2018-2019学年北京市海淀区七年级(下)期中数学试卷
2019-2020学年北京市海淀区七年级(下)期末数学试卷
2019-2020学年北京市海淀区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图所示,匕2和匕1是对顶侣的是(B.±2A.+16 C. -2 D.23.己知a<b,下列不等式中,变形正确的是()A・a—3>b—3B・?>: C.—3a>—3b D.3a-l>3b-l4.在平而直角坐标系中,如果点P(—1,-2+m)在第三象限,那么m的取值范困为()A.m<2B.m<2C. m<0D.mVO5.下列调查方式,你认为最合适的是()A.旅客上飞机前的安检,采用抽样调查方式B. 了解某地区饮用水矿物质含量:的情况,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视傍跑吧.兄弟口步目的收视率.采用全而调查方式6.如图,将含30。
角的直角三角板的直角顶点放任直尺的一边上,己知匕1=35气则£2的度数是()A.55°B.45°C.35°7.下列命题中,是假命题的是()A.在同一平而内.过一点有且只有一条直线与己知直线垂直B同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平•行D.两条直线被第三条直线所截,同位角相等8.如图,。
为直线A8上一点,0E平分ZBOC.ODLOE于点若匕BOC=80。
,则40D的度数是()CA. 70°B. 50。
C. 40°9・象棋在中国有着三千多年的历史•由于用具简单•趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“焉”和“卓”的点的坐标分别 为(4,3), (-2,1),则表示棋子“炮”的点的坐标为()汉界B. (0,3)C・(3,2)A. (-3,3)10.如图,任平面直角坐标系xOy^.如果一个点的坐标D・(13)J,可以用来表示关于心y 的二元一次方程组:写就二:的解,那么这个点是()二、填空题(本大题共6小题,共13.0分)11. 列不等式表示:X 与2的差小于一 1.12. 把无理数M7, MT ,西,-归表示在数轴匕在这四个无理数中,被墨迹(如图所13. 若(a-3)2 + v f hT2 = 0> 则a+b=・14. 写出二元一次方程2x + y = 5的一个非负整数解15. 如图,写出能判定AB//CD 的一对角的数量关系:A816.在平而直角坐标系中,对于点P (x,y ).如果点Q (x,<)的纵坐标满足V =(X -y^X >y^)那么称点Q 为点尸的“关联点,,.请写出点(3,5)的“关联点 ly —x (? lx Vy 时)的坐标:如果点P (x,y )的关联点。
2018-2019学年度七年级下册期中数学试卷(含答案和解析)
2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
2017-2018学年北京市北京师大附中七年级下学期期中考试数学试卷(含答案)
北京师大附中2017-2018学年下学期初中七年级期中考试数学试卷一、选择题:(本题共16分,每小题2分)1.下列各数中无理数有()3.141, 鼠-心,0,0.1010010001A. 2个B. 3个C. 4个D. 5个2.如图所示,四幅汽车标志设计中,能通过平移得到的是A. AB. BC. CD. D3.若小b,则下列不等式中,不一定成立的是()A. B 3 f b-3B. 4 + bC. 23 2bD. Jwly4.如图,直线AB与直线CD相交于点O, EOJLAB, L E OD-<5,则々lOC5.已知点A (a,b)在第三象限,则点B(-a+1 , 3b-1)在A.第一象限B.第二象限C.第三象限D.第四象限6.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;③,-5;④的的平方根是土W;⑤『定是负数A. 1个B. 2 个C. 3 个D. 4 个7.如图,直线a,b被直线c所截,-Z4,若々・4行,则匕工等于()A.Q|B.卜费C.D.飘X8.在平面上,过一定点。
作两条斜交的轴x和y,它们的交角是s (切于兜。
),以定点。
为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中仍叫做坐标角,对于平面内任意一点P, 过P作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x和y,于是点P的坐标就是(x,y),如图,辨-60°|,且y轴平分£MOx, OM=2则点M的坐标是( )A. (2, -2)B. (-1, 2)C. (-2, 2)D. (-2, 1)二、填空题:(本题共16分,每小题2分)9. ____ ___~\________10.点P (-2, 1)向上平移2个单位后的点的坐标为11.不等式2\-3三收*5的解集是12.已知实数x,y满足& 1+肉;6| 0,贝U x-y=13.已知点怙,3:i+6.a 1),若点P在x轴上,则点P的坐标为14.如图,AB//CD,若司则二的度数是.15.下列各命题中:①对顶角相等;②若则x=2;③入叵c/;④两条直线相交,若有一组邻补角相等,则这两条直线互相垂直,其中错误的命题是 (填序号)16.图a中,四边形ABC虚细长的长方形纸条,士”PD-《沿眄\将纸条的右半部分做第一次折叠,得到图b和交点p』;再沿pP:将纸条的右半部分做第二次折叠,得到图c和交点巴;再沿PP§将纸条的右半部分做第三次折叠,得到图d和交点I\.P a-------- K~5-(1)如果Q- 1T,那么-(2) ZPF4B -三、计算题(每小题6分,共24分)17.计算:屈+ 1手18.化简:||i£5i4成-科+球斗19. 解不等式20.已知a是1的算术平方根,b是8的立方根,求b-a的平方根四、几何解答:(每小题8分,共16分)21.已知:如图,AB//CD, , |^1 - 75°,解:卜.COTAB, kB-35Z二£"乙(,而£ 1 - 75°,MACD -小A —°,v CD //W,“ 4A '+= 1 孵.(,22.如图,AB//CD, £ 1 ・上二AM^MN,求证:求乙人的度数. DN1NINfl五、平面直角坐标系的应用(8分)23 .如图所示的象棋盘上,若 ,位于点(1, 0)上,。
北京市海淀区2019_2020学年七年级数学下学期期末试卷含解析
北京市海淀区2019-2020学年七年级数学下学期期末试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有-一个.1.的平方根是()A.3 B.±3 C.D.±2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,O是BC上一点,AO⊥BC于点O,直线DE经过O点,∠BOD=25°,则∠AOE的度数为()A.100°B.105°C.115°D.125°4.数轴上点P表示的数可能是()A.B.C.D.5.不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列调查:①了解某批种子的发芽率;②了解某班学生对“社会主义核心价值观”的知晓率;③了解某地区地下水水质;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数.适合采取全面调查的是()A.①③B.②④C.①②D.③④7.已知:OA⊥OC,∠AOB:∠BOC=1:3,则∠BOC的度数为()A.67.5°B.135°C.67.5°或135°D.无法确定8.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:对于以下四种说法,你认为正确的是()①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少A.①③B.②④C.①②D.③④二、填空题(本题共16分,每小题2分)9.若x﹣1有平方根,则实数x的取值范围是.10.已知,是二元一次方程ax+2y=6的一个解,那么a的值为.11.平面直角坐标系数中点M(a,a+3)在x轴上,则a=.12.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果,那么.13.已知+|x2﹣3y﹣13|=0,则x+y=.14.如图,有一条直的等宽纸带按图折叠时,则图中∠α=.15.已知关于x,y的二元一次方程组的解满足x+y<3,则m的取值范围为.16.下面是小满的一次作业,老师说小满的解题过程不完全正确,并在作业旁写出了批改.长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后.10m的李明需以多快的速度同时开始冲刺,才能在张华之前到达终点?解:设李明以xm/s的速度开始冲刺.依题意,得<,两边同时除以25,得x>4.4.答:李明需以大于4.4m/s的速度同时开始冲刺,才能在张华之前到达终点.请回答:必须添加“根据实际意义可知,x>0”这个条件的理由是.三.解答题(本题共68分,第17、19、20、21题,每小题5分,第18题10分,第22-25题,每小题5分,第26-27题,每小题5分)17.(5分)计算:+﹣+|﹣2|.18.(10分)解方程或方程组:(1)2(x﹣1)2=8;(2).19.(5分)解不等式组:,并写出该不等式组的非负整数解.20.(5分)故宫是世界上现存规模最大,保存最完整的宫殿建筑群.小赵和小钱在学校组织的综合实践活动中来到故宫学习,他们建立了相同的坐标系描述各景点的位置.小赵:“养心殿在原点的西北方向.”小钱:“太和门的坐标是(0,﹣1).”实际上,他们说的位置都是正确的.你知道这两位同学是如何建立平面直角坐标系的吗?(1)依据两位同学的描述,可以知道他们选择景点为原点,建立了平面直角坐标系;(2)在图中画出这两位同学建立的平面直角坐标系;(3)九龙壁的坐标是,景仁宫的坐标是.21.(5分)完成下面的证明:已知:如图,DE∥BC,BE,DF分别是∠ABC,∠ADE的角平分线,求证:∠1=∠2.证明:∵DE∥BC,∴∠ABC=∠ADE,()∵BE,DF分别是∠ABC,∠ADE的角平分线,∴∠3=∠ABC;∠4=∠ADE,∴∠3=∠4,()∴∥,()∴∠1=∠2.()22.(6分)已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,1)B(3,3)C(2,﹣1)△A′B′C′A′(4,4)B′(9,b)C′(c,2)(1)观察表中各对应点坐标的变化,并填空:a=,b=,c=;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是.23.(6分)“全名阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1600元,20本文学名著比20本动漫书多400元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,而且文学名著不低于25本,总费用不超过2000,请求出所有符合条件的购书方案.24.(6分)经过举国上下抗击新型冠状病毒的斗争,疫情得到了有效控制,国内各大企业在2月9日后纷纷进入复工状态.为了了解全国企业整体的复工情况,我们查找了截止到2020年3月1日全国部分省份的复工率,并对数据进行整理、描述和分析.下面给出了一些信息:a.截止3月1日20时,全国已有11个省份工业企业复工率在90%以上,主要位于东南沿海地区,位居前三的分别是贵州(100%)、浙江(99.8%)、江苏(99%).b.各省份复工率数据的频数分布直方图如图1(数据分成6组,分别是40<x≤50;50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100);c.如图2,在b的基础上,画出的扇形统计图:d.截止到2020年3月1日各省份的复工率在80<x≤90这一组的数据是:81.3,83.9,84,87.6,89.4,90,90请解答以下问题:(1)依据题意,样本容量是,补全频数分布直方图;(2)扇形统计图中50<x≤60这组的圆心角度数是度(精确到0.1);(3)根据以上统计图表计算截止2020年3月1日,样本中复工率85%以上的省份占%(精确到0.1).25.(6分)在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=﹣1,且b=2时,τ(0,1)=;(2)若τ(1,2)=(﹣2,0),则a=,b=;(3)设点P(x,﹣2x),点P经过变换τ得到点P′(x′,y′).若点P′与点P关于x轴对称,求a和b的值.26.(7分)如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF;(2)在图2中,画∠BEP的平分线与∠DFP的平分线,两条角平分线交于点Q,请你补全图形,试探索∠EPF与∠EQF之间的关系,并证明你的结论;(3)在(2)的条件下,已知∠BEP和∠DFP均为钝角,点G在直线AB、CD之间,且满足∠BEG=∠BEP,∠DFG=∠DFP,(其中n为常数且n>1),直接写出∠EGF与∠EPF的数量关系.27.(7分)阅读材料:平面直角坐标系中点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为[P],即[P]=|x|+|y|,其中的“+”是四则运算中的加法,例如点P(1,2)的折线距离[P]=|1|+|2|=3.【解决问题】(1)已知点A(﹣2,4),B(+,﹣),直接写出[A],[B]的折线距离;(2)若点M满足[M]=2,①当点M在x轴的上方时,且横坐标为整数,求点M的坐标;②正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),当正方形EFGH上存在点M时,直接写出t的取值范围.2019-2020学年北京市海淀区七年级(下)期末数学试卷参考答案与试题解析一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有-一个.1.的平方根是()A.3 B.±3 C.D.±【分析】首先根据平方根概念求出=3,然后求3的平方根即可.【解答】解:∵=3,∴的平方根是±.故选:D.2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.如图,O是BC上一点,AO⊥BC于点O,直线DE经过O点,∠BOD=25°,则∠AOE的度数为()A.100°B.105°C.115°D.125°【分析】根据垂直关系知∠AOC=90°,由对顶角相等可求∠COE,再根据角的和差关系可求∠AOE的度数.【解答】解:∵AO⊥BC,∴∠AOC=90°,∵∠COE=∠BOD=25°,∴∠AOE=90°+25°=115°.故选:C.4.数轴上点P表示的数可能是()A.B.C.D.【分析】首先判定出2<<3,由此即可解决问题.【解答】解:因为2<<3,所以数轴上点P表示的数可能是.故选:A.5.不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B.C.D.【分析】先根据不等式的性质:先移项,然后合并同类项再系数化1即可解得不等式,然后注意在数轴上表示时小于方向向左,包含,应用实心圆点表示.【解答】解:不等式x﹣3≤3x+1,移项得:x﹣3x≤3+1,合并同类项得:﹣2x≤4解得:x≥﹣2;在数轴上表示为:故选:D.6.下列调查:①了解某批种子的发芽率;②了解某班学生对“社会主义核心价值观”的知晓率;③了解某地区地下水水质;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数.适合采取全面调查的是()A.①③B.②④C.①②D.③④【分析】全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.【解答】解:①了解某批种子的发芽率,适合抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率,适合全面调查;③了解某地区地下水水质,适合抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数,适合全面调查.故选:B.7.已知:OA⊥OC,∠AOB:∠BOC=1:3,则∠BOC的度数为()A.67.5°B.135°C.67.5°或135°D.无法确定【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠BOC=1:3,分两种情况可求∠BOC 的度数.【解答】解:∵OA⊥OC,∴∠AOC=90°,如图1:∵∠AOB:∠BOC=1:3,∴∠BOC=×90°=67.5°;如图2:∵∠AOB:∠BOC=1:3,∴∠BOC=90°÷=135°.综上所述,∠BOC的度数为67.5°或135°.故选:C.8.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:对于以下四种说法,你认为正确的是()①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少A.①③B.②④C.①②D.③④【分析】根据扇形统计图可以得出各个年龄段的人数占调查总人数的百分比,再根据条形统计图可以得出90后从事互联网行业岗位的百分比,进而求出90后从事互联网行业岗位占调查总人数的百分比,就可以比较,做出判断.【解答】解:对于选项①,互联网行业从业人员中90后占调查人数的56%,占一半以上,所以该选项正确;对于选项②,在当地互联网行业从业人员中,80前人数占调查总人数的3%,所以该选项错误;对于选项③,互联网行业中从事技术岗位的人数90后占总人数的56%×41%=23%,所以该选项正确;对于选项④,互联网行业中,从事设计岗位的90后人数占调查人数的56%×8%=4.48%,而80前从事互联网行业的只占1﹣56%﹣41%=3%,因此该选项不正确;因此正确的有:①③,故选:A.二、填空题(本题共16分,每小题2分)9.若x﹣1有平方根,则实数x的取值范围是x≥1 .【分析】根据非负数有平方根,列式求解即可.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为:x≥1.10.已知,是二元一次方程ax+2y=6的一个解,那么a的值为 2 .【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:将代入方程ax+2y=6,得:2a+2=6,解得:a=2,故答案为:2.11.平面直角坐标系数中点M(a,a+3)在x轴上,则a=﹣3 .【分析】根据x轴上点的纵坐标为0列方程求解即可.【解答】解:∵点M(a,a+3)在x轴上,∴a+3=0,解得a=﹣3.故答案为:﹣3.12.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果两个角是对顶角,那么这两个角相等.【分析】先找到命题的题设和结论,再写成“如果…,那么…”的形式.【解答】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.13.已知+|x2﹣3y﹣13|=0,则x+y=﹣1 .【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣2=0,x2﹣3y﹣13=0,解得x=2,y=﹣3,所以,x+y=2+(﹣3)=﹣1.故答案为:﹣1.14.如图,有一条直的等宽纸带按图折叠时,则图中∠α=70°.【分析】根据平行线的性质,40度的同位角加上α等于折叠角的度数,又由折叠的性质可知α+α+40=180度,由此可求出α的度数.【解答】解:根据平行线性质,折叠的角度是(α+40)度,根据折叠性质,折叠角度再加上α就是个平角180度.即α+α+40°=180度,解得α=70度.故答案为:70°.15.已知关于x,y的二元一次方程组的解满足x+y<3,则m的取值范围为m <1 .【分析】将方程组中两个方程相加得出3x+3y=12m﹣3,两边都除以3可得x+y=4m﹣1,根据x+y<3可得关于m的不等式,解之可得.【解答】解:,①+②,得:3x+3y=12m﹣3,∴x+y=4m﹣1,∵x+y<3,∴4m﹣1<3,解得m<1,故答案为:m<1.16.下面是小满的一次作业,老师说小满的解题过程不完全正确,并在作业旁写出了批改.长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后.10m 的李明需以多快的速度同时开始冲刺,才能在张华之前到达终点?解:设李明以xm/s的速度开始冲刺.依题意,得<,两边同时除以25,得x>4.4.答:李明需以大于4.4m/s的速度同时开始冲刺,才能在张华之前到达终点.请回答:必须添加“根据实际意义可知,x>0”这个条件的理由是不等式两边乘以x,根据不等式的性质,x的正负决定不等号的方向是否改变,所以先判断x的正负.【分析】利用分式有意义的条件和时间的实际意义求解.【解答】解:必须添加“根据实际意义可知,x>0”这个条件的理由是不等式两边乘以x,根据不等式的性质,x的正负决定不等号的方向是否改变,所以先判断x的正负.故答案为不等式两边乘以x,根据不等式的性质,x的正负决定不等号的方向是否改变,所以先判断x的正负.三.解答题(本题共68分,第17、19、20、21题,每小题5分,第18题10分,第22-25题,每小题5分,第26-27题,每小题5分)17.(5分)计算:+﹣+|﹣2|.【分析】直接利用二次根式的性质以及绝对值的性质、立方根的性质分别化简得出答案.【解答】解:原式=8﹣2﹣1+2﹣=7﹣.18.(10分)解方程或方程组:(1)2(x﹣1)2=8;(2).【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程组利用加减消元法求出解即可.【解答】解:(1)2(x﹣1)2=8,整理得:(x﹣1)2=4,开方得:x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1;(2),①+②×2得:9x=18,解得:x=2,把x=2代入①得:y=1,则方程组的解为.19.(5分)解不等式组:,并写出该不等式组的非负整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其整数解.【解答】解:解不等式+2≥x,得:x≤1,解不等式3(x﹣1)﹣1>x﹣8,得:x>﹣2,则不等式组的解集为﹣2<x≤1,所以不等式组的非负整数解为0和1.20.(5分)故宫是世界上现存规模最大,保存最完整的宫殿建筑群.小赵和小钱在学校组织的综合实践活动中来到故宫学习,他们建立了相同的坐标系描述各景点的位置.小赵:“养心殿在原点的西北方向.”小钱:“太和门的坐标是(0,﹣1).”实际上,他们说的位置都是正确的.你知道这两位同学是如何建立平面直角坐标系的吗?(1)依据两位同学的描述,可以知道他们选择景点保和殿为原点,建立了平面直角坐标系;(2)在图中画出这两位同学建立的平面直角坐标系;(3)九龙壁的坐标是(2,0),景仁宫的坐标是(1,1.5).【分析】(1)根据题意,可知图中每个两个小格子为一个单位长度,从而可以确定出原点的位置,从而可以解答本题;(2)根据题意可以画出相应的平面直角坐标系;(3)根据(2)中的坐标系可以直接写出九龙壁和景仁宫的坐标.【解答】解:(1)由题意可得,依据两位同学的描述,可以知道他们选择景点保和殿为原点,建立了平面直角坐标系,故答案为:保和殿;(2)平面直角坐标系如图所示;(3)由(2)中的坐标系,可知九龙壁的坐标是(2,0),景仁宫的坐标是(1,1.5),故答案为:(2,0),(1,1.5).21.(5分)完成下面的证明:已知:如图,DE∥BC,BE,DF分别是∠ABC,∠ADE的角平分线,求证:∠1=∠2.证明:∵DE∥BC,∴∠ABC=∠ADE,(两直线平行,同位角相等)∵BE,DF分别是∠ABC,∠ADE的角平分线,∴∠3=∠ABC;∠4=∠ADE,∴∠3=∠4,(等量代换)∴BE∥DF,(同位角相等,两直线平行)∴∠1=∠2.(两直线平行,内错角相等)【分析】依据平行线的性质,即可得到∠ABC=∠ADE,再根据角平分线的定义,即可得出∠3=∠4,进而得到BE∥DF,最后依据平行线的性质,即可得出结论.【解答】证明:∵DE∥BC,∴∠ABC=∠ADE,(两直线平行,同位角相等)∵BE,DF分别是∠ABC,∠ADE的角平分线,∴∠3=∠ABC;∠4=∠ADE,∴∠3=∠4,(等量代换)∴BE∥DF,(同位角相等,两直线平行)∴∠1=∠2.(两直线平行,内错角相等)故答案为:两直线平行,同位角相等;等量代换;BE;DF;同位角相等,两直线平行;两直线平行,内错角相等.22.(6分)已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,1)B(3,3)C(2,﹣1)△A′B′C′A′(4,4)B′(9,b)C′(c,2)(1)观察表中各对应点坐标的变化,并填空:a=﹣2 ,b= 6 ,c=8 ;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是9 .【分析】(1)观察表中各对应点坐标的变化,△A′B′C′是由△ABC经过向上平移3个单位,向右平移6个单位得到的,进而可填空;(2)根据(1)即可在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)根据割补法即可求出△A′B′C′的面积.【解答】解:(1)观察表中点A和点A′坐标的变化,点B和点B′坐标的变化可知:△A′B′C′是由△ABC经过向上平移3个单位,向右平移6个单位得到的,∴a=﹣2,b=6,c=8;故答案为:﹣2,6,8;(2)如图,△ABC及△A′B′C′即为所求;(3)△A′B′C′的面积为:5×4﹣2×5﹣1×4﹣2×4=9.故答案为:9.23.(6分)“全名阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1600元,20本文学名著比20本动漫书多400元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,而且文学名著不低于25本,总费用不超过2000,请求出所有符合条件的购书方案.【分析】(1)设每本文学名著x元,每本动漫书y元,列出方程组即可解决问题;(2)设学校要求购买文学名著x本,动漫书为(x+20)本,构建不等式组,求整数解即可;【解答】解:(1)设每本文学名著x元,每本动漫书y元,根据题意可得:,解得:,答:每本文学名著和动漫书各为40元和20元.(2)设学校要求购买文学名著x本,动漫书为(x+20)本,根据题意可得:,解得:25≤x≤26,因为x取整数,所以x取25,26;方案一:文学名著25本,动漫书45本;方案二:文学名著26本,动漫书46本.24.(6分)经过举国上下抗击新型冠状病毒的斗争,疫情得到了有效控制,国内各大企业在2月9日后纷纷进入复工状态.为了了解全国企业整体的复工情况,我们查找了截止到2020年3月1日全国部分省份的复工率,并对数据进行整理、描述和分析.下面给出了一些信息:a.截止3月1日20时,全国已有11个省份工业企业复工率在90%以上,主要位于东南沿海地区,位居前三的分别是贵州(100%)、浙江(99.8%)、江苏(99%).b.各省份复工率数据的频数分布直方图如图1(数据分成6组,分别是40<x≤50;50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100);c.如图2,在b的基础上,画出的扇形统计图:d.截止到2020年3月1日各省份的复工率在80<x≤90这一组的数据是:81.3,83.9,84,87.6,89.4,90,90请解答以下问题:(1)依据题意,样本容量是28 ,补全频数分布直方图;(2)扇形统计图中50<x≤60这组的圆心角度数是12.9 度(精确到0.1);(3)根据以上统计图表计算截止2020年3月1日,样本中复工率85%以上的省份占53.6 %(精确到0.1).【分析】(1)80<x≤90这组的频数为7,频率为25%,可求出样本容量;计算出50<x ≤60组的频数即可补全频数分布直方图;(2)50<x≤60组的频数为1,样本容量为28,因此相应的圆心角的度数占360°的即可;(3)样本中,80<x≤90组复产率超过85%的有4个,90<x≤100组的频数为11个,可求出复产率超过85%的所占的频率.【解答】解:(1)7÷25%=28(个),全国已有11个省份工业企业复工率在90%以上,即:90<x≤100的频数为11,则50<x≤60的频数为28﹣11﹣3﹣6﹣7=1,故答案为:28,补全频数分布直方图如图所示;(2)360°×≈12.9°,故答案为:12.9;(3)(11+4)÷28≈53.6%,故答案为:53.6.25.(6分)在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=﹣1,且b=2时,τ(0,1)=(8,﹣4);(2)若τ(1,2)=(﹣2,0),则a=﹣1 ,b=﹣;(3)设点P(x,﹣2x),点P经过变换τ得到点P′(x′,y′).若点P′与点P关于x轴对称,求a和b的值.【分析】(1)将a=﹣1,b=2,τ(0,1),代入,可求x′,y′的值,从而求解;(2)将τ(1,2)=(﹣2,0),代入,可得关于a,b的二元一次方程组,解方程组即可求解;(3)由点P(x,﹣2x)经过变换τ得到的对应点P'(x',y')与点P关于x轴对称,可得τ(x,y)=(x,y).根据点P(x,y)在直线y=2x上,可得关于a,b的二元一次方程组,解方程组即可求解.【解答】解:(1)当a=﹣1,且b=2时,x′=﹣1×(﹣2)+2×3=8,y′=﹣1×(﹣2)﹣2×3═﹣4,则τ(0,1)=(8,﹣4);(2)∵τ(1,2)=(﹣2,0),∴,解得a=﹣1,b=﹣;(3)∵点P(x,﹣2x)经过变换τ得到的对应点P'(x',y')与点P关于x轴对称,∴τ(x,﹣2x)=(x,2x).∴,即,∵x为任意的实数,∴,解得.故答案为:(8,﹣4);﹣1,﹣.26.(7分)如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF;(2)在图2中,画∠BEP的平分线与∠DFP的平分线,两条角平分线交于点Q,请你补全图形,试探索∠EPF与∠EQF之间的关系,并证明你的结论;(3)在(2)的条件下,已知∠BEP和∠DFP均为钝角,点G在直线AB、CD之间,且满足∠BEG=∠BEP,∠DFG=∠DFP,(其中n为常数且n>1),直接写出∠EGF与∠EPF的数量关系.【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可;(2)首先由(1)可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=(360﹣∠EPF),即可判断出∠EPF+2∠EQF=360°.(3)首先由(1)可得∠EGF=∠AEG+∠CFG,∠EPF=∠BEP+∠DFP;然后根据∠BEP=∠BEG,∠DFP=∠DFG,推得∠EPF=×(360°﹣∠EGF),即可判断出∠EGF+n∠EPF =360°.【解答】证明:(1)如图1,过点P作PG∥AB,,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF;(2)如图2,,由(1)可得:∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=(360﹣∠EPF),∴∠EPF+2∠EQF=360°;(3)由(1)可得:∠EGF=∠AEG+∠CFG,∠EPF=∠BEP+∠DFP,∵∠BEP=∠BEG,∠DFP=∠DFG,∴∠EPF=∠BEP+∠DFP=(∠BEG+∠DFG)=[360°﹣(∠AEG+∠CFG)]=×(360°﹣∠EGF),∴∠EGF+n∠EPF=360°.27.(7分)阅读材料:平面直角坐标系中点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为[P],即[P]=|x|+|y|,其中的“+”是四则运算中的加法,例如点P(1,2)的折线距离[P]=|1|+|2|=3.【解决问题】(1)已知点A(﹣2,4),B(+,﹣),直接写出[A],[B]的折线距离;(2)若点M满足[M]=2,①当点M在x轴的上方时,且横坐标为整数,求点M的坐标;②正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),当正方形EFGH上存在点M时,直接写出t的取值范围.【分析】(1)根据题意可以求得[A],[B]的折线距离;(2)①根据题意可知y>0,然后根据[M]=2,即可求得点M的坐标;②由题意可得EF=1,由正方形的性质可列不等式,即可求解.【解答】解:(1)∵点A(﹣2,4),B(+,﹣),∴[A]=|﹣2|+|4|=2+4=6,[B]=|+|+|﹣|=++﹣=2;(2)①∵点M在x轴的上方,其横坐标为整数,且[M]=2,∴x=±1时,y=1或x=0时,y=2,∴点M的坐标为(﹣1,1)或(1,1)或(0,2);②∵正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),∴EF=1,若M(﹣1,1)在正方形EFGH上时,∴t﹣1≤﹣1≤t,∴﹣1≤t≤0,若M(1,1)在正方形EFGH上时,∴t﹣1≤1≤t,∴1≤t≤2,综上所述:t的取值范围为﹣1≤t≤0或1≤t≤2.。
