图形的相似单元复习

合集下载

九年级数学上册 第四章 图形的相似单元复习课件上册数学课件

九年级数学上册 第四章 图形的相似单元复习课件上册数学课件

AD=8,∴AE=6,根据ABDE

5 2
可求得 BD=
12 5 5
第二十二页,共二十三页。
内容(nèiróng)总结
No 第四章 图形的相似(xiānɡ sì)。C。∠ADE=∠B(答案不唯一)。(1)求证:△ABD∽△BDC。(2)若
△ABD的面积为40,求四边形ABCD的面积.。A.△ABC∽△A′B′C′。C.AO∶AA′=1∶2。D.AB∥A′B′
第十一页,共二十三页。
解:(1)∵AB∥CD,∴∠ABD=∠BDC.∵AB=8,
BD=12,CD=18,∴ABDB =DBDC =23 ,∴△ABD ∽△BDC
(2)∵△ABD∽△BDC,ABDB
=23
,∴S△ABD S△BDC

2 (3
)2=49
.又∵S△ABD=40,∴S△BDC=90,∴S 四边
3.如图,l1∥l2,AF∶FB=3∶5,BC∶CD=3∶2, 则 AE∶EC=_3_∶__2. 第3题图
第四页,共二十三页。
考点二 相似三角形的性质与判定(pàndìng)
4.(2019·赤峰)如图,D,E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,
AB=6,AC=4,则AE的长是( )
第十三页,共二十三页。
证明:(1)∵∠ADE=∠B,∠BAD=∠EAD,∴△BAD∽△DAE,∴AADB =
AD AE
,∴AD2=AE·AB.同理可证:AD2=AF·AC,∴AE·AB=AF·AC.又∵AB
=AC,∴AE=AF (2)由(1)得△ BAD∽△DAE,∴∠AED=∠ADB=∠DAC
+∠C.又∵∠DFC=∠DAC+∠ADF,∠ADF=∠C,∴∠AED=∠DFC.又

相似图形单元复习

相似图形单元复习

第四章 相似图形单元复习一、知识点分类 知识点1:线段的比1.若a= 4 cm ,b= 1m ,则a :b= . 知识点2:比例尺2.若A .B 两地相距200km ,在地图上量得的距离是2cm ,则这张地图的比例尺是 . 3.在比例尺为1:90000的上海地图上,东方明珠电视塔与浦东机场的距离为24cm ,、那么它们之间的实际距离是 千米;若在比例尺为1:120000的上海地图上,它们之间的距离是 厘米. 知识点3比例线段4.下面四组线段中,能成比例的是( )A .3,6,7,9B .2,5,6,8C .3,6,9,18D .1,2,3,4 5.已知a ,b ,p ,q 成比例线段,其中a =4cm ,b =5cm ,q =6cm .,则p = 知识点4比例的基本性质6.已知y x 23=(x ≠0),则下列比例式成立的是( ) A.32y x = B. 23y x = C. 23=y x D. y x 32= 7.已知mn xy =,则把它改写成比例式后,错误的是( ) A.ym n x = B. x n m y = C. n y m x = D. y nm x =知识点5比例的合比性质和等比性质 比例的合比性质:如果d c b a =,那么.ddc b b a ±=± 8.已知3=yx ,则=-y yx比例的等比性质:如果()0,≠++++====n f d b n m f e d c b a ,那么ba n f db m ec a =++++++++ 9.如果fed c b a ==(0≠++f d b ),那么下列等式中正确的式子是 ( ) A .fe d c b a 111+=+=+ B .f e bd ac = C .c b c a b a ++= D .f ef d b e c a =++++ 知识点6:黄金分割10.若点C 为线段AB 的黄金分割点,则=ABAC( ) A .215- B. 215+ C. 253- D. 215-或253- 11.如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB 长为20m ,试计算主持人应走到离A 点至少 m 处.(结果精确到0.1) 知识点7:相似多边形定义 12.下列结论中正确的是( ).A .有一个角对应相等的三角形都相似B .有一个角对应相等的等腰梯形都相似C .任意的两个长方形都相似D .任意的两个正方形都相似 知识点8:相似多边形的性质13.四边形ABCD 相似于四边形A'B'C'D',AB=3,BC=5,∠B=40°,A'B'=9,则B'C'= ,∠B'= . 知识点9:相似三角形的性质14.如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m ,梯上点D 距墙1.4m ,BD 长0.55m ,则梯子的长为( )A .3.85mB .4.00mC .4.40mD .4.50m15.如图,FB DF AD ==,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ= 。

