7两级CMOS运算放大器设计分析
《2024年CMOS高性能运算放大器研究与设计》范文
《CMOS高性能运算放大器研究与设计》篇一一、引言随着电子技术的飞速发展,运算放大器(Op-Amp)在信号处理和数据分析中的应用越来越广泛。
在众多类型的运算放大器中,CMOS(互补金属氧化物半导体)高性能运算放大器因其低功耗、高速度和高精度的特性而备受关注。
本文旨在研究并设计一款CMOS高性能运算放大器,以适应现代电子系统的需求。
二、CMOS运算放大器的基本原理与特点CMOS运算放大器利用互补金属氧化物半导体技术,通过P 型和N型晶体管的组合,实现高精度、低噪声和低功耗的信号处理。
其基本原理是通过差分输入和共源共栅放大的方式,实现信号的放大和传输。
CMOS运算放大器具有以下特点:1. 高精度:由于采用差分输入方式,CMOS运算放大器具有较高的共模抑制比(CMRR),能够有效抑制共模噪声。
2. 低噪声:CMOS器件的噪声性能优异,能够满足低噪声信号处理的需求。
3. 低功耗:CMOS器件具有较低的电压摆幅和较低的静态电流,从而实现低功耗设计。
三、高性能CMOS运算放大器的设计要求为了满足现代电子系统的需求,高性能CMOS运算放大器的设计应遵循以下要求:1. 宽动态范围:能够处理大信号输入范围,并保持较高的增益和精度。
2. 高带宽:具备较快的响应速度,以适应高速信号处理的需求。
3. 低噪声:在保持高增益的同时,尽可能降低噪声性能,提高信噪比。
4. 低功耗:在保证性能的前提下,尽可能降低功耗,延长电池使用寿命。
四、CMOS高性能运算放大器的设计方法针对上述设计要求,本文提出以下设计方法:1. 优化电路结构:采用差分输入、共源共栅放大的电路结构,提高电路的对称性和稳定性。
同时,通过优化晶体管尺寸和偏置电流,提高电路的增益和带宽。
2. 降低噪声性能:通过优化电路布局、减小晶体管失配以及采用低噪声器件等方法,降低电路的噪声性能。
3. 降低功耗:采用低电压摆幅和低静态电流的设计方法,降低电路的功耗。
同时,通过优化偏置电路和电源管理策略,进一步提高功耗性能。
CMOS运算放大器的分析及设计毕业设计论文(可编辑)
摘要随着集成电路工艺的发展,CMOS电路由于其低成本、低功耗以及速度的不断提高,在集成电路中获得越来越广泛的应用。
CMOS运算放大器也因其独特的性能优势常被用于模拟集成系统或子系统中,它的性能的好坏直接决定了整个模拟集成系统性能的好坏。
因此,有必要对用CMOS运算放大器进行深入的学习和研究。
CMOS运算放大器作为模拟集成电路最重要的功能模块,其设计一般包括以下几个步骤:确定设计要求;设计或综合;仿真;几何版图设计;版图后仿真;流片;测试。
本论文主要对两级CMOS运算放大器进行了前端设计及仿真。
论文在确定了两级CMOS运放设计规范要求的基础上,设计了两级CMOS运算放大器的基本电路结构,分析了各组成模块的电路功能,,通过分析性能参数与MOS管几何参数的关系,得到了电路中各MOS管的宽长比。
论文在介绍仿真环境OrCAD的结构特点及其工作性能的基础上,对所设计的电路进行了PSpice软件仿真,得到了设计电路的直流工作点、瞬态以及频率特性的仿真结果。
仿真结果分析表明所设计的电路符合预期的设计要求和设计指标,也验证了设计的两级CMOS运算放大器的可靠性和可行性。
关键词:CMOS;运算放大器;PSpice仿真;小信号放大;频率响应AbstractWith the development of CMOS technique, CMOS integratedcircuits have become the mainstream of integrated circuits techniques, due to its low cost, low power consumption and continuously improved speed. As the CMOS process has good performance merits, therefore the operational amplifier combined with CMOS technique has been widely used because of its unique performance.As the most important functional module in analog integrated circuits, the design of CMOS operational amplifier includes several steps as follows: determination design requirements, design or synthesis, simulation, design geometric layout, post-layout simulation, tape-out and test. The formal steps of the design of the two-stage CMOS operational amplifiers was provided in this paper, and the basic circuit structures of the two-stage CMOS operational amplifier was introduced. Based on determining the op-amp design specifications, the relationship between performance parameters and transistor geometry parameters was analyzed and the ratio of the transistors width to length was calculated. As a kind of simulation tool, the structural characteristics and work performance of OrCAD was described in detail. The feasibility of the design was determined by using PSpice simulation. Analysis of bias point, transient and the frequencycharacteristics of the circuit have been completed in this paper, and the simulation results showed that the designed circuit meets the design requirements and targets, also design the reliability and feasibility of the two-stage CMOS operational amplifier has been comfired.Key words: CMOS;Operational amplifier;Pspice simulation;Small signal amplification;Frequency response 毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
cmos两级级联运算放大器电路
CMOS两阶段的级联操作放大器电路就像集成电路(IC)技术的超级
英雄。
由于其放大和冷却的金属—氧化—半导体(CMOS)技术的双重阶段,这个电路用高增益和增加带宽来打包一拳。
这就像瑞士军队
的刀模拟信号处理,准备应对任何挑战的方式。
无论是放大音频信
号还是在传感器中压缩数字这个电路都是你用来模拟一切的下一次
你需要信号助推,只要呼叫CMOS两级级级的操作放大器电路, IC
世界的无声英雄!
