2,3)C. (3,2)D. (−3,−2)10.已知点P(x1,y1),Q(x2,y2)是第一象限内正比例函数y=4x图象上的两个点.若x2=2x1,则下列说法正确的是()y1 D. y2=2y1A. y2=4y1B. y2=8y1C. y2=12二、填空题(本大题共5小题,共15.0分)11.把√8化为最简二次根式为______.12.长征是中国共产党和中国革命事业从挫折走向胜利的伟大转折点.如图是红一方面军长征路线图,如果表示会宁会师的点的坐标为(2,2),表示吴起镇会师的点的坐标为(3,3),则表示瑞金的点的坐标为______.13.数学活动课上,同学们利用升旗的绳子测量旗杆的高度.如图,将绳子紧靠旗杆拉直,测得绳子比旗杆多0.5m;将绳子拉直到底端恰好接触地面时,测得底端距离旗杆3.5m,若设旗杆高为x m,则x满足的方程为______.14.在画一次函数y=kx+b的图象时,小雯同学列表如下,其中“▲”表示的数为______x…−2−1012…y…531▲−3…15.如图,已知△ABC中,∠ACB=90°,BC=6,AC=8,点D是AC边上的一个动点.将△ABC沿BD所在直线折叠,点C的对应点为点E.请从A,B两题中任选一题作答.我选择______题.A.如图1,若CD=2,则C,E两点之间的距离为______.B.如图2,若点E在AB边上,则C,E两点之间的距离为______.三、解答题(本大题共8小题,共55.0分)16.计算(1)√18+√2−√32;(2)√27×√43−10;(3)(2√3+1)(2√3−1);(4)√20+√30√5−√3÷√12.17.如图,平面直角坐标系中,已知A(−4,−1),B(−3,−5),C(−1,−2),△ABC与△DEF关于y轴对称.(1)写出点A,B,C的对应点D,E,F的坐标:D______,E______,F______;(2)请在图中画出与△DEF关于x轴对称的△D′E′F′;(3)直接写出△DEF与△D′E′F′的对应顶点的坐标满足的关系:横坐标______,纵坐标______.18.高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空物体自由下落到地面的时(不考虑风速的影响,g≈间t(单位:s)和高度ℎ(单位:m)近似满足公式t=√2ℎg9.8m/s2).知一幢大楼高78.4m,若一颗鸡蛋从楼顶自由落下,求落到地面所用时间.19.如图,正比例函数y=kx(k≠0)的图象经过点A(−2,1).(1)求k的值;(2)请在如图的坐标系中画出一次函数y=−2x+3的图象;(3)根据图象,写出与一次函数y=−2x+3有关的一个结论:______.20.问题情境:在山地,气温随着海拔升高而降低大致海拔每升高1000米,气温下降6℃.某日,登山队测得山脚处的气温为4℃.特例分析:(1)若同一时刻此山地某处的海拔比山脚高2000米,该处的气温为______℃;建立模型:(2)设同一时刻此山地某处的海拔比山脚高x米,该处的气温为y℃.请写出y与x之间的函数关系式______;问题解决:(3)若此山地某处的气温为−11℃,该处的海拔比山脚高多少米?21.2021年10月10日是辛亥革命110周年纪念日.为进一步弘扬辛亥革命中体现的中华民族的伟大革命精神,社区开展了系列纪念活动.如图,有一块四边形空地,社区计划将其布置成展区,陈列有关辛亥革命的历史图片.现测得AB=AD=26m,BC=16m,CD=12m,且BD=20m.(1)试说明∠BCD=90°;(2)求四边形展区(阴影部分)的面积.22.阅读与思考:阅读下列材料,完成相应的任务:欧几里德数一般地,给定单位长度1,一个数如果可以借助图形构造出来,我们就称这个数为欧几里德数.例如,如图1所示的方格图中,设每个小正方形的边长为单位1.借助方格图,可以构造出线段AB,CD,EF分别表示正整数2,3,4;也可以构造出线.事实上,所有的正有理数都是欧几里段MN表示正分数12德数.任务:如图2,图3,图4所示的方格图中,每个小正方形的边长均为单位长度1,(1)请在图2中用两种方法构造线段表示正整数5(该线段的端点均为格点);(2)小彬由材料中的结论出发展开联想,经过探究,发现正无理数√2,√3也是欧几里德数,可分别用图3中两个三角形的边XY,PQ表示.其思考与作图方法如下:√2=√12+12,取网格中MX=MY=1,且∠XMY=90°,连接XY,则XY=√12+12=√2.√3=√22−12,取网格中线段ON=2,OQ=1,以点O为圆心,ON长为半径作弧交网格线于点P,连接OP,且PQ⊥OQ,则PQ=√3.请从A,B两题中任选一题作答.我选择______题.A.在图4中借助网格和尺规,用两种方法构造三角形,使三角形的一边表示欧几里德数2√2(保留作图痕迹,不写作法).B.