模拟卷:2018-2019学年七年级数学下学期期中原创卷A卷(河南)
数学试题 第1页(共4页) 数学试题 第2页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前|豫2018-2019学年下学期期中原创卷A 卷七年级数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七下第5—7章。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是 A .B .C .D .2.下列四个数中,是无理数的是 A .|-2|B .38C .1.732D .2-3.16的算术平方根是 A .2B .4C .±2D .±44.如图,与∠B 是同旁内角的角有A .1个B .2个C .3个D .4个5.如图,在数轴上表示7的点在哪两个字母之间A .B 与C B .A 与B C .A 与CD .C 与D6.如图,l 1与l 3交于点P ,l 2与l 3交于点Q ,∠1=104°,∠2=87°,要使得l 1∥l 2,下列操作正确的是A .将l 1绕点P 逆时针旋转14°B .将l 1绕点P 逆时针旋转17°C .将l 2绕点Q 顺时针旋转11°D .将l 2绕点Q 顺时针旋转14°7.已知点P (m +3,2m +4)在x 轴上,那么点P 的坐标为 A .(-1,0)B .(1,0)C .(-2,0)D .(2,0)8.如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是A .34∠=∠B .12∠=∠C .B DCE ∠=∠D .180B DAB ∠+∠=︒9.已知点P (a ,b )到x 轴的距离是2,到y 轴的距离是5,且||a b a b -=-,则P 点的坐标是 A .(5,2)B .(2,−5)C .(5,2)或(5,−2)D .(2,−5)或(5,2)10.如图,在平面直角坐标系中,从点P 1(-1,0),P 2(-1,-1),P 3(1,-1),P 4(1,1),P 5(-2,1),P 6(-2,-2),……,依次扩展下去,则P 2018的坐标为A .(-503,503)B .(504,504)C .(-506,-506)D .(-505,-505)第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)1113a ,小数部分是b ,则a -b =__________.数学试题 第3页(共4页) 数学试题 第4页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………12.如图,DE ∥BC ,EF ∥AB ,图中与∠BFE 互补的角有__________.13.已知一个正数的两个平方根分别是4a +1和a -11,则这个正数是__________. 14.如图,在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为__________.15.已知点A (0,1),B (0,2),点C 在x 轴上,且2ABC S =△,则点C 的坐标__________. 三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)计算:(1)23(2)|21|27-+--;(2)310.048|32|34+-++-+.17.(本小题满分9分)求下列代数式的值:(1)如果a 2=4,b 的算术平方根为3,求a +b 的值;(2)已知x 是25的平方根,y 是16的算术平方根,且x <y ,求x -y 的值.18.(本小题满分9分)如图,12180AGF ABC ∠=∠∠+∠=︒,. (1)试判断BF 与DE 的位置关系,并说明理由; (2)若2150BF AC ⊥∠=︒,,求AFG ∠的度数.19.(本小题满分9分)(1)已知:2a +1的算术平方根是3,3a -b -1的立方根是2,求320b a +的值.(2)已知a 是10的整数部分,b 是它的小数部分,求a 2+(b +3)2的值.20.(本小题满分9分)如图,直线AB 与CD 相交于点O ,OF ,OD 分别是∠AOE ,∠BOE 的平分线.(1)写出∠DOE 的补角;(2)若∠BOE =62°,求∠AOD 和∠EOF 的度数;(3)射线OD 与OF 之间的夹角是多少?21.(本小题满分10分)如图,∠BAP +∠APD =180°,∠AOE =∠1,∠FOP =∠2.(1)若∠1=55°,求∠2的度数; (2)求证:AE ∥FP .22.(本小题满分10分)如图所示,把三角形ABC 向上平移3个单位长度,再向右平移2个单位长度,得到三角形A 1B 1C 1.(1)在图中画出三角形A 1B 1C 1; (2)写出点A 1,B 1的坐标;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在,请直接写出点P 的坐标;若不存在,说明理由.23.(本小题满分11分)已知下面四个图形中,AB ∥CD ,探究四个图形中,∠APC 与∠PAB ,∠PCD 的数量关系.(1)图①中,∠APC 与∠PAB ,∠PCD 的关系是__________;(2)图②中,∠APC 与∠PAB ,∠PCD 的关系是__________;(3)请你在图③和图④中任选一个,说明∠APC 与∠PAB ,∠PCD 的关系,并加以证明.。
2020年北京市海淀区七年级(下)期中数学试卷
七年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.的相反数是()A. B. C. - D.2.如图,∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠53.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.4.如图,点B,C,E三点共线,且BA∥CD,则下面说法正确的是()A. ∠2=∠BB. ∠1=∠BC. ∠3=∠BD. ∠3=∠A5.估算的值是在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间6.如图,将线段AB平移得到线段CD,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A. (2,1)B. (2,3)C. (1,3)D. (1,2)7.若实数a,b满足+|b-1|=0,那么a+b的值是()A. -1B. 1C. -2D. 28.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点P的坐标为()A. (3,-1)B. (-3,1)C. (1,-3)D. (-1,3)9.如图,已知平行线a,b,一个直角三角板的直角顶点在直线a上,另一个顶点在直线b上,若∠1=70°,则∠2的大小为()A. 15°B. 20°C. 25°D. 30°10.如图的网格线是由边长为1的小正方形格子组成的,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形,小明研究发现,内部含有3个格点的四边形的面积与该四边形边上的格点数有某种关系,请你观察图中的4个格点四边形.设内部含有3个格点的四边形的面积为S,其各边上格点的个数之和为m,则S与m的关系为()A. S=mB.C.D.二、填空题(本大题共8小题,共24.0分)11.实数4的算术平方根为______.12.若点P(2x+6,3x-3)在y轴上,则点P的坐标为______.13.若一个二元一次方程组的解是请写出一个符合此要求的二元一次方程组______.14.比较大小:______(填“>”“<”“=”).15.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是135°,则第二次的拐角∠B是______,根据是______.16.如果方程组的解是方程7x+my=16的一个解,则m的值为______.17.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为4,则图中阴影部分的面积是______.18.初三年级261位学生参加期末考试,某班35位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图1和图2所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,总成绩名次靠前的学生是______;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是______,你选择的理由是______.三、计算题(本大题共1小题,共6.0分)19.解下列方程组(1)(2)四、解答题(本大题共8小题,共40.0分)20.计算:.21.如图,已知AD∥BC,∠1=2.求证:BE∥DF.22.如图,已知CO⊥AB于点O,∠AOD=5∠DOB,求∠COD的度数.23.一个数值转换器,如图所示:(1)当输入的x为16时.输出的y值是______;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输出的y是,请写出两个满足要求的x值:______.24.作图题:如图,直线AB,CD相交于点O,点P为射线OC上异于O的一个点.(1)请用你手中的数学工具画出∠AOC的平分线OE;(2)过点P画出(1)中所得射线OE的垂线PM(垂足为点M),并交直线AB于点N;(3)请直接写出上述所得图形中的一对相等线段______.25.如图,已知CF∥DE,∠ABC=85°,∠CDE=150°,∠BCD=55°,求证:AB∥DE.26.对于平面直角坐标系xOy中的点P(x,y),若点Q的坐标为(x+ay,ax+y)(其中a为常数,且a≠0),则称Q是点P的“a系联动点”.例如:点P(1,2)的“3系联动点”Q的坐标为(7,5).(1)点(3,0)的“2系联动点”的坐标为______;若点P的“-2系联动点”的坐标是(-3,0),则点P的坐标为______;(2)若点P(x,y)的“a系联动点”与“-a系联动点”均关于x轴对称,则点P 分布在______,请证明这个结论;(3)在(2)的条件下,点P不与原点重合,点P的“a系联动点”为点Q,且PQ 的长度为OP长度的3倍,求a的值.27.在直角坐标系中,点O为坐标原点,A(1,1),B(1,3),将线段AB平移到直线AB的右边得到线段CD(点C与点A对应,点D与点B对应),点D的坐标为(m,n),且m>1.(1)如图1,当点C坐标为(2,0)时,请直接写出三角形BCD的面积:______;(2)如图2,点E是线段CD延长线上的点,∠BDE的平分线DF交射线AB于点F.求证:∠C=2∠AFD;(3)如图3,线段CD运动的过程中,在(2)的条件下,n=4.①当m=4时,在直线AB上点P,满足三角形PBC的面积等于三角形CDF的面积,请直接写出点P的坐标:______;②在x轴上的点Q,满足三角形QBC的面积等于三角形CDF的面积的2倍,请直接写出点Q的坐标:______.(用含m的式子表示).答案和解析1.【答案】B【解析】解:的相反数是-,故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】A【解析】解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角.故选:A.根据同位角的定义即可求出答案.本题考查同位角的定义,解题的关键是熟练理解同位角的定义,本题属于基础题型.3.【答案】D【解析】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.根据平移与旋转的性质得出.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.4.【答案】C【解析】解:∵AB∥CD,∴∠2=∠A,∠B=∠3,∴A、B、D,都不正确,故选:C.由平行线的性质逐项判断即可.本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.5.【答案】B【解析】解:∵<,∴4<<5.故选B.找出比较接近的有理数,即与,从而确定它的取值范围.此题主要考查了估计无理数大小的方法,找出最接近的有理数,再进行比较是解决问题的关键.6.【答案】D【解析】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4-(-1)=x-(-4);7-4=y-(-1),解可得:x=1,y=2;故D的坐标为(1,2).故选:D.直接利用平移中点的变化规律求解即可.本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.7.【答案】A【解析】解:∵+|b-1|=0,∴a+2=0,b-1=0,解得:a=-2,b=1,则a+b=-2+1=-1.故选:A.直接利用绝对值的性质以及二次根式的性质得出a,b的值,进而得出答案.此题主要考查了绝对值的性质以及二次根式的性质,正确把握相关定义是解题关键.8.【答案】A【解析】解:若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为(3,-1),故选:A.根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.【答案】B【解析】解:∵a∥b,∠1=70°∴∠3=70°,∵直角三角板的直角顶点在直线a上,∴∠2=90°-∠3=20°,故选:B.先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.本题考查的是平行线的性质以及垂线的定义的运用,解题时注意:两直线平行,内错角相等.10.【答案】C【解析】解:如图,第1个图形,S1=3×3-×3×2-×3×1=4.5,m=5;第2个图形,S2=×2×4=4,m=4;第3个图形,S3=3×3-×2×1×2-×1×1-×2×2=4.5,m=5;第4个图形,S4=3×4-×2×1-×1×1-×3×3=6,m=8;分别代入各解析式,S=m+2都符合条件;故选:C.分别计算各图形中的面积和格点数,确定对应用关系中的S和m的值,分别代入各解析式,可作判断.本题是图形类的函数题,需要根据图中表格和格点图形,与自己所算得的数据结合,确定其对应的函数关系式.11.【答案】2【解析】解:∵22=4,∴4的算术平方根是2.故答案为:2.依据算术平方根根的定义求解即可.本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.12.【答案】(0,-12)【解析】解:∵点P(2x+6,3x-3)在y轴上,∴2x+6=0,解得:x=-3,则3x-3=-3×3-3=-12.故答案为:(0,-12).直接利用在y轴上点的坐标性质进而得出答案.此题主要考查了点的坐标,正确得出x的值是解题关键.13.【答案】【解析】解:∵二元一次方程组的解为,∴这个方程组可以是,故答案为:,根据二元一次方程组的解找到x与y的数量关系,然后列出方程组即可.本题考查的是二元一次方程组解的定义,解答此题的关键是把方程的解代入各组方程中,看各方程是否成立.14.【答案】>【解析】解:∵-1>1,∴>.故填空结果为:>.因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.15.【答案】135°两直线平行,内错角相等【解析】解:∠B=135°,理由是:∵道路是平行的,∴∠B=∠A=135°.即两直线平行,内错角相等;故答案为:135°;两直线平行,内错角相等由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.此题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.16.【答案】2【解析】解:解方程组,得:,将代入7x+my=16,得:14+m=16,解得:m=2,故答案为:2.两个方程具有相同的解,可运用加减消元法得出二元一次方程组的解,然后将得出的x、y的值代入7x+my=16中,即可得出m的值.本题考查的是二元一次方程组的解法,解二元一次方程组常用加减消元法和代入法,本题运用的是加减消元法.17.【答案】【解析】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=4,x=,y=2,则阴影部分的面积是(y-x)x=(2-)×=2-2,故答案为:2-2.设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=4,求出x=,y=2,代入阴影部分的面积是(y-x)x求出即可.本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【答案】甲数学理由如下:由图2可知,该班总成绩在丙之后的有4人,据此可知,在图1中由右往左数的第5个点即表示丙,分别过图1和图2中代表丙的点作水平线,易知在图1中语文成绩在丙之后的人数明显少于图2中数学成绩在丙之后的人数,故丙同学的数学成绩更靠前【解析】解:(1)通过图象可知:在甲、乙两人中,总成绩名次靠前的学生是甲,故答案为:甲,(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学,故答案为:数学,由图2可知,该班总成绩在丙之后的有4人,据此可知,在图1中由右往左数的第5个点即表示丙,分别过图1和图2中代表丙的点作水平线,易知在图1中语文成绩在丙之后的人数明显少于图2中数学成绩在丙之后的人数,故丙同学的数学成绩更靠前.(1)图1中,过表示甲、乙的点分布作横轴的垂线,在横轴上对应的数甲的较小,因此总成绩的排名甲在前面,(2)通过图1、图2,在图1中由右往左数的第5个点即表示丙,分别过图1和图2中代表丙的点作水平线,易知在图1中语文成绩在丙之后的人数明显少于图2中数学成绩在丙之后的人数,故丙同学的数学成绩更靠前.考查统计图的意义和识图的能力,理解统计图中各个点所表示的实际意义,是解决问题的关键,两个统计图结合起来得出数量之间的关系是基本的方法.19.【答案】解:(1)把①代入②得3x+2(2x-1)=5,解得:x=1,把x=1代入①,德:y=1,∴;(2)②×2,得4x+2y=-6 ③①+③,得5x=-5,解得:x=-1.把x=-1代入①,得-1-2y=1,解得:y=-1,∴.【解析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.本题考查的是二元一次方程组的解法,解二元一次方程组常用加减消元法和代入法.20.【答案】解:原式=2+2-+2=6-.【解析】直接利用绝对值的性质以及二次根式的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】证明:∵AD∥BC,∴∠1=∠3,又∵∠1=∠2,∴∠2=∠3,∴BE∥DF.【解析】根据平行线的性质和判定证明即可.此题考查平行线的判定和性质,关键是根据平行线的性质和判定解答.22.【答案】解:∵∠AOD=5∠BOD,设∠BOD=x°,∠AOD=5x°.∵∠AOD+∠BOD=180°,∴x+5x=180.∴x=30.∴∠BOD=30°.∵CO⊥AB,∴∠BOC=90°.∴∠COD=∠BOC-∠BOD=90°-30°=60°.【解析】根据邻补角的意义,可得关于x的方程,根据余角的性质的性质,可得答案.本题考查了垂线,利用邻补角的意义得出∠BOD的度数是解题关键.23.【答案】3和9【解析】解:(1)∵16的算术平方根是4,4是有理数,4不能输出,∴4的算术平方根是2,2是有理数,2不能输出,∴2的算术平方根是,是无理数,输出,故答案为:(2)∵0和1的算术平方根是它们本身,0和1是有理数,∴当x=0和1时,始终输不出y的值;(3)9的算术平方根是3,3的算术平方根是,故答案为:3和9.(1)根据算术平方根,即可解答;(2)根据0和1的算术平方根是它们本身,0和1是有理数,所以始终输不出y值;(3)3和9都可以.本题考查了算术平方根,解决本题的关键是熟记算术平方根.24.【答案】OP=ON【解析】解:如图:(1)射线OE即为所求:(2)线段PM,PN即为所求:(3)OP=ON,(或者PM=NM).故答案为:OP=ON.(1)根据角平分线的作法画图即可;(2)根据垂线的作法画出图形即可;(3)根据等腰三角形的三线合一解答即可.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.【答案】解:∵CF∥DE,∠CDE=150°,∴∠DCF=180°-∠CDE=180°-150°=30°.∵∠BCD=55°,∴∠BCF=∠BCD+∠DCF=55°+30°=85°,又∵∠ABC=85°,∴∠ABC=∠BCF,∴AB∥CF,又∵CF∥DE,∴AB∥DE.【解析】根据平行线的性质和判定证明即可.本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键.26.【答案】(3,6)(1,2)x轴上【解析】解:(1)点(3,0)的“2系联动点”的坐标为(3+2×0,2×3+0),即(3,6),点P(x,y)的“-2系联动点”的坐标是(-3,0),则,解得,即P(1,2),故答案为(3,6),P(1,2);(2)结论:点P分布在x轴上.理由:∵点P(x,y)的“a系联动点”的坐标为(x+ay,ax+y)(其中a为常数,且a≠0),∴点P(x,y)的“-a系联动点”为(x-ay,-ax+y).∵点P的“a系联动点”与“-a系联动点”均关于x轴对称,∴,∵a≠0,∴y=0,∴点P在x轴上.故答案为:在x轴上.(3)∵在(2)的条件下,点P不与原点重合,∴点P的坐标为(x,0),x≠0,∵点P的“a系联动点”为点Q,∴点Q的坐标为(x,ax),∵PQ的长度为OP长度的3倍,∴3|x|=|ax|,∴|a|=3,∴a=±3.(1)根据Q是点P的“a系联动点”的定义,计算或构建方程组解决问题即可;(2)根据Q是点P的“a系联动点”的定义的定义,理由轴对称的性质构建方程组即可解决问题;(3)构建方程即可解决问题;本题考查几何变换综合题、二元一次方程组、坐标与图形的性质、Q是点P的“a系联动点”的定义等知识,解题的关键是理解题意,学会用方程分思想思考问题,属于中考压轴题,27.【答案】1 (1,1)或(1,5)(2-m,0)或(7m-6,0)【解析】(1)解:如图1中,∵C(2,0),D(2,2),B(1,3),∴S△BCD=×2×1=1.故答案为1;(2)证明:如图2中,∵线段AB平移得到线段CD(点C与点A对应,点D与点B对应),∴AB∥CD,AC∥BD.∴∠AFD=∠FDE,∠C=∠BDE.∵DF是∠BDE的角平分线,∴∠BDE=2∠FDE.∴∠BDE=2∠AFD.∴∠C=2∠AFD;(3)解:①如图3中,设P(1,m).由题意•|m-3|•3=×2×3,解得m=5或1,∴P1(1,5),P2(1,1);故答案为(1,1)或(1,5);②如图3-1中,在BA的延长线上取一点G(1,-1),连接CG、CB、CF.易证S△BCG=2S△DCF,过点G作GQ∥BC交x轴于Q,此时S△QBC=S△GBC=2S△DCF,∵B(1,3),C(m,2),∴直线BC的解析式为y=x+,∴直线QG的解析式为y=x+,令y=0,得到x=2-m,∴Q(2-m,0),在射线DE取K(m,6),则S△KBC=2S△DCF,过点K作BC的平行线交x轴于Q′,此时S△Q′BC=2S△DCF,由直线KQ′的解析式为:y=x+,令y=0,得到x=7m-6,∴Q′(7m-6,0).综上所述,满足条件的点P坐标为(2-m,0)或(7m-6,0).故答案为(2-m,0)或(7m-6,0).(1)根据B、C、D的坐标,利用三角形的面积公式计算即可;(2)利用平行线的性质证明即可;(3)分两种情形,寻找特殊点,构建一次函数即可解决问题;本题考查三角形综合题、平行线的性质、三角形的面积、一次函数的应用等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会构建一次函数解决问题,学会用转化的思想思考问题,属于中考压轴题.。
人教版北京市海淀区2018-2019学年七年级(下)期中考试数学试卷(含答案)
2018-2019学年北京市海淀区七年级(下)期中数学试卷一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.4的算术平方根是()A.16B.±2C.2D.2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x 值可能为()A.1B.6C.9D.1010.根据表中的信息判断,下列语句中正确的是x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.。
2018-2019学年北京市海淀区七年级(上)期末数学试卷-普通用卷