这个CMOS两阶段操作放大器的第一部分有几台晶体管,它们一起工作来提升输入信号,然后还有这个电流镜的东西可以帮助负载。
这个
第一阶段基本上为第二部分铺设了舞台。
第二阶段类似于encore,它能增加更多的收益,并有助于提升输出电压。
很酷的是,第一阶段的
输出只是直接插入第二阶段的输入,所以它就像这种双功率提升的配置。
CMOS两阶段的级联操作放大器电路具有重大优点,包括收益高、输
入阻力高以及铁路对铁路输出摇摆。
它适合需要大量扩展的应用程序,特别是在数据获取系统、传感器接口和音频信号处理领域。
电路的配
制和加强涉及仔细考虑晶体管的尺寸、偏差和计费技术,所有这些技
术都是为了达到所期望的性能指标。
CMOS 两级运算放大器设计
1 1+ gm6 ro6 || ro7
=
λn + λp
2
I DS1,2
Cc
Cc
单位增益带宽为
I DS 6,7
2KPn (W
L) 6
第 7 页 / 共 26 页
CMOS 两级运放设计
宫志超
ϖ0
=
Avϖ
p1
=
1 Cc
2I
DS1,2 KPp
⎛ ⎜⎝
W L
⎞ ⎟⎠1,2
=
gm1,2 Cc
3.2.5 传输函数 下面计算第二级的传输函数,如图 8 所示,是第二级的等效电路,传输函数为
3.1 直流分析
3.1.1 直流功耗
( ) ( ) 令 IDS8 = IDS9 = IB , P = VDD IDS8 + IDS9 + IDS5 + IDS 7 = VDD 2IB + 2IDS1,2 + IDS 6,7
3.1.2 偏置电流
图 2 计算偏置电流等效电路
第 3 页 / 共 26 页
CMOS 两级运放设计
( ) Vout2
= −Δv 1 1 + 2gm1,2ro5
gm1,2 gm3,4
gm6
ro6 || ro7
,若过载电压都相等,则可整理得
Vout 2
=
−Δv
λp λn + λp
设Vo+ut 为正电源变化引起得总输出变化,可得Vo+ut = Vout1 + Vout2 = 0 ,因此正电源抑制比为 ∞。
定输出点直流电平。
VGS 3 = VGS 4 = VGS 6 → Vov3 = Vov4 = Vov6
CMOS两级运算放大器-设计分析报告
CMOS两级运算放大器-设计报告————————————————————————————————作者:————————————————————————————————日期:CMOS两级运算放大器设计及仿真实验报告班级:学号:姓名:日期:一、运算放大器设计简介运算放大器是许多模拟及数模混合信号系统中一个十分重要的部分。
各种不同复杂程度的运放被用来实现各种功能:从直流偏置的产生到高速放大或滤波。
运算放大器的设计可分为两个步骤。
第一步是选择或搭建运放的基本结构,绘出电路结构草图。
确定好的电路结构不能轻易修改。
运算放大器的电路结构确定之后需要选择直流电流,手工设计管子尺寸,以及设计补偿电容等关键参数。
为了满足运放的交流和直流需要,所有管子必须设计出合适尺寸。
在手工计算的基础上,运用CandenceVirtuoso电路设计软件进行图形绘制,参数赋值,仿真分析。
在分析仿真结果的基础上判断电路是否符合设计要求。
若不符合,再回到手工计算,调试电路。
二、设计目标电路参数要求:(1)直流或低频时的小信号差模电压增益Avd = 4000V/V(72dB)(2)增益带宽积GBW = 10MHz(3)输入共模电压范围Vcm,min = 0.4V,Vcm,max = 1.5V(4)输出电压摆幅0.2V < Vout < 1.5V(5)相位裕度PM = 60(6)负载电容CL = 1pF(7)电源电压VDD = 1.8V使用CMOS-90nm工艺库。
三、电路设计1.电路结构最基本的CMOS二级密勒补偿运算跨导放大器的结构如下图所示。
主要包括四大部分:第一级双端输入单端输出差分放大级、第二级共源放大级、直流偏置电路及密勒补偿电路。
2.电路描述输入级放大电路由PM0、PM2、NM1、NM3组成,其中PM0与PM2组成电流源偏置电路,NM1与NM3组成差分放大电路,输入端分别为IN1和IN2,单端输出。
如下图所示。
输出级放大电路由PM1和NM4组成,其中PM1为共源放大级电路,NM4为电流源偏置电路。
CMOS高性能运算放大器研究与设计
CMOS高性能运算放大器研究与设计一、本文概述随着现代电子技术的飞速发展,高性能运算放大器(Operational Amplifier,简称运放)作为电子系统的核心元件,其性能对整个系统的性能有着至关重要的影响。
特别是互补金属氧化物半导体(CMOS)技术下的高性能运算放大器,因其低功耗、高集成度、优良的温度稳定性和较小的噪声特性等优点,在模拟信号处理、通信、医疗仪器、测试测量等领域有着广泛的应用。