图形相似全章总复习

图形相似全章总复习

图形相似全章总复习夯实基础1、了解比例的基本性质,线段的比、成比例线段;2、掌握黄金分割的定义、性质及应用;3、理解相似三角形、相似多边形、相似比的概念;熟练掌握三角形相似的判定方法以及相似三角形的性质,并能够运用性质与判定解决有关问题;4、了解位似的概念,做的位似是特殊的相似变换,会利用位似的方法,讲一个图形放大或缩小;5、了解平行投影和中心投影的基本概念与性质,能综合运用图形相似的知识解决一些简单的实际问题.要点一、比例线段及黄金分割1.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c,则b2=ac(b称为a、c的比例中项).2.黄金分割的定义:如图,将一条线段AB分割成大小两条线段AP、PB,若小段与大段的长度之比等于大段的长度与全长之比,即ABAPAPPB(此时线段AP叫作线段PB、AB的比例中项),则P点就是线段AB的黄金分割点(黄金点),这种分割就叫黄金分割.3. 黄金矩形与黄金三角形:黄金矩形:若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.要点二、相似图形1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等.2.相似多边形各角分别相等,各边成比例的两个多边形,它们的形状相同,称为相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.要点三、相似三角形1.相似三角形的判定:判定方法(一):平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.判定方法(二):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例夹角相等的两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形对应高,对应中线,对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.3.相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点四、图形的位似及投影1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.4.平行投影在平行光的照射下,物体所产生的影称为平行投影.(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.(3)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.5.中心投影在点光源的照射下,物体所产生的影称为中心投影.(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.一、典型例题类型一、黄金分割1.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.举一反三【变式】如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.类型二、相似三角形2. 已知:如图,∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b之间满足怎样的关系时,这两个三角形相似?举一反三【变式】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.类型三、相似三角形的综合应用3.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.4. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=42,AF=3,求FG的长.5. 如图,已知在梯形ABCD中,AD//BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形.(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式.举一反三【变式】如图所示,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A 为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE 的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?类型四、图形的位似6.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.类型五、用相似三角形解决问题7.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?二、巩固练习一、选择题1.如图所示,给出下列条件:①;②;③;④. 其中单独能够判定的个数为( )A.1 B.2 C.3 D.42.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)3.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE×BC.A.2个B.3个 C.4个 D.5个4.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC = OB∶OD,则下列结论中一定正确的是 ( )A.①和②相似B.①和③相似 C.①和④相似D.②和④相似5.如图,在正方形网格上有6个斜三角形:①△ABC,②△BCD,③△BDE,④△BFG,•⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥第4题第5题第6题6. 如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若P到BD的距离为32,则点P的个数为()A.1 B.2 C.3 D.47. 如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米第7题第8题8. 已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.512-B.512+C. 3D. 2二、填空题9.顶角为36°的等腰三角形称为黄金三角形.如图,△ABC、△BDC、△DEC都是黄金三角形,已知AB=1,则DE=____________.第9题第10题10.如图,M是ABCD的边AB的中点,CM交BD于E,则图中阴影部分的面积与ABCD的面积之比为___ __.11.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。

第1章 图形的相似 单元复习课 青岛版数学九年级上册

第1章 图形的相似 单元复习课  青岛版数学九年级上册
第1章
图形的相似
1111
单元复习课
体系自我构建
目标维度评价
【维度1】基础知识的应用
1.(2022·宁夏中考)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角
尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换
A.平移
B.轴对称
C.旋转
D.位似
2.两个相似图形的对应边的比为3∶2,则面积比为__________.
A)
8.(2023·内江中考)如图,在△ABC中,点D,E为边AB的三等分点,点F,G在边BC
上,AC∥DG∥EF,点H为AF与DG的交点.若AC=12,则DH的长为( C )
A.1
3
B.
2
C.2
D.3
9.(2023·阜新中考改编)如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比
为2∶3,则△ABC和△DEF的面积比是__________.
,
=
∠ = ∠
∴△DAE≌△ACF(ASA),∴DE=AF.
14.(2023·上海中考)如图,在梯形ABCD中,AD∥BC,点F,E分别在线段BC,AC上,且
∠FAC=∠ADE,AC=AD.
(2)若∠ABC=∠CDE,求证:AF2=BF·CE.
【证明】(2)∵△ACF≌△DAE,∴∠AFC=∠DEA,
9∶ 4
( D)
【维度2】基本技能(方法)、基本思想的应用
3.(2023·吉林中考)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.