在图4中借助网格和尺规,用两种方法构造三角形,使三角形的一边表示欧几里德数2√3(保留作图痕迹,不写作法).23.综合与探究:x+3图象分别交x轴、y轴于点A,B,如图1,平面直角坐标系中,一次函数y=12一次函数y=−x+b的图象经过点B,并与x轴交于点C点P是直线AB上的一个动点.(1)求A,B两点的坐标;(2)求直线BC的表达式,并直接写出点C的坐标;(3)请从A,B两题中任选一题作答.我选择______题.A.试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;B.如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC?若存在,求出点P的坐标;若不存在,说明理由.答案和解析1.【答案】C【解析】解:∵(±4)2=16,∴16的平方根是±4.故选:C.根据平方根的定义解决此题.本题主要考查平方根,熟练掌握平方根的定义是解决本题的关键.2.【答案】C【解析】解:∵S1,S2,S3分别表示三个正方形的面积,∴S1=BC2,S3=AB2,S2=AC2,∵∠ACB=90°,∴AC2+BC2=AB2,∴S1+S2=S3,故选:C.根据题意和题目中的图形,可以发现S1=BC2,S3=AB2,S2=AC2,再根据勾股定理解答即可.本题考查勾股定理、正方形的性质,解答本题的关键是发现S1=BC2,S3=AB2,S2= AC2.3.【答案】A【解析】解:∵点A在x轴上,∴纵坐标为0,∵点A在x轴正半轴上,且距离原点4个单位长度,∴横坐标为4,∴点A的坐标是(4,0).故选:A.x轴上的点的纵坐标为0,距离原点4个单位长度,则横坐标为4,进而可得点A的坐标.本题考查点的坐标的相关知识;用到的知识点为:x轴上的点的纵坐标为0;x轴正半轴上的点的横坐标为正数.4.【答案】B【解析】解:在正比例函数y=−3x中,∵k=−3<0,∴正比例函数y=−3x的图象经过第二、四象限,故选:B.根据正比例函数y=kx(k≠0)k的符号即可确定正比例函数y=−3x的图象经过的象限.本题主要考查了正比例函数的性质,熟记“当k<0时,正比例函数y=kx(k≠0)的图象经过第二、四象限”是解决问题的关键.5.【答案】B【解析】解:面积为5的正方形的边长为√5,是无理数.故选:B.根据无理数的定义即可判断选择项.此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.6.【答案】C【解析】解:我国东汉数学家赵爽在《周髀算经》中利用“弦图”给出了勾股定理的证明,所以与“弦图”有关的是勾股定理,故选:C.会标中的“弦图”是古代数学家赵爽在证明勾股定理时使用的图形,所以与“弦图”有关的是勾股定理.此题考查勾股定理及与勾股定理有关的数学常识,要求学生平时学习应注意这方面知识的积累.7.【答案】D【解析】解:A.√9=3,故此选项不合题意;B.|−√3|=√3,故此选项不合题意;C.√(−2)2=2,故此选项不合题意;3=−2,故此选项符合题意.D.√(−2)3故选:D.直接利用绝对值的性质以及二次根式的性质、立方根的性质分别化简得出答案.此题主要考查了实数的性质,正确化简各数是解题关键.8.【答案】D【解析】解:一次函数的图象是一条直线,观察四个选项可知,只有选项D符合.故选:D.根据一次函数的图象即可得.本题考查了一次函数的图象,掌握理解一次函数的图象特点是解题关键.9.【答案】A【解析】解:∵点A的坐标为(0,2),∴OA=2,∵长方形OABC的面积为6,∴AB×AO=6,∴AB=3,∵AB//CO,BC//AO,∴点B(−3,2),故选:A.由矩形的性质面积关系可求AB=3,即可求解.本题考查了矩形的性质,坐标与图形性质,掌握矩形的性质是解题的关键.10.【答案】D【解析】解:∵点P(x1,y1),Q(x2,y2)是第一象限内正比例函数y=4x图象上的两个点,∴y1=4x1,y2=4x2,又∵x2=2x1,∴y2=4x2=8x1=2y1.故选:D.由点P(x1,y1),Q(x2,y2)是第一象限内正比例函数y=4x图象上的两个点,利用一次函数图象上点的坐标特征可得出y1=4x1,y2=4x2,结合x2=2x1,可得出y2=2y1.本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征及x2= 2x1,找出y2=2y1是解题的关键.11.【答案】2√2【解析】解:√8=√4×2=2√2.故答案为:2√2.直接利用二次根式的性质化简得出答案.此题主要考查了最简二次根式,正确化简二次根式是解题关键.12.【答案】(6,−3)【解析】解:建立平面直角坐标系,如图所示:表示瑞金的点的坐标为(6,−3).故答案为:(6,−3).由已知点建立平面直角坐标系,得出原点位置,即可得出答案.