本文旨在深入研究CMOS高性能运算放大器的设计与实现技术,分析影响其性能的关键因素,探索提升性能的有效方法。
文章将首先回顾CMOS运算放大器的发展历程,分析其基本工作原理和性能指标。
然后,将重点探讨CMOS高性能运算放大器的电路设计技术,包括输入级、中间级、输出级和偏置电路等关键部分的设计原则和实现方法。
文章还将讨论CMOS运算放大器的噪声优化、功耗优化和稳定性提升等关键技术,并给出具体的设计实例和实验结果。
本文的目标是为CMOS高性能运算放大器的设计者提供一套完整的设计理念和方法论,帮助他们在满足性能要求的实现更低的功耗、更小的面积和更高的可靠性。
也希望通过本文的研究,能够为CMOS 运算放大器的发展和应用提供新的思路和方向。
二、CMOS运算放大器的基本原理运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于模拟信号处理电路中的核心元件,它能在宽频率范围内提供高放大倍数、高输入阻抗和低输出阻抗。
CMOS(Complementary Metal-Oxide-Semiconductor)运算放大器则是以CMOS工艺制造的运算放大器,具有低功耗、低噪声和高集成度等优点,因此在现代电子系统中得到了广泛应用。
CMOS运算放大器的基本原理主要基于差动放大电路和反馈网络。
差动放大电路由两个结构相同、性能对称的晶体管构成,通过差分输入信号控制两个晶体管的导通程度,从而实现信号的放大。
CMOS高性能运算放大器研究与设计
CMOS高性能运算放大器探究与设计引言:随着科技的不息进步和应用的广泛推广,运算放大器(Operational Amplifier,简称Op-Amp)作为一种重要的模拟电路器件,得到了广泛的关注和应用。
CMOS (Complementary Metal-Oxide-Semiconductor)技术由于其功耗低、集成度高等优势,被广泛应用于运算放大器的探究和设计中。
本文将介绍CMOS高性能运算放大器的探究与设计,主要包括运算放大器的基本原理、运算放大器的基本电路结构、CMOS技术的特点和优势、CMOS高性能运算放大器的设计方法和优化技术等方面。
一、运算放大器的基本原理运算放大器是一种特殊的差动放大器,它能够实现电压放大、电流放大、功率放大等功能。
运算放大器有两个输入端,一个非反相输入端和一个反相输入端;有一个输出端和一个电源端,电源端一般有正电源和负电源两个。
在抱负状况下,运算放大器具有无限的增益、无限的输入阻抗和零的输出阻抗。
但实际状况下,由于运算放大器的内部结构等因素的限制,无法完全满足抱负的条件。
因此,在运算放大器的设计中,需要思量如何提高增益、输入阻抗和输出阻抗等性能指标。
二、运算放大器的基本电路结构运算放大器的基本电路结构由差动放大器、电压放大器和输出级组成。
差动放大器用于实现输入信号的差分放大,电压放大器用于实现信号的放大,输出级用于驱动负载电阻。
差动放大器由两个晶体管组成,一个晶体管作为非反相输入端,另一个晶体管作为反相输入端。
通过调整两个晶体管的尺寸比例,可以实现不同的放大倍数。
电压放大器由级联的共源放大器组成,通过逐级放大,实现信号的放大。
输出级由差分放大器和输出级筛选电路组成,通过差分放大器将信号转化为可驱动负载电阻的电流信号,再经过输出级筛选电路,将电流信号转化为电压信号。
三、CMOS技术的特点和优势CMOS技术是一种基于金属-氧化物-半导体(MOS)结构的半导体制造技术。
与传统的bipolar技术相比,CMOS技术具有以下特点和优势:(1)功耗低:CMOS电路在静态状态下几乎不消耗电流,功耗分外低,适合于低功耗应用的场合。
《2024年CMOS高性能运算放大器研究与设计》范文
《CMOS高性能运算放大器研究与设计》篇一一、引言随着微电子技术的快速发展,CMOS(互补金属氧化物半导体)技术已成为现代集成电路设计的主流技术。
运算放大器(Op-Amp)作为电子系统中的关键组件,其性能的优劣直接影响到整个系统的性能。
因此,对CMOS高性能运算放大器的研究与设计具有重要的实际应用价值。
本文将重点研究CMOS高性能运算放大器的设计原理、性能优化以及实际应用。
二、CMOS运算放大器的基本原理CMOS运算放大器是一种利用CMOS工艺制造的模拟电路器件,具有高精度、低噪声、低功耗等优点。
其基本原理是通过差分输入、差分输出以及电压增益等方式实现信号的放大和处理。
CMOS运算放大器的核心部分是差分对管和反馈网络,通过合理的电路设计和参数优化,可以实现高性能的运算放大器。
三、CMOS高性能运算放大器的设计1. 电路结构设计:CMOS高性能运算放大器的电路结构设计是关键。