2018-2019学年北京市海淀区七年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A. B.C. D. 没有刻度尺,无法确定2.-5的绝对值是()A. 5B.C.D.3.2018年10月23日,世界上最长的跨海大桥-港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为()A. B. C. D.4.下列计算正确的是()A. B.C. D.5.若x=-1是关于x的方程2x+3=a的解,则a的值为()A. B. 5 C. D. 16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是()A.B.C.D.7.已知AB=6,下面四个选项中能确定点C是线段AB中点的是()A. B. C. D.8.若x=2时x4+mx2-n的值为6,则当x=-2时x4+mx2-n的值为()A. B. 0 C. 6 D. 269.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A. B. C. D.10.数轴上点A,M,B分别表示数a,a+b,b,那么下列运算结果一定是正数的是()A. B. C. ab D.二、填空题(本大题共8小题,共16.0分)11.比较大小:-3______-2.1(填“>”,“<”或“=”).12.图中A,B两点之间的距离是______厘米(精确到厘米),点B在点A的南偏西______°(精确到度).13.如图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:______.14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为______(用含a,b的式子表示).15.如图,点O在直线AB上,射线OD平分∠COA,∠DOF=∠AOE=90°,图中与∠1相等的角有______(请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______.17.已知点O为数轴的原点,点A,B在数轴上,若AO=10,AB=8,且点A表示的数比点B表示的数小,则点B表示的数是______.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y.已知当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变.(1)a=______;(2)若输入一个整数x,某些滚珠相撞,输出y值恰好为-1,则x=______.三、计算题(本大题共4小题,共25.0分)19.计算:(1)5-32÷(-3);(2)-8×(+1-1).20.解方程:(1)5x+8=1-2x;(2).21.已知2a-b=-2,求代数式3(2ab2-4a+b)-2(3ab2-2a)+b的值.22.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S=______;【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.四、解答题(本大题共5小题,共29.0分)23.如图,点C在∠AOB的边OA上,选择合适的画图工具按要求画图.(1)反向延长射线OB,得到射线OD,画∠AOD的角平分线OE;(2)在射线OD上取一点F,使得OF=OC;(3)在射线OE上作一点P,使得CP+FP最小;(4)写出你完成(3)的作图依据:______.24.如图1,已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.25.已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=-4时,方程◇的解为______;(2)若方程◇的解为x=-3,写出一组满足条件的k,b值:k=______,b=______;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)-b=0的解.26.如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD=______;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.27.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a*b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3*2=3.(1)对于数阵A,2*3的值为______;若2*3=2*x,则x的值为______;(2)若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a*a=a;条件二:(a*b)*c=a*c;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:______(填“是”或“否”);②已知一个“有趣的”数阵满足1*2=2,试计算2*1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a*b=b*a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:由图可知,A′B′<AB;故选:C.根据比较线段的长短进行解答即可.本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.2.【答案】A【解析】解:-5的绝对值是:|-5|=5.故选:A.根据绝对值的含义和求法,可得-5的绝对值是:|-5|=5,据此解答即可.此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【答案】C【解析】解:55000=5.5×104.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵3a+2b不能合并,故选项A错误;∵3a-(-2a)=3a+2a=5a,故选项B正确;∵3a2-2a不能合并,故选项C错误;∵(3-a)-(2-a)=3-a-2+a=1,故选项D错误,故选:B.根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【答案】D【解析】解:把x=-1代入方程得:-2+3=a,解得:a=1,则a的值为1,故选:D.把x=-1代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.【答案】B【解析】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°20′=57°40′;故选:B.根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.本题主要考查了度分秒的换算,关键是求出∠EAC的度数,是一道基础题.7.【答案】B【解析】解:A、AC+BC=6,C不一定在线段AB中点的位置,不符合题意;B、AC=BC=3,点C是线段AB中点,符合题意;C、BC=3,点C不一定是线段AB中点,不符合题意;D、AB=2AC,点C不一定是线段AB中点,不符合题意.故选:B.根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.本题考查了两点间的距离,要注意根据条件判断出A、B、C三点是否共线.8.【答案】C【解析】解:把x=2代入得:16+4m-n=6,解得:4m-n=-10,则当x=-2时,原式=16+4m-n=16-10=6,故选:C.把x=2代入求出4m-n的值,再将x=-2代入计算即可求出所求.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.【答案】D【解析】解:从正面看是,故选:D.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,则a-b<0,ab<0,|a|-b<0,故运算结果一定是正数的是a+b.故选:A.数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,再根据整式的加减乘法运算的计算法则即可求解.考查了列代数式,数轴,正数和负数,绝对值,关键是得到a<0,a+b>0,b>0且|a|<|b|.11.【答案】<【解析】解:∵|-3|>|-2.1|,∴-3<-2.1,故答案为:<.直接根据负数比较大小的法则进行比较即可.本题考查的是有理数大小,熟知以下知识是解答此题的关键:正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小.12.【答案】2 58【解析】解:测量可得,图中A,B两点之间的距离是2厘米(精确到厘米),点B在点A 的南偏西58°(精确到度).故答案为:2,58.根据长度的测量可求图中A,B两点之间的距离;根据方向角的定义可求点B 的方向.考查了两点间的距离,关键是熟练掌握长度和角的测量方法.13.【答案】答案不唯一,如:2x3【解析】解:可以写成:2x3+xy-5,故答案为:2x3.根据多项式的次数定义进行填写,答案不唯一,可以是2x3,3x3等.本题考查了多项式的定义和次数,明确如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.14.【答案】4b-2a【解析】解:剩余白色长方形的长为b,宽为(b-a),所以剩余白色长方形的周长=2b+2(b-a)=4b-2a.故答案为4b-2a.利用矩形的性质得到剩余白色长方形的长为b,宽为(b-a),然后计算它的周长.本题考查了矩形的性质:平行四边形的性质矩形都具有;矩形的四个角都是直角;邻边垂直;矩形的对角线相等;15.【答案】∠COD,∠EOF【解析】解:∵射线OD平分∠COA,∴∠COD=∠1.∵∠DOF=∠AOE=90°,∴∠DOE+∠EOF=90°,∠DOE+∠1=90°,∴∠EOF=∠1.∴图中与∠1相等的角有∠COD,∠EOF.故答案为∠COD,∠EOF.根据角平分线定义可得∠COD=∠1;根据同角的余角相等可得∠EOF=∠1.本题考查了余角和补角,角平分线定义,掌握余角的性质是解题的关键.16.【答案】(2x-700)+x=5900【解析】解:设珐琅书签的销售了x件,则文创笔记本销售了(2x-700)件,根据题意得:(2x-700)+x=5900.故答案为:(2x-700)+x=5900.设珐琅书签的销售了x件,则文创笔记本销售了(2x-700)件,根据文创笔记本和珐琅书签共销售5900件,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.【答案】-2或18【解析】解:∵AO=10,∴点A表示的数为±10,∵AB=8,且点A表示的数比点B表示的数小,∴点B表示的数是-2或18,故答案为:-2或18根据AO=10,得到点A表示的数为±10,由AB=8,且点A表示的数比点B表示的数小,得到点B表示的数在点A表示的数的右边,于是得到结论.本题考查了数轴,正确的理解题意是解题的关键.18.【答案】-2 2【解析】解:(1)(2x-1)+3+ax=2x-1+3+ax=(2+a)x+2,∵当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变,∴2+a=0,得a=-2,故答案为:-2;(2)当y=2x-1+3=2x+2时,令y=-1,则-1=2x+2,得x=-1.5(舍去),当y=3+(-2x)=-2x+3时,令y=-1,则-1=-2x+3,得x=-2,故答案为:-2.(1)根据题意得到y=2x-1+3+ax=(2+a)x+2,由y的值与x的值无关,可知x的系数为0,即2+a=0,由此求得a的值;(2)结合(1)的a的值,可知当y=-1时,此时只有两个球相撞,分两种情况,从而可以求得x的值.本题考查有理数的混合运算、代数式求值,解答本题的关键是明确题意,求出a的值和相应的x的值.19.【答案】解:(1)原式=5-9÷(-3),=5+3,=8;(2)原式=,=-4-8+10,=-2.【解析】(1)先根据乘方的意义计算乘方运算,然后利用除法法则把除法运算化为乘法运算,根据负因式的个数判断得到结果的符号,最后利用加法法则即可得出结果;(2)根据乘法分配律进行计算即可.此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解本题的关键.20.【答案】解:(1)移项得:5x+2x=1-8,合并得:7x=-7,解得:x=-1;(2)去分母得:3(x+1)=2(2-3x),去括号得:3x+3=4-6x,移项合并得:9x=1,解得:x=.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【答案】解:3(2ab2-4a+b)-2(3ab2-2a)+b=6ab2-12a+3b-6ab2+4a+b=-8a+4b,∵2a-b=-2,∴原式=-8a+4b=-4(2a-b)=-4×(-2)=8.【解析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a-b 的值,即可求得所求式子的值,本题得以解决.本题考查整式的加减-化简求值,解答本题的关键是明确整式化简求值的方法.22.【答案】15【解析】解:(1)S=(1+2+3+…+9)÷3=45÷3=15.故答案为15;(2)由计算知:1+2+3+…+9=45.设中间数为x,依题意可列方程:4×15-3x=45,解得:x=5.故中间数x的值为5.(1)根据每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S的值;(2)设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系列出方程,解方程即可.本题考查了一元一次方程的应用,理解洛书对应的九宫格的要求是解题的关键.23.【答案】两点之间,线段最短【解析】解:(1)如图,OD、OE为所作;(2)如图,点F为所作;(3)如图,点P为所作;(4)连接FC交OE于P,则根据两点之间,线段最短可判断此时PC+PF最小.答案为:两点之间,线段最短.(1)、(2)根据几何语言画出对应的几何图形;(3)连接CF交OE于P;(4)利用两点之间线段最短求解.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.【答案】解:(1)方法一:∵AC=8,CB=2,∴AB=AC+CB=10,∵点M为线段AB的中点,∴,∴CM=BM-CB=5-2=3.或方法二:∴CM=AC-AM=8-5=3.(2)点M是线段CD的中点,理由如下:方法一:∵BD=AC=8,∴由(1)可知,DM=DB-MB=8-5=3.∴DM=MC=3,∴由图可知,点M是线段CD的中点.方法二:∵AC=BD,∴AC-DC=BD-DC,∴AD=CB.∵点M为线段AB的中点,∴AM=MB,∴AM-AD=MB-CB,∴DM=MC∴由图可知,点M是线段CD的中点.【解析】(1)方法一:根据线段的和差关系可求AB,再根据中点的定义可求BM,再根据CM=BM-CB或方法二:CM=AC-AM即可求解;(2)方法一:由(1)可知,DM=DB-MB,可得DM=MC,从而求解;方法二:根据等量关系可得AD=CB,根据中点的定义可得AM=MB,再根据等量关系可得DM=MC,从而求解.本题考查了两点间的距离,利用了线段的和差,线段中点的性质.25.【答案】x=2 1 3【解析】解:(1)当k=2,b=-4时,方程◇为:2x-4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=-4.解得:y=-2.方法二:依题意:4k+b=0,∴b=-4k.解关于y的方程:k(3y+2)-(-4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=-2.(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=-4k,整体代入即可;本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.26.【答案】50°【解析】解:(1)∵∠AOC:∠BOD=4:5,∠BOD与∠AOC互余,∴∠BOD=90°×=50°;(2)①补全图形如下:∵∠BOD与∠AOC互余,∴∠BOD+∠AOC=90°,∴∠COD=90°,∵ON平分∠COD,∴∠CON=45°,∴∠AON=α+45°;②情形一:点D在∠BOC内.此时,∠AON=α+45°,∠COD=90°,依题意可得:α+45°+90°=180°,解得:α=45°.情形二:点D在∠BOC外.在0°<α≤45°的条件下,补全图形如下:此时∠AON=45°,∠COD=90°+2α,依题意可得:45°+90°+2α=180°,解得:α=22.5°.综上,α的取值为45°或22.5°.故答案为:50°.(1)根据余角的定义即可求解;(2)①先根据余角、平角的定义求出∠BOC,再根据角平分线的定义求出∠COD,再根据角的和差关系即可求解;②分点D在∠BOC内,点D在∠BOC外两种情况即可求解.本题考查了余角和补角、角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键.27.【答案】2 1,2,3 是【解析】解:(1)对于数阵A,2*3的值为2;若2*3=2*x,则x的值为1,2,3;(2)①由数阵图可知,数阵A是“有趣的”.②∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=1.(3)不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.∵1*1=1,2*2=2,3*3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.方法二:由条件二可知,a*b只能取1,2或3,由此可以考虑a*b取值的不同情形.例如考虑1*2:情形一:1*2=1.若满足交换律,则2*1=1,再次计算1*2可知:1*2=(2*1)*2=2*2=2,矛盾;情形二:1*2=2由(2)可知,2*1=1,1*2≠2*1,不满足交换律,矛盾;情形三:1*2=3若满足交换律,即2*1=3,再次计算2*2可知:2*2=(2*1)*2=3*2=(1*2)*2=1*2=3,与2*2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.故答案为:2;1,2,3;是.(1)根据定义a*b为数阵中第a行第b列的数即可求解;(2)①根据“有趣的”定义即可求解;②根据a*a=a;(a*b)*c=a*c,将2*1变形得到2*1=(1*2)*1即可求解;③若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.进一步得到1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.。
2023-2024学年北京市海淀区中关村中学七年级(下)期中数学试卷+答案解析
2023-2024学年北京市海淀区中关村中学七年级(下)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,和是邻补角的是()A. B.C.D.2.9的算术平方根是()A.3B.C. D.3.下列各数中,无理数是()A.B.C.D.4.小明读了:“子非鱼,焉知鱼之乐乎?”后,利用电脑画出了鱼儿的各种形态,请问:右图中所示的小鱼图案经过平移后得到的是()A. B.C.D.5.如图,,,则的度数为()A.B.C.D.6.如图,四边形ABCD中,AC,BD交于点O,如果,那么以下四个结论中错误的是()A.B.C.D.7.下列命题中,假命题是()A.对顶角相等B.同一平面内,过一点有且只有一条直线与已知直线垂直C.在同一平面内三条直线a,b,c,如果,,那么D.两条直线被第三条直线所截,同旁内角互补8.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为,表示九龙壁的点的坐标为,则表示下列宫殿的点的坐标正确的是()A.保和殿B.养心殿C.武英殿D.景仁宫9.在平面直角坐标系xOy中,以O,A,B,C为顶点的正方形的边长为若点A在x轴上,点C在y轴的正半轴上,则点B的坐标为()A. B.C.或D.或10.在平面直角坐标系xOy中,已知点,点B在y轴上,对于线段AB有如下四个结论:①线段AB的最小值是2;②线段AB的最大值是2;③线段AB可能经过点;④线段AB可能经过点上述结论中,所有正确结论的序号是()A.①③B.②③C.②④D.①④二、填空题:本题共8小题,每小题2分,共16分。
11.的相反数是__________.12.点在y轴上,则P点坐标是__________.13.如图,数轴上点A,B对应的实数分别是,2,点C在线段AB上运动,如果点C表示无理数,那么点C可以是__________写出一个即可14.如图,从位置P到直线公路MN共有四条小道PA、PB、PC、PD,若用相同的速度行走,能最快到达公路MN的小道是__________,理由是__________.15.在平面直角坐标系中,如果过点和点B的直线平行于x轴,且,那么点B的坐标是__________.16.如图,直线,直线AB分别与直线a,b相交于点C和点B,过点C作射线于C,若,则的度数是__________.17.如图,雷达探测器探测到三艘船A,B,C,按照目标表示方法的规定,船A,B的位置分别表示为,,船C的位置应表示为__________.18.将1,,,,按右侧方式排列.若规定表示第m排从左向右第n个数,则所表示的数是__________;与表示的两数之积是__________.三、解答题:本题共9小题,共54分。
人教版初中数学七年级下册期末测试题(2018-2019学年北京市海淀区八一学校
2018-2019学年北京市海淀区八一学校七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)已知三角形的两边a=3,b=5,第三边是c,则c的取值范围是()A.3<c<5B.2<c<8C.2<c<5D.3<c<82.(3分)下列调查中,适合用全面调查方式的是()A.了解一批IP AD的使用寿命B.了解电视栏目《朗读者》的收视率C.了解某班学生对国家“一带一路”战略的知晓率D.了解某鱼塘中鱼的数量3.(3分)下列邮票中的多边形中,内角和等于540°的是()A.B.C.D.4.(3分)如图,天平左盘中物体A的质量为m g,天平右盘中每个砝码的质量都是1g,则m的取值范围在数轴上可表示为()A.B.C.D.5.(3分)若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4B.>C.﹣3m<﹣3n D.2m+1<2n+16.(3分)若△ABC中,∠A=90°,且∠B﹣∠C=30°,那么∠C的度数为()A.30°B.40°C.50°D.60°7.(3分)如图所示,已知AC∥ED,∠C=30°,∠CBE=40°,则∠BED的度数是()A.60°B.80°C.70°D.50°8.(3分)如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是()A.①②③B.①②④C.①③④D.②③④9.(3分)小文同学统计了某小区部分居民每周使用共享单车的时间,并绘制了统计图,如图所示.下面有四个推断:①小文此次一共调查了100位小区居民②每周使用时间不足15分钟的人数多于45﹣60分钟的人数③每周使用时间超过30分钟的人数超过调查总人数的一半④每周使用时间在15﹣30分钟的人数最多根据图中信息,上述说法中正确的是()A.①④B.①③C.②③D.②④10.(3分)如图,AB∥CD,∠BAC与∠ACD的平分线相交于点G,EG⊥AC于点E,F为AC中点,GH⊥CD于H,∠FGC=∠FCG.下列说法正确的是()①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△GFC;④若∠EGH:∠ECH=2:7,则∠AFG=150°.A.①③④B.②③C.①②③D.①②③④二、填空题(本题共14分,每小题2分)11.(2分)写出一个解为的二元一次方程是.12.(2分)在生活中,我们常常看到在电线杆的两侧拉有两根钢线用来固定电线杆(如图所示),这样做的数学原理是.13.(2分)《九章算术》中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”其大意是:今有大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容积各是多少斛?设大容器的容积为x斛,小容器的容积为y斛,根据题意,可列方程组为(斛:古量器名,容量单位).14.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.(2分)关于x的不等式2x﹣a≤﹣3的解集如图所示,则a的值是.16.(2分)如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC=140°,∠BGC=110°,则∠A的度数为°.17.(2分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.三、解答题:(共56分,18-21题每题4分,22,23,24,26题每题5分,25题6分,27题7分,28题7分)18.(4分)解方程组19.(4分)解不等式<3﹣x,并把它的解集在数轴上表示出来.20.(4分)解不等式组并写出它的所有非负整数解.21.(4分)如图,已知△ABC中,AB=9,BC=12,AC=5.(1)画出△ABC的高AD和BE;(2)画出△ABC的中线CF;(3)计算的值是.22.(5分)如图,△ABC中,CD是∠ACB的角平分线,DE∥AC,交BC于点E,∠B=20°,∠ADC=44°,求△DEC各内角的度数.23.(5分)已知关于x,y的二元一次方程组的解满足x<y,求m的取值范围.24.(5分)如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE 的延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠B=∠ACB,CE=5,CF=7,求DB.25.(6分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?26.(5分)某综合实践小组为了了解本校学生参加课外读书活动的情况,随机抽取部分学生,调查其最喜欢的图书类别,并根据调查结果绘制成如下不完整的统计表与统计图:图书类别画记人数百分比文学类艺体类正5科普类其他14合计a100%请结合图中的信息解答下列问题:(1)随机抽取的样本容量a为;(2)在扇形统计图中,“艺体类”所在的扇形圆心角应等于度;(3)补全条形统计图;(4)已知该校有600名学生,估计全校最喜欢文学类图书的学生有人.27.(7分)定义:对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.将一个“迥异数”个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为f(a).例如:a=12,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为21+12=33,和与11的商为33÷11=3,所以f(12)=3.根据以上定义,回答下列问题:(1)填空:①下列两位数:20,21,22中,“迥异数”为.②计算:f(35)=,f(10m+n)=.(2)如果一个“迥异数”b的十位数字是k,个位数字是2(m+1),且f(b)=9;另一个“迥异数”c的十位数字是m+4,个位数字是2k﹣1,且f(c)=11,请求出“迥异数”b和c.(3)如果一个“迥异数”m的十位数字是x,个位数字是x﹣3,另一个“迥异数”n的十位数字是x﹣4,个位数字是2,且满足f(m)﹣f(n)<7,请直接写出满足条件的所有x的值.28.(7分)如图,在直角三角形ABC中,∠ACB=90°,∠BAC=45°.点P是直线AC 上一个动点(点P不与点A,C重合),连接BP,在线段BC的延长线上取一点D,使得∠BPC=∠DPC.过点B作BE⊥DP,交直线DP于点E.(1)如图1,当点P在线段AC上时,若∠BPC=60°,则∠ABE=;(2)当点P在线段CA的延长线上时,在图2中依题意补全图形,并判断∠ABE与∠ABP 有怎样的数量关系,写出你的结论,并证明;(3)在点P运动的过程中,直接写出∠ABE与∠ABP的数量关系为.2018-2019学年北京市海淀区八一学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)已知三角形的两边a=3,b=5,第三边是c,则c的取值范围是()A.3<c<5B.2<c<8C.2<c<5D.3<c<8【分析】根据三角形的三边关系:第三边大于两边之差2,而小于两边之和8.【解答】解:∵三角形的两边a=3,b=5,第三边是c,∴5﹣3<c<5+3,∴2<c<8.故选:B.【点评】此题主要考查了三角形三边关系,正确掌握三角形三边关系是解题关键.2.(3分)下列调查中,适合用全面调查方式的是()A.了解一批IP AD的使用寿命B.了解电视栏目《朗读者》的收视率C.了解某班学生对国家“一带一路”战略的知晓率D.了解某鱼塘中鱼的数量【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、了解一批IP AD的使用寿命,适合用抽样调查方式;B、了解电视栏目《朗读者》的收视率,适合用抽样调查方式;C、了解某班学生对国家“一带一路”战略的知晓率,适合用全面调查方式;D、了解某鱼塘中鱼的数量,适合用抽样调查方式;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)下列邮票中的多边形中,内角和等于540°的是()A.B.C.D.【分析】根据n边形的内角和公式为(n﹣2)180°,由此列方程求边数n即可得到结果.【解答】解:设这个多边形的边数为n,则(n﹣2)180°=540°,解得n=5.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.(3分)如图,天平左盘中物体A的质量为m g,天平右盘中每个砝码的质量都是1g,则m的取值范围在数轴上可表示为()A.B.C.D.【分析】根据天平列出不等式组,确定出解集即可.【解答】解:根据题意得:,解得:1<m<2,故选:D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4B.>C.﹣3m<﹣3n D.2m+1<2n+1【分析】运用不等式的基本性质求解即可.【解答】解:已知m<n,A、m﹣4<n﹣4,故A选项错误;B、<,故B选项错误;C、﹣3m>﹣3n,故C选项错误;D、2m+1<2n+1,故D选项正确.故选:D.【点评】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.6.(3分)若△ABC中,∠A=90°,且∠B﹣∠C=30°,那么∠C的度数为()A.30°B.40°C.50°D.60°【分析】根据直角三角形的性质可得∠B+∠C=90°,再结合∠B﹣∠C=30°计算出∠C的度数即可.【解答】解:∵∠A=90°,∴∠B+∠C=90°,∵∠B﹣∠C=30°,∴∠B=60°,∠C=30°,故选:A.【点评】此题主要考查了直角三角形的性质,关键是掌握直角三角形两锐角互余.7.(3分)如图所示,已知AC∥ED,∠C=30°,∠CBE=40°,则∠BED的度数是()A.60°B.80°C.70°D.50°【分析】根据三角形的外角性质求出∠CAE,根据平行线的性质求出∠CAE=∠BED,即可求出答案.【解答】解:∵∠C=30°,∠CBE=40°,∴∠CAE=∠C+∠CBE=70°,∵AC∥ED,∴∠BED=∠CAE=70°,故选:C.【点评】本题考查了三角形的外角性质和平行线的性质,关键是求出∠CAE的度数和得出∠CAE=∠BED.8.(3分)如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是()A.