此题主要考查了坐标确定位置,正确得出原点位置是解题关键.13.【答案】x2+3.52=(x+0.5)2【解析】解:设旗杆高度为xm,可得x2+3.52=(x+0.5)2,故答案为:x2+3.52=(x+0.5)2.本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.14.【答案】−1【解析】解:设该函数的解析式为y =kx +b ,∵点(−1,3),(0,1)在该函数图象上,∴{−k +b =3b =1, 解得{k =−2b =1, 即该函数解析式为y =−2x +1,当x =1时,y =−2×1+1=−2+1=−1,故答案为:−1.根据表格中的数据,可以先求出该函数的解析式,然后将x =1代入求出相应的y 的值即可.本题考查一次函数的图象,解答本题的关键是求出相应的函数解析式.15.【答案】A 或B 6√105 12√55【解析】解:A 、连接CE 交BD 于F ,如图:∵∠ACB =90°,BC =6,CD =2,∴BD =√BC 2+CD 2=2√10,∵将△ABC 沿BD 所在直线折叠,点C 的对应点为点E ,∴BD 是CE 的垂直平分线,即BD ⊥CE ,CF =EF =12CE ,∵2S △BCD =BC ⋅CD =BD ⋅CF ,∴CF =BC⋅CDBD =2√10=3√105, ∴CE =2CF =6√105;故答案为:6√105;B、连接CE交BD于F,如图:∵∠ACB=90°,BC=6,AC=8,∴AB=√BC2+AC2=10,∵将△ABC沿BD所在直线折叠,点C的对应点为点E,∴BE=BC=6,CD=DE,∴AE=AB−BE=4,设CD=DE=x,则AD=8−x,在Rt△ADE中,DE2+AE2=AD2,∴x2+42=(8−x)2,解得x=3,∴CD=3,同A的方法,CF=BC⋅CDBD =√62+32=6√55,∴CE=2CF=12√55,故答案为:12√55.A、连接CE交BD于F,由∠ACB=90°,BC=6,CD=2,得BD=√BC2+CD2=2√10,根据2S△BCD=BC⋅CD=BD⋅CF,即得CF=BC⋅CDBD =3√105,故CE=2CF=6√105;B、连接CE交BD于F,由∠ACB=90°,BC=6,AC=8,将△ABC沿BD所在直线折叠,点C的对应点为点E,可得AE=AB−BE=4,设CD=DE=x,则AD=8−x,在Rt△ADE中,由勾股定理可得CD=3,同A的方法即得CF=BC⋅CDBD =6√55,故CE=2CF=12√55.本题考查直角三角形中的折叠问题,解题的关键是掌握折叠的性质,熟练勾股定理的应用.16.【答案】解:(1)原式=3√2+√2−4√2(2)原式=√27×43−10 =6−10=−4;(3)原式=12−1=11;(4)原式=√205+√305−√3×2=2+√6−√6=2.【解析】(1)把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘法法则运算;(3)利用平方差公式计算;(4)利用二次根式的除法法则运算,然后化简后合并即可.本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法法则和除法法则是解决问题的关键.17.【答案】(4,−1)(3,−5)(1,−2)相同互为相反数【解析】解:(1)D(4,−1),E(3,−5),F(1,−2).故答案为:(4,−1),(3,−5),(1,−2);(2)如图,△D′E′F′即为所求;(3)△DEF与△D′E′F′的对应顶点的坐标满足的关系:横坐标相同,纵坐标互为相反数,故答案为:相同,互为相反数.(1)根据D,E,F的点的位置写出坐标即可;(3)利用轴对称的性质判定即可.本题考查作图−轴对称变换,解题的关键是掌握轴对称变换的性质,属于中考常考题型.18.【答案】解:将ℎ=78.4,g=9.8代入公式t=√2ℎ,g=4得:t=√2×78.49.8答:落到地面所用时间为4s.【解析】直接将ℎ=78.4,g=9.8代入公式计算即可.本题考查二次根式的应用,解答本题的关键是明确题意,正确代入即可.19.【答案】y随x的增大而减小【解析】解:(1))∵正比例函数y=kx(k≠0)的图象经过点(−2,1).∴1=−2k,;解得:k=−12(2)根据一次函数y=−2x+3经过的点(0,3)和(1,1),过这两点画一条直线,如图所示;(3)答案不唯一,如:y随x的增大而减小.故答案为:y随x的增大而减小.(1)把点(−2,1)代入y=kx(k≠0)可得k的值;(2)根据一次函数y=−2x+3经过的点(0,3)和(1,1),然后画出图象即可;(3)根据图象:y随x的增大而减小.此题主要考查了一次函数的性质,以及函数图象上点的坐标特点,待定系数法求一次函数解析式,关键是掌握一次函数图象上点的坐标特征.20.