在设计中,需要考虑差分对管的匹配性、反馈网络的稳定性以及噪声的抑制等因素。
常用的电路结构包括折叠式共源共栅结构、套筒式结构等。
这些结构在实现高电压增益的同时,还需要考虑功耗、噪声等性能指标的优化。
2. 参数优化:在CMOS高性能运算放大器的设计中,参数优化是必不可少的环节。
通过对差分对管的尺寸、偏置电流、反馈网络的电阻值等参数进行优化,可以提高运算放大器的性能。
此外,还需要考虑电路的匹配性、温度稳定性等因素,以确保运算放大器在不同条件下的性能稳定性。
3. 工艺选择:CMOS工艺的选择对运算放大器的性能有着重要影响。
在设计中,需要根据实际需求选择合适的工艺,如特征尺寸、阈值电压等。
同时,还需要考虑工艺的成熟度、生产成本等因素。
四、性能优化1. 增益与带宽:为了提高CMOS高性能运算放大器的性能,需要优化其增益和带宽。
通过合理的电路设计和参数优化,可以提高运算放大器的增益,同时保证足够的带宽以满足实际应用需求。
2. 噪声抑制:噪声是影响CMOS运算放大器性能的重要因素之一。
两级CMOS运算放大器设计
两级CMOS运算放大器设计引言CMOS运算放大器是现代电路设计中的重要组成部分,它在模拟电路中扮演着关键的角色。
CMOS运算放大器由于其低功耗、高增益和较低的失调电压而备受青睐。
本文将介绍两级CMOS运算放大器的设计方法,包括电路结构、工作原理以及性能指标。
电路结构两级CMOS运算放大器由两个级联的CMOS差动放大器组成,它们的输出分别连接在第二级差动放大器的输入上。
这种结构能够提供更高的增益和更好的线性度。
差动放大器差动放大器是CMOS运算放大器的关键组成部分,它用于将输入信号转换为差模信号,并放大差模信号以提供一个具有高增益的输出。
CMOS差动放大器由一对输入端和一对输出端组成,每个输入端都连接了一个NMOS和一个PMOS管,这样可以实现单端输入和差分输入。
工作原理两级CMOS运算放大器的工作原理如下:1.输入信号被差动放大器的第一级转换为差模信号,并经过第一级放大。
第一级放大的输出信号被传递给第二级放大器。
2.第二级差动放大器放大差模信号,然后将其转换为单端输出信号。
3.输出信号经过一个输出级,通过一个负反馈回路被注入到第二级差动放大器的输入上。
设计步骤下面是设计两级CMOS运算放大器的一般步骤:1.确定电路的性能指标,例如增益、带宽以及失调电压等。
2.根据给定的性能指标选择差动放大器和输出级的电路结构。
3.根据选择的电路结构计算电路的参数,例如电阻、电容和晶体管的尺寸等。
4.使用电路模拟工具,例如SPICE,对电路进行仿真和优化。
5.布局电路,并进行布线。
6.进行电路的后仿真和测试。
性能指标两级CMOS运算放大器的性能指标通常包括以下几个方面:1.增益:运算放大器的增益是指输出信号相对于输入信号的放大程度。
在设计过程中,需要根据实际应用需求确定所需的增益。
2.带宽:带宽是指运算放大器能够输出一个相对稳定的放大信号的频率范围。
一般来说,带宽越大,运算放大器的性能越好。
3.失调电压:失调电压是指实际输入和理论输入之间的偏差。
两阶段CMOS运算放大器的设计与实现
2f0 9年 1 ) 2月
渤 海 大 学 学报 ( 自然科 学 版 )
J u n l fB h i nv r i ( t r lS in e E i o o r a o a ie st Na u a ce c d t n) o U y i
Vo . O NO. 13 4
Байду номын сангаас
图 1 两 阶段 运放
2 1 微 分 增 益 级 .
第一级增益 是微分增 益 阶段 , 由晶体管 M1和 M4 成 。晶体 管 M1和 M2是标 准的 N 通道场 效应 组 晶体管 ( NMOS) 他们 共同构 成基本 输入级 的放 大器 。 口输 出的是M 1 , 出 的反相输 入 和M2的非 反相输
后 阶段 , 负荷 还有助 于增 大共模 抑制 比。
2 2 第 二 增 益 级 .
设 计第 二阶段 的 目的是 要提供 放大 器的额 外增益 。不仅 需要 由 M5和 M6共 同组成集 成晶 体管 , 而 且这个 阶段需 要的是在 标准 同源配 置下M2的输 出流失 和M5的放大通 过 。 同样 , 似差分增 益 阶段 , 类 这
为大信 号 电压增益 。 上 升时 问 : 出 1 至 9 的所需 要 的时 间的最 终值 称 为上升 时 间。 输 0 0 ‘
转 换率 : 出电压每个 时 问单位 的最 大 的变化率 。(d 输 Vo/d ) 度 的输 出信 号 的转换 率 。 t坡
过冲: 最大 输 出偏 离其 稳态 值定义 为过 冲。 共 模抑制 比: 共模 抑 制 比是 比例 差分增 益 和共模 增益 之 间的 比率 。
32 7
全.