①②③B.①②④C.①③④D.②③④【分析】由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,①加上条件AB=AE可利用SAS定理证明△ABC≌△AED;②加上BC=ED不能证明△ABC≌△AED;③加上∠C=∠D可利用ASA证明△ABC≌△AED;④加上∠B=∠E可利用AAS证明△ABC≌△AED;故选:C.【点评】此题主要考查了三角形全等的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(3分)小文同学统计了某小区部分居民每周使用共享单车的时间,并绘制了统计图,如图所示.下面有四个推断:①小文此次一共调查了100位小区居民②每周使用时间不足15分钟的人数多于45﹣60分钟的人数③每周使用时间超过30分钟的人数超过调查总人数的一半④每周使用时间在15﹣30分钟的人数最多根据图中信息,上述说法中正确的是()A.①④B.①③C.②③D.②④【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【解答】解:①小文此次调查的小区居民的人数为10+60+20+10=100(位),此结论正确;②由频数直方图知,每周使用时间不足15分钟的人数与45﹣60分钟的人数相同,均为10人,此结论错误;③每周使用时间超过30分钟的人数占调查总人数的比例为=,此结论错误;④每周使用时间在15﹣30分钟的人数最多,有60人,此结论正确;故选:A.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.10.(3分)如图,AB∥CD,∠BAC与∠ACD的平分线相交于点G,EG⊥AC于点E,F为AC中点,GH⊥CD于H,∠FGC=∠FCG.下列说法正确的是()①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△GFC;④若∠EGH:∠ECH=2:7,则∠AFG=150°.A.①③④B.②③C.①②③D.①②③④【分析】分别根据平行线的性质、直角三角形的性质对各小题进行逐一分析即可.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠DCA的平分线相交于点G,∴∠GAC+∠GCA=∠BAC+∠ACD=×180°=90°,∵∠GAC+∠GCA+AGC=∠180°,∴∠AGC=90°,∴AG⊥CG,故①正确;∵∠AGE+∠EGC=90°,∠AGE+∠GAE=90°,∴∠CGE=∠GAC,故∠BAG=∠CGE,故②正确;∵F为AC中点,∴AF=CF,∴S△AFG=S△CFG,故③正确;④中,根据题意,得:在四边形GECH中,∠EGH+∠ECH=180°.又∵∠EGH:∠ECH=2:7,∴∠EGH=180°×=40°,∠ECH=180°×=140°.∵CG平分∠ECH,∴∠FCG=∠ECH=70°,∵AG⊥CG,F为AC中点,∴FG=FC,∴∠FGC=∠FCG=70°,∴∠AFG=140°,故④错误.故选:C.【点评】本题考查的是平行线的性质,直角三角形的性质,四边形的内角和,三角形的面积公式,角平分线的概念等知识,难度适中.二、填空题(本题共14分,每小题2分)11.(2分)写出一个解为的二元一次方程是x+y=0.【分析】由1与﹣1列出算式,即可得到所求方程.【解答】解:根据题意得:x+y=0.故答案为:x+y=0【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.(2分)在生活中,我们常常看到在电线杆的两侧拉有两根钢线用来固定电线杆(如图所示),这样做的数学原理是三角形的稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【解答】解:结合图形,为了防止电线杆倾倒,常常在电线杆上拉两根钢筋来加固电线杆,所以这样做根据的数学道理是三角形的稳定性.故答案是:三角形的稳定性.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.(2分)《九章算术》中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”其大意是:今有大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容积各是多少斛?设大容器的容积为x斛,小容器的容积为y斛,根据题意,可列方程组为(斛:古量器名,容量单位).【分析】设大容器的容积为x斛,小容器的容积为y斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x、y的二元一次方程组.【解答】解:设大容器的容积为x斛,小容器的容积为y斛,根据题意得:,故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y的二元一次方程组是解题的关键.14.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.15.(2分)关于x的不等式2x﹣a≤﹣3的解集如图所示,则a的值是1.【分析】首先用a表示出不等式的解集,然后解出a.【解答】解:∵2x﹣a≤﹣3,∴x,∵x≤﹣1,∴a=1.故答案为:1.【点评】不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.16.(2分)如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC=140°,∠BGC=110°,则∠A的度数为80°.【分析】连接BC,根据三角形内角和定理求出∠DBC+∠DCB=40°,∠GBC+∠GCB =70°,所以∠GBD+∠GCD=30°,再根据角平分线的定义求出∠ABG+∠ACG=30°,然后根据三角形内角和定理即可求出∠A=80°.【解答】解:连接BC,∵∠BDC=140°,∴∠DBC+∠DCB=180°﹣140°=40°,∵∠BGC=110°,∴∠GBC+∠GCB=180°﹣110°=70°,∴∠GBD+∠GCD=70°﹣40°=30°,∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABG+∠ACG=∠GBD+∠GCD=30°,在△ABC中,∠A=180°﹣40°﹣30°﹣30°=80°.故∠A的度数为80°.【点评】本题利用三角形的内角和定理求解,整体思想的利用是解题的关键.17.(2分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分五种情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用150×2+90=390元当租1艘四人船,1艘6人船,1艘8人船,100+130+150=380元而810>490>390>380,∴当租1艘四人船,1艘6人船,1艘8人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.三、解答题:(共56分,18-21题每题4分,22,23,24,26题每题5分,25题6分,27题7分,28题7分)18.(4分)解方程组【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×5得:14x=14,解得:x=1,把x=1代入②得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(4分)解不等式<3﹣x,并把它的解集在数轴上表示出来.【分析】先去分母、去括号,移项,合并同类项,把x的系数化为1,再在数轴上表示出来即可.【解答】解:去分母,得2x﹣1<9﹣3x.移项,得2x+3x<9+1.合并,得5x<10.系数化1,得x<2.不等式的解集是在数轴上表示如下:【点评】本题考查的是解一元一次不等式,熟知一元一次不等式的基本步骤是解答此题的关键.20.(4分)解不等式组并写出它的所有非负整数解.【分析】先求出不等式组的解集,再求出不等式组的非负整数解即可.【解答】解:,解不等式①得x≤1,解不等式②得x>﹣3,∴不等式组的解集是:﹣3<x≤1.∴不等式组的非负整数解为0,1.【点评】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.21.(4分)如图,已知△ABC中,AB=9,BC=12,AC=5.(1)画出△ABC的高AD和BE;(2)画出△ABC的中线CF;(3)计算的值是.【分析】(1)根据三角形的高线定义即可画出△ABC的高AD和BE;(2)根据三角形的中线定义即可画出△ABC的中线CF;(3)根据三角形的面积即可计算的值.【解答】解:如图,(1)AD和BE即为所求;(2)CF即为所求;(3)∵AD和BE是△ABC的高,∴BC•AD=AC•BE,∴12AD=5BE,∴的值是.故答案为:.【点评】本题考查了作图﹣复杂作图、三角形的角平分线、中线和高、三角形的面积,解决本题的关键是掌握三角形的角平分线、中线和高线的定义.22.(5分)如图,△ABC中,CD是∠ACB的角平分线,DE∥AC,交BC于点E,∠B=20°,∠ADC=44°,求△DEC各内角的度数.【分析】根据角平分线的定义得到∠ACD=∠BCD,根据平行线的性质得到∠CDE=∠ACD,设∠ACD=∠DCE=x,根据三角形的内角和定理即可得到结论.【解答】解:∵CD是∠ACB的角平分线,∴∠ACD=∠BCD,∵DE∥AC,∴∠CDE=∠ACD,∴∠CDE=∠DCE,∴设∠ACD=∠DCE=x,∴∠ACB=2x,∴∠A=180°﹣∠B﹣∠ACB=180°﹣20°﹣2x,∵∠ADC=44°,∴44°+180°﹣20°﹣2x+x=180°,∴x=24°,∴∠CDE=∠DCE=24°,∴∠CED=180°﹣24°﹣24°=132°.【点评】本题考查了三角形的内角和定理,平行线的性质,角平分线的定义,正确的识别图形是解题的关键.23.(5分)已知关于x,y的二元一次方程组的解满足x<y,求m的取值范围.【分析】利用加减消元法求出x、y,然后列出不等式,再解关于m的一元一次不等式即可得解.【解答】解:解二元一次方程组得,∵x<y,∴m﹣,解得m<.所以m的取值范围是m<.【点评】本题考查了解二元一次方程组,解一元一次不等式,把m看作常数,用m表示出x、y然后列出关于m的不等式是解题的关键,也是本题的难点.24.(5分)如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE 的延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠B=∠ACB,CE=5,CF=7,求DB.【分析】(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)利用全等三角形的性质求出AD,AB即可解决问题;【解答】(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,∴△ADE≌△CFE(AAS).(2)解:∵△ADE≌△CFE,CF=7,∴CF=AD=7,又∵∠B=∠ACB,∴AB=AC,∵E是边AC的中点,CE=5,∴AB=10,∴DB=AB﹣AD=10﹣7=3.【点评】本题考查全等三角形的判定和性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(6分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.构建方程组即可解决问题;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,求出整数解即可;【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3∴2≤a≤3.a是正整数,共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;【点评】本题考查一元一次不等式的应用,二元一次方程组的应用等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.(5分)某综合实践小组为了了解本校学生参加课外读书活动的情况,随机抽取部分学生,调查其最喜欢的图书类别,并根据调查结果绘制成如下不完整的统计表与统计图:图书类别画记人数百分比文学类艺体类正5科普类其他14合计a100%请结合图中的信息解答下列问题:(1)随机抽取的样本容量a为50;(2)在扇形统计图中,“艺体类”所在的扇形圆心角应等于36度;(3)补全条形统计图;(4)已知该校有600名学生,估计全校最喜欢文学类图书的学生有240人.【分析】(1)根据其他类的人数和所占的百分比,可以求得a的值;(2)根据统计图中的数据,可以求得在扇形统计图中,“艺体类”所在的扇形圆心角的度数;(3)根据统计图中的数据,可以得到文学类和科普类的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据,可以得到全校最喜欢文学类图书的学生人数.【解答】解:(1)a=14÷28%=50,故答案为:50;(2)在扇形统计图中,“艺体类”所在的扇形圆心角为:360°×=36°,故答案为:36;(3)科普类有50×22%=11(人),文艺类有:50﹣5﹣11﹣14=20(人),补全的条形统计图如右图所示;(4)600×=240(人),答:全校最喜欢文学类图书的学生有240人,故答案为:240.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.27.(7分)定义:对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.将一个“迥异数”个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为f(a).例如:a=12,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为21+12=33,和与11的商为33÷11=3,所以f(12)=3.根据以上定义,回答下列问题:(1)填空:①下列两位数:20,21,22中,“迥异数”为21.②计算:f(35)=8,f(10m+n)=m+n.(2)如果一个“迥异数”b的十位数字是k,个位数字是2(m+1),且f(b)=9;另一个“迥异数”c的十位数字是m+4,个位数字是2k﹣1,且f(c)=11,请求出“迥异数”b和c.(3)如果一个“迥异数”m的十位数字是x,个位数字是x﹣3,另一个“迥异数”n的十位数字是x﹣4,个位数字是2,且满足f(m)﹣f(n)<7,请直接写出满足条件的所有x的值5或7.【分析】(1)①由“迥异数”的定义可得;②根据定义计算可得;(2)由f(10m+n)=m+n,可求k和m的值,即可求b和c;(3)根据题意可列出不等式,可求出4<x<8,即可求x的值.【解答】解:(1)①∵对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.∴“迥异数”为21;②f(35)=(35+53)÷11=8,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=9,∴k+2(m+1)=9①,f(c)=11,∴m+4+2k﹣1=11②,联立①②解得,故b=10×3+2×(2+1)=36,c=10×(2+4)+2×3﹣1=65;(3)∵f(m)﹣f(n)<7,∴x+x﹣3﹣(x﹣4+2)<7,解得x<8,∵x﹣3>0,x﹣4>0,∴x>4,∴4<x<8,且x为正整数,∴x=5,6,7,当x=5时,m=52,n=12当x=6时,m=63,n=22(不合题意舍去)当x=7时,m=74,n=32.综上所述:x为5或7.故答案为:21;8,m+n;5或7.【点评】本题考查了因式分解的应用,能理解“迥异数”定义是本题的关键.28.(7分)如图,在直角三角形ABC中,∠ACB=90°,∠BAC=45°.点P是直线AC 上一个动点(点P不与点A,C重合),连接BP,在线段BC的延长线上取一点D,使得∠BPC=∠DPC.过点B作BE⊥DP,交直线DP于点E.(1)如图1,当点P在线段AC上时,若∠BPC=60°,则∠ABE=15°;(2)当点P在线段CA的延长线上时,在图2中依题意补全图形,并判断∠ABE与∠ABP 有怎样的数量关系,写出你的结论,并证明;(3)在点P运动的过程中,直接写出∠ABE与∠ABP的数量关系为∠ABE=∠ABP,∠ABE+∠ABP=180°.【分析】(1)根据三角形的内角和定理及外角的性质进行角度的计算即可求解;(2)根据三角形的内角和定理及外角的性质进行角度的计算即可求解;(3)通过分类讨论,结合(1)(2),根据根据三角形的内角和定理及外角的性质进行角度的计算即可求解.【解答】解:(1)∵∠ACB=90°,∠BPC=∠DPC=60°,∴∠ACD=90°,∠D=30°,∵BE⊥DP,∴∠E=90°,∴∠EBD=60°,∵∠BAC=45°,∴∠ABC=45°,∴∠ABE=∠EBD﹣∠ABC=15°;故答案为:15°.(2)如图所示:∠ABE=∠ABP,证明:∵BE⊥DP,∴∠EBD+∠D=90°,∵∠ACB=90°,∴∠DPC+∠D=90°,∴∠EBD=∠DPC,∵∠BPC=∠DPC,∴∠EBD=∠BPC,∵∠BAC=45°,∴∠ABP=45°﹣∠BPC,∠ABC=45°,∴∠ABE=∠ABC﹣∠EBD=45°﹣∠EBD,∴∠ABE=∠ABP;(3)由(1)(2)可知:当点P在线段AC与CA的延长线上时,∠ABE=∠ABP,当点P在AC的延长线上时,如下图所示:设∠D=∠DBP=x,则∠BPE=2x,∵BE⊥DP,∴∠PBE=90°﹣2x,∵∠ACB=90°,∠BAC=45°,∴∠ABC=45°,∴∠ABE=∠ABC+∠CBP+∠PBE=45°+x+90°﹣2x=135°﹣x,∠ABP=45°+x,∴∠ABE+∠ABP=180°.所以当点P在线段AC与CA的延长线上时,∠ABE=∠ABP,当点P在AC延长线上时,∠ABE+∠ABP=180°.故答案为:∠ABE=∠ABP,∠ABE+∠ABP=180°.【点评】本题所以三角形内动点的综合题,熟练掌握三角形内角和定理和外角性质是解题关键.。
北京市海淀区清华附中2019-2020学年七年级下学期4月月考数学试题(含答案及解析)
2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)一、选择题1. 9的算术平方根是( )A. -3B. 3C. 13D. ±3 【答案】B【解析】【详解】解:93= ,故选B.2. 已知a b <,下列不等式中,正确的是( )A. 44a b +>+B. 33a b ->-C. 1122a b <D. 22a b -<- 【答案】C【解析】【分析】根据不等式的性质,可得出答案.【详解】解:A.两边都加4,不等号的方向不变,此选项错误;B. 两边都减3,不等号的方向不变,此选项错误;C. 两边都乘以12,不等号的方向不变,此选项正确; D. 两边都乘以-2,不等号的方向改变,此选项错误;故选:C .【点睛】本题考查知识点是不等式的性质,熟记不等式性质内容是解此题的关键.3. 在平面直角坐标系中,如果点(1,2)P m --+在第三象限,那么m 的取值范围为( )A. 2m <B. 2m ≤C. 0m ≤D. 0m <【答案】A【解析】【分析】根据第三象限内点的坐标特征可得出答案.【详解】解:∵点(1,2)P m --+在第三象限,∴20m -+<,∴2m <.故选:A .【点睛】本题难度较低,主要考查学生对直角坐标系与解不等式知识点的掌握,分析直角坐标系中第三象限坐标特点为解题关键.4. 若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程ax +y =1的解,则a 的值等于( ) A. 3 B. 1 C. ﹣1D. ﹣3【答案】A【解析】【分析】把解代入方程进行求解即可;【详解】解:将12x y =⎧⎨=-⎩是代入方程ax +y =1得:a ﹣2=1,解得:a =3.故选:A .【点睛】本题主要考查了二元一次方程的根,准确计算是解题的关键.5. 如图所示,下列说法不正确的是( )A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角【答案】A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义.6. 过点B画线段AC所在直线的垂线段,其中正确的是()A. B.C. D.【答案】D【解析】【分析】根据垂线段的定义判断即可.【详解】根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选D.【点睛】本题考查了垂线段的定义,过直线外一点做直线的垂线,这点与垂足间的线段叫做这点到直线的垂线段.7. 如图,数轴上点N表示的数可能是()A. 2B. 3C. 7D. 10【答案】C【解析】【分析】根据题意可得2<N<34N9.【详解】解:∵N在2和3之间,∴2<N <3, ∴4<N <9,∵24<,34<,109>,∴排除A ,B ,D 选项,∵479<<,故选C.【点睛】本题主要考查无理数的估算,在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方.8. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A. ∠AOD =∠BOCB. ∠AOE +∠BOD =90°C. ∠AOC =∠AOED. ∠AOD +∠BOD =180°【答案】C【解析】【分析】 根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A 、∠AOD 与∠BOC 是对顶角,所以∠AOD=∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C 、∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C .【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义. 9. 下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为()1,2,表示水宁阁的点的坐标为()4,1-,那么下列各场馆的坐标表示正确的是( )A. 中国馆的坐标为()1,2--B. 国际馆的坐标为()1,3-C. 生活体验馆的坐标为()4,7D. 植物馆的坐标为()7,4-【答案】A【解析】【分析】根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.【详解】解:根据题意可建立如下所示平面直角坐标系,A 、中国馆的坐标为(-1,-2),故本选项正确;B 、国际馆的坐标为(3,-1),故本选项错误;C 、生活体验馆的坐标为(7,4),故本选项错误;D 、植物馆的坐标为(-7,-4),故本选项错误.故选A .【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x ,y 轴的位置.10. 三名快递员某天的工作情况如图所示,其中点1A ,2A ,3A 的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点1B ,2B ,3B ,的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②D. ②③【答案】B【解析】【分析】 根据所给的点的信息进行辨析即可得解.【详解】①上午派送快递所用时间最短的是A 1,即甲,不足2小时;故①正确;②下午派送快递件数最多的是B 2即乙,超过40件,其余的不超过40件,故②错误;③在这一天中派送快递总件数为:甲:40+25=65(件),乙:45+30=75;丙:30+20=50,所以这一天中派送快递总件数最多的是乙,故③正确.故选B.【点睛】本题考查的知识点是函数的图象,分析出图象中点的几何意义,是解答的关键.二、填空题11. 点(2,3)M 到x 轴和y 轴的距离之和是__________.【答案】5【解析】【分析】根据点到x 轴和y 轴的距离分别为点的纵坐标、点的横坐标的绝对值,再求和即可.【详解】解:∵点(2,3)M -到x 轴的距离即为纵坐标的绝对值,∴点(2,3)M -到x 轴的距离是3;∵点(2,3)M -到y 轴的距离即为横坐标坐标的绝对值,∴点(2,3)M -到x 轴的距离是2;∴点(2,3)M -到x 轴和y 轴的距离之和是5.故答案为:5.【点睛】本题考查的知识点是点的坐标,难度不大,需注意点到x 轴和y 轴的距离分别为点的纵坐标、点的横坐标的绝对值.12. 物体自由下落的高度h (单位:m )与下落时间t (单位:s )的关系式是24.9h t =.在一次实验中,一个物体从490m 高的建筑物上自由下落,到达地面需要的时间为________s .【答案】10【解析】【分析】直接将490代入所给关系式,可求出2100t =,再利用算术平方根定义求解即可.【详解】解:把490h =代入24.9h t =中,得24.9490t =,∴2100t =.0,t >10t ∴=.故答案为:10.【点睛】本题考查的知识点利用算术平方根求解,此题中需注意的是时间t 的取值范围是大于0的. 13. 若关于x 的一元一次方程411x m x ++=-的解是负数,则m 的取值范围是_______.【答案】m >﹣2【解析】【分析】把m 看做已知数表示出方程的解,由解为负数求出m 的范围即可.【详解】方程4x+m+1=x﹣1,移项合并得:3x=﹣2﹣m,化系数为1得:23m x--=由解为负数,得到23mx--=<0,解得:m>﹣2.故答案为:m>﹣2.【点睛】本题考查了一元一次方程的解以及解一元一次不等式,方程的解即为能使方程左右两边相等的未知数的值.14. 如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=_____.【答案】1.5【解析】【分析】根据题意即可求出AB的长,然后根据中点的定义即可求出CB,从而求出CD的长.【详解】解:∵DA=6,DB=3,∴AB=DA+DB=9∵C为线段AB的中点,∴CB=12AB=4.5∴CD=CB-DB=1.5故答案为:1.5.【点睛】此题考查的是线段的和与差,掌握各线段之间的关系是解决此题的关键.15. 如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段PA,PB,PC,PD,PE中,最短的一条线段是_____,理由是___【答案】(1). PC;(2). 垂线段最短.【解析】【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【详解】根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.16. 某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).【答案】④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是60×18%=10.8(万元),4月份音乐手机的销售额是65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.17. 如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为______.【答案】56°【解析】【分析】依据OE⊥AB,可得∠BOE=90°;再根据∠COE=34°,即可得到∠BOD的度数.【详解】解:∵OE⊥AB,∴∠BOE=90°,又∵∠COE=34°,∴∠BOD=180°-90°-34°=56°,故答案是:56°.【点睛】本题考查了垂线、对顶角与邻补角.注意,邻补角互补,即和为180°.18. 已知正实数x的两个平方根是m和m+b.当b=8时,m的值是_____;若m2x+(m+b)2x=4,则x=_____.【答案】(1). -4(2). 2【解析】【分析】(1)由题意直接利用正实数平方根互为相反数即可求出m的值;(2)根据题意利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【详解】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;故答案为:-4;(2)∵正实数x 的平方根是m 和m+b ,∴(m+b )2=x ,m 2=x ,∵m 2x+(m+b )2x =4,∴x 2+x 2=4,∴x 2=2,∵x >0,∴x 2 2【点睛】本题考查平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键. 三、解答题19. 232564(3)+--【答案】-2【解析】【分析】直接利用立方根以及二次根式的性质化简得出答案. 232564(3)5432--=--=-.【点睛】本题考查的知识点是实数的运算,掌握实数的运算顺序以及立方根和二次根式的性质是解此题的关键.20. 解方程组2632x y x y =-⎧⎨+=⎩. 【答案】02x y =⎧⎨=⎩【解析】【分析】用代入消元法,求出二元一次方程组的解即可.【详解】解:2632x y x y =-⎧⎨+=⎩①② 由②得,2x y =-③,把③代入①中得,2(2)63y y -=-,解得:2y =,把2y =代入③可得,0x =,∴原方程组的解为:02x y =⎧⎨=⎩. 【点睛】本题考查的知识点是解二元一次方程组,解二元一次方程组一般用代入消元法和加减消元法,掌握二者的一般步骤是解此题的关键.21. 解不等式组513(1)1213x x x x -≤+⎧⎪+⎨-<⎪⎩并写出这个不等式组的所有整数解. 【答案】225x -<≤;01,2, 【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可. 【详解】解:513(1)1213x x x x -≤+⎧⎪⎨+-<⎪⎩①②∵由①,得2x ≤, 由②,得25x >-, ∴原不等式组的解集为:225x -<≤, ∴原不等式组的所有整数解为:01,2,. 