【答案】−8y=−0.006x+4=−8(℃);【解析】解:(1)根据题意可知,该处的气温为4−6×20001000(2)根据题意可知,该处的气温y=4−6×x1000=−0.006x+4;故答案为:y=−0.006x+4;(3)令y=−11,即−0.006x+4=−11,解得x=2500.∴该处的海拔比山脚高2500米.(1)根据题意可知,该处的气温为4−6×20001000=−8(℃);(2)根据题意可知,该处的气温y=4−6×x1000=−0.006x+4;(3)令y=−11,求出x即可.本题考查一次函数的应用及理解题意的能力,关键是根据海拔每增加一千米,气温下降6摄氏度得出海拔和气温的关系.21.【答案】解:(1)∵△BCD中,BC=16m,CD=12m,BD=20m,∴BC2+CD2=162+122=400,BD2=202=400,∴BC2+CD2=BD2,∴△BCD是直角三角形,∠BCD=90°;(2)过点A作AE⊥BD于点E,∴∠AEB=90°,∵AB=AD,∴BE=DE=12BD=10(m),在Rt△ABE中,AB=26m,∴AE=√AB2−BE2=√262−102=24(m),∴S△ABD=12BD⋅AE=12×20×24=240(m2),∵S△BCD=12BC⋅CD=12×16×12=96(m2),∴S=S△ABD−S△BCD=240−96=144(m2).阴影面积【解析】(1)连接BD,由勾股定理的逆定理证得△BCD是直角三角形,即可求得∠BCD= 90°;(2)过A作AE⊥BD于E,由等腰三角形的性质求得BE,再由勾股定理求得AE,由三角形的面积公式可求得S△ABD和S△BCD,即可求得结论.本题主要考查了勾股定理和逆定理的应用,正确作出辅助线证得△ABD是直角三角形是解决问题的关键.22.【答案】A或B【解析】解:(1)如图1中,线段AB,线段CD即为所求;(2)A:如图4中,线段AB,线段EF即为所求;B:如图4中,线段PQ,线段MN即为所求.(1)利用数形结合的思想解决问题即可;(2)A:利用勾股定理,数形结合的思想解决问题即可;B:利用勾股定理,数形结合的思想解决问题即可.本题考查作图−应用与设计作图,解题的关键是学会利用勾股定理以及数形结合的思想解决问题,属于中考常考题型.23.【答案】A或B【解析】解:(1)当y=0时,12x+3=0,解得x=−6,则A点坐标为(−6,0);当x=0时,y=12x+3=3,则B点坐标为(0,3);(2)将B点坐标(0,3)代入一次函数y=−x+b得:b=3,∴直线BC的表达式为y=−x+3,当y=0时,−x+3=0,解得x=3,则C点坐标为(3,0);(3)A.过点P作PH⊥x轴于H,设点P(x,12x+3),∴PH=|12x+3|,∵A点坐标为(−6,0),C点坐标(3,0),∴AC=9,∵S△ACP=12AC⋅PH=12×9⋅PH=18,∴PH=4,∴12x+3=±4,当12x+3=4时,x=2;当12x+3=−4时,x=−14,∴存在,点P的坐标为(2,4)或(−14,−4);B.如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,12x+3),则Q(x,−x+3),∴PQ=|12x+3−(−x+3)|=|32x|,∵B点坐标(0,3),C点坐标(3,0),∴OB=OC=3,∴BC=3√2,∵PQ=BC,∴|32x|=3√2,解得:x=2√2或−2√2,∴存在,点P的坐标为(2√2,√2+3)或(−2√2,−√2+3).(1)根据坐标轴上点的坐标特征求A点和B点坐标;(2)将B点坐标(0,3)代入一次函数y=−x+b即可求解;(3)A.过点P作PH⊥x轴于H,设点P(x,12x+3),则PH=|12x+3|,根据S△ACP=12AC⋅PH=18可得PH的值,即可求解.B.过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,12x+3),则Q(x,−x+3),根据PQ=BC列方程求解即可.此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.第21页,共21页。

2021年-中考数学试卷(解析版)

2021年-中考数学试卷(解析版)

2021年中考数学试卷(解析版)一、选择题(共8小题,每小题3分,计24分。