若AD=2,BD=3,则 的值是(

2
A.
5
1
B.
2
3

图形的相似单元复习

图形的相似单元复习

图形的相似单元复习知识点回顾:知识点1..相似图形的含义把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点3.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点4.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点5.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.知识点6.相似三角形的基本类型两个三角形相似,一般说来必须具备下列六种图形之一:注意分清相似三角形中对应角和对应边。

图形的相似 知识归纳+真题解析

图形的相似 知识归纳+真题解析

(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相 似. 3.相似三角形的性质 (1)相似三角形周长的比等于相似比. (2)相似三角形面积的比等于相似比的平方. (3)相似三角形对应高、对应角平分线、对应中线的比等于相似比. 4.相似多边形的性质 (1)相似多边形周长的比等于相似比. (2)相似多边形面积的比等于相似比的平方. 5.位似图形 (1)定义 两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做位似中 心,对应边的比叫做位似比.位似是一种特殊的相似. (2)性质 (1)位似图形上的任意一对对应点到位似中心的距离的比等于位似比; (2)位似图形对应点的连线或延长线相交于 (3)位似图形对应边成比例; (4)位似图形对应角相等. 一 点;
a c b d
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 (二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角相等, 对应边的比成比例. 2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似; (2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,且夹角夹角相等,那么 这两个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相 似;
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 ( 二 ) 1. 相 似 图 形 定 义 : 形 状 相 同 的 图 形 称 为 相 似 图 形 . 相 似 图 形 的 性 质 : 对 应 角 ,对应边的比 .
2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应 似; (2)如果一个三角形的两条边与另一个三角形的两条边对应 个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应 似; (4)平行于三角形一边的直线和其他两边 (或延长线 )相交,所构成的三角形与原三角 形 . ,那么这两个三角形相 ,且夹角 ,那么这两 ,那么这两个三角形相

北师大版数学九年级上册第四单元图形的相似单元复习课件

北师大版数学九年级上册第四单元图形的相似单元复习课件
11.如图, 是 的中线, 是线段 上的一点,且 ,连接 并延长,交 于点 .若 ,
(1) 求 的值;
(2) 求 的长.
(1) 求 的值;
解: , . .
(2) 求 的长.
[答案] 如图,过点 作 ,交 的延长线于点 .
, , . . 是 的中线,
A
A. B. C. D.
3.如图,点 , 在 的边 上,点 在边 上,且 , .
(1) 求证: .
(2) 如果 ,求证: .
(1) 求证: .
证明: , . , . . .
(2) 如果 ,求证: .
[答案] , . , .又 , . . , . . .
6.如图,在 中, , ,则图中类似三角形有( )
C
A.2对 B.3对 C.4对 D.5对
Ⅳ.“旋转型”
7.如图,在 和 中, , .
(1) 写出图中两对类似三角形(不得添加字母和线);
(2) 请说明其中一对三角形类似的理由.
(1) 写出图中两对类似三角形(不得添加字母和线);
Ⅱ.斜“A字形”(不平行)
4.如图, , 两点分别在 的边 , 上, 与 不平行.当添加条件_______________(写出一个即可)时, .

5.如图,在 中, , , .某一时刻,动点 从点 出发沿 方向以 的速度向点 匀速运动;同时,动点 从点
Ⅱ.反“8字形”(不平行)
9.如图,在 中, 平分 交 于点 ,点 在 的延长线上,且 .
(1) 求证: .
(2) 求证: .
(1) 求证: .
证明: 平分 , . , . .
(2) 求证: .
[答案] , . , .又 , . ,即 .