【点睛】本题考查的知识点是解一元一次不等式组及求其整数解,解决此类问题的关键是正确解得一元一次不等式组的解集.22. 已知2x +是27的立方根,31x y +-的算术平方根是4,求73x y +平方根.【答案】7±【解析】【分析】根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x 、y 的值,再计算73x y +的值,根据平方根的定义,可得答案. 【详解】由题意得:3227314x x y ⎧+=⎪⎨+-=⎪⎩,解得:114x y =⎧⎨=⎩, ∴7374249x y +=+=,∵49的平方根为±7,∴73x y +的算术平方根为±7.【点睛】本题考查了立方根,平方根和算术平方根,根据题意得出二元一次方程组是解题的关键. 23. 如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOC=76°,∠DOF=90°,求∠EOF 的度数.【答案】∠EOF=52°. 【解析】【分析】根据对顶角相等可得∠BOD =∠AOC ,再根据角平分线的定义求出∠DOE ,然后根据∠EOF =∠DOF -∠DOE 代入数据计算即可得解.【详解】由对顶角相等得,∠BOD =∠AOC =76°, ∵OE 平分∠BOD ,∴∠DOE =12∠BOD =38°, ∵∠DOF =90°,∴∠EOF =∠DOF ﹣∠DOE =90°﹣38°=52° 【点睛】本题考查了对顶角、邻补角,和角平分线的定义,熟练掌握这些定义是本题解题的关键. 24. 在正方形网格中建立平面直角坐标系xOy ,使得A ,B 两点的坐标分别为A(4,1),B(1,﹣2),过点B 作BC ⊥x 轴于点C .(1)按照要求画出平面直角坐标系xOy ,线段BC ,写出点C 的坐标 ;(2)直接写出以A ,B ,O 为顶点的三角形的面积 ;(3)若线段CD 是由线段AB 平移得到的,点A 的对应点是C ,写出一种由线段AB 得到线段CD 的过程.【答案】(1)(1,0);(2)4.5;(3)先向左平移3个单位长度,再向下平移1个单位长度【解析】【分析】(1)直接利用已知点画出平面直角坐标系进而得出答案;(2)利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出平移规律.【详解】解:(1)如图所示:点C的坐标为:(1,0);故答案为:(1,0);(2)△AOB的面积为:3×4﹣12×1×4﹣12×1×2﹣12×3×3=4.5;故答案为:4.5;(3)答案不唯一,如:先向左平移3个单位长度,再向下平移1个单位长度.故答案为:先向左平移3个单位长度,再向下平移1个单位长度.【点睛】本题考查网格作图、平移、三角形面积公式、直角坐标系点坐标的特征等知识,是常见基础考点,掌握相关知识是解题关键.25. 某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 9558 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数≤<— 1x4050x≤< 25060≤< 2x6070≤<87080xx≤<8090≤< 590100x(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是__________,理由是__________;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为________人.【答案】(1)见详解;(2)B,在此次测试中,B项目80分及以上人数为17人,高于项目A,59分以下人数与项目A相同,因此B项目成绩更好些;(3)130【解析】【分析】(1)根据题意,画出直方图,频数分布表即可;(2)B 较好,根据两个项目优秀人数以及不及格人数的比较即可;(3)由统计图可知,30名学生中A 、B 项目优秀的人数分别为13 人和17人,据此解答即可.【详解】解:(1)A 项目在70~80分之间有:3012310311-----=人;B 项目在8090x ≤<之间有:301228512-----=人,因此,补全图表如下:(2)在此次测试中,成绩更好的项目是B ,理由如下:在此次测试中,B 项目80分及以上人数为17人,高于项目A ,59分以下人数与项目A 相同,因此B 项目成绩更好些;故答案为:B ,在此次测试中,B 项目80分及以上人数为17人,高于项目A ,59分以下人数与项目A 相同,因此B 项目成绩更好些(3)∵A 项目优秀的人数约为:10330013030+⨯=人;B 项目优秀的人数约为:12530017030+⨯=人, ∴A 项目和B 项目成绩都是优秀的人数最多为130人.故答案为:130.【点睛】本题考查知识点是条形统计图以及频数(频率)分布表,解此题的关键是弄清题意,能够根据所给数据补全图表.26. 国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A 型和B 型两种环保型公交车10辆,其中每台的价格、年载客量如表:A 型B 型 价格(万元/台) x y若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【答案】(1)100150xy=⎧⎨=⎩;(2)有三种购车方案,方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆;(3)总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.【解析】【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【详解】(1)由题意,得2400 2350 x yx y+=⎧⎨+=⎩,解得100150 xy=⎧⎨=⎩;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得60100(10)680 100150(10)1200 m mm m+-≥⎧⎨+-≤⎩,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆.(3)设购车总费用为w 万元则w =100m+150(10﹣m )=﹣50m+1500,∵﹣50<0,6≤m≤8且m 为整数,∴m =8时,w 最小=1100,∴购车总费用最少的方案是购买A 型公交车8辆,购买B 型公交车2辆,购车总费用为1100万元.【点睛】本题主要考查一元一次不等式组和二元一次方程的应用,理解题意,找到题目蕴含的数量关系是解题的关键.四、拓展题27. 若关于x ,y 的二元一次方程组3123x y a y x -=+⎧⎨-=⎩ 的解满足2x +y ≤3,则a 的取值范围是____________. 【答案】a ≤-1【解析】【分析】根据3123x y a y x -=+⎧⎨-=⎩①②,令①+②得2x+y=4+a ,由2x +y ≤3,故得不等式即可求出a 的取值.【详解】由3123x y a y x -=+⎧⎨-=⎩①② 令①+②得2x+y=4+a ,∵2x +y ≤3,故4+a ≤3,解得a ≤-1【点睛】此题主要考查加减消元法求解二元一次方程组,解题的关键是根据方程组的特点与已知条件进行加减合并. 28. 已知关于x 的一元一次不等式152mx x +>-的解集是42x m <+,如图,数轴上的,,,A B C D 四个点中,实数m 对应的点可能是________.【答案】A【解析】【分析】求出不等式的解集,根据已知条件得出关于m 的不等式,求出不等式的解集即可.【详解】解:∵152mx x +>-,∴(2)4m x +>,∵关于x 的一元一次不等式152mx x +>-的解集是42x m <+, ∴20m +<,∴2m <-,∵数轴上只有点A 表示的数小于-2,∴实数m 对应的点可能是A .故答案为:A .【点睛】本题考查的知识点是解一元一次不等式,掌握不等式的性质是解此题的关键.29. 按下面程序计算,即根据输入的x 判断51x +是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的51x +的值作为新的x 的值,继续运算,循环往复,直至输出结果为止.若开始输入x 的值为正整数,最后输出的结果为656,则满足条件的所有x 的值是__.【答案】131或26或5.【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解:当第一次输入x ,第一次输出的结果为51x +,当第二次输入51x +,第二次输出的结果为5(51)1256x x ++=+,当第三次输入256x +,第三次输出的结果为5(256)112531x x ++=+,当第四次输入12531x +,第三次输出的结果为5(12531)1625156x x ++=+,若51656x +=,解得131x =;、若256656x +=,解得26x =;若12531656x +=,解得5x =;若625156656x +=,解得45x =, 所以当开始输入x 的值为正整数,最后输出的结果为656,则满足条件的所有x 的值是131或26或5.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.30. 已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________. 【答案】4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围. 【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键31. 定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组:M :21x x ⎧⎨⎩>>是N :-2-1x x ⎧⎨⎩>>的“子集”. (1)若不等式组:A :+14+15x x ⎧⎨⎩><,B :2-11-3x x ⎧⎨⎩>>,则其中不等式组 是不等式组M :21x x ⎧⎨⎩>>的“子集”(填A 或B );(2)若关于x 的不等式组1x a x ⎧⎨-⎩>>是不等式组21x x ⎧⎨⎩>>的“子集”,则a 的取值范围是 ;(3)已知a ,b ,c ,d 为互不相等的整数,其中a <b ,c <d ,下列三个不等式组:A :a≤x≤b ,B :c≤x≤d ,C :1<x <6满足:A 是B 的“子集”且B 是C 的“子集”,则a ﹣b+c ﹣d 的值为 ;(4)已知不等式组M :23x m x n ≥⎧⎨⎩<有解,且N :1<x≤3是不等式组M 的“子集”,请写出m ,n 满足的条件: .【答案】(1)A ;(2)a≥2;(3)-4;(4)m≤2,n >9【解析】【分析】(1)根据题意求出不等式组A 与B 的解集,进而利用题中的新定义判断即可(2)由题意根据“子集”的定义确定出a 的范围即可;(3)由题意根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)由题意根据“子集”的定义确定出所求即可. 【详解】解:(1)A :+14+15x x ⎧⎨⎩><的解集为3<x <6,B :2-11-3x x ⎧⎨⎩>>的解集为x >1,M :21x x ⎧⎨⎩>>的解集为x >2,则不等式组A 是不等式组M 的子集,故答案为:A ;(2)∵关于x 的不等式组1x a x ⎧⎨-⎩>>是不等式组21x x ⎧⎨⎩>>的“子集”, ∴a≥2,故答案为:a≥2;(3)∵a ,b ,c ,d 为互不相等的整数,其中a <b ,c <d , A :a≤x≤b ,B :c≤x≤d ,C :1<x <6满足:A 是B 的“子集”且B 是C 的“子集”, ∴a =3,b =4,c =2,d =5,则a ﹣b+c ﹣d =3﹣4+2﹣5=﹣4,故答案为:﹣4;(4)不等式组M :23x m x n ≥⎧⎨⎩<整理得:23m x n x ⎧≥⎪⎪⎨⎪⎪⎩<, 由不等式组有解得到2m <3n ,即2m ≤x <3n ,∵N :1<x≤3是不等式组的“子集”, ∴2m ≤1,3n >3,即m≤2,n >9, 故答案为:m≤2,n >9.【点睛】本题考查解一元一次不等式组以及定义运算,读懂题干“子集”的定义以及能求出不等式组的解集是解答此题的关键.。
瑞宝初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
瑞宝初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)不等式的解集,在数轴上表示正确的是()A.B.C.D.【答案】C【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:由得:1+2x≥5x≥2,因此在数轴上可表示为:故答案为:C.【分析】先解一元一次不等式(两边同乘以5去分母,移项,合并同类项,系数化为1),求出不等式的解集,再把不等式的解集表示在数轴上即可(x≥2在2的右边包括2,应用实心的圆点表示)。
2、(2分)下列说法中,正确的是()①②一定是正数③无理数一定是无限小数④16.8万精确到十分位⑤(﹣4)2的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】D【考点】有理数大小比较,算术平方根,近似数及有效数字,无理数的认识【解析】【解答】解:①∵|-|=,|-|=∴>∴-<-,故①错误;②当m=0时,则=0,因此≥0(m≥0),故②错误;③无理数一定是无限小数,故③正确;④16.8万精确到千位,故④错误;⑤(﹣4)2的算术平方根是4,故⑤正确;正确的序号为:③⑤故答案为:D【分析】利用两个负数,绝对值大的反而小,可对①作出判断;根据算术平方根的性质及求法,可对②⑤作出判断;根据无理数的定义,可对③作出判断;利用近似数的知识可对④作出判断;即可得出答案。
3、(2分)若关于x的方程ax=3x﹣1的解是负数,则a的取值范围是()A. a<1B. a>3C. a>3或a<1D. a<2【答案】B【考点】解一元一次方程,解一元一次不等式【解析】【解答】解:方程ax=3x﹣1,解得:x=﹣,由方程解为负数,得到﹣<0,解得:a>3,则a的取值范围是a>3.故答案为:B.【分析】根据题意用含有a的式子表示x,再解不等式求出a的取值范围4、(2分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A. 5B. 4C. 3D. 2【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:设球体、圆柱体与正方体的质量分别为x、y、z,根据已知条件,得:,(1 )×2﹣(2)×5,得:2x=5z,即2个球体相等质量的正方体的个数为5.故答案为:A.【分析】根据图中物体的质量和天平的平衡情况,可知两个天平是平衡的,据此设未知数,建立方程组,利用加减消元法,消去y,即可得出答案。
北京市海淀区2019-2020学年七年级数学下学期期中试卷【含答案】
北京市海淀区2019-2020学年七年级数学下学期期中试卷一、选择题(共10小题,每小题3分,满分30分)1.若x是9的算术平方根,则x是( )A.3B.﹣3C.9D.812.在﹣2,,,3.14,,,这6个数中,无理数共有( )A.4个B.3个C.2个D.1个3.不等式x﹣1<0的解集在数轴上表示正确的是( )A.B.C.D.4.下列调查方式,你认为最合适的是( )A.旅客上飞机前的安检,采用抽样调查方式B.了解北京市每天的流动人口数,采用抽样调查方式C.了解北京市居民“一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若m>n>0,则下列结论正确的是( )A.﹣2m>﹣2n B.m_2<n﹣2C.>D.m<n6.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于( )A.3B.1C.﹣1D.﹣37.在下列各式中正确的是( )A.=﹣2B.=3C.=8D.=28.若方程组的解中x与y的值相等,则k为( )A.4B.3C.2D.19.在一次科技知识竞赛中,共有20道选择题,每道题的四个选项中,有且只有一个答案正确,选对得10分,不选或错选倒扣5分,如果得分不低于90分才能得奖,那么要得奖至少应选对的题数是( )A.13B.14C.15D.1610.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额二、填空题(每小题2分,共16分)11.直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是 .12.一瓶饮料净重360g,瓶上标有“蛋白质含量≥0.5%”,设该瓶饮料中蛋白质的含量为xg,则x g.13.为了了解某校七年级420名学生的视力情况,从中抽查一个班60人的视力,在这个问题中总体是 ,样本是 .14.若有一个数m,它的平方根是a+1和2a﹣7,则m为 .15.已知关于x的不等式2x﹣k>3x只有两个正整数解,则k的取值范围为 .16.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为 .17.已知关于x的不等式组的解集是x>4,则m的取值范围是 .18.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用﹣1表示的小数部分.若2+=x+y,其中x是整数,且0<y<1,写出x﹣y的相反数 .三、解答题(共31分)19.根据如表回答下列问题x23.123.223.323.423.523.623.723.823.9x2533.61538.24542.89547.56552.25556.96561.69566.44571.21(1)566.44的平方根是 ;(2)﹣≈ ;(保留一位小数)(3)满足23.6<<23.7的整数n有 个.20.(1)计算:++|1﹣|;(2)解方程组;(3)解不等式组,并写出它的所有整数解..21.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次为第一小组到第六小组,每小组含最小值,不含最大值)和扇形统计图.根据图中提供的信息完成下列问题.(1)本次抽样调查的样本容量为 .(2)请根据题意将频数分布直方图补充完整.(3)第五小组对应圆心角的度数为 .(4)若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校“一分钟跳绳”成绩优秀的人数?22.已知关于x,y的方程组的解满足x<y,求p的取值范围?23.有一张面积为196平方厘米的正方形贺卡,另有一个长方形信封,长宽比为5:3,面积为150平方厘米,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.24.有A、B两个商场以同样价格出售同样商品,且各自推出了不同的优惠方案:在A商场累计购物超过400元后,超出部分按80%收费;在B商场累计购物超过200元后,超出的部分按90%收费.顾客选择到哪家购物花费少?25.对有序数对(m,n)定义“f运算”:f(m,n)=(am+bn,am﹣bn),其中a,b为常数.f运算的结果也是一个有序数对,比如当a=l,b=1时,f(﹣2,3)=(1,﹣5)(1)当a=2,b=﹣1时,f(1,2)= .(2)f(﹣3,﹣1)=(3,1),则a= ,b= ;(3)有序数对(m,n),满足方程n=2m,f(m,n)=(m,n),求a,b的值.26.如果把一个非负实数t“四舍五入”到个位的值记为[t].那么当n为非负整数时,若n﹣≤t<n+,则[t]=n.如:[6.4]]=6,[6.5]=7.根据以上材料,解决下列问题:(1)填空:①若[t]=4,则t满足的条件: ;②若[4t+1]=3,则t应满足的条件: ;(2)求满足[t]=t﹣2的所有非负实数t的值(要求书写解答过程).2019-2020学年北京市海淀区八一学校七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.若x是9的算术平方根,则x是( )A.3B.﹣3C.9D.81【分析】根据平方运算,可得一个数的算术平方根.【解答】解:∵32=9,∴=3,故选:A.2.在﹣2,,,3.14,,,这6个数中,无理数共有( )A.4个B.3个C.2个D.1个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣2是整数,属于有理数;,是整数,属于有理数;是无理数;3.14是有限小数,属于有理数;是无理数;是无理数;无理数有,,共3个.故选:B.3.不等式x﹣1<0的解集在数轴上表示正确的是( )A.B.C.D.【分析】原不等式移项可得x<1,据此可得答案.【解答】解:x﹣1<0,x<1,故选:D.4.下列调查方式,你认为最合适的是( )A.旅客上飞机前的安检,采用抽样调查方式B.了解北京市每天的流动人口数,采用抽样调查方式C.了解北京市居民“一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、旅客上飞机前的安检,采用全面调查方式,本选项说法不合适;B、了解北京市每天的流动人口数,采用抽样调查方式,本选项说法合适;C、了解北京市居民“一带一路”期间的出行方式,采用抽样调查方式,本选项说法不合适;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,本选项说法不合适;故选:B.5.若m>n>0,则下列结论正确的是( )A.﹣2m>﹣2n B.m_2<n﹣2C.>D.m<n【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵m>n,∴﹣2m<﹣2n,故本选项不符合题意;B、∵m>n,∴m﹣2>n﹣2,故本选项不符合题意;C、∵m>n>0∴>,故本选项符合题意;D、∵m>n,∴m n,故本选项不符合题意;故选:C.6.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于( )A.3B.1C.﹣1D.﹣3【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.7.在下列各式中正确的是( )A.=﹣2B.=3C.=8D.=2【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为a.【解答】解:A、=2,故A选项错误;B、=±3,故B选项错误;C、=4,故C选项错误;D、=2,故D选项正确.故选:D.8.若方程组的解中x与y的值相等,则k为( )A.4B.3C.2D.1【分析】根据题意得出x=y,然后求出x与y的值,再把x、y的值代入方程kx+(k﹣1)y=6即可得到答案.【解答】解:由题意得:x=y,∴4x+3x=14,∴x=2,y=2,把它代入方程kx+(k﹣1)y=6得2k+2(k﹣1)=6,解得k=2.故选:C.9.在一次科技知识竞赛中,共有20道选择题,每道题的四个选项中,有且只有一个答案正确,选对得10分,不选或错选倒扣5分,如果得分不低于90分才能得奖,那么要得奖至少应选对的题数是( )A.13B.14C.15D.16【分析】首先设做对x道,则做错或不做的有(20﹣x)道,做对的题目共得10x分,做错的须扣5×(20﹣x)分,根据最后得分不低于90分可得不等式10x﹣5×(20﹣x)≥90,解不等式可得答案.【解答】解:设做对x道,则做错或不做的有(20﹣x)道,根据题意得:10x﹣5×(20﹣x)≥90,解得x≥12,∵x为整数,∴至少应选对13道题.故选:A.10.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额【分析】根据销售总额乘以三星所占的百分比,可得三星的销售额,根据有理数的大小比较,可得答案.【解答】解:A、4月份三星手机销售额为65×17%=11.05万元,故A错误;B、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故B正确;C、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故C错误;D、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故D错误;故选:B.二.填空题(共8小题)11.直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是 π .【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【解答】解:因为圆的周长为π•d=π×1=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π.12.一瓶饮料净重360g,瓶上标有“蛋白质含量≥0.5%”,设该瓶饮料中蛋白质的含量为xg,则x ≥1.8 g.【分析】根据题意,可以得到关于x的不等式,从而可以解答本题.【解答】解:由题意可得,x≥360×0.5%=1.8,故答案为:≥1.8.13.为了了解某校七年级420名学生的视力情况,从中抽查一个班60人的视力,在这个问题中总体是 某校七年级420名学生的视力 ,样本是 被抽查的一个班60人的视力 .【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.考查的对象是:某校七年级420名学生的视力.【解答】解:为了了解某校七年级420名学生的视力情况,从中抽查一个班60人的视力,在这个问题中总体是某校七年级420名学生的视力,样本是被抽查的一个班60人的视力.故答案为:某校七年级420名学生的视力;被抽查的一个班60人的视力.14.若有一个数m,它的平方根是a+1和2a﹣7,则m为 9 .【分析】根据平方根的定义得到a+1+2a﹣7=0,然后解方程即可.【解答】解:由题意得a+1+2a﹣7=0,解得:a=2,∴这个数m为:32=9.故答案为:9.15.已知关于x的不等式2x﹣k>3x只有两个正整数解,则k的取值范围为 ﹣3≤k<﹣2 .【分析】根据一元一次不等式的解法即可求出答案.【解答】解:∵2x﹣k>3x,∴2x﹣3x>k,∴x<﹣k,由题意可知:2<﹣k≤3,∴﹣3≤k<﹣2,故答案为:﹣3≤k<﹣2.16.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为 .【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【解答】解:设每只雀有x两,每只燕有y两,由题意得,.故答案为.17.已知关于x的不等式组的解集是x>4,则m的取值范围是 m≤3 .【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.18.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用﹣1表示的小数部分.若2+=x+y,其中x是整数,且0<y<1,写出x﹣y的相反数 ﹣6 .【分析】根据题意的方法,估计的大小,易得2+的范围,进而可得x﹣y的值;再由相反数的求法,易得答案.【解答】解:∵<<,∴在2和3之间,∴2+在4和5之间,∵2+=x+y,其中x是整数,且0<y<1,∴x=4,y=2+﹣4=﹣2,∴x﹣y=6﹣,∴x﹣y的相反数是﹣6,故答案为:﹣6.三.解答题19.根据如表回答下列问题x23.123.223.323.423.523.623.723.823.9 x2533.61538.24542.89547.56552.25556.96561.69566.44571.21(1)566.44的平方根是 ;(2)﹣≈ ;(保留一位小数)(3)满足23.6<<23.7的整数n有 个.【考点】平方根;估算无理数的大小.【专题】计算题;运算能力;推理能力.【答案】见试题解答内容【分析】(1)直接利用平方根的定义结合表格中数据得出答案;(2)结合表格中数据再利用算术平方根的定义得出答案;(3)结合表格中数据即可得出答案.【解答】解:(1)由表中数据可得:566.44的平方根是:±23.8;故答案为:±23.8;(2)∵23.72=561.69,∴≈23.7,∴﹣≈﹣23.7,故答案为:﹣23.7;(3)∵23.62=556.96,23.72=561.69,∴满足23.6<<23.7的整数n有5个,故答案为:5.20.(1)计算:++|1﹣|;(2)解方程组;(3)解不等式组,并写出它的所有整数解..【考点】实数的运算;解二元一次方程组;解一元一次不等式组;一元一次不等式组的整数解.【专题】计算题;一元一次不等式(组)及应用;运算能力.【答案】见试题解答内容【分析】(1)先去绝对值符号、计算立方根和算术平方根,再计算加减可得;(2)利用加减消元法求解可得;(3)先求出每个不等式组的解集,再根据口诀“大小小大中间找”得出不等式组的解集,从而求出不等式组的整数解.【解答】解:(1)原式=3﹣4+﹣1,=﹣2+.(2),①×2﹣②得,﹣9n=﹣18,解得n=2,把n=2代入①得,m=7,∴方程组的解为;(3),解①得:x≤3;解②得:x>﹣1;则不等式组的解集为﹣1<x≤3,∴这个不等式组的整数解为0,1,2,3.21.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次为第一小组到第六小组,每小组含最小值,不含最大值)和扇形统计图.根据图中提供的信息完成下列问题.(1)本次抽样调查的样本容量为 .(2)请根据题意将频数分布直方图补充完整.(3)第五小组对应圆心角的度数为 .(4)若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校“一分钟跳绳”成绩优秀的人数?【考点】总体、个体、样本、样本容量;用样本估计总体;频数(率)分布直方图;扇形统计图.【专题】统计的应用;运算能力.【答案】见试题解答内容【分析】(1)根据第二组的人数和所占的百分比即可得出答案;(2)用总人数减去其它组的人数,求出第四组的人数,从而补全统计图;(3)用360°乘以第五小组所占的百分比,即可得出答案;(4)用样本估计总体的思想即可解决问题.