渤 海 大学 学报 ( 自然科 学版 )
CMOS两级运放设计解读
I I I SR min{ DS5 , DS7
DS 5}
CC
CL
为了测量转换速率,将运算放大器输出端与反相输入端相连,如下图所示,
7 有一部分电流 DS5 要留
C I I C 过 ,所以只有
的电流经过 。这样一来,对于正的输入阶跃,
C
DS 7
DS 5
L
M M I I C 4 的漏端电压会下降, 也会减少流经
6 的电流。 电流 DS 7
DS5 对 L 充
电,导致一个正的电压梯度,斜率为
SRext
I I DS7
DS 5
CL
所以总的 SR 是这两个中的最小值 SR min{ SRint , SRext} , 得到
2.1 电路图
2 电路分析
2.2 电路原理分析
两级运算放大器的电路结构如图 1.1 所示,偏置电路由理想电流源和 M8 组成。 M8 将电流源提供的电流转换为电压, M8 和 M5 组成电流镜, M5 将电压信号转 换为电流信号。输入级放大电路由 M1~ M5 组成。 M1 和 M2 组成 PMOS 差 分输入对,差分输入与单端输入相比可以有效抑制共模信号干扰; M3 、M4 电 流镜为有源负载,将差模电流恢复为差模电压。 ; M5 为第一级提供恒定偏置电 流,流过 M1 ,2 的电流与流过 M3,4 的电流 I d1,2 I d 3,4 I d5 / 2 。输出级放大电路 由 M6 、M7 组成。 M6 将差分电压信号转换为电流,而 M7 再将此电流信号转 换为电压输出。 M6 为共源放大器, M7 为其提供恒定偏置电流同时作为第二级 输出负载。相位补偿电路由 Cc 构成,构成密勒补偿。
ds5
。如果
C
7 提供足够的电流给
两级CMOS运算放大器的设计与spectrum仿真
LAB2 两级CMOS 运算放大器的设计V SSvoutiref图 1两级CMOS 运算放大器一:基本目标:参照《CMOS 模拟集成电路设计第二版》p223.例6.3-1设计一个CMOS 两级放大器,满足以下指标:5000/(74)v A V V db = 2.5DD V V = 2.5SS V V =-5GB MHz = 10L C pF = 10/SR V s μ>out V V ±范围=2 1~2ICMR V =- 2diss P mW ≤相位裕度:60为什么要使用两级放大器,两级放大器的优点:单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。
在单级放大器中,增益是与输出摆幅是相矛盾的。
要想得到大的增益我们可以采用共源共栅结构来极大地提高输出阻抗的值,但是共源共栅结构中堆叠的MOS 管不可避免地减少了输出电压的范围。
因为多一层管子就要至少多增加一个管子的过驱动电压。
这样在共源共栅结构的增益与输出电压范围相矛盾。
为了缓解这种矛盾引进了两级运放,在两极运放中将这两点各在不同级实现。
如本文讨论的两级运放,大的增益靠第一级与第二级相级联而组成,而大的输出电压范围靠第二级这个共源放大器来获得。
表1 典型的无缓冲CMOS 运算放大器特性二:两级放大电路的电路分析:图1中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流1,23,45/2d d d I I I ==,同时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的结构使得在x ,y 两点的电压在Vin 的共模输入范围内不随着Vin 的变化而变化,为第二极放大器提供了恒定的电压和电流。
图1所示,Cc 为引入的米勒补偿电容。
表2 0.5m μ工艺库提供的模型参数表3 一些常用的物理常数利用表2、表3中的参数/OX ox ox C t ε=0oxK C μ'=计算得到2110/NK A V μ'≅ 262/PK A V μ'≅ 第一级差分放大器的电压增益为:1124m v ds ds g A g g -=+ (1)第二极共源放大器的电压增益为6267m v ds ds g A g g -=+ (2)所以二级放大器的总的电压增益为16261224675246672()()m m m m v v v ds ds ds ds g g g g A A A g g g g I I λλλλ===++++ (3)相位裕量有111121180tan ()tan ()tan ()60M GB GB GB p p z ---Φ=±---=要求60°的相位裕量,假设RHP 零点高于10GB 以上11102tan ()tan ()tan (0.1)120v GBA p ---++= 102tan ()24.3GBp -= 所以2 2.2p GB ≥ 即622.2()m m L cg gC C > 由于要求60的相位裕量,所以626210()10m m m m c cg gg g C C >⇒> 可得到 2.20.2210Lc L C C C >==2.2pF 因此由补偿电容最小值2.2pF ,为了获得足够的相位裕量我们可以选定Cc=3pF 考虑共模输入范围:在最大输入情况下,考虑M1处在饱和区,有3131(max)(max)DD SG n IC n TN IC DD SG TN V V V V V V V V V V --≥--⇒≤-+ (4)在最小输入情况下,考虑M5处在饱和区,有1515(min)(min)IC SS GS Dsat IC SS GS Dsat V V V V V V V V --≥⇒≤++ (5)而电路的一些基本指标有11m v Cg p A C =-(6) 62m Lg p C =-(7) 61m Cg z C =(8) 1m Cg GB C =(9) CMR:正的CMR in31()()DD T T V V V +(最大)=V 最大最小 (10)负的CMR in15()()SS T DS V V V ++(最小)=V 最大饱和(12)由电路的压摆率5d CI SR C =得到 5d I =(3*10-12)()10*106)=30μA(为了一定的裕度,我们取40iref A μ=。
