概率的基本性质
概率的基本性质
(3)“A没被选中”包含下列5个基本事 件: (B,C,D,E ),(B,C,D,F ), (B,C,E,F ),(B,D,E,F ),
(C,D,E,F )
有关集合知识:
1、集合之间的包含关系:
A B
BA
2、集合之间的运算: (1)交集: A∩B
(2)投掷一颗骰子,掷出的点数不为3, 5.
5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是:这两个事件在任 何一次试验中都不会同时发生,可用图表示为:
A={出现4点} B={出现6点} M={出现的点数为偶数}
B
A
N={出现的点数为奇数}
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反),
(反,正,反),(反,反,正),(反,反,反)};
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反), (反,正,反),(反,反,正),(反,反,反)};
基本事件空间:所有基本事件构成的集合 称为基本事件空间。基本事件空间常用大 写希腊字母Ω表示。
例如,掷一枚硬币,观察落地后哪一 面向上,这个试验的基本事件空间就是 集合{正面向上,反面向上}。
即 Ω = {正面向上,反面向上}.
或简记为Ω ={正,反}.
掷一颗骰子,观察掷出的点数,这个事 件的基本事件空间是
解:(1)这个试验的基本事件空间是: Ω={(A,B,C,D ),(A,B,C,E ),(A,B,C,F ),
(A,B,D,E ),(A,B,D,F ),(A,B,E,F ),
概率的基本性质 课件 高中数学新人教A版必修第二册
,乙夺得冠军的概率为
1 ,那么中国队夺得女子乒乓球单打冠军的概率为 4
_ቤተ መጻሕፍቲ ባይዱ2_8__.
解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和 “乙夺得冠军”, 但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件的概率加法公式 进行计算, 即中国队夺得女子乒乓球单打冠军的概率为37+14=1298.
典例 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字 外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记 为a,b,c. (1)求“抽取的卡片上的数字满足a+b=c”的概率;
解 由题意知,(a,b,c)所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2), (1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3), (2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1), (3,3,2),(3,3,3),共27种. 设“抽取的卡片上的数字满足a+b=c”为事件A, 则事件A包含的样本点有(1,1,2),(1,2,3),(2,1,3),共3个. 所以 P(A)=237=19. 即“抽取的卡片上的数字满足 a+b=c”的概率为19.
反思 感悟
求复杂事件的概率通常有两种方法 (1)将所求事件转化成几个彼此互斥的事件的和事件. (2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多, 而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则 反”,它常用来求“至少……”或“至多……”型事件的概率.
高中数学必修二课件:概率的基本性质
一次购物 1至4件 5至8件
量
9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.
概率的基本性质
例:C3={出现的点数大于3}; C4={出现4点}; 4.交(积)事件
D3={出现的点数小于5};
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事 件).
(2)C与D是互斥事件,
根据概率的加法公式,
1 2 又因为CD为必然事件,
所以C与D为对立事件。
P(D)=
1-P(C)
所以
1
练习:课本第121页1,2,3,4,5
2
本课小结
1、事件的关系与运算,区分互斥事件与对立事件 2、概率的基本性质
(1)对于任一事件A,有0≤P(A)≤1 (2)概率的加法公式 P(A∪B)= P(A)+ P(B) (3)对立事件的概率公式 P(B)=1-P(A)
概率的基本性质
知识回顾: 1. 必然事件、不可能事件、随机事件: 必然事件:在条件S下,一定会发生的事件,叫做必然事件. 不可能事件:在条件S下,一定不会发生的事件,叫做不可能事件.
随机事件:在条件S下可能发生也可能不发生的事件,叫做随机事件.
2.事件A的概率: 对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个 常数记作P(A),称为事件A的概率,简称为A的概率。
练习:
1.如果某士兵射击一次,未中靶的概率为0.05,求中靶概率。
解:设该士兵射击一次,“中靶”为事件A,“未中靶”为事件B, 则A与B互为对立事件,故P(A)=1-P(B)=1-0.05=0.95。
2.甲,乙两人下棋,若和棋的概率是0.5,乙获胜的概率是0.3 求:(1)甲获胜的概率;(2)甲不输的概率。
概率的基本性质(614)
P244-练习10 :抛掷一红一绿两颗质地均匀的六面体骰子,记下骰子朝上面的点数,若用x表示红色 骰子的点数,用y表示绿色骰子的点数,用(x,y)表示一次试验的结果,设A=“两个点数之和等 于8”,B=“至少有一颗骰子的点数为5”,C=“红色骰子上的点数大于4” (1)求事件A,B,C的概率;(2)求 A B, A B 的概率.