每小题只有一个选项是符合题意的)1.(3分)计算:3×(﹣2)=()A.1 B.﹣1 C.6 D.﹣6【分析】根据有理数乘法法则进行运算.【解答】解:3×(﹣2)=﹣6.故选:D.【点评】本题考查有理数的乘法,熟练掌握有理数乘法法则是解题关键.2.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的定义进行解答即可.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.(3分)计算:(a3b)﹣2=()A.B.a6b2C.D.﹣2a3b【分析】直接利用负整数指数幂的性质分别化简得出答案.【解答】解:(a3b)﹣2==.故选:A.【点评】此题主要考查了负整数指数幂的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为()A.60°B.70°C.75°D.85°【分析】由三角形的内角和定义,可得∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,所以∠1=180°﹣(∠B+∠A+∠C),由此解答即可.【解答】解:∵∠1=∠B+∠ADB,∠ADB=∠A+∠C,∴∠1=180°﹣(∠B+∠A+∠C),∴∠1=180°﹣(25°+35°+50°),∴∠1=180°﹣110°,∴∠1=70°,故选:B.【点评】本题考查了三角形内角和定理和三角形外角性质,掌握这些知识点是解题的关键.5.(3分)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,∵tan∠ABD=,∴,故选:D.【点评】本题考查了菱形的性质,锐角三角函数,掌握菱形的性质是解题的关键.6.(3分)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5 B.5 C.﹣6 D.6【分析】根据平移的规律得到平移后抛物线的解析式为y=2(x+3)+m﹣1,然后把原点的坐标代入求值即可.【解答】解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.【点评】主要考查的是一次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式是解题的关键.7.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm【分析】过B作BM⊥AC于M,过D作DN⊥CE于N,由等腰三角形的性质得到AM=CM=3,CN=EN,根据全等三角形判定证得△BCM≌△CDN,得到BM=CN,在Rt△BCM中,根据勾股定理求出BM=4,进而求出.【解答】解:由题意知,AB=BC=CD=DE=5cm,AC=6cm,过B作BM⊥AC于M,过D作DN⊥CE于N,则∠BMC=∠CND=90°,AM=CM=AC=×6=3,CN=EN,∵CD⊥BC,∴∠BCD=90°,∴∠BCM+∠CBM=∠BCM+∠DCN=90°,∴∠CBM=∠DCN,在△BCM和△CDN中,,∴△BCM≌△CDN(AAS),∴BM=CN,在Rt△BCM中,∵BM=5,CM=3,∴BM===4,∴CN=4,∴CE=2CN=2×4=8,故选:D.【点评】本题主要考查了等腰三角形的性质和判定,等腰三角形的性质,勾股定理,正确作出辅助线,证得△BCM≌△CDN是解决问题的关键.8.(3分)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x …﹣2 0 1 3 …y … 6 ﹣4 ﹣6 ﹣4 …下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大【分析】设出二次函数的解析式,根据表中数据求出函数解析式即可判断.【解答】解:设二次函数的解析式为y=ax2+bx+c,由题知,解得,∴二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x﹣)2﹣,∴(1)函数图象开口向上,(2)与x轴的交点为(4,0)和(﹣1,0),(3)当x=时,函数有最小值为﹣,(4)函数对称轴为直线x=,根据图象可知当当x>时,y的值随x值的增大而增大,故选:C.【点评】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)分解因式x3+6x2+9x=x(x+3)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=x(9+6x+x2)=x(x+3)2.故答案为x(x+3)2【点评】本题考查了因式分解,利用了提公因式法、十字相乘法分解因式,注意分解要彻底.10.(3分)正九边形一个内角的度数为140°.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.故答案为:﹣2.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(3分)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)【分析】反比例函数的系数为﹣2<0,在每一个象限内,y随x的增大而增大.