《2024年CMOS高性能运算放大器研究与设计》范文
《CMOS高性能运算放大器研究与设计》篇一一、引言运算放大器(Op Amp)作为电子电路中的重要元件,被广泛应用于信号处理、模拟电路以及数据采集系统中。
CMOS技术因其高集成度、低功耗、良好的噪声性能等特点,在运算放大器的设计和制造中占有重要地位。
本文将详细探讨CMOS高性能运算放大器的设计原理、方法及其实验结果。
二、CMOS运算放大器的基本原理CMOS运算放大器主要由差分输入对、电流镜、输出级等部分组成。
其基本原理是通过差分输入对实现信号的放大和传输,利用电流镜实现电流的匹配和稳定,最终通过输出级将信号输出。
CMOS运算放大器具有高开环增益、低噪声、低失真等优点,因此在各种电子系统中得到广泛应用。
三、设计方法1. 差分输入对设计:差分输入对是CMOS运算放大器的核心部分,其性能直接影响到整个放大器的性能。
设计时需考虑输入阻抗、增益、带宽等参数,以及输入对的匹配和噪声性能。
2. 电流镜设计:电流镜用于实现电流的匹配和稳定,其设计需考虑电流增益、匹配精度和稳定性等因素。
采用适当的设计方法和工艺技术,可提高电流镜的性能。
3. 输出级设计:输出级负责将信号输出到外部电路。
设计时需考虑输出阻抗、驱动能力、带宽等因素,同时要保证输出级的线性度和稳定性。
4. 版图设计:版图设计是CMOS运算放大器设计的重要环节。
在版图设计中,需考虑器件的布局、连线、噪声等因素,以优化芯片性能。
四、实验结果与分析本文通过仿真和实际制作,对CMOS高性能运算放大器进行了测试和分析。
实验结果表明,所设计的运算放大器具有高开环增益、低噪声、低失真等优点,满足实际应用的需求。
同时,通过对版图设计的优化,有效降低了芯片的噪声和失真,提高了芯片的性能。
五、结论本文研究了CMOS高性能运算放大器的设计原理和方法,并通过仿真和实际制作进行了测试和分析。
实验结果表明,所设计的运算放大器具有优异的性能,可满足实际应用的需求。
同时,本文的研究也为CMOS运算放大器的设计和制造提供了有益的参考和指导。
CMOS二级运算放大器设计
CMOS二级运算放大器设计CMOS二级运放的基本结构包括差分对和共模反馈电路。
差分对是一对输入端分别与PNP型和NPN型晶体管相连的放大器。
这对晶体管的基极分别与镜像电流源相连,以提供共模反馈和差分模式放大。
共模反馈电路通过将差分模式信号与公共节点(即两个输入端的中点)比较,从而产生反馈信号,并将其注入到差分对中以抑制共模干扰。
1.确定规格和需求:确定运放的增益、频率响应、功耗和输入/输出特性等规格要求。
2.选择工作点:通过分析差分对的静态特性,选择适当的工作点。
工作点的选择应保证对输入信号具有较高的线性响应。
3.设计共模反馈电路:共模反馈电路包括反馈网络和差分对之间的连接。
通过反馈网络的设计,可以精确地抑制共模干扰,提高CMRR(共模抑制比)。
4.设计差分放大器:根据增益要求和输入/输出阻抗要求,设计差分放大器。
差分放大器的设计要考虑电压增益、带宽、输入和输出阻抗等因素。
5.设计输出级:输出级一般包括缓冲放大器和电流输出级。
缓冲放大器用于提供足够的驱动能力,以满足输出电流的要求。
电流输出级用于将电压信号转换为电流输出。
6.设计电源电压:根据设计要求和工艺限制,确定供电电压,并设计稳压电路以提供稳定的电源。
7.进行仿真和优化:通过电路仿真软件进行电路性能的模拟和优化,根据仿真结果进行参数调整和电路结构修改。
8.布局和版图设计:根据电路设计结果进行电路布局和版图设计,确保电路结构的可制造性和可靠性。
9.参数提取和后仿真:通过深入分析电路模型和特性,提取关键参数,并基于改进的模型进行后仿真。
根据后仿真结果进行最终的参数调整和性能评估。
最后,需要指出的是,CMOS二级运放的设计是一个综合性的工程任务,涉及到电路设计、模拟仿真、版图设计以及后仿真等多个方面的知识和技能。
在实际应用中,还需要考虑工艺变化、温度变化和耦合等因素对电路性能的影响,以实现稳定和可靠的运放电路设计。
CMOS两级运算放大器设计
CMOS两级运算放大器设计CMOS(互补金属氧化物半导体)两级运算放大器是一种常用的放大器设计,可以用于信号放大、滤波、放大器链路等应用。
本文将对CMOS两级运算放大器的设计进行详细叙述。
首先,设计CMOS差动对。
差动对由两个MOSFETs组成,其中一个为p-MOSFET,另一个为n-MOSFET。
这两个MOSFETs的栅极交叉,源极相连,并接入一个电流源。
这样可以使输入信号以差分模式进入放大器。
然后,设计CMOS差动对的偏置电路。
偏置电路主要是为了使CMOS差动对能够正常工作。
其中,主要包括两个电流源和一个电流镜。
电流源为差动对提供恒定电流,电流镜用于分配输入级和输出级的电流。
通过适当选择偏置电流的大小,可以控制放大器的增益和输出幅度。
接下来,设计中间电压增益级。
增益级主要由两个共尺极级组成,通过增加电阻、电容等元件来实现电压放大。
增益级的输出连接到输出级的输入,将中间电压信号传递到输出级进行电流差分放大。
最后,设计输出级。
输出级主要由两个MOSFETs组成,其中一个为p-MOSFET,另一个为n-MOSFET。
这两个MOSFETs的栅极相连,并连接到输入级的输出。
通过适当控制输出级电压的变化,可以实现电流信号的放大。
在CMOS两级运算放大器的设计过程中,需要考虑的因素包括放大器的增益、带宽、输入输出阻抗、偏置电流等。
根据具体的应用需求,可以平衡这些因素来进行合适的设计。
在设计完成后,需要进行电路仿真和调试。
可以使用软件工具如Spice来进行电路模拟,并根据模拟结果进行调整和优化。
在实际测试中,可以通过改变输入信号的频率和幅度,观察输出信号的响应,并与设计要求进行对比。