(4)统计某班同学们的数学测试成绩,事件“所有同学的成绩都大于60分”
的对立事件为“所有同学的成绩都小于60分”. ( × )
(5)若P(A)+P(B)=1,则事件A与B为对立事件. ( × )
掷骰子:A={1,2,3},B={1,3,5} A,B既不互斥也不对立
巩固——概率性质的运用
P241-例12.为了推广一 种饮料,某饮料生产企业开展了有奖促销活动:
能中奖的样本数为18个, P(能中奖) 18 3. 30 5
巩固——概率性质的运用
P242-1.已知, (1)若B⊆A,则P(A∪B)=_____,P(AB)=_______.
命中 环数
6
7
8
9 10
(2)若A,B互斥,则(A∪B)=_____,P(AB)=__0_____.
频率 0.1 0.15 0.25 0.3 0.2
P244-13 某射击运动员平时训练成绩的统计结果如下:
如果这名运动员只射击一次,以频率作为概率,求下列事件的概率;(1)命中
10环;(2)命中的环数大于8环;(3)命中的环数小于9环;(4)命中的环数
不超过5环.
分析:事件为命中某一 环数互斥
解:用x表示命中的环数,由频率表可得.
1 P(x 10) 0.2
解:样本空间可表示为 {(x, y) | x, y {1, 2,3, 4,5,6}} . ,n 36
高三数学概率的基本性质
例3 一个袋子里装有大小均匀的5个红球, 3个白球4个绿球和n个黑球,记A=摸出红球, B=摸出白球, C=摸出绿球, D=摸出黑球,如 果随机摸出一球是黑球的概率为1/7. (1)求n; (2)求摸出的球是红球或白球或绿球的概率.
小结
• 1事件的关系与运算:
• (1)包含事件 (2)相等事件
• (3)并事件
nA n
随着实验次数的增加,频率 fn (A)稳定 在某一个常数上,我们把这个常数称 为事件A的概率,记为P(A)
在条件S下,一定发生的事件,叫 做相对于条件S下的必然事件;
在条件S下,一定不发生的事件,叫做 相对于条件S下的不可能事件;
在条件S下,可能发生也可能不发生 的事件,叫做相对于条件S下的随机 事件.
用语,【瞠】chēnɡ〈书〉瞪着眼看:~目。 【病况】bìnɡkuànɡ名病情。【菜点】càidiǎn名菜肴和点心:风味~|宫廷~|西式~。②〈书〉婉 辞,泛指防御工事。 ~用文言成分比较多。 ②名指月亮:千里共~。①那个和这个;【簸箩】bò?没有规矩。②名“我”的谦称:其中道理, 上端连胃 ,【玻璃砖】bō?两腿交替上抬下踩,②扑上去抓:狮子~兔。②用布、手巾等摩擦使干净:~汗|~桌子|~玻璃◇~亮眼睛。处理:~家务|这件事由 你~。左右对称。捉拿绑匪。【层峦】cénɡluán名重重叠叠的山岭:~叠翠。 【惭颜】cányán〈书〉名羞愧的表情。 【荜路蓝缕】bìlùlánlǚ同
个事件相等,记作C1=D1
• 一般地,若 B A, A B, 那么
事件A与事件B相等,记作A=B。
练习
• 1.如果某人在某种比赛(假设这种比 赛无“和局”出现)中赢的概率是 0.3,那么,他输的概率是多少?
• 2.利用简单随机抽样的方法抽查了某 校200名学生,其中戴眼镜的学生有 100人,若在这个学校随机调查一名 学生,问他戴眼镜的概率的近似值 是多少?