图形的相似章节复习课件

图形的相似章节复习课件
等,则这两个三角形相似。
边角边(SAS)判定
如果两个三角形有两条对应边相 等,且这两条对应边所对的角相
等,则这两个三角形相似。
相似三角形的性质
对应角相等
相似三角形中,对应角相等。
对应边成比例
相似三角形中,对应边长度的比值相等。
面积比等于相似比的平方
相似三角形的面积比等于其对应边长度的比值的平方。
相似三角形的应用
对应边成比例
平行四边形判定定理
如果一个四边形的一组对边平行且相 等,或者两组对边分别平行且成比个多边形的对应边长之间的比 例相等,则它们是相似的。
相似多边形的性质
对应角相等
01
相似多边形的对应角相等。
对应边成比例
02
相似多边形的对应边长之间的比例相等。
面积比等于相似比的平方
相似与面积比
面积比的概念
面积比是指两个相似图形的面积 之间的比例关系,可以通过相似
三角形的边长比例计算。
面积比的证明
通过相似三角形的性质,可以证明 两个相似图形的面积之比等于它们 的边长之比的平方。
面积比的应用
面积比在几何证明中有着广泛的应 用,例如计算图形的面积、解决几 何问题等。
相似与投影
投影的概念
05
图形相似的综合应用
相似与几何证明
相似与等腰三角形
等腰三角形中的两个底角 相等,因此可以通过相似 三角形证明等腰三角形的 性质。
相似与直角三角形
直角三角形中的两个锐角 相等,因此可以通过相似 三角形证明直角三角形的 性质。
相似与平行四边形
平行四边形中的对角相等 ,因此可以通过相似三角 形证明平行四边形的性质 。
性质
1 3
相似图形对应角相等

北师大版九年级数学上册第四章《图形的相似》单元复习课件

北师大版九年级数学上册第四章《图形的相似》单元复习课件
ab cd bd
ab cd bd
ac bd
4.若线段MN=10,点K为MN的黄金分割点,则KM的长

.
5.如图,在△ABC中,已知DE//BC,AD=3BD,S△ABC=48,
求S△ADE.
解:∵ DE∥BC,
A
3 D 1 B
∴△ADE∽△ABC.
∴S△ABC : S△ADE =
E
∵AD : BD = 1:3,
解:过点D作DG⊥AB,分别交AB、EF于点G、H,
则EH=AG=CD=1.2 m,
DH=CE=0.8 m,DG=CA=30 m.
因为EF和AB都垂直于地面,所以EF∥AB,
所以∠BGD=∠FHD=90°,∠GBD=∠HFD,
所以△BDG∽△FDH.
所以
FH BG
DH DG
.
由题意,知
FH=EF-EH=1.7-1.2=0.5(m). ∴ 0.5 0.8 , 解得BG=18.75(m).
DC = 31.5 千米,公路 AB 与 CD 平行吗?说出你
的理由.
解:公路 AB 与 CD 平行.

AB BD
AD BC
=
BD DC
=
2, 3
A
28
∴ △ABD∽△BDC, ∴∠ABD=∠BDC,
14 B
D
31.5 21
42
C
∴AB∥DC.
课后练习
1. 如图,△ABC 的高 AD、BE 交于点 F. 求证:AF EF . BF FD
解:∵ DE∥BC,EF∥AB,∴ △ADE ∽△ABC,
∠ADE =∠EFC,∠A =∠CEF,
D
∴△ADE ∽△EFC.

上册第四章第13课图形的相似单元复习-北师大版九年级数学全一册课件

上册第四章第13课图形的相似单元复习-北师大版九年级数学全一册课件

解:由题意可得,△DEF∽△DCA,
∵DE=0.5米,EF=0.25米,DG=1.5米, DC=20米,
解得AC=10. ∴AB=AC+BC=10+1.5=11.5(米). 答:旗杆的高度为11.5米.
15. 如图,花丛中一根灯杆AB上有一盏路灯A,灯 光下,小明在点D处的影长DE=3米,沿BD方向 走到点G,DG=5米,这时小明的影长GH=4米, 如果小明的身高为1.7米,求路灯A离地面的高 度.
cm/s,它们同时出发,当有一点到达所在线段的 (2,2) D.
如图,在△ABC中,DE∥BC,
DE=4,则BC的长是( )
第13课 图形的相似单元复习
端点时,就停止运动. 设运动时间为t s. 如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在点D处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长
10. 在平面直角坐标系中,已知点E(-4,2),F(-2,
-2),以原点O为位似中心,相似比为
,把
△EFO缩小,则点E的对应点E′的坐标是( D )
A. (-2,1)
B. (-8,4)
C. (-8,4)或(8,-4)
D. (-2,1)或(2,-1)
11. 在Rt△ABC中,AD是斜边BC上的高,BD=4,CD=9, 则AD= 6 .
CB向点B方向运动,如果点P的速度是4 cm/s,点Q的速度是2 cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.
向运动,动点Q从点C出发,沿线段CB向点B方向 第13课 图形的相似单元复习
已知△ABC∽△A′B′C′,且
则S△ABC:S△A′B′C′为( )
如图,在△ABC中,DE∥BC,