总结起来,CMOS两级运算放大器设计是一个复杂的过程,需要考虑多个因素,并进行合适的优化。
通过合理的设计和调试,可以获得满足设计要求的放大器电路。
《2024年CMOS高性能运算放大器研究与设计》范文
《CMOS高性能运算放大器研究与设计》篇一一、引言运算放大器(OpAmp)在各种电子设备中起着关键作用,尤其在信号处理和数据分析中。
随着科技的发展,对运算放大器的性能要求也越来越高。
CMOS(互补金属氧化物半导体)技术因其低功耗、高集成度等优点,在高性能运算放大器的设计中得到了广泛应用。
本文将探讨CMOS高性能运算放大器的研究与设计。
二、CMOS运算放大器的基本原理CMOS运算放大器主要由差分输入对、电流镜、输出级等部分组成。
其基本原理是通过差分输入对接收输入信号,利用电流镜进行电流放大,最后由输出级输出放大的信号。
CMOS技术由于其特殊的结构,能够提供较高的增益、低噪声以及优秀的线性度。
三、CMOS高性能运算放大器的设计要求设计高性能的CMOS运算放大器,需要满足以下几个要求:1. 高增益:保证信号在传输过程中的损失最小。
2. 低噪声:减小信号的干扰,提高信噪比。
3. 高线性度:保证信号在放大过程中不失真。
4. 低功耗:在保证性能的同时,尽量降低功耗。
5. 高集成度:适应现代电子设备小型化的趋势。
四、CMOS高性能运算放大器的设计方法1. 差分输入对的设计:选择合适的晶体管尺寸和偏置电流,以提高输入差分对的跨导和带宽。
2. 电流镜的设计:采用电流镜结构,以实现电流的精确复制和放大。
3. 输出级的设计:选择合适的负载电容和输出级晶体管,以提高输出驱动能力和带宽。
4. 电路的优化:通过调整电路的偏置电压和反馈网络,优化电路的性能。
五、CMOS高性能运算放大器的实现与测试根据上述设计要求和方法,我们设计了一款CMOS高性能运算放大器。
通过仿真和实际测试,该放大器具有高增益、低噪声、高线性度等特点,且功耗较低,符合设计要求。
此外,我们还对该放大器进行了长期稳定性的测试,证明了其良好的可靠性和稳定性。
六、结论本文对CMOS高性能运算放大器的研究与设计进行了探讨。
通过了解其基本原理、设计要求、设计方法以及实现与测试,我们可以看到CMOS技术在高性能运算放大器设计中的优势。
CMOS两级运算放大器调零电路性能分析1
结语
通过增加调零电阻可以扩展基本 二级 CMOS 电路的单位增益带宽, 而且 通过调整密勒电容的值还能保证电路 有相同的相位裕量,从而保证电路的
1.Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design(Second Edition) , Publishing House of Electronics Industry, 2002, Page(s):198-303. 2. Sun R, Peng L, A gain-enhanced two-stage full-differential CMOS Op amp with high unity-gain bandwidth[A]. IEEE. Int Symp Circ and Syst[c]. 2002, 428-431. 3.陈朝阳, 胡小波, 付生猛, 一种 采用增益增强方法的 C M O S 全差分运 算放大器. 微电子学, 2005 Vol.35 No.6, 83-84. 4.D.Y. Kim , S. Kwon , J. H. Bang, The design of the high speed amplifier circuit for using in the analog subsystems. IEEE. Circuits and Systems , 1992., vol.1 485 488.
表 1 二级运算放大器电路 MOS 管宽长比
表2 四级比较
法来抵消零点的影响,电路的小信号 等效图如图4所示, 新的电路结构如图 5 所示。 图 5 中的调零电阻R 的引入使 得电路的传输函数如公式 (4) , 新的零
的单位增益带宽(GB) ,M3 和 M4 决定 了运放的最大共模输入电压,M5 管决 定了运放的最小输入共模电压,M6 和 M7 管则决定了运放的最大和最小输出 电压。 密勒电容Cc 为了使运放有较好 的相位裕度, 防止电路自激。 Cc和偏置 电流决定了运放的摆率(即 ) 。 Semiconductor Highlight
CMOS两级运算放大器调零电路性能分析
CMOS两级运算放大器调零电路性能分析
引言
运算放大器的高速性能主要靠两个重要的参数来衡量,即大信号响应时
间和小信号响应时间。
大信号响应时间由摆率决定,小信号响应则由建立时间
或单位增益带宽来决定。
提高运放速度的方法有多种多样[1][2][3],折叠式运
算放大器有功耗较大,折叠点处寄生电容高等缺点[1];采用套筒式运放结构,
如果采用二阶结构,则会造成较大的功耗,采用一阶结构则会限制差分输出摆
幅[2];反馈结构放大器也存在问题,一是匹配问题不易实现,二是电路的输出
跨导受输出信号的影响较大[3]。
本文介绍的典型基本二级运算放大器具有结构简单、在密勒电容的调节
下工作稳定、有较大的开环增益等特点,但是其单位增益带宽较小,所以通过
对基本二级CMOS 运放结构增加调零电阻,在不改变其他参数的情况下通过抵消二级极点扩展单位增益带宽。
调零电阻偏差分析对实现运算放大器频率特性
具有十分重要的意义,通过讨论,本文提出了对调零电阻偏差影响的分析方法。
二级运算放大器调零电路结构设计技术
基本二级CMOS 运放结构如表2 电路结构零极点仿真结果(2)式中(3)用HSPICE 软件在BSIM3V3 模型AA1833C05 工艺下对调零电路容差分析由于工艺的限制,电阻值很难精确到6788.5Ω。
密勒电容Cc 也存在同样的问题,所以本文将较为详细地研究电容和电阻的容差分析,根据
公式(6)得,在Cadence 环境下,仍然采用BSIM3V3 模型AA1833C05 工艺下对结语