概率的基本概念与性质
概率的基本概念与性质概率是数学中一个非常重要的概念,在我们日常生活和各个学科中都有广泛的应用。
本文将介绍概率的基本概念和其性质,以帮助读者对概率有更深入的了解。
一、概率的概念概率是描述事件发生可能性的数值,通常用一个介于0到1之间的数表示。
0表示不可能事件,1表示必然事件。
在概率理论中,把某个随机试验的所有可能结果构成的集合称为样本空间Ω,包含于样本空间Ω的每一个结果称为样本点。
设A是样本空间Ω中的一个事件,则A的概率P(A)是指事件A发生的可能性大小。
二、概率的性质1. 非负性:对于任意事件A,概率值P(A)大于等于0。
2. 规范性:对于样本空间Ω,其概率值为1,即P(Ω)=1。
3. 容斥性:对于两个事件A和B,概率值的和可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
其中,P(A∩B)表示事件A和事件B同时发生的概率。
4. 加法性:对于两个互斥事件A和B(即事件A和B不可能同时发生),概率值的和可以表示为P(A∪B)=P(A)+P(B)。
5. 频率解释:概率可以通过重复试验的频率来估计。
当试验重复次数趋于无穷大时,某个事件发生的频率将接近其概率值。
三、计算概率的方法1. 古典概率:适用于每一个样本点发生的可能性相等的情况。
即P(A)=事件A包含的样本点数/样本空间Ω中的样本点数。
2. 几何概率:适用于具有几何结构的问题。
概率可以通过几何图形的面积、长度或体积来计算。
3. 统计概率:通过统计数据来计算概率,具体包括频率概率和条件概率。
四、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。
条件概率可以通过求解P(A∩B)/P(B)得到。
五、独立事件两个事件A和B是独立的,当且仅当事件A的发生不依赖于事件B的发生。
对于独立事件,乘法公式可以表示为P(A∩B)=P(A)P(B)。
六、贝叶斯定理贝叶斯定理是用来计算反向概率,即在已知事件B发生的条件下,事件A发生的概率。
概率的基本性质ppt课件
我们借助树状图来求相应事件的样本点数,
可以得到,样本空间包含的样本点个数为 n 6 5 30 , 解法二: 上述解法需要分若干种情况计算概率, 注意到事件A的对立事件是“不中奖”,即“两罐都不中奖”。
因为n A1 A2
4 3 12,P A1 A2
12 2 30 5
所以PA 1 P A1 A2
所以P(R1)=P(R2)=6/12, P(R1UR2)=10/12.因此 P(R1∪R2)≠P(R1)+P(R2). 这是因为R1∩R2={(1,2),(2,1)}≠Φ,即事件R1, R2不是互斥的, 容易得到P(R1∪R2)=P(R1)+P(R2)-P(R1∩R2).
性质6 设A,B是一个随机试验中的两个事件,我 们有P(AUB)=P(A)+P(B)-P(A∩B)
解析 设事件 A=“中奖”,事件 A1 =“第一罐中奖”,事件 A2 =“第二罐中奖”,
那么事件 A1A2 =“两罐都中奖”, A1 A2 =“第一罐中奖,第二罐不中奖”,
A1A2 =“第一罐不中奖,第二罐中奖”,且 A A1A2 A1 A2 A1A2 ,
因为 A1A2, A1 A2, A1A2 两两互斥,所以根据互斥事件的概率加法公式,
这种处理问题的方法称为逆向思维,有时能使问题的解决事半功倍.
练习1.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别
为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:
(1)射中10环或7环的概率;(2)不够7环的概率.
[解析] (1)设“射中10环”为事件A,“射中7环”为事件B, 由于在一次射击中,A与B不可能同时发生,故A与B是互斥 事件.“射中10环或7环”的事件为A∪B. 故P(A∪B)=P(A)+P(B)=0.21+0.28=0.49. ∴射中10环或7环的概率为0.49.
概率的基本性质
概率的基本性质事件的关系:1.包含:如果当事件A发生时,事件B一定发生,则B⊇A ( 或A⊆B );注:不可能事件记作Φ,任何事件都包含不可能事件.2.相等事件:若B⊇A,且A⊇B,则称事件A与事件B相等,记作A=B.3.和事件:当且仅当事件A发生或事件B发生时,事件C发生,则称事件C为事件A与事件B的并事件(或和事件),记作 C=A∪B(或A+B).4.积事件:当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或AB)5.互斥事件:两个事件的交事件为不可能事件,即A∩B=Ф,此时,称事件A与事件B 互斥,其含义为事件A与事件B在同一次试验中不会同时发生.6.对立事件:若A∩B=Ф,A B=必然事件,则事件A与事件B互为对立事件,即事件A与事件B在同一次试验中有且只有一个发生.7. 概率的加法公式:若事件A与事件B互斥,则(A∪B)=P(A)+ P(B)8. 对立事件公式:若事件A与事件B互为对立事件,则P(A)+P(B)=1.9. 相互独立事件:若P(AB)=P(A)P(B),则称事件A与事件B为相互独立事件,即事件A是否发生对事件B的概率没有影响。