【解答】解:(1)本次抽样调查的样本容量为:10÷20%=50;故答案为:50;(2)第四组的人数有:50﹣4﹣10﹣16﹣6﹣4=10(人),补图如下:(3)第五小组对应圆心角的度数为:360°×=43.2°;故答案为:43.2°;(4)根据题意得:1200×=480(人),答:该校“一分钟跳绳”成绩优秀的人数有480人.22.已知关于x,y的方程组的解满足x<y,求p的取值范围?【考点】二元一次方程组的解;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【答案】见试题解答内容【分析】解不等式组求出,再根据x<y得出关于p的不等式,解之可得答案.【解答】解:解方程组,得:,∵x<y,∴p+5<﹣p﹣7,解得p<﹣6.23.有一张面积为196平方厘米的正方形贺卡,另有一个长方形信封,长宽比为5:3,面积为150平方厘米,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.【考点】一元二次方程的应用【专题】一元二次方程及应用;应用意识.【答案】不能.【分析】设长方形信封得长为5x厘米,则宽为3x厘米,根据长方形信封的面积为150平方厘米,即可得出关于x的一元二次方程,解之即可得出x的值,进而可得出长方形信封的宽,由正方形贺卡的面积可求出贺卡的边长,将长方形信封的宽与正方形贺卡的边长比较后即可得出结论.【解答】解:设长方形信封得长为5x厘米,则宽为3x厘米,依题意得:5x•3x=150,解得:x1=,x2=﹣(不合题意,舍去),∴3x=3.正方形贺卡的边长为=14(厘米).∵3<3=12<14,∴不能将这张贺卡不折叠的放入此信封.24.有A、B两个商场以同样价格出售同样商品,且各自推出了不同的优惠方案:在A商场累计购物超过400元后,超出部分按80%收费;在B商场累计购物超过200元后,超出的部分按90%收费.顾客选择到哪家购物花费少?【考点】一元一次方程的应用;一元一次不等式的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.【答案】见试题解答内容【分析】设顾客购买物品的原价为x元,分x≤200、200<x≤400及x>400三种情况考虑,显然,当x≤200时,在两商场购物花费一样多;当200<x≤400时,在B商场购物花费少;当x>400时,分到B商场购物花费少、到两商场购物花费相同及到A商场购物花费少三种情况,找出关于x的一元一次不等式(或一元一次方程),解之即可得出结论.【解答】解:设顾客购买物品的原价为x元.当x≤200时,在两商场购物花费一样多;当200<x≤400时,在B商场购物花费少;当x>400时,若200+90%(x﹣200)<400+80%(x﹣400),解得:x<600;若200+90%(x﹣200)=400+80%(x﹣400),解得:x=600;若200+90%(x﹣200)>400+80%(x﹣400),解得:x>600.答:当x≤200或x=600时,到两商场购物花费相同;当400<x<600时,到B商场购物花费少;当x>600时,到A商场购物花费少.25.对有序数对(m,n)定义“f运算”:f(m,n)=(am+bn,am﹣bn),其中a,b为常数.f运算的结果也是一个有序数对,比如当a=l,b=1时,f(﹣2,3)=(1,﹣5)(1)当a=2,b=﹣1时,f(1,2)= .(2)f(﹣3,﹣1)=(3,1),则a= ,b= ;(3)有序数对(m,n),满足方程n=2m,f(m,n)=(m,n),求a,b的值.【考点】有理数的混合运算;一元一次方程的解;点的坐标.【专题】新定义;方程思想;创新意识.【答案】见试题解答内容【分析】(1)根据“f运算”的定义计算即可;(2)根据“f运算”的定义列出方程组即可解决问题;(3)根据“f运算”的定义列出方程组即可解决问题.【解答】解:(1)2×1﹣1×2=0,2×1+1×2=4,f(1,2)=(0,4);(2)由题意得,解得:;(3)由题意得,解得:.故答案为:(0,4);﹣,﹣1.26.如果把一个非负实数t“四舍五入”到个位的值记为[t].那么当n为非负整数时,若n﹣≤t<n+,则[t]=n.如:[6.4]]=6,[6.5]=7.根据以上材料,解决下列问题:(1)填空:①若[t]=4,则t满足的条件: ;②若[4t+1]=3,则t应满足的条件: ;(2)求满足[t]=t﹣2的所有非负实数t的值(要求书写解答过程).【考点】取整函数.【专题】运算能力;推理能力.【答案】(1)①;②;(2)或3或.【分析】(1)①因为[t]=4,根据,求得t取值范围即可;②由①得出4t+1的取值范围,进一步解不等式组得出答案即可;(2)设,m为整数,用m表示出t,进一步得出不等式组,解出答案即可.【解答】解:(1)①∵[t]=4,∴,∴,故答案为.②∵[4t+1]=3,∴,∴,∴,∴,故答案为.(2)设为整数,则,∴,∴,∴,∴m=2 或m=3或m=4,当m=2时,,当m=3时,,当m=4时,.所以t的值为或3或.。
2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份) 解析版
2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)一.选择题(本题共30分,每小题3分)1.(3分)9的算术平方根是()A.﹣3B.3C.D.±32.(3分)已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2b 3.(3分)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<04.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣35.(3分)如图所示,下列说法中,不正确的是()A.∠1和∠4是内错角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠2是同旁内角6.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.7.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.8.(3分)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°9.(3分)如图是北京世界园艺博览会园内部分场馆的分布示总图.在图中,分别以正东、北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1),那么下列各场阁的坐标表示正确的是()A.中国馆的坐标为(﹣1,﹣2)B.国际馆的坐标为(1,﹣3)C.生活体验馆的坐标为(4,7)D.植物馆的坐标为(﹣7,4)10.(3分)三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③二.填空题(本题共24分,每小题3分)11.(3分)点M(﹣2,3)到x轴和y轴的距离之和是.12.(3分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为s.13.(3分)若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是.14.(3分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD =.15.(3分)如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是,理由是16.(3分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是(填写序号).17.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD =度.18.(3分)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是;(2)若m2x+(m+b)2x=4,则x=.三.解答题(本题共46分,第19-21每小题5分,第22-25每小题5分,第26题7分)19.(5分)计算:.20.(5分)解方程组.21.(5分)解不等式组并写出这个不等式组的所有整数解.22.(6分)已知x+2是27的立方根,3x+y﹣1的算术平方根是4,求7x+3y平方根.23.(6分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.24.(6分)在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标;(2)直接写出以A,B,O为顶点的三角形的面积;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程.25.(6分)某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 6983 77 82 85 92 95 58 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数40≤x<50150≤x<60260≤x<70270≤x<80880≤x<9090≤x<1005(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是,理由是;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为人.26.(7分)国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?27.(4分)若关于x,y的二元一次方程组的解满足2x+y≤3,则a的取值范围是.28.(4分)已知关于x的一元一次不等式mx+1>5﹣2x的解集是x<,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是.29.(4分)按下面程序计算,即根据输入的x判断5x+1是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的5x+1的值作为新的x的值,继续运算,循环往复,直至输出结果为止.若开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是.30.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是.31.(4分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,则a ﹣b+c﹣d的值为;(4)已知不等式组M:有解,且N:1<x≤3是不等式组M的“子集”,请写出m,n满足的条件:.2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)参考答案与试题解析一.选择题(本题共30分,每小题3分)1.(3分)9的算术平方根是()A.﹣3B.3C.D.±3【分析】根据算术平方根的定义解答.【解答】解:∵32=9,∴9的算术平方根是3.故选:B.2.(3分)已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2b 【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加4,不等号的方向不变,故A错误;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘,不等号的方向不变,故C正确;D、两边都乘﹣2,不等号的方向改变,故D错误;故选:C.3.(3分)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<0【分析】根据解一元一次不等式基本步骤移项、合并同类项1可得.【解答】解:由题意知﹣2+m<0,则m<2,故选:A.4.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣3【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将是代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.5.(3分)如图所示,下列说法中,不正确的是()A.∠1和∠4是内错角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠2是同旁内角【分析】根据内错角,对顶角,同位角以及同旁内角的概念进行判断.【解答】解:A、∠1和∠4是内错角,说法正确,故本选项错误;B、∠1和∠3是对顶角,说法正确,故本选项错误;C、∠3和∠4是同位角,说法正确,故本选项错误;D、∠1和∠2是邻补角,说法错误,故本选项正确.故选:D.6.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.【分析】垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.7.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.【分析】根据估算无理数大小的方法进行估算,再确定数字在数轴上的位置即可求解.【解答】解:A.1<<2,不符合题意;B.1<<2,不符合题意;C.2<<3,符合题意;D.3<<4,不符合题意.故选:C.8.(3分)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°【分析】根据对顶角相等可得∠AOD=∠BOC,AO不是∠COE的角平分线,因此∠AOC 和∠AOE不一定相等,根据∠EOD=90°,利用平角定义可得∠AOE+∠BOD=90°,根据邻补角互补可得∠AOD+∠BOD=180°【解答】解:A、∠AOD=∠BOC,说法正确;B、∠AOC=∠AOE,说法错误;C、∠AOE+∠BOD=90°,说法正确;D、∠AOD+∠BOD=180°,说法正确;故选:B.9.(3分)如图是北京世界园艺博览会园内部分场馆的分布示总图.在图中,分别以正东、北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1),那么下列各场阁的坐标表示正确的是()A.中国馆的坐标为(﹣1,﹣2)B.国际馆的坐标为(1,﹣3)C.生活体验馆的坐标为(4,7)D.植物馆的坐标为(﹣7,4)【分析】根据演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.【解答】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(﹣1,﹣2),故本选项正确;B、国际馆的坐标为(3,﹣1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(﹣7,﹣4),故本选项错误;10.(3分)三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③【分析】从图中根据①②③的信息依次统计,即可求解;【解答】解:从图可知以下信息:上午送时间最短的是甲,①正确;下午送件最多的是乙,②不正确;一天中甲送了65件,乙送了75件,③正确;故选:B.二.填空题(本题共24分,每小题3分)11.(3分)点M(﹣2,3)到x轴和y轴的距离之和是5.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.12.(3分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为10s.【分析】把h=490代入h=4.9t2即可求解.【解答】解:把h=490代入h=4.9t2中,t2=100,∵t>0,∴t=10.故答案是:10.13.(3分)若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是m>﹣2.【分析】求出方程的解,根据已知得关于m的不等式,求出即可.【解答】解:4x+m+1=x﹣1,移项得:4x﹣x=﹣1﹣1﹣m,∴x=,∵方程的解是负数,∴<0,∴m>﹣2,故答案为m>﹣2.14.(3分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD = 1.5.【分析】先根据DA=6,DB=3求出线段AB的长,再由C为线段AB的中点求出BC的长,根据CD=BC﹣DB即可得出结论.【解答】解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.15.(3分)如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是PC,理由是垂线段最短【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【解答】解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.16.(3分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是④(填写序号).【分析】根据图象信息一一判断即可.【解答】解:①从1月到4月,手机销售总额连续下降;错误,3月到4月是增长的.②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;错误,2月到3月是增长的.③音乐手机4月份的销售额比3月份有所下降;错误,是增加长的.④今年1~4月中,音乐手机销售额最低的是3月;正确.故答案为④17.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD =56度.【分析】由OE⊥AB,∠COE=34°,利用互余关系可求∠BOD.【解答】解:∵OE⊥AB,∠COE=34°,∴∠BOD=90°﹣∠COE=90°﹣34°=56°.故答案为:56.18.(3分)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是﹣4;(2)若m2x+(m+b)2x=4,则x=.【分析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解答】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.故答案为:(1)4;(2).三.解答题(本题共46分,第19-21每小题5分,第22-25每小题5分,第26题7分)19.(5分)计算:.【分析】直接利用立方根以及二次根式的性质化简得出答案.【解答】解:原式=5﹣4﹣3=﹣2.20.(5分)解方程组.【分析】应用代入法,求出二元一次方程组的解是多少即可.【解答】解:由(2),可得x=2﹣y(3),将(3)代入(1)得,可得2(2﹣y)=6﹣3y,解得y=2,将y=2代入(3),可得x=0,∴原方程组的解为:.21.(5分)解不等式组并写出这个不等式组的所有整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:,∵由①,得x≤2,由②,得x>﹣,∴原不等式组的解集为﹣<x≤2,∴原不等式组的所有整数解为0,1,2.22.(6分)已知x+2是27的立方根,3x+y﹣1的算术平方根是4,求7x+3y平方根.【分析】根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x、y的值,再计算3x+5y的值,根据平方根的定义,可得答案.【解答】解:由x+2是27的立方根,3x+y﹣1的算术平方根是4,得:,解得:,∴7x+3y=7+42=49,∵49的平方根为±7,∴7x+3y的平方根为±7.23.(6分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.【分析】依据对顶角的性质以及角平分线的定义,即可得到∠DOE的度数,再根据垂线的定义,即可得到∠EOF的度数.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠EOD=∠BOD=×76°=38°,∵OF⊥OD,∴∠DOF=90°,∴∠FOE+∠EOD=90°,∴∠FOE=90°﹣∠EOD=90°﹣38°=52°.24.(6分)在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标(1,0);(2)直接写出以A,B,O为顶点的三角形的面积 4.5;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程先向左平移3个单位长度,再向下平移1个单位长度.【分析】(1)直接利用已知点画出平面直角坐标系进而得出答案;(2)利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出平移规律.【解答】解:(1)如图所示:点C的坐标为:(1,0);故答案为:(1,0);(2)△AOB的面积为:3×4﹣×1×4﹣×1×2﹣×3×3=4.5;故答案为:4.5;(3)答案不唯一,如:先向左平移3个单位长度,再向下平移1个单位长度.故答案为:先向左平移3个单位长度,再向下平移1个单位长度.25.(6分)某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 6983 77 82 85 92 95 58 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数40≤x<50150≤x<60260≤x<70270≤x<80880≤x<9090≤x<1005(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是B,理由是在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为130人.【分析】(1)根据题意,画出直方图,频数分布表即可.(2)B较好.理由是:在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.(3)求出A项目优秀人数即可判断.【解答】解:(1)补全图、表如下.(2)B.理由是:在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.故答案为:B,在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.(3)300×=130.答:估计A项目和B项目成绩都是优秀的人数最多为130人.故答案为130.26.(7分)国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【解答】解:(1)由题意,得,解得;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆.(3)设购车总费用为w万元则w=100m+150(10﹣m)=﹣50m+1500,∵﹣50<0,6≤m≤8且m为整数,∴m=8时,w最小=1100,∴购车总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.27.(4分)若关于x,y的二元一次方程组的解满足2x+y≤3,则a的取值范围是a≤﹣1.【分析】先把两式相加求出2x+y的值,再代入2x+y≤3中得到关于a的不等式,求出a 的取值范围即可.【解答】解:,①+②得,2x+y=4+a,∵2x+y≤3,∴4+a≤3,解得:a≤﹣1,故答案为:a≤﹣1.28.(4分)已知关于x的一元一次不等式mx+1>5﹣2x的解集是x<,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是点A.【分析】求出不等式的解集,根据已知得出关于m的不等式,求出不等式的解集即可.【解答】解:mx+1>5﹣2x,(m+2)x>4,∵关于x的一元一次不等式mx+1>5﹣2x的解集是x<,∴m+2<0,∴m的取值范围是m<﹣2,∵数轴上的A,B,C,D四个点中,只有点A表示的数小于﹣2,∴实数m对应的点可能是点A.故答案为点A29.(4分)按下面程序计算,即根据输入的x判断5x+1是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的5x+1的值作为新的x的值,继续运算,循环往复,直至输出结果为止.若开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是131或26或5..【分析】利用运算程序,当第一次输入x,第一次输出的结果为5x+1,当第二次输入5x+1,第二次输出的结果为5(5x+1)+1=25x+6,当第三次输入25x+6,第三次输出的结果为5(25x+6)+1=125x+31,当第四次输入125x+31,第三次输出的结果为5(125x+31)+1=625x+156,…,然后把输出结果分别等于656,再解方程求出对应的正整数x的值即可.【解答】解:当第一次输入x,第一次输出的结果为5x+1,当第二次输入5x+1,第二次输出的结果为5(5x+1)+1=25x+6,当第三次输入25x+6,第三次输出的结果为5(25x+6)+1=125x+31,当第四次输入125x+31,第三次输出的结果为5(125x+31)+1=625x+156,若5x+1=656,解得x=131;、若25x+6=656,解得x=26;若125x+31=656,解得x=5;若625x+156=656,解得x=,所以当开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是131或26或5.30.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣4,﹣3.【分析】表示出不等式组的解集,由解集中恰好有2个整数解,确定出整数a的值即可.【解答】解:不等式组,由①得:ax<﹣4,当a<0时,x>﹣,当a>0时,x<﹣,由②得:x<4,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是﹣<x<4,即整数解为2,3,∴1≤﹣<2(a<0),解得:﹣4≤a<﹣2,则整数a的值为﹣4,﹣3,故答案为:﹣4,﹣3.31.(4分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组A是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是a ≥2;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,则a ﹣b+c﹣d的值为﹣4;(4)已知不等式组M:有解,且N:1<x≤3是不等式组M的“子集”,请写出m,n满足的条件:m≤2,n>9.【分析】(1)求出不等式组A与B的解集,利用题中的新定义判断即可(2)根据“子集”的定义确定出a的范围即可;(3)根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)根据“子集”的定义确定出所求即可.【解答】解:(1)A:的解集为3<x<6,B:的解集为x>1,M:的解集为x>2,则不等式组A是不等式组M的子集,故答案为A;(2)∵关于x的不等式组是不等式组的“子集”,∴a≥2,故答案为a≥2;(3)∵a,b,c,d为互不相等的整数,其中a<b,c<d,A:a≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,∴a=3,b=4,c=2,d=5,则a﹣b+c﹣d=3﹣4+2﹣5=﹣4,故答案为﹣4;(4)不等式组M:整理得:,由不等式组有解得到<,即≤x<,∵N:1<x≤3是不等式组的“子集”,∴≤1,>3,即m≤2,n>9,故答案为m≤2,n>9.。
北师大版2018-2019学年七年级数学下册期中测试题及答案答案