《图形的相似》复习精PPT课件

《图形的相似》复习精PPT课件

则需补上哪一个条件?
A
P 2
1
B
C
∠ACP=∠B 或∠APC=∠ACB 或AP:AC=AC:AB
最新课件
20
2、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=__8__或___5_ 52
A
.E
F1
F2
B
C
B
22
4.△ABC中,AC=6,BC=4,CA=9, △ABC∽△A′B′C′,△A′B′C′最短为12,则它的最C长边 的长A.度16为( B).18 C.27 D.24
最新课件
23
5、若△ ACP∽△ABC,AP=4,BP=5,则AC=____6___,△ ACP与△ABC的相似比是____2___:,3周长之比是_______,
最新课件
1.2m
2.7m
31
13、皮皮欲测楼房高度,他借助一长5m的标竿, 当楼房顶部、标竿顶端与他的眼睛在一条直线 上 时,其他人测出AB=4cm,AC=12m。已知皮皮眼睛离 地面AD=1.6m.请你帮他算出楼房的高度。
F
E D
A
B
最新课件 C
32
答案:1:3:5
最新课件
27
9、如图,正方形ABCD中,E是DC中点,FC= 1 BC.
4
求证: AE⊥EF
证明:∵四边形ABCD是正方形 A 1
D
∴BC=CD=AD,∠D=∠C=90°
3
E
∵E是BC中点,FC= 1 BC
2
∴ DE 1
AD 2
4 CF 1 CE 2

第四章 图形的相似(复习课)优秀课件

第四章  图形的相似(复习课)优秀课件
第四章 间的联 系,了解涉及的数学方法和数学思想。 2、应用本章知识点解决问题。 3、形成自己章末复习的体系和方法。
1、若ɑ:b:c=2:3:4,则

3a 2c
b
=
2、已知:
x
3
4=
y
2
3=
z 4 8,且 x y z 12,求 x, y, z 的值。
综合练习
7、Rt ABC在平面直角坐标系内的位置如图所
示,点O为原点,点A(0,8),B(6,0), 点P在线段AB上,且AP=6。
(1)求点P的坐标。 (2)X轴上是否存在点Q,使得以B、P、Q
为顶点的三角形与 AOB相似。若存在,请求
出点Q的坐标,若不存在,请说明理由。
课堂总结:
通过本章的学习和复习,你最大的收获是什么?
3、若:
bc a
=
ac b
=
ab c
=
t,求
t
的值。
三角形相似的练习
4、
5、在△ABC中,AB=24,AC=18,D是AC上一点,AD=12.在AB上 取一点E.使A、D、E三点组成的三角形与△ABC相似,则AE的长为 多少?
解决实际问题
6、小明想利用太阳光测量楼高,他带着皮尺 来到一栋楼下,发现对面墙上有这栋楼的影 子,针对这种情况,他设计了一种测量方案, 具体测量情况如下:
如示意图,小明边移动边观察,发现站到 点E处时,可以使自己落在墙上的影子与这栋 楼落在墙上的影子重叠,且高度恰好相同。 此时,测得小明落在墙上的影子高度 CD=1.2m,CE=0.8m,CA=30m(点A、E、 C在同一直线上)。已知小明的身高EF是 1.7m,请你帮小明求出楼高AB(结果精确到 0.1m)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似单元复习
知识点回顾:
知识点1..相似图形的含义
把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点3.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点4.相似三角的判定方法
(1)定义:对应角相等,对应边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点5.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
知识点6.相似三角形的基本类型
两个三角形相似,一般说来必须具备下列六种图形之一:
注意分清相似三角形中对应角和对应边。

知识点7几何变换(按一定的方法把一个图形变成另一个图形)
(1)相似变换:保持图形的形状不变的几何变换叫做相似变换
(2)位似变换
①位似图形:如果两个图形不仅是 图形,而且每组对应点所在的直线
都 ,那么这样的两个图形叫做位似图形,这个点叫做 ,这时的相似比又称为 .
②位似图形的性质:位似图形上任意一对对应点到 的距离之比等于位似比. 例题分析:
例1:下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号).
例2:已知△ABC ∽△A1B 1C1,,11AB A B =23
,△ABC 的周长为20cm,面积为40c m2. 求(1)△A 1B 1C 1的周长;(2)△A 1B1C 1的面积.
例3:已知:如图,△PMN 是等边三角形,∠APB=120°。