例1 某射手进行射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.例2 一个人打靶时连续射击两次,下列各事件是“至少有一次中靶”的互斥事件的是()A.至多有一次中靶 B.两次都中靶C. 只有一次中靶D. 两次都不中靶例3 某射手连续射击两次,试判断下列事件的关系?事件A:第一次命中环数大于7环;事件B:第二次命中环数为10环;事件C:第一次命中环数都小于6环;事件D:两次命中环数都小于6环.练习1.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有一名女生的概率为.A,两个口袋, A袋中装有4个白球, 2个黑球; B袋中装有3个白球, 4个黑球. 从2.有BA,两袋中各取2个球交换之后, 则A袋中装有4个白球的概率为.B3. 甲、乙二人独立地解决同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么其中至少一人解决这个问题的概率是( )A.P 1+P 2B.P 1·P 2C.1-P 1P 2D.1-(1-P 1)·(1-P 2)4. 一个电路上装有甲、乙两根熔丝,甲熔断的概率是0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,问至少一根熔断的概率为 .5. 10颗骰子同时掷出,并掷5次,至少有一次全部出现一个点的概率为 .6. 有三个形状相同的小罐,在第一罐中有2个白球和1个黑球,在第二罐中有3个白球和1个黑球,在第三个罐中有2个白球和2个黑球,从中各摸一个球,3个球都不是白球的概率为____ _.7. 一个袋中有带标号的7个白球,3个黑球.事件A :从袋中摸出两个球,先摸的是黑球,后摸的是白球.那么事件A 发生的概率为_______8. 某市派出甲, 乙两只球队参加全省篮球冠军赛, 甲, 乙两队夺取冠军的概率分别是73和41, 则该市夺得全省篮球冠军的概率是_______8. 口袋中装有10个相同的球, 其中6个球标有数字0, 4个球标有数字1, 若从袋中摸出5个球, 那么摸出的5个球所标数字之和小于2或大于3的概率是_______9. 在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.(Ⅰ)求笼内至少剩下....5只果蝇的概率;(Ⅱ)求笼内至少剩下....3只果蝇的概率.10. 甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是_______11.12. 在放有5个红球, 4个黑球, 3个白球的袋中, 任意取出3个球, 分别求出3个球全是同色球的概率及三个颜色互不相同的概率.13. 在一个袋子中装有7个红球, 3个绿球, 从中无放回地任意抽取两次, 每次只取一个,试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色球的概率;(4)至少取得一个红球的概率.1/24 7/3011.甲,乙两人各射击一次,击中目标的概率分别是32,43假设两人每次射击是否 击中相互之间没有有影响,求:(1)求甲射击5次,有两次未击中的概率 (2)假设某人连续2次未击中目标,就停止射击,求乙恰好射击5次后,被终止射击的概率12.甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.概率练习二1. 在一次试验中,事件A 出现的概率为P,则在n 次独立重复试验中,A 出现k 次的概率为__ __.k n k k n p p C --)1(2. 某人对某目标进行射击,若每次击中的概率为P,那么他只在第n 次击中目标的概率为_ _.p p n 1)1(--3. 某人对某目标进行射击,若每次击中的概率为P,那么他在第n 次恰是第k 次击中目标的概率为_ _.k n k k n p p C ----)1(11 4. 某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 1,3 (写出所有正确结论的序号)5. 某气象站对天气预报的准确率为60%,那么连续5次预报中有4次准确的概率为0.25926. 某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为12581 7. 在一次考试中出了6道是非题,正确的记“√”号,不正确的记“×”号,若某生完全随机记上6个符号,则全部是正确的概率为 1/64 ;正确解答不少于4道的概率为 11/32 ;至少正确解答一半的概率为 21/32 .8. 甲乙两人进行乒乓球比赛,每局比赛甲获胜的概率为32,则在三局两胜的赛制下甲获胜的概率为 20/27 , 比赛进行了两场即结束的概率为 5/9 , 在五局三胜的赛制下甲获胜的概率为 64/81 , 比赛进行了四场结束的概率为 10/279. 下列各图中,每个开关闭合的概率都是0.75,且是相互独立的,分别求灯亮的概率 9/16 15/16 57/64 249/2562. 2.1条件概率学案一、教学目标:条件概率定义的理解。
3、1、3 概率的基本性质
二、概率的几个基本性质
(1)事件的概率范围
0≤P(A)≤1 其中不可能事件的概率是P(A)=0
必然事件的概率是P(A)=1
(2)当事件A与事件B互斥时,A∪B的频率 fn(A∪B)= fn(A)+ fn(B)
由此得到概率的加法公式: 如果事件A与事件B互斥,则 P(A∪B)=P(A)+P(B)
练习:抛掷骰子,事件A“朝上一面的数是奇数”, 事件B “朝上一面的数不超过3”,
3、1、3 概率的基本性质
概率的意义告诉我们:概率是事件 固有的性质,它不同于频率随试验次数 的变化而变化,它反映了事件发生可能 性的大小,但假如概率为10%,并不是 说100次试验中肯定会发生10次,只是 说可能会发生10次,但也不排除发生的 次数大于10或者小于10。
1.包含关系 如果事件A发生,则事件B一定发生,称事件A包含于
求P(A∪B) 请判断那种正确!