【解答】解:∵2m﹣1<0(m<),∴图象位于二、四象限,在每一个象限内,y随x的增大而增大,又∵0<1<3,∴y1<y2,故答案为:<.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.13.(3分)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切),则点A到⊙O上的点的距离的最大值为3+1.【分析】当⊙O与CB、CD相切时,点A到⊙O上的点Q的距离最大,如图,过O点作OE⊥BC于E,OF⊥CD 于F,根据切线的性质得到OE=OF=1,利用正方形的性质得到点O在AC上,然后计算出AQ的长即可.【解答】解:当⊙O与CB、CD相切时,点A到⊙O上的点Q的距离最大,如图,过O点作OE⊥BC于E,OF⊥CD于F,∴OE=OF=1,∴OC平分∠BCD,∵四边形ABCD为正方形,∴点O在AC上,∵AC=BC=4,OC=OE=,∴AQ=OA+OQ=4﹣+1=3+1,即点A到⊙O上的点的距离的最大值为3+1,故答案为3+1.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了正方形的性质.三、解答题(共13小题,计18分。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

山西省阳泉市2021年中考数学三模考试试卷(II)卷

山西省阳泉市2021年中考数学三模考试试卷(II)卷

山西省阳泉市2021年中考数学三模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列叙述正确的是()①数轴上的点与实数一一对应;②若a<b,则<;③若五个数的积为负数,则其中正因数有2个或4个;④近似数3.70是由a四舍五入得到的,则a的范围为3.695≤a<3.705;⑤连接两点的线段叫两点间的距离.A . ①②③⑤B . ①②④C . ②④⑤D . ①④2. (2分)(2020·沈阳模拟) 如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A .B .C .D .3. (2分)(2020·台州) 无理数在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间4. (2分) (2020八下·西安月考) 关于x的不等式组有5个整数解,则a的取值范围是()A . 1<a≤2B . 1<a<2C . 1≤a<2D . ﹣1≤a<05. (2分) (2018九上·台州期中) 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()A .B . 5C . 8D . 46. (2分)(2018·凉州) 如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A .B .C .D .7. (2分)为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x元,水笔每支为y元,那么下面列出的方程组中正确的是()A .B .C .D .8. (2分)已知:如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()A . 20B . 16C . 12D . 10二、填空题 (共6题;共8分)9. (1分) (2019八上·银川期中) ﹣2的绝对值是________.10. (1分)(2018·南宁模拟) 分解因式: ________.11. (1分)(2020·抚顺) 若一次函数的图象经过点,则 ________.12. (2分)(2017·中山模拟) 如图,EF为△ABC的中位线,△AEF的面积为6,则四边形EBCF的面积为________.13. (2分) (2020八上·萧山期末) 如图,在中,, .已知的中垂线交于点,交于点,则的值是________.14. (1分)写出一个开口向上,顶点是坐标原点的二次函数的解析式:________.三、解答题 (共10题;共48分)15. (5分)已知 , 的值.16. (2分)有4张不透明的卡片,除正面写有不同的数字外,其它均相同.将这四张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式y=kx+b中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b(1)求出k为负数的概率;(2)用树状图或列表法求一次函数y=kx+b的图象不经过第一象限的概率.17. (5分)如图,在长方形纸片ABCD中,AB=6cm,BC=10cm,将长方形纸片沿AE折叠,使点D落在BC边的点F处.