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个4.二元一次方程组的是()A.B.C.D.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣118.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.10.方程组的解是,则方程组的解为()A.B.C.D.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第象限.12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为.14.已知+|3x+2y﹣15|=0,则的算术平方根为.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.三、解答题(共66分19.解二元一次方程组:.20.21.25(x﹣1)2﹣9=0.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)26.(8分)河大附中初一年级有350名同学去春游,已知2辆A 型车和1辆B 型车可以载学生100人;1辆A 型车和2辆B 型车可以载学生110人. (1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 需要100元,一辆B 需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD . (1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)【分析】根据x轴上点的纵坐标为0列方程求出a,再求解即可.【解答】解:∵P点坐标为(2﹣a,3a+6),且点P在x轴上,∴3a+6=0,解得a=﹣2,2﹣a=2﹣(﹣2)=4,故点P的坐标为(4,0).故选:D.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有π,﹣,0.1010010001…,共3个,故选:B.【点评】本题考查了算术平方根、立方根、无理数等知识点,能熟记无理数的定义是解此题的关键.4.二元一次方程组的是()A.B.C.D.【分析】二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.依此即可求解.【解答】解:A、有3个未知数,不是二元一次方程组,故选项错误;B、是二次方程组,故选项错误;C、是二次方程组,故选项错误;D、是二元一次方程组,故选项正确.故选:D.【点评】考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x【分析】直接利用x的取值范围,进而比较各数大小.【解答】解:∵﹣1<x<0,∴>﹣x2>x>2x,∴在x、2x、、﹣x2中最小的数是:2x.故选:B.【点评】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11【分析】由x与y互为相反数,得到y=﹣x,代入方程组计算即可求出m的值.【解答】解:由题意得:y=﹣x,代入方程组得:,消去x得:=,即3m+9=4m﹣2,解得:m=11,故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个【分析】根据非负整数的定义分别代入求出答案.【解答】解:当x=0时,y=10;当x=1时,y=8.5(不合题意);当x=2时,y=7;当x=3时,y=5.5(不合题意);当x=4时,y=4;当x=5时,y=2.5(不合题意);当x=6时,y=1;当x=7时,y=﹣0.5(不合题意);故方程3x+2y=20的非负整数解的个数为4个.故选:D.【点评】此题主要考查了二元一次方程的解,正确把握非负整数的定义是解题关键.9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.【分析】根据题意和表格可以列出相应的方程组,从而可以的打哪个选项是正确的.【解答】解:由题意可得,,化简,得,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.10.方程组的解是,则方程组的解为()A.B.C.D.【分析】将方程组变形为,根据已知方程组的解得出,解之可得.【解答】解:由方程组,得:,由题意可得,解得:,故选:D.【点评】本题主要考察二元一次方程组的解,解题的关键是掌握整体思想的运用.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第二、四象限.【分析】根据有理数的乘法,可得横坐标与纵坐标异号,根据点的坐标特征,可得答案.【解答】解:由题意,得横坐标与纵坐标异号,点N在第二、四象限,故答案为:二、四.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=3,b=4.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为(4,2)或(﹣2,2).【分析】AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥x轴,点A坐标为(1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x﹣1|=3,解得:x=4或﹣2,∴点B的坐标为(4,2)或(﹣2,2).故本题答案为:(4,2)或(﹣2,2).【点评】本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.14.已知+|3x+2y﹣15|=0,则的算术平方根为.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是2﹣.【分析】设A点表示x,再根据数轴上两点间距离的定义即可得出结论.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.【点评】本题考查的是数轴,熟知数轴上两点间距离公式是解答此题的关键.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为15°或115°.【分析】如果两个角的两边互相平行,那么这两个角相等或互补,由∠A比∠B的3倍小20°和∠A与∠B相等或互补,可列方程组求解.【解答】解:根据题意,得或解方程组得∠A=∠B=15°或∠A=115°,∠B=65°.故答案为:15°或115°.【点评】本题主要考查了平行线的性质,此类问题结合方程的思想解决更简单.注意结论:如果两个角的两边互相平行,那么这两个角相等或互补.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=(﹣1,2);(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=2,b=﹣2.【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a、b的方程,通过解方程求得它们的值即可.【解答】解:(1)依题意得:f(﹣2,4)=(×(﹣2)+0,×4﹣0)=(﹣1,2).故答案是:(﹣1,2);(2)依题意得:f(4,﹣4)=(×4+a,×(﹣4)+b)=(4,﹣4).所以×4+a=4,×(﹣4)﹣b=﹣4所以a=2,b=2.故答案是:2;2.【点评】考查了坐标与图形性质.关键是掌握对有序数对(m,n)定义“f运算”法则.三、解答题(共66分19.解二元一次方程组:.【分析】直接利用加减消元法解方程得出答案.【解答】解:由①×6得:3x﹣2y=8,③由②+③得:x=3,将x=3代入到②得:y=,故原方程组的解为:.【点评】此题主要考查了二元一次方程组的解法,正确掌握解方程的是解题关键.20.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程组化为∴3x+4y=4x+3y即x=y∴3x+4y=3x+4x=7x=84解得:x=12∴y=12∴方程组的解为【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.21.25(x﹣1)2﹣9=0.【分析】25(x﹣1)2﹣9=0中每个数同时除以25,得到(x﹣1)2﹣=0,利用平方差公式求出x的值.【解答】解:∵25(x﹣1)2﹣9=0∴(x﹣1)2﹣=0(x﹣1﹣)(x﹣1+)=0解得x1=x2=【点评】本题主要考查了利用平方差公式解一元二次方程,熟练掌握平方差公式是解题的关键.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.【分析】(1)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(2)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(2)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB∵AE∥CF,AD∥BC∴∠FDA=∠A=∠CBE,∠ADB=∠CBD∴∠EBC=∠CBD.∴BC平分∠DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.【分析】(1)先根据点的坐标求出AB长和点C到AB的距离,根据三角形的面积公式求出即可;(2)设P点到直线AB的距离为h,根据三角形的面积公式求出h,即可得出P点的坐标.【解答】解:(1)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),∴AB∥x轴,AB=4﹣(﹣2)=6,C到AB的距离是3﹣(﹣3)=6,∴△ABC的面积为:=18;(2)设P点到直线AB的距离为h,∵△ABP的面积为6,AB=6,∴=6,解得:h=2,∵3+2=5,3﹣2=1,∴P点的坐标为(0,5)或(0,﹣1).【点评】本题考查了三角形的面积、坐标与图形性质等知识点,能求出AB的长和分别求出点C、P到直线AB的距离是解此题的关键.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.【分析】首先估算出的范围,然后可求得m、n的值,最后即可求得(m+n)2018的值.【解答】解:∵1<3<4,∴1<<2.∴m=2+﹣3=﹣1,n=2﹣﹣0=2﹣,∴(m+n)2018=12018=1.【点评】本题主要考查的是估算无理数的大小、求得m、n的值是解题的关键.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)【分析】设小长方形的长为x厘米,宽为y厘米,根据题意和图示,列出关于x和y的二元一次方程组,解出x和y的值,即可求出矩形的AD的长度,从而求出矩形ABCD的面积,根据阴影部分的面积=矩形ABCD的面积﹣六个小长方形的面积,即可求得答案.【解答】解:设小长方形的长为x厘米,宽为y厘米,根据题意得:,解得:,即小长方形的长为8厘米,宽为2厘米,矩形ABCD的宽AD=6+2×2=10(厘米),矩形ABCD的面积为:14×10=140(平方厘米),阴影部分的面积为:140﹣6×8×2=44(平方厘米),答:图中阴影部分的总面积为44平方厘米.【点评】本题考查二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.26.(8分)河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.【分析】(1)根据载客量,可得方程组,根据解方程组,可得答案;(2)根据题意列出方程,可得答案.【解答】解:(1)设A、B型车每辆可分别载学生x,y人,可得:,解得:,答:A、B型车每辆可分别载学生30人,40人;(2)设租用A型a辆,B型b辆,可得:30a+40b=350,因为a,b为正整数,所以方程的解为:,方案一:A型1辆,B型8辆,费用:100×1+120×8=1060元;方案二:A型5辆,B型5辆,费用:100×5+120×5=1100元;方案三:A型9辆,B型2辆,费用:100×9+120×2=1140元;所以租用1辆A型8辆B型车花费最少为1060元.【点评】本题考查了二元一次方程组的应用,解(1)的关键是解方程组;解(2)的关键是解方程.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得解得(6分)②当x >200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD .(1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点M 在x 轴和y 轴上两种情况,设出坐标,根据S △ACM =S 四边形ABDC 列出方程求解可得;(3)作PE ∥AB ,则PE ∥CD ,可得∠DCP =∠CPE 、∠BOP =∠OPE ,继而知∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,即可得答案.【解答】解:(1)由a =.得:a =﹣1,b =3.所以A (﹣1,0),B (3,0),C (0,2),D (4,2),∵AB =4,CO =2,∴S=AB•CO=4×2=8;四边形ABDC(2)①M在y轴上,设M坐标为(0,m),∴,∴CM=16,∴m=2+16=18或m=2﹣16=﹣14,∴M点的坐标为(0,18)或(0,﹣14);②M在x轴上,设点m的坐标为(m,0),∴,∴AM=8,∴m=﹣1+8=7或m=﹣1﹣8=﹣9,所以点M的坐标为(7,0)或(﹣9,0).综上所述M点的坐标为(0,18)或(0,﹣14)或(7,0)或(﹣9,0);(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO;当点P在线段BD的延长线上时,如图2,∠BOP﹣∠DCP=∠CPO,同理可得当点P在线段DB的延长线上时,如图3:∠DCP﹣∠BOP=∠CPO,【点评】本题主要考查非负数的性质、平行四边形的性质及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.。
2018-2019学年七年级第二学期期中考试数学试卷及答案解析
2018-2019学年七年级第二学期期中考试数学试卷班级:座号姓名:分数:一、选择题:(本题共10个小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的.)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是.B .C.D.2. 下列运算正确的是()A.B.C.D.3. 点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,-2) B.( 4,0) C.( 2,0) D.(0,-4)4.下列所示的四个图形中,∠1和∠2是同位角的是()5 .如图5能判定EB∥AC的条件是()A.∠A=∠EBD B.∠C=∠ABC C.∠A=∠ABE D.∠C=∠ABE6.如图6,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°7.图7,已知直线AB∥CD,BE平分∠ABC,∠CDE=140°,则∠C的度数为()A.150°B.130°C.120°D.100°8.将△ABC各顶点的横坐标分别加上3,纵坐标不变,得到的△DEF相应顶点的坐标,则△DEF可以看成△ABC()A.向左平移3个单位长度得到B.向右平移三个单位长度得到(图5)(图6)(图7)C .向上平移3个单位长度得到D .向下平移3个单位长度得到 2A (7,2)B (—1,2)C (3,6)D (7,2)或(—1,2)二、填空题:(本题共6个小题,每小题4分,共24分)11. 若电影院中的5排2号记为(5,2),则7排3号记为( , )12. 把命题“邻补角是互补的角”改写成“如果…那么…”的形式 .13. 求161-的相反数的平方根是14.已知032=++-b a ,则______)(2=-b a ; 15.已知点M (5,-6)到x 轴的距离是_______ . 16. 如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF= _________ °.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 将下列各数填入相应的集合内.﹣,,﹣,0,﹣,,﹣,,3.14①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}18.2+3﹣5﹣3. 19.4(X+5)2 =16四、解答题(二)(本大题3小题,每小题7分,共21分)。
2018-2019学年北京市海淀区七年级(下)期中数学试卷
2018-2019学年北京市海淀区七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的算术平方根是()A. 16B. ±2C. 2D. √22.在平面直角坐标系中,点P(-3,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A. B.C. D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A. 30∘B. 32∘C. 34∘D. 36∘5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A. 内错角相等,两直线平行B. 同位角相等,两直线平行C. 两直线平行,内错角相等D. 两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A. 4B. 5C. 6D. 77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A. (3.2,1.3)B. (−1.9,0.7)C. (0.7,−1.9)D. (3.8,−2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A. ①B. ①②C. ②③D. ①②③9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A. 1B. 6C. 9D. 1010.根据表中的信息判断,下列语句中正确的是x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256()A. √25.281=1.59B. 235的算术平方根比15.3小C. 只有3个正整数n满足15.5<√n<15.6D. 根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共8小题,共16.0分)11.将点A(-1,4)向上平移三个单位,得到点A′,则A′的坐标为______.12.如图,数轴上点A,B对应的数分别为-1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数______.13.如图,直线a,b相交,若∠1与∠2互余,则∠3=______.14.依据图中呈现的运算关系,可知a=______,b=______.15.平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是______.16.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是______.17.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中______号点的位置时,接收到的信号最强(填序号①,②,③或④).18.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域______时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有______种连线方案.三、计算题(本大题共1小题,共4.0分)19. 有一张面积为100cm 2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm 2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共8小题,共50.0分)20. 计算:(1)√(−4)2+(√13)2-√83; (2)√2(3−√2)−5√2.21. 求出下列等式中x 的值:(1)12x 2=36;(2)x 38−3=38.22.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(-3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:______;(2)若中国人民大学的坐标为(-3,-4),请在坐标系中标出中国人民大学的位置.23.如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.25.在平面直角坐标系xOy中,已知点A(a,a),B(a,a-3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1<y<√5,直接写出a的所有可能取值:______.26.如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.时,α=______;(1)当∠AEF=a2(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:______.27.对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:,1),B(2,1)若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(12互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为______;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.______(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(12,12),点D坐标为(32,12),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:______.答案和解析1.【答案】C【解析】解:∵2的平方为4,∴4的算术平方根为2.故选:C.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.【答案】B【解析】解:点P(-3,2)在第二象限,故选:B.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】D【解析】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识.4.【答案】D【解析】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°-∠CAB=36°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质的应用,能求出∠1+∠2=180°是解此题的关键.5.【答案】B【解析】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.根据平行线的判定定理即可得到结论.本题考查了作图-复杂作图,平行线的判定定理,熟练掌握平行线的定理是解题的关键.6.【答案】C【解析】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.根据平移的性质确定平移过程中扫过的图形的形状,从而确定面积;考查了平移的性质,能够确定平移形成的图形是确定面积的基础,难度不大.7.【答案】B【解析】解:由图可知,(-1.9,0.7)距离原点最近,故选:B.根据平面直角坐标系的定义建立平面直角坐标系,然后根据象限特点解答即可.本题考查了坐标确定位置,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的位置的方法.8.【答案】A【解析】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.根据平行线的判定、垂直和互余进行判断即可.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.【答案】D【解析】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.将各个选项的x的值代入程序框图得输出的y值,依次进行判断即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10.【答案】C【解析】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.根据表格中的信息可知x2和其对应的算术平方根的值,然后依次判断各选项即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.11.【答案】(-1,7)【解析】解:将点A(-1,4)向上平移三个单位,得到点A′,则A′的坐标为(-1,7),故答案为:(-1,7),直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.本题考查了坐标与图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12.【答案】√3(答案不唯一,无理数在-1与2之间即可)【解析】解:由C点可得此无理数应该在-1与2之间,故可以是,故答案为:(答案不唯一,无理数在-1与2之间即可),根据无理数的估计解答即可.此题考查实数与数轴,关键是根据无理数的估计解答.13.【答案】135°【解析】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°-45°=135°,故答案为:135°.依据∠1与∠2互余,∠1=∠2,即可得到∠1=∠2=45°,进而得出∠3的度数.本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.14.【答案】-2019 -2019【解析】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是-m,∴m3=2019,(-m)3=a,∴a=-2019;又∵n的平方根是2019和b,∴b=-2019.故答案为:-2019,-2019.利用立方根和平方根的定义及性质即可解决问题.本题考查了立方根和平方根的定义及性质,熟练掌握定义及性质是解题的关键.15.【答案】(-2,2)或(8,2)【解析】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3-5=-2,点B在点A的右边时,3+5=8,∴点B的坐标为(-2,2)或(8,2).故答案为:(-2,2)或(8,2).根据平行于x轴的直线上的点的纵坐标相等,再分点B在点A的左边与右边两种情况讨论求解.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.【答案】15°【解析】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB-∠EDF=45°-30°=15°,故答案为15°.利用平行线的性质即可解决问题.本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】①【解析】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.根据垂线段最短得出即可.本题考查了直角三角形的性质和垂线的性质,能知道垂线段最短是解此题的关键.18.【答案】② 6【解析】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.(1)由相交线的定义可以找到点Q所在的区域;(2)因为要求所有连线不能相交,所以可按图示6种方法连接.本题考查了直线、射线、线段的画法,掌握它们的定义是解题的关键.19.【答案】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=√10(负值舍去)所以长方形信封的宽为:3x=3√10,∵√100=10,∴正方形贺卡的边长为10cm.∵(3√10)2=90,而90<100,∴3√10<10,答:不能将这张贺卡不折叠的放入此信封中.【解析】设长方形信封的长为5xcm,宽为3xcm.根据长方形的面积列出关于x的方程,解之求得x的值,再由其宽和长与10的大小可得答案.本题主要考查一元二次方程的应用,解题的关键是根据长方形的面积得出关于x的方程.−220.【答案】解:(1)原式=4+13=73(2)原式=3√2−2−5√2=−2−2√2.【解析】(1)根据实数的混合计算解答即可;(2)根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.21.【答案】解:(1)x2=3∴x=±√3(2)x3-24=3x3=27∴x=3【解析】(1)根据等式的性质方程两同时除以12,再由平方根的定义问题可解.(2)方程可先去分母,得x3-24=3,再移项合并同类项,最后根据立方根定义可求解.本题考查用平方根,立方根定义法解方程,理解平方根,立方根定义是解题的关键.22.【答案】(3,1)【解析】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:(1)利用清华大学的坐标为(0,3),北京大学的坐标为(-3,2)画出直角坐标系;(2)根据点的坐标的意义描出中国人民大学所表示的坐标.本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.23.【答案】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.【解析】想办法证明∠BDF=∠A即可解决问题.本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=-4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=√2.【解析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.25.【答案】2,3,4,5【解析】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a-1),(a,a-2)或(a,a-3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.(1)根据坐标与图形的特点解答即可;(2)根据x轴的点的特点解答即可;(3)根据无理数的估计和坐标特点解答即可.本题考查了坐标与图形,关键是根据坐标与图形的特点和代数式求值解答.26.【答案】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=a,2∴α+α=180°,2∴α=120°;(2)如图1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°-160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF-∠NMP=90°-20°=70°.∴α=180°-∠PMF=180°-70°=110°;(3)如图2所示,∵FQ平分∠CFE,∴∠QFM=α,2∵AB∥CD,∴∠NEM=180°-α,∵MN∥FQ,∴∠NME=α,2∵∠ENM=180°-∠ANM=20°,∴20°+α+180°-α=180°,2∴α=40°.【解析】本题考查了平行线的性质,角平分线定义,熟练掌握平行线的性质定理是解题的关键.(1)根据平行线的性质即可得到结论;(2)如图1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD,根据平行线的性质即可得到结论;(3)如图2,根据角平分线的定义和平行线的性质即可得到结论.27.【答案】(1,1)是 13【解析】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(-1,3),B′(-1,),∵-1×(-1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.(1)设A(x1,y1),B(x2,y2),由题意得出x2=1,y2=,点B的坐标为(1,),由平移的性质得出A′(-1,3),B′(-1,),即可得出结论;(2)①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,得出N(,),此时点M(,)在线段EF上,满足题意;(3)由题意得出各边上点的横坐标和纵坐标的绝对值都≤1,得出正方形面积的最大值为1即可.本题是四边形综合题目,考查了正方形的性质、新定义“倒数点”、平面直角坐标系、平移的性质等知识;熟练掌握正方形的性质,正确理解新定义“倒数点”是解题的关键.。