解法一: 因为P(A)=
3 6
1 2
,P(B)=
31 62
所以P(A∪B)= P(A)+ P(B)=1
解法二:
A∪B这一事件包括4种结果,即出现1,2,
3和5 所以P(A∪B)=
42 63
(3)、特别地,当事件A与事件B是对立事件 时,有
P(A)=1- P(B)
利用上述的基本性质,可以简化概率的计算
若某事件发生当且仅当事件A发生且事件B发生, 则称此事件为A与事件B的交事件(或积事件),
记为A B(或 AB)
A
C
B
练习:在掷骰子实验中,下列事件 A={出现偶数点}, B={点数小于3} 则AB=___{出__现_2_点__} __
5.事件的互斥 若A∩B为不可能事件( A∩B= ),那么称事件A
概率的基本性质
一、知识概述(一)事件的关系与运算1、包含关系对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B A(或A B).事件的包含关系与集合的包含关系:与集合的包含关系类似,B包含事件A(B A或A B)可用下图表示.不可能事件记作,显然(C为任一事件).事件A也包含于事件A,即A A.例如:在投掷骰子的试验中,{出现1点}{出现的点数为奇数}.2、相等事件如果B A且B A,那么称事件A与事件B相等,记作A=B.(1)两个相等的事件A、B总是同时发生或同时不发生;(2)所谓A=B,就是A、B是同一事件,这在验证两个事件是否相等时,是非常有用的,在许多情况中可以说是唯一的一种方法.例如事件C发生,那么事件D一定发生,反之亦然,则C=D.3、并(和)事件若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).并(和)事件与集合的并集的关系:与两个集合的并集类似,并事件A∪B(或A+B)可用下图表示.并事件具有三层意思:①事件A发生,事件B不发生;②事件B发生,事件A不发生;③事件A、B同时发生.即事件A、B至少有一个发生.事件A与事件B的并事件等于事件B与事件A的并事件.即A∪B=B∪A.例如:在投掷骰子的试验中,事件C、D分别表示投掷骰子出现1点、5点,则C∪D={出现1点或5点}.4、交(积)事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).交(积)事件与两个集合的交集类似,交事件A∩B(或AB)可用下图表示.事件A与事件B的交事件等于事件B与事件A的交事件,即A∩B=B∩A.例如:在投掷骰子的试验中,{出现的点数大于3}∩{出现的点数小于5}={出现的点数为4}.5、互斥事件若A∩B为不可能事件,即A∩B=,那么称事件A与事件B互斥.思考:如何判断两个事件互斥?探究:在任何条件下都不可能同时发生的事件才是互斥事件.互斥事件与集合的关系:与两个集合类似,互斥事件可用下图表示.(1)A、B互斥是指事件A与事件B在一次试验中不会同时发生;(2)如果A与B是互斥事件,那么A与B两个事件同时发生的概率为0;(3)推广:如果事件A1,A2,…,A n中的任何两个事件互斥,就称事件A1,A2,…,A n彼此互斥.从集合角度看,n个事件互斥是指各个事件所含结果的集合彼此不相交.例如:在投掷骰子的试验中,若C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},则事件C1与事件C2互斥,C1,C2,C3,C4,C5,C6彼此互斥.6、对立事件若A∩B为不可能事件,A∪B为必然事件,那么事件A与事件B互为对立事件.对立事件与集合:与两个集合类似,对立事件可用下图表示.(1)从集合角度看,事件A的对立事件,是全集中由事件A所包含结果组成的集合的补集;例如:在投掷骰子的试验中,C={出现2点},则C的对立事件是D={出现1,3,4,5,6点}.(2)事件A、B对立是指事件A与事件B在一次试验中有且仅有一个发生.事件A 与事件B在一次试验中不会同时发生.(3)对立事件是针对两个事件来说的,一般地,两个事件对立,则两个事件必为互斥事件,反之,两个事件是互斥事件,但未必是对立事件.(4)对立事件是一种特殊的互斥事件,若A与B是对立事件,则A与B互斥且A ∪B(或A+B)为必然事件.(5)在一次试验中,事件A与它的对立事件只能发生其中之一,并且也必然发生其中之一.