试求折痕AE的长.18. (2分)(2020·温岭模拟) 如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)19. (2分)(2020·临海模拟) 如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4 ,求tan∠BAD的值.20. (2分) (2016七下·五莲期末) 某校就“遇见老人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查(每个被调查的学生必须选择而且只能在4种方式中选择一项),图1和图2是整理数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)该校随机抽查了________名学生;(2)将图1补充完整,在图2中,“视情况而定”部分所占的圆心角是________度;(3)估计该校2800名学生中采取“马上救助”的方式的人数.21. (2分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲、乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7 500元,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?22. (11分) (2017八下·黄山期末) 如图,已知反比例函数y= (k<0)的图象经过点A(- ,2),过点A作AB⊥x轴于点B,连结AO.(1)求k的值;(2)如图,若直线y=ax+b经过点A,与x轴相交于点C,且满足S△ABC=2S△AOC .求:①直线y=ax+b的表达式;②记直线y=ax+b与双曲线y= (k<0)的另一交点为D(n,﹣1),试求△AOD的面积S△AOD以及使得不等式ax+b>成立的x的取值范围.23. (2分)(2019·嘉定模拟) 已知:如图,在△ABC中,点D,E分别在边AB、 AC上,DE∥BC,∠ABE=∠C,(1)求证:(2)当BE平分∠ABC时,求证:24. (15分) (2018八上·合肥期中) 材料理解:如图1点P,Q是标准体育场400m跑道上两点,沿跑道从P 到Q既可以逆时针,也可以顺时针,我们把沿跑道从点P到点Q的顺时针路程与逆时针路程的较小者叫P、Q两点的最佳环距离.(如图1,PQ顺时针的路程为120m,逆时针的路程为280m,则PQ的最佳环距离为120m).问题提出:一次校运动800m预决赛中,如图2有甲、乙两名运动员他们同时同地从点M处出发,匀速跑步,他们之间的最佳环距离y(m)与乙用的时间x(s)之间的函数关系如图所示;解决以下问题:(1) a=________,乙的速度为________.(2) 求线段BC 的解析式,并写出自变量的范围.(3) 若本次运动会是1000m 预决赛,甲完成比赛后是否有可能比乙多跑一圈,计算说明.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共48分)15-1、16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太原市2021年中考数学试卷(II)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分)在-2,-1,0,1,2这五个数中,最大的数是()
A . -2
B . 0
C . 1
D . 2
2. (2分)据报道,5月28日参观2010上海世博会的人数达到35.6万,用科学记数法表示35.6万人是()
A . 3.56×101
B . 3.56×104
C . 3.56×105
D . 5.6×104
3. (2分)(2016·龙岩) 如图所示正三棱柱的主视图是()
A .
B .
C .
D .
4. (2分) (2017八下·福州期末) 一组数据:a-1,a,a, a+1,若添加一个数据a,下列说法错误的是()
A . 平均数不变
B . 中位数不变
C . 众数不变
D . 方差不变
5. (2分)关于x的一元二次方程x2-mx-2=0的根的情况是()
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 没有实数根
D . 无法确定
6. (2分) (2017九上·南山月考) 如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C 落在点C′处,BC′交AD于点E,则线段DE的长为().