通过增加调零电阻可以扩展基本二级CMOS 电路的单位增益带宽,而且。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 RII C II
西安电子科技大学
有补偿两级运放的小信号模型
相位裕度(Phase Margin)
失调电压(Offset Voltage) 建立时间(Setting Time)
45< PM< 75
VOS<20mV TSET<1us
电源抑制比(PSRR)
共模抑制比(CMRR)
>60dB
>60dB
输出电压摆幅(Output Voltage Swing) >1.5V(Rail-to-Rail:0~3.3V)
11
西安电子科技大学
两级CMOS运放的稳定性分析
也就是说,稳定性是由单位开环增益的相位值决定的,即由相位裕度决定。 所以系统稳定性的重要体现就是运放的相位裕度较大,一般运放的相位裕度 要求在60o左右。
12
西安电子科技大学
无补偿两级运放的小信号模型
无补偿运放的二阶模型,为使结果通用,用角标I表示第一级的元件,角标II代
芯片面积(Silicon Die Area)
6
西安电子科技大学
两级CMOS运算放大器的基本结构
(a) 无补偿运放
(b)有补偿运放
M1和M2的宽长比相等,M3和M4的宽长比相等; 两级运放的电路具有两个高阻节点A和B,这就是说电路存在两个主极 点,因而降低了运放的相位裕度; 为了使运放稳定工作,通常在两级运放的第一级和第二级之间中加入 补偿电容,即在A点和B点之间加入补偿电容Cc(Miller电容),通过
导与输出阻抗的乘积来决定,因而一般都无法达到高的增益 ;
共源共栅结构虽然在一定程度上提高了电路增益,但是却限制了电路 的输出摆幅 ;
提出两级放大器的结构。
5
西安电子科技大学
CMOS两级运算放大器的基本特性(性能指标)
直流开环增益(DC Open-Loop Gain) >70dB 单位增益带宽(Unit-Gain Bandwidth) >5MHz
7
补偿电容的反馈作用,把两个极点拉开。
西安电子科技大学
密勒定理
(a)
(b)
Z1
V Y X
Z Z , Z2 1 AV 1 AV 1
A V / V ,是所关心频率下的小信号增益, 式中, 通常为简化计算,我们一般用低频增益来代替AV, 这样足可以使我们深入理解电路的频率特性。
8
西安电子科技大学
Analog and Mix-Signal Integrated Circuit Design --两级CMOS运算放大器设计
西安电子科技大学微电子学院 刘帘曦
1
西安电子科技大学
一、运放的概念、组成与电路结构
运算放大器(简称运放)是模拟电路和混合信号电路中最主要的电路
模块之一。将运算放大器配以各种辅助电路,则可以实现对输入信号
西安电子科技大学
二、两级运放的频率补偿
运放一般用在负反馈结构中,在此结构中,相当高而又不确定的开环增益和
反馈一起作用,可以获得一个很准确的转移函数,它是含有反馈参数的函数
下图表示了一种通用的负反馈结构,图中A是放大器增益,通常是运放的开 环差分电压增益,F是从运放的输出通过负反馈,回到输入的转移函数 如果直流开环增益A(0)在1000到2000之间,而F(0)=1,则前向增益在0.999 到0.9995之间变化。如果回路增益很高,则可用反馈网络来精确控制前向转 移函数。这就是运放的应用原理。
9
反馈系统
西安电子科技大学
两级CMOS运放的稳定性分析
反馈信号必须满足一定的相位和幅值条件,以避免信号产生再生现 象,即满足下式:(如果出现了再生,就可能使运放产生振荡 )
A jw0 F jw0 L( jw0 ) 1
其中ω0定义为:
Arg A( jw0 )F ( jw0 ) ArgL( jw0 ) 0
表第二级的元件;
其中RІ(RІІ)是从运放的第一(二)级的输出端“看到的”与地之间的电阻, CІ(CІІ)是从运放地第一(二)级的输出端“看到的”与地之间的电容。
C Cgd 2 Cgd 4 Cgs5 Cdb2 Cdb4
C Cgd 6 Cdb5 Cdb6 CL
的放大、微分、积分、求积、对数等运算功能;
理论上说,运放的差模电压增益为无限大,输入阻抗也是无限大,输
出阻抗为零,但实际的运放的性能只能接近这些值 ;
运放作为一种有足够正向增益的放大器,当加上负反馈时,其闭环转 移函数与运放增益无关 ;
2
西安电子科技大学
CMOS运算放大器的基本分类
两级CMOS运算放大器 套筒式共源共栅CMOS运算放大器(单级) 折叠共源共栅CMOS运算放大器(单级) Rail-to-Rail CMOS运算放大器 Chopper CMOS运算放大器
3
西安电子科技大学
两级CMOS运算放大器设计
一、两级运放的概念、组成与电路结构 二、两级运放的频率补偿 三、两级运放的一般设计方法 四、两级运放的仿真和测试 五、两级运放的版图设计
4
西安电子科技大学
两级CMOS运算放大器的提出
差分放大器可以称为一级运算放大器,其电路的增益由输入对管的跨
上述条件也等价为:
Arg A( jw0dB )F ( jw0dB ) Arg L( jw0dB ) 0
其中ω0定义为:
A jw0 dB F jw0 dB L( jw0 dB ) 1
10
ቤተ መጻሕፍቲ ባይዱ
西安电子科技大学
波特图
1、幅频曲线中,每经过一个极点ωP(零点ωZ),曲线斜率以-20dB/dec (+20dB/dec )变化。 2、相频曲线中,相位在0.1ωP(0.1ωZ)处开始变化,每经过一个极点ωP(零点 ωZ),相位变化-45° (±45°),相位在10ωP(10ωZ)处变化-90° (±90°) 3、一般来讲,极点 (零点)对相位的影响比对幅频的影响要大一些。
A0'' Vout ( s) gm1R1 g m R'' 传输函数 : Vin (s) ( s ' )( s ' ) ( s ' )( s ' )
13
1 ` P 两个极点的位置: I RI C I
` PII