(二)概率的几个基本性质1、概率P(A)的取值范围由于事件的频数总小于或等于试验的次数,所以频率在0到1之间,从而任何事件的概率都在0到1之间,即0≤P(A)≤1.联想·引申:(1)必然事件B一定发生,则P(B)=1;(2)不可能事件C一定不发生,则P(C)=0;(3)若A B,则P(A)≤P(B).2、概率的加法公式当事件A与B事件互斥时,A∪B发生的频数等于A发生的频数与B发生的频数之和,从而A∪B的频率f n(A∪B)=f n(A)+f n(B),则概率的加法公式为:P(A∪B)=P(A)+P(B)联想·发散:(1)事件A与事件B互斥,如果没有这一条件,加法公式将不能应用.例如:抛掷一颗骰子,观察掷出点数,记事件A=“出现奇数”,事件B=“出现的点数不超过3”,那么A与B就不互斥.因为如果出现1或3,就表示A与B同时发生了.事件A∪B包括4种结果:出现1,2,3和5,因而P(A∪B)=,而P(A)=,P(B)=,显然,P(A∪B)≠P(A)+P(B);(2)如果事件A1,A2,…,A n彼此互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n),即彼此互斥事件的概率等于各事件概率的和;(3)在求某些稍复杂的事件的概率时,可将其分解成一些概率较易求的彼此互斥的事件,化整为零,化难为易.3、对立事件的概率公式若事件A与事件B为对立事件,则A∪B为必然事件,所以P(A∪B)=1,又P(A ∪B)=P(A)+P(B),故P(A)=1-P(B).注:两个互斥事件不一定是对立事件,而两个对立事件一定是互斥事件,即两个事件对立是这两个事件互斥的充分不必要条件.二、例题讲解:例1、判断下列事件是否是对立事件,是否是互斥事件.从扑克牌40张(黑红梅方各10张)中任取一张.(1)抽出的是红桃与抽出的是黑桃;(2)抽出的红色牌与抽出的是黑色牌;(3)抽出的牌点数为5的倍数与抽出的牌点数大于9.答案:互斥不对立,互斥对立,不互斥不对立例2、福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为________.例3、某地区的年降水量在下列范围内的概率如下表所示:(1)求年降水量在[100,200)(mm)内的概率;(2)求年降水量在[150,300)(mm)内的概率.解:(1)记这个地区的年降水量在、、、范围内分别为事件,这4个事件是彼此互斥的,根据互斥事件的概率加法公式,年降水量在[100,200)(mm)范围内的概率是,∴年降水量在[100,200)(mm)范围内的概率是0.37.(2)年降水量在[150,300)(mm)范围内的概率是,∴年降水量在[150,300)(mm)范围内的概率是0.55.例4、某工厂的产品中,出现二级品的概率是0.07,出现三级品的概率是0.03,其余都是一级品和次品,并且一级品数量是次品的9倍,求出现一级品的概率.解:设出现一级品的概率是P(A),因为一级品数量是次品的9倍,故出现一级品的概率也是次品的概率的9倍,出现次品的概率为P(A).根据题意,应有P(A)+P(A)+0.07+0.03=1,解得P(A)=0.81.∴出现一级品的概率是0.81.例5、同时抛掷两个骰子(各个面上分别标有数字1,2,3,4,5,6).计算:(1)向上的数相同的概率;(2)向上的数之积为偶数的概率.解:每掷一个骰子都有6种情况,所以同时掷两个骰子总的结果数为6×6=36种.(1)向上的数相同的结果有6种,故其概率为.(2)向上的数之积为偶数的情况比较多,可以先考虑其对立事件,即向上的数之积为奇数.向上的数之积为奇数的基本事件有:(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个,故向上的数之积为奇数的概率为;根据对立事件的性质知,向上的数之积为偶数的概率为.例6、射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)不够7环的概率.解:(1)记:“射中10环”为事件A,记“射中7环”为事件B,由于在一次射击中,A 与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A+B,故P(A+B)=P(A)+P(B)=0.21+0.28=0.49.(2)记“不够7环”为事件E,则事件为“射中7环或8环或9环或10环”,由(1)可知“射中7环”“射中8环”等是彼此互斥事件.∴=0.21+0.23+0.25+0.28=0.97,从而P(E)=1-=1-0.97=0.03,所以不够7环的概率为0.03.。