求证:A M·PB = PN ·AP 。

例4:已知:如图,□AB CD 中E为AD 的中点,A F:AB =1:6,E F与A C交于M 。

求:AM :AC 。

同步测试
一、选择题(每小题3分,共30分)
1、在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是( )
A.20米 .B.18米 C.16米 D.15米
2、如图,D 、E 分别是AB 、AC 上两点,C D与BE 相交于点O ,下列条件中不能使ΔA BE 和ΔACD 相似的是( )
A.∠B=∠C
B.∠A DC=∠AEB C .BE=CD,AB =AC D.AD∶A C=A E∶AB
3、如图所示,D、E 分别是ΔABC的边AB 、AC 上的点,DE ∥BC ,并且AD ∶B D=2,那么S ΔADE ∶S 四边形DB CE =( )
(A )32 (B)43 (C)54 (D)9
4 4.在矩形ABC D中,E 、F 分别是CD 、BC 上的点,若∠A EF=90°,则一定有( )
(A)ΔADE ∽ΔA EF (B)ΔECF ∽ΔA EF (C)ΔADE ∽ΔECF (D )ΔAEF ∽ΔAB F
(第2题图) (第3题图) (第4题图) (第5题图)
5、厨房角柜的台面是三角形(如图所示),如果把各边中点连线所围成的三角形铺成黑色大理石(图中阴影部分),其余部分铺成白色大理石,则黑色大理石面积与白色大理石的面积之比是( ) A.1∶2 B.1∶3 C.1∶4 D.1∶5
6、如图,在大小为4×4的正方形网格中,是相似三角形的是( )
① ② ③ ④
A .①和②
B .②和③ C.①和③ D.②和④
7、如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m ,若灯泡O 距离地面3m,则地面上阴影部分的面积为( )
A.0.36πm2
B.0.81πm 2 C.2πm 2 D.3.24πm 2
8、如图,直线l 1∥l 2,AF ∶F B=2∶3,BC ∶CD=2∶1,则AE ∶EC是( )
A.5∶2 B.4∶1 C .2∶1 D.3∶2
9、如图,三个正六边形全等,其中成位似图形关系的有( )
A.4对
B.1对
C.2对
D.3对
(第7题图) (第8题图) (第9题图) (第10题图) 10、平面直角坐标系中,有一条“鱼,它有六个顶点”,则( )
A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似
B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似
C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似
D.将各点横坐标乘以2,纵坐标乘以21,得到的鱼与原来的鱼位似 二、填空题(每小题4分,共20分) 11、两个相似多边形的一组对应边分别为3cm 和4.5cm,如果它们的面积之和为130c m2,那么较小的多边形的面积是 c m2.
12、如图,DE 与BC 不平行,当
AC
AB = 时,ΔABC 与ΔAD E相似.
(第12题图) (第13题图) (第14题图) (第15题图)
13、如图,AD=D F=FB ,DE ∥F G∥BC ,则S Ⅰ∶SⅡ∶S Ⅲ= .
14、如图,正方形AB CD 的边长为2,AE=EB ,MN=1,线段MN 的两端在CB 、CD 上滑动,当CM= 时,ΔA ED与N,M,C 为顶点的三角形相似.
15、如图,在直角坐标系中有两点A (4,0)、B(0,2),如果点C在x 轴上(C 与A 不重合),当点C 的坐标为 或 时,使得由点B 、O、C 组成的三角形与ΔAO B相似(至少写出两个满足条件的点的坐标).
三、解答题(每小题8分,共40分)
16、如图,ΔABC 中,BC=a . (1)若AD 1=
31A B,AE1=3
1AC,则D 1E 1= ; (2)若D 1D 2=31D 1B,E 1E 2=3
1E 1C,则D 2E2= ; (3)若D 2D3=31D 2B,E 2E3=3
1E 2C ,则D 3E3= ;……. (4)若D n-1D n=31Dn -1B,E n -1En =31E n -1C,则D n E n = . 17、如图,ΔA BC 中,BD 是角平分线,过D 作DE ∥AB 交B C于点E,AB =5cm ,B E=3cm ,求EC 的长.
18、已知:E是正方形ABCD的AB边延长线上一点,DE交CB于M,MN∥AE。

求证:MN=MB。

相关文档
最新文档