A . 3
B .
C . 5
D .
7. (2分) (2020八下·椒江期末) 为了在甲、乙两名运动员中选拔一人发加全省射击比赛,对他们的射击水平进行考核.在相同的情况下,两人的比赛成绩经统计计算后如下表;
运动员射击次数中位数(环)方差平均数(环)
甲157 1.68
乙1580.78
某同学根据上表分析得出如下结论:①甲、乙两名运动员成绩的平均水平相同;②乙运动员优秀的次数多于甲运动员(环数≥8环为优秀);③甲运动员成绩的波动比乙大,上述结论正确的是()
A . ①②③
B . ①②
C . ①③
D . ②③
8. (2分)(2019·赤峰模拟) 以下命题的逆命题为真命题的是()
A . 对顶角相等
B . 同旁内角互补,两直线平行
C . 若a=b ,则a2=b2
D . 若a>0,b>0,则a2+b2>0
二、填空题 (共8题;共8分)
9. (1分)分式方程﹣ =0的解为x=________.
10. (1分) (2015九下·南昌期中) 分解因式:3x2﹣12x+12=________.
11. (1分) (2017七下·兰陵期末) 如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=________.
12. (1分)某种产品原来的成本为185元,经过两次降价后为y元,如果每次的降价率都为x,则y与x的函数关系式为________.
13. (1分)如图,边长为4cm 的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形,此时阴影部分的面积为________cm².
14. (1分)(2020·黄冈) 如图所示,将一个半径,圆心角的扇形纸板放置在水平面的一条射线上.在没有滑动的情况下,将扇形沿射线翻滚至再次回到上时,则半径的中点P运动的路线长为________ .
15. (1分) (2019八下·南昌期末) 如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为________.
16. (1分)(2018·遵义模拟) 如图,在圆O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂
足分别为D、E,若AC=2cm,则圆O的半径为________cm.
三、解答题 (共8题;共79分)
17. (10分)综合题。

(1)计算:()﹣2﹣2sin45°+(π﹣3.14)0+
(2)先化简,再求值:(﹣)÷ ,其中x=2(tan45°﹣cos30°)
18. (5分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面积.
19. (11分)(2020·四川模拟) 今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查的养殖户的总户数是________;把图2条形统计图补充完整.
(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?
(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.
20. (15分)(2017·深圳模拟) 深圳市某校对初三综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分 100 分)两部分组成,其中测试成绩占 80%,平时成绩占 20%,并且当综合评价得分大于或
等于80 分时,该生综合评价为A 等.
(1)小明同学的测试成绩和平时成绩两项得分之和为185 分,而综合评价得分为91 分,则小明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70 分,他的综合评价得分有可能达到A 等吗?为什么?
(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?
21. (5分)(2020·内乡模拟) 如今,不少人购买家具时追求简约大气的风格,图(1)是一款非常畅销的简约落地收纳镜,其支架的形状固定不变,镜面可随意选择,图(2)为其侧面示意图,其中为镜面,为放置物品的收纳架,、为等长的支架,为水平地面,且,,,,如图(3)将镜面顺时针旋转,求此时收纳镜顶部端点到地面的距离.(结果精确到,参考数据:,,,,)
22. (10分)(2019·重庆模拟) 如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;
(1)求双曲线的解析式;
(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.
23. (8分)(2011·镇江) 如图,在△ABO中,已知点、B(﹣1,﹣1)、O(0,0),正比例函数y=﹣x图象是直线l,直线AC∥x轴交直线l与点C.
(1) C点的坐标为________;
(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°≤α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.
①∠α=________;②画出△A′OB′.________
(3)写出所有满足△DOC∽△AOB的点D的坐标.
24. (15分)(2017·临高模拟) 如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.
(1)求抛物线的解析式;
(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;
(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P的个数.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共79分)
17-1、
17-2、
18-1、19-1、
19-2、
19-3、
20-1、
20-2、
20-3、
21-1、
22-1、
22-2、23-1、
23-2、
23-3、24-1、24-2、
24-3、。

相关文档
最新文档