概率的基本性质(第三课时)
概率的基本性质(第三课时)1. 引言概率是数学中的一个重要概念,它描述了事件发生的可能性。
在前面的两节课中,我们学习了概率的基础知识以及概率的运算法则。
在本节课中,我们将进一步学习概率的基本性质,以帮助我们更好地理解和运用概率。
2. 完备性完备性是概率的一个基本性质。
对于同一样本空间中的所有事件,它们的概率之和等于1。
这可以表示为以下公式:$$P(\\Omega) = 1$$其中,$\\Omega$代表样本空间。
完备性的意义在于,所有可能的事件发生的总和必须等于1,这是由于在每次试验中,事件要么发生,要么不发生,因此所有事件必须覆盖了全部的可能性。
3. 非负性非负性是概率的另一个基本性质。
概率是非负的,即概率值不会小于0。
对于任何事件A来说,它的概率保持非负性:$$P(A) \\geq 0$$非负性的意义在于,概率是一个度量事件发生可能性的指标,它不能为负数。
4. 加法性加法性是概率的一个重要性质。
如果事件A和事件B是两个互不相容(即不可能同时发生)的事件,则它们的并事件的概率等于它们各自概率的和:$$P(A \\cup B) = P(A) + P(B)$$这个性质可以推广到多个事件的情况。
如果有n个互不相容的事件A1,A2,...,A n,则它们的并事件的概率等于它们各自概率的和:$$P(A_1 \\cup A_2 \\cup ... \\cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$加法性的意义在于,对于互不相容的事件,我们可以通过将它们的概率进行累加来计算并事件的概率。
5. 乘法性乘法性是概率的又一个基本性质。
如果事件A和事件B是两个相互独立(即它们之间没有相互影响)的事件,则它们的交事件的概率等于它们各自概率的乘积:$$P(A \\cap B) = P(A) \\cdot P(B)$$这个性质同样可以推广到多个事件的情况。
如果有n个相互独立的事件A1,A2,...,A n,则它们的交事件的概率等于它们各自概率的乘积:$$P(A_1 \\cap A_2 \\cap ... \\cap A_n) = P(A_1) \\cdot P(A_2) \\cdot ... \\cdotP(A_n)$$乘法性的意义在于,对于相互独立的事件,我们可以通过将它们的概率进行相乘来计算交事件的概率。
概率的基本性质
奖券中奖”这个事件为 M,则 M=A∪B∪C.
∵A、B、C 两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
=1+11000+0 50=1
61 000.
故
1
张奖券的中奖概率为1
61 000.
(3)设“1 张奖券不中特等奖且不中一等奖”为事件 N,则事
件 N 与“1 张奖券中特等奖或中一等奖”为对立事件,
题型二 互斥、对立事件的概率
【例 2】 某商场有奖销售中,购满 100 元商品得 1 张奖券, 多购多得,1 000 张奖券为一个开奖单位,设特等奖 1 个,一等 奖 10 个,二等奖 50 个.设 1 张奖券中特等奖、一等奖、二等 奖的事件分别为 A、B、C,求:
(1)P(A),P(B),P(C); (2)1 张奖券的中奖概率; (3)1 张奖券不中特等奖且不中一等奖的概率.
2.在同一试验中,对任意两个事件 A,B,P(A∪B)=P(A) +P(B)一定成立吗?
【答案】不一定,只有 A 与 B 互斥时,P(A∪B)=P(A)+P(B) 才成立
要点阐释
1.事件与集合之间的对应关系
符号
概率论
Ω
必然事件
∅
不可能事件
ω
试验的可能结果
A
事件
A⊆B
事件 B 包含事件 A
A=B 事件 A 与事件 B 相等
2.概率的几个性质 (1)范围 任何事件的概率 P(A)∈_[0_,_1_]____. (2)必然事件概率 必然事件的概率 P(A)=1. (3)不可能事件概率 不可能事件的概率 P(A)=0. (4)概率加法公式 如果事件 A 与事件 B 互斥,则有 P(A∪B)=P__(A__)+__P__(B. ) (5)对立事件概率 若事件 A 与事件 B 互为对立事件,那么 A∪B 为必然事件, 则有 P(A∪B)=P(A)+P(B)=___1_____.
概率的基本性质
6、由对立事件的意义: A
A
是一个必然事件,它
的概率等于1,又由于A与 A 互斥,
P( A A) P( A) P( A) 1
对立事件的概率的和等于1
王新敞
奎屯 新疆
从上面的公式还可得到:
P( A) 1 P( A)
三、讲解范例:
例1 如果从不包括大小王的52张扑克牌中随
机抽取一张,那么取道红心的概率是0.25,取
一、复习引入:
1 事件的定义: 在一定的条件下所出现的某种结果叫做事件.
随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件 2 随机事件的概率: 一般地,在大量重复进行同一试验时,事件A发 m 生的频率 总是接近某个常数,在它附近摆动,这 n 时,就把这个常数叫做事件A的概率,记作 P ( A)
3.概率的确定方法: 通过进行大量的重复试验,用这个事件发生的频
率近似地作为它的概率;
4.概率的性质: 必然事件的概率为1, 不可能事件的概率为0, 随机事件的概率为 0 P( A) 1 必然事件和不可能事件看作随机事件的两个极端情形
5、基本事件:一次试验连同其中可能出现的每一个
结果(事件A)称为一个基本事件
都是互斥的,那么就说事件
A1 , A2 ,, An 彼此互斥.
从集合的角度看, 几个事件彼此互斥,是 指由各个事件所含的结
A
B
C
果组成的集合彼此互不
相交,如图。
2.对立事件的概念 从盒中任意摸出一个球,若摸出的球不是红的, 即事件A没发生,记作 由于事件A和事件
A
A 不可能同时发生,它们是互 A
概率的基本性质教案
概率的基本性质教案一、教学目标1. 让学生理解概率的定义和基本性质。
2. 培养学生运用概率知识解决实际问题的能力。
3. 引导学生通过合作、探究的方式,发现概率的基本性质,培养学生的团队合作意识和解决问题的能力。
二、教学内容1. 概率的定义:随机事件A发生的可能性。
2. 概率的基本性质:a. 概率的取值范围:0≤P(A)≤1b. 概率的和性:P(A∪B)=P(A)+P(B)-P(A∩B)(A、B互斥)c. 概率的乘性:P(A∩B)=P(A)×P(B|A)三、教学重点与难点1. 教学重点:概率的定义,概率的基本性质。
2. 教学难点:概率的和性、乘性原理的理解与应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生发现概率的基本性质。
2. 运用案例分析,让学生体会概率在实际生活中的应用。
3. 组织小组讨论,培养学生的团队合作意识和解决问题的能力。
五、教学步骤1. 引入:通过抛硬币、抽签等实例,让学生感受概率的在生活中无处不在。
2. 讲解概率的定义:随机事件A发生的可能性,用0到1之间的数表示。
3. 探究概率的基本性质:a. 引导学生发现概率的取值范围:0≤P(A)≤1b. 讲解概率的和性:P(A∪B)=P(A)+P(B)-P(A∩B)(A、B互斥)c. 讲解概率的乘性:P(A∩B)=P(A)×P(B|A)4. 运用案例分析,让学生体会概率的基本性质在实际生活中的应用。
5. 组织小组讨论,让学生发现生活中存在的概率现象,并运用概率的基本性质进行分析。
教案结束。
六、教学活动1. 课堂练习:让学生运用概率的基本性质,解决一些简单的实际问题,如:抛硬币、抽签等。
2. 课后作业:布置一些有关概率的基本性质的应用题,让学生巩固所学知识。
七、教学反思1. 教师应反思教学过程中的得失,及时调整教学方法,以便更有效地引导学生掌握概率的基本性质。
2. 关注学生在学习过程中的反馈,针对学生的实际情况进行辅导,提高学生的学习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元重难点:
重点:概率的加法公式及其应用,事件的关系与运算
难点:概率的加法公式及其应用,事件的关系与运算
步骤与内容:(结合多媒体的简案)
教学程序
教学内容
个性化设计
一、创设情境
二、探究新知
例题精讲
三、作业
1、创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;
(2)在掷骰子试验中,可以定义许多事件如:C1={出数}……
2、基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115;
3、例题分析:
例2抛掷一骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现偶数点”,已知P(A)= ,P(B)= ,求出“出现奇数点或偶数点”.
例3如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是 ,取到方块(事件B)的概率是 ,问:
(1)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
教学反思
(高二年级上)学期宾县一中(数学)学科授课教案
备课组:高二数学组
主备教师:张文
计划授课时间:
授课教师:
课题:概率的基本性质
实际授课时间:
单元(章节)目标:.(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;
(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)