2019-2020学年北京市海淀区七年级(下)期末数学试卷(含解析)
2019-2020学年北京市海淀区七年级(下)期末数学试卷1.放风筝是我国人民非常喜爱的一项户外娱乐活动,下列风笋剪紙作品中,不是轴对称图形的是( )A. B.C. D.2.代数式√x+1x−1有意义,则x的取值范围是( )A. x≥−1且x≠1B. x≠1C. x≥1且x≠−1D. x≥−13.如图,在△ABC中,AB=AC,∠A=42∘,DE垂直平分AC,则∠BCD的度数为( )A. 23∘B. 25∘C. 27∘D. 29∘4.若“存在x>1.使x+a=1成立“是真命题,则a的取值范围是( )A. a<0B. a≤0C. a>0D. a≥05.“1a<1”是“a>1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.在平面直角坐标系中,以A(0,2),B(−1,−1),C(3,0),D为顶点构造平行四边形,下列各点中,不能作为顶点D的坐标是( )A. (2,−3)B. (−4,1)C. (4,3)D. (−4,0)7.已知x+y=−5,xy=4,则x√yx +y√xy的值是( )A. 4B. −4C. 2D. −28.小殷设计了一个随机碰撞模拟器:在模拟器中有A、B、C三种型号的小球,它们随机运动,当两个小球相遇时会发生碰撞(不考虑多个小球同时相撞的情况).若相同型号的两个小球发生碰撞,会变成一个C型小球;若不同型号的两个小球发生碰撞,则会变成另外一种型号的小球.例如,一个A型小球和一个C型小球发生碰撞,会变成一个B型小球.初始,模拟器中有A型小球6个,B型小球5个,C型小球8个,若经过各种两两碰撞后,最后只剩一个小球.以下判断:①最后剩下的小球可能是A型小球;②最后剩下的小球一定是B型小球:③最后剩下的小球一定不是C型小球.其中,正确的判断是( )A. ①B. ②③C. ③D. ①③9.在如图所示的正方形网格中,△ABC的顶点均格点上,画出△ABC的一条中位线DE(非尺规作图,保留所有画图痕迹).10.为作∠AOB的平分线OM,小齐利用尺规作图,作法如下:①以O为圆心,任意长为半径作弧,分别交OA、OB于点P、Q;②分别以点P、Q为圆心,OA长为半径作弧,两弧交于点M.则射线OM为∠AOB的平分线.OM为∠AOB的平分线的原理是______ .11.如果点P(m,1−2m)在第四象限,那么m的取值范围是______ .12.在平面直角坐标系中,已知P(0,2),Q(−3,0).将线段PQ绕点P逆时针旋转90∘得到线段PM,点Q的对应点为M,则点M的坐标为______ .13.某直角三角形的周长为24,斜边上的中线长为5,则该三角形的面积等于______.14.如图,在矩形ABCD中,点E、F分别在边AB、BC上,AB,将矩形沿直线EF折叠,点B恰好落在且AE=13AD边上的点P处.重新展开,连接BP交EF于点Q,对于下列结论:①PE=2AE;②PF=2PE;③FQ=3EQ;④四边形PBFD是菱形.其中,正确的结论是______ .(写出所有正确结论的序号)15.如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD的过程:______.16.如图,在Rt△ABC中,∠C=90∘,BC=4,AB=8,点D是BC上一个动点,以AD、DB为邻边的所有平行四边形ADBE中,对角线DE的最小值是______ .17. 计算与化简: (1)√12−2√3+1+(3−π)0+|1−√3|(2)1x −1x +y ⋅(x +y 2x−x −y)18. 解下列关于x 的方程或不等式(组).(1)4x 2−1−x x+1=−1;(2){4(x +1)+3>x x−42≤x−53; (3)|2x +1|<1−x ;(4)a(x −2a)(x −3)<0.19. 国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴500元,若同样用6万元购买此款空调,补贴后可购买的台数比补贴前多20%.该款空调补贴前的售价为每台多少元?20.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆12万元,面包车每辆8万元,公司可投入的购车款不超过100万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为250元,每辆面包车的日租金为150元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于2000元,那么应选择以上哪种购买方案?21.如图,在▱ABCD中,∠ABC=60∘,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.22.已知,如图,点A(0,4),B(3,0),点C在坐标轴上,使得△ABC是等腰三角形,计算点C的坐标.23.定义:在平面直角坐标系xOy中,由某点分别向两坐标轴作垂线,称两垂足之间的线段长度为该点的轴垂距.比如点P(3,4)的轴垂距为5.并规定,坐标轴上的点在该轴上的垂足为自己,在另一轴上的垂足为原点.比如点Q(0,2)的轴垂距为2.(1)①点A(−3,0)的轴垂距为______ ,点B(4,−3)的轴垂距为______ .②若一个非坐标轴上的点C的轴垂距为4,请写出满足条件的点C的一个坐标______ .(写出一个即可)(2)设点M(−6,0),点N(0,2√3),点D是线段MN上的一个动点(含端点),求点D的轴垂距的取值范围.24.如图,已知在菱形ABCD中,∠ABC=120∘,点E是边BC上的动点,点C关于直线DE的对称点为F,F在直线BC的下方,连结AF,取AF的中点为M,连结DM.设∠BCF=α.(1)①补全图形;②求∠FAD的大小(用含α的式子表示);(2)探究AF、BF、CF之间的等量关系,并证明你的结论.答案和解析【答案】1. B2. A3. C4. A5. A6. D7. B8. D9. 解:如图,线段DE或DE′即为所求(答案不唯一).10. SSS11. m>1212. (2,−1)13. 2414. ①③15. 将△ABO沿x轴向下翻折,再沿x轴向左平移2个单位长度得到△OCD16. 4√317. 解:(1)√12−√3+1(3−π)0+|1−√3|=2√3−√3+1+1+√3−1=2√3+1;(2)1x−1x+y⋅(x+y2x−x−y)=1x−1x+y⋅x+y2x+1x+y⋅(x+y)=1x−12x+1=12x+1.18. 解:(1)去分母得:4−x(x−1)=1−x2,解得:x=−3,经检验x=−3是分式方程的解;,由①得:x >−74,由②得:x ≤2,则不等式组的解集为−74<x ≤2; (3)∵|2x +1|<1−x 等价于2x +1<1−x 或2x +1>x −1,解2x +1<1−x 得,x <0;解2x +1>x −1得,x >−2,∴不等式的解集为−2<x <0;(4)当a >0时,则有{x −2a >0x −3<0或{x −2a <0x −3>0, 当0<a <32时,解得2a <x <3,当a >32时,解得3<x <2a ;当a <0时,则有{x −2a >0x −3>0或{x −2a <0x −3<0, 解得x >3或x <2a. 19. 解:设该款空调补贴前的售价为每台x 元,由题意,得:60000x ×(1+20%)=60000x−500,解得:x =3000,经检验得:x =3000是原方程的根,答:该款空调补贴前的售价为每台3000元.20. 解:(1)设公司购买x 辆轿车,则购买(10−x)辆面包车,依题意,得:{x ≥312x +8(10−x)≤100, 解得:3≤x ≤5,又∵x 为正整数,∴x 可以取3,4,5,∴该公司共有3种购买方案,方案1:购买3辆轿车,7辆面包车;方案2:购买4辆轿车,6辆面包车;方案3:购买5辆轿车,5辆面包车.(2)依题意,得:250x +150(10−x)≥2000,解得:x ≥5,又∵3≤x ≤5,∴x=5,∴公司应该选择购买方案3:购买5辆轿车,5辆面包车.21. (1)证明:∵四边形ABCD是平行四边形,∴BC//AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=12BC,AF=12AD,∴CE=AF,CE//AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60∘,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90∘−∠ABC=30∘,∴AG=12AB=1,BG=√3AG=√3,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD=√BG2+DG2=√(√3)2+52=2√7.22. 解:如图所示:AB=√32+42=5,①AB=AC时,点C的坐标为(0,9),(0,−1),(−3,0);,0);②AC=BC时,点C的坐标为(0,0.875),(−76③AB=BC时,点C的坐标为(0,−4),(8,0),(−2,0).,0);(0,−4),(8,0),综上所述,点C的坐标为(0,9),(0,−1),(−3,0);(0,0.875),(−76(−2,0).23. 35(2√2,2√2)(答案不唯一)24. 解:(1)①如图1所示:②∵四边形ABCD是菱形,∠ABC=120∘,∴∠ADC=120∘,∠BAD=∠BCD=60∘,AD=CD=AB=BC,∵点C关于直线DE的对称点为F,∴EF=EC,DF=DC,∴∠EFC=∠ECF=α,∠DCF=∠DFC=∠BCD+∠BCF=60∘+α,∵AD=DF=DC,∴∠DAF=∠DFA,∵∠DAF+∠DFA+∠ADC+∠DCF+∠DCF=360∘,∴2∠DAF+120∘+120∘+2α=360∘,∴∠DAF=60∘−α;(2)AF=CF+√3BF,理由如下:如图2,在AF上截取AH=CF,连接BH,过点B作BN⊥AF于N,∵∠BAF=∠BAD−∠DAF=60∘−(60∘−α)=α,∴∠BAF=∠BCF,又∵AB=BC,AH=CF,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∴∠ABC=∠HBF=120∘,∴∠BHF=∠BFH=30∘,∵BN⊥AF,∴HN=NF,BF=2BN,NF=√3BN,∴NF=√3BF,2∴HF=√3BF,∴AF=AH+HF=CF+√3BF.【解析】1. 解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2. 解:依题意,得x+1≥0且x−1≠0,解得x≥−1且x≠1.故选:A.此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3. 解:∵AB=AC,∠A=42∘,∴∠ABC=∠ACB=69∘,∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=42∘,∴∠BCD=∠ACB−∠ACD=27∘.故选:C.首先根据等腰三角形的性质可求出∠ABC=∠ACB,利用线段垂直平分线的性质推出∠A=∠DCA,易求∠BCD的度数.本题考查的是等腰三角形的性质,线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.4. 解:若“存在x>1.使x+a=1成立“是真命题,则a的取值范围是a<0,故选:A.根据不等式的性质解答即可.本题考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.5. 解:a>1⇒1<1,a<1不能推出a>1,而1a<1是a>1的充分不必要条件,所以1a故选:A.根据推理和论证的条件判断即可.此题考查推理和论证,关键是根据推理和论证的条件解答.6. 解:若以AB为对角线,则D(−4,1),若以BC为对角线,则D(2,−3),若以AC为对角线,则D(4,3),因此不能作为顶点D的坐标是选项D,故选:D.根据平行四边形的性质结合平面直角坐标系可以解决问题.此题主要考查了平行四边形的性质,关键是掌握平行四边形两组对边分别相等.7. 解:∵x+y=−5<0,xy=4>0,∴x<0,y<0,∴原式=x√xyx +y√y=−x⋅√xyx−y⋅√xyy=−2√xy,∵xy=4,∴原式=−2√4=−2×2=−4.故选:B.先确定x<0,y<0,再利用二次根式的性质化简得到原式=−2√xy,然后把xy=4代入计算即可.本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.8. 解:假设6个A球中每两个A球进行碰撞,则可以得到3个C球,5个B球中让其中4个B球每两个进行碰撞,则可以得到2个C球,加上原来的C球,共13个C球,让这13个C球互相碰撞,重复进行直至剩下一个C球,再和剩下的B球碰撞,可以得到一个A球,由此可知①正确,②错误.事实上,无论怎么碰撞,A球数量与B球数量奇偶性总是不一样(一奇一偶).(AA)→C,A与B一奇一偶;(BB)→C,A与B一奇一偶;(CC)→C,A与B一奇一偶;(AB)→C,A与B一奇一偶;(AC)→B,A与B一奇一偶;(BC)→A,A与B一奇一偶.由此可知,A与B的数量不可能同时为0,所以最后剩下的小球一定不是C型小球,③正确.故选:D.①和②可以举一个特例进行判定.通过分析所有可能碰撞所导致的A、B数量的奇偶性来判断③的正确与否.本题是一个推理与论证的题目,主要考查对实际问题中数据变化的分析能力和综合推理能力,发现A、B数量的奇偶性始终不一样是解答本题的关键.9. 取AB的中点D,格点M,N,连接DM交AC于E,连接DN交BC于E′,线段DE 或线段DE′即为所求(答案不唯一).本题考查作图-复杂作图,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10. 解:如图,连接PM,PQ.∵OP=OQ,PM=QM,OM=OM,∴△POM≌△QOM(SSS),∴∠POM=∠QOM,即OM是∠AOB的角平分线.故答案为SSS.根据SSS判断三角形全等即可.本题考查作图-基本作图,全等三角形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.11. 解:∵P(m,1−2m)在第四象限,∴m>0,1−2m<0..解得m>12点在第四象限的条件是:横坐标是正数,纵坐标是负数.本题主要考查了平面直角坐标系中各象限内点的坐标的符号根据条件可以转化为不等式或不等式组的问题.12. 解:如图,由作图可知,M(2,−1).故答案为(2,−1).利用旋转变换的性质作出图形即可解决问题.本题坐标与图形变化-旋转,解题的关键是理解题意,灵活运用所学知识解决问题.13. 解:∵CD是直角三角形ABC斜边上的中线,∴AB=2CD=10,∵直角三角形ABC的周长是24,∴AC+BC=14,两边平方得:AC2+2AC⋅BC+BC2=196,由勾股定理得:AC2+BC2=AB2=100,∴2AC⋅BC=96,∴AC×BC=48,∴S△ABC=12AC×BC=12×48=24.故答案为24.根据直角三角形斜边上的中线求出AB,求出AC+BC,两边平方后代入AB求出AC×BC 的值,即可求出答案.本题主要考查对三角形的面积,勾股定理,直角三角形斜边上的中线,完全平方公式等知识点的理解和掌握,能根据性质求出AC×BC的值是解此题的关键.14. 解:∵AE=13AB,∴BE=2AE,由翻折的性质得,PE=BE,∴PE=2AE,故①正确;∴∠APE=30∘,∴∠AEP=90∘−30∘=60∘,∴∠BEF=12(180∘−∠AEP)=12(180∘−60∘)=60∘,∴∠EFB=90∘−60∘=30∘,∴EF=2BE,∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30∘,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③正确;如图,连接DF,由折叠的性质可得:BF=PF,∠BFE=∠PFE=30∘,∴∠BFP=60∘,∴△BFP是等边三角形,∵AD长度无法确定,∴无法判断四边形PBFD是菱形,故④错误,故答案为①③.求出BE=2AE,判断出①正确;根据翻折的性质可得PE=BE,再根据直角三角形30∘角所对的直角边等于斜边的一半求出∠APE=30∘,然后求出∠AEP=60∘,再根据翻折的性质求出∠BEF=60∘,根据直角三角形两锐角互余求出∠EFB=30∘,然后根据直角三角形30∘角所对的直角边等于斜边的一半可得EF=2BE=2PE,由直角三角形的性质,可得EF>PF,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③正确;由题意无法证明PB=PD,可判断④错误,即可求解.本题考查了翻折变换的性质,直角三角形30∘角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定等知识,熟记各性质并准确识图是解题的关键.15. 【分析】本题考查了坐标与图形变化-轴对称,坐标与图形变化-平移,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线.根据轴对称的性质,平移的性质即可得到由△ABO得到△OCD的过程.【解答】解:将△ABO沿x轴向下翻折,再沿x轴向左平移2个单位长度得到△OCD,故答案为:将△ABO沿x轴向下翻折,再沿x轴向左平移2个单位长度得到△OCD.16. 解:设AB、DE交于点O,如图:∵在Rt△ABC中,∠C=90∘,∴BC⊥AC.∵四边形ABCD是平行四边形,∴OD=OE,OA=OB.∴当OD取得最小值时,对角线DE最小,此时OD⊥BC,∴OD//AC.又∵点O是AB的中点,∴OD是△ABC的中位线,∴OD=12 AC.在Rt△ABC中,∠C=90∘,BC=4,AB=8,∴由勾股定理得:AC=√AB2−BC2=√82−42=4√3.∴OD=12×4√3=2√3.∴DE=2OD=4√3.故答案为:4√3.由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值;由勾股定理可求得AC的长;由三角形的中位线定理可求得OD的最小值,再乘以2即可得出DE的最小值.本题考查了平行四边形的性质、垂线段最短、三角形的中位线定理及勾股定理等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.17. (1)先进行二次根式的化简、零指数幂的运算,去绝对值,然后合并即可得到答案;(2)原式第二项利用乘法分配律计算,再根据异分母分式减法法则进行计算即可得到答案.本题考查了二次根式以及分式的混合运算,掌握运算法则是解答本题的关键.18. (1)去分母化成整式方程,然后解整式方程,把解得的整式方程的解代入最简公分母检验即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.(3)不等式等价于2x+1<1−x或2x+1>x−1,解得即可;(4)分类讨论,列出不等式组,解不等式组即可.本题考查了解分式方程,解不等式组,解绝对值方程以及含字母系数的不等式等,熟练掌握运算法则是解题的关键.19. 设该款空调补贴前的售价为每台x元,根据补贴后可购买的台数比补贴前前多20%,可建立方程,解出即可.本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.20. (1)设公司购买x辆轿车,则购买(10−x)辆面包车,根据“轿车至少要购买3辆,且公司可投入的购车款不超过100万元”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数,即可得出各购买方案;(2)根据这10辆车的日租金不低于2000元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合3≤x≤5,即可得出应该选择的购买方案.本题考查了一元一次不等式组的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式组;(2)根据各数量之间的关系,正确列出一元一次不等式.21. (1)先证四边形AECF是平行四边形,再证△ABE是等边三角形,得AE=BE=CE,即可得出结论;AB=1,BG= (2)作BG⊥AD于G,则∠ABG=30∘,由直角三角形的性质得AG=12√3AG=√3,求出DG=AG+AD=5,由勾股定理求出BD即可.本题考查平行四边形的性质、菱形的判定和性质、直角三角形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的判定和直角三角形的性质,属于中考常考题型.22. 分为三种情况:①AB=AC,②AC=BC,③AB=BC,即可得出答案.本题考查了坐标与图形性质,等腰三角形的判定,关键是用了分类讨论思想解答.23. 解:(1)①∵(−3−0)2+(0−0)2=32,∴点A(−3,0)的轴垂距为:3,∵(4−0)2+(0+3)2=52,∴点B(4,−3)的轴垂距为:5,故答案为:3,5;②∵(2√2)2+(2√2)2=42,∴非坐标轴上的点C的轴垂距为4,点C的一个坐标为:(2√2,2√2),故答案为:(2√2,2√2);(2)∵点M(−6,0),点N(0,2√3),∴MN2=(−6−0)2+(0−2√3)2=(4√3)2,∴MN=4√3,过点O作OH⊥MN于H,如图所示:则点H的轴垂距等于线段OH的长,此时线段MN上H点的轴垂距最小,∵点M(−6,0),点N(0,2√3),∴OM=6,ON=2√3,∴线段MN上点的轴垂距最大为6,∵S△MON=12OM⋅ON=12MN⋅OH,∴12×6×2√3=12×4√3×OH,∴OH=3,∴点D的轴垂距的取值范围为:3≤点D的轴垂距≤6.(1)①由轴垂距的定义即可得出答案;②由(2√2)2+(2√2)2=42,即可得出结论;(2)求出MN=4√3,过点O作OH⊥MN于H,则点H的轴垂距等于线段OH的长,此时线段MN上H点的轴垂距最小,求出线段MN上点的轴垂距最大为6,由三角形面积求出OH=3,即可得出结论.本题是三角形综合题目,考查了新定义“点的轴垂距”、坐标与图形性质、两点间的距离公式、三角形面积等知识;熟练掌握新定义“点的轴垂距”和三角形面积公式是解题的关键.24. (1)①依照题意画出图形;②由菱形的性质可得∠ADC=120∘,∠BCD=60∘,AD=CD=AB=BC,由轴对称的性质可得EF=EC,DF=DC,由等腰三角形的性质和四边形内角和定理可求解;(2)如图2,在AF上截取AH=CF,连接BH,过点B作BN⊥AF于N,由“SAS”可证△ABH≌△CBF,可得BH=BF,∠ABH=∠CBF,由等腰三角形的性质和直角三角形的性质可求HF=√3BF,可得结论.本题是四边形的综合题,考查了菱形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.。
北京市海淀区北大附中2022~2023学年第二学期初一期中数学试卷
2022—2023学年度第二学期期中练习初一年级数学练习题学校姓名准考证号一、选择题(本题共30 分,每小题 3 分)下列各题的四个备选答案中,只有一个正确.1.在平面直角坐标系中,点(2,-1)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限2.9的平方根是AB.C.3D.33.下列实数中的无理数是A.1.414 B.0 C. D.1 34. 已知24xy是二元一次方程2ax y的一个解,则a的值为A.2B.-2 C.1 D.-15.将含30°的直角三角板与直尺如图所示放置,若∠2=40°,则∠1A.30 B.40C.50 D.606.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)7.在下列命题中,为真命题的是A.两条直线被第三条直线所截,同位角相等B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相垂直8.已知332x ty t,则用含x的式子表示y为A.29y xB.29y xC.6y xD.9y x9.如图,用边长为3的两个小正方形拼成一个大正方形,则大正方形的边长最接近的整数是A .3B .4C .5D .610.如图,点A ,B 为定点,直线l ∥AB ,P 是 直线l 上一动点. 对于下列各值:①线段AB 的长②△PAB 的周长 ③△PAB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共 16 分,每小题 2 分)11.若关于x ,y 的二元一次方程组的解为,则方程②可以是 .(写出一个即可)12.若2-30=a a b (),则 .13.如图,从人行横道线上的点P 处过马路,沿线路PB 行走距离最短,其依据的几何学原理是_____________.14.如果点P (1 ,3m )到x 轴的距离等于2,那么m 的值为 .15.已知锐角 ,那么 的补角与 的余角的差是o.16.直线AB ∥x 轴,AB =5,若已知点A (1,-3),则点B 的坐标是 .17.可以用一个m 的值说明命题“如果m 能被2整除,那么它也能被4整除”是假命题,这个值可以是m = .18.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n ,),得到正方形A B C D 及其内部的点,其中点A B ,的对应点分别为A B ,,若正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F 与点F 重合,则点F 的坐标为________________.三、解答题(本题共 54分,第 19 题 6分,第 20题 5分,第 21题 6分,第 22-24题,每小题 5分,第 25题 7分,第 26题 8分,第 27题 7分) 19.120. 解方程组:321921x y x y21. 若一个正数的两个平方根分别为,27a ,求代数式222123a a a a 的值.22.如图,∠AOB ,点C 在边OB 上.(1)过点C 画直线CD ⊥OA ,垂足为D ;(2)过点C 画直线CM ∥OA ,过点D 画直线DN ∥OB ,直线CM ,DN 交于点E .(3)如果∠AOB =50°,那么∠CDE=_________°1a23.完成下面的证明:已知,如图,∠C=∠D , ∠1=∠4. 求证: AC ∥DF . 证明:∵∠1=∠4(已知),∠3=∠4 ( ① ), ∴∠1=∠3 ( ② ). ∴DB ∥CE ( ③ ). ∴∠C =∠DBA ( ④ ). 又∵∠D=∠C (已知), ∴∠D =∠DBA .∴AC ∥DF ( ⑤ ).24. 列方程解应用题:北大附中畅春园校区教学楼有4层,其中初一、初二的班级教室都在2-4层,共有35个班,1200名学生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年北京市海淀区七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的算术平方根是()A. 16B. ±2C. 2D. √22.在平面直角坐标系中,点P(-3,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A. B.C. D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A. 30∘B. 32∘C. 34∘D. 36∘5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A. 内错角相等,两直线平行B. 同位角相等,两直线平行C. 两直线平行,内错角相等D. 两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A. 4B. 5C. 6D. 77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A. (3.2,1.3)B. (−1.9,0.7)C. (0.7,−1.9)D. (3.8,−2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A. ①B. ①②C. ②③D. ①②③9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A. 1B. 6C. 9D. 1010.根据表中的信息判断,下列语句中正确的是x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256()A. √25.281=1.59B. 235的算术平方根比15.3小C. 只有3个正整数n满足15.5<√n<15.6D. 根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共8小题,共16.0分)11.将点A(-1,4)向上平移三个单位,得到点A′,则A′的坐标为______.12.如图,数轴上点A,B对应的数分别为-1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数______.13.如图,直线a,b相交,若∠1与∠2互余,则∠3=______.14.依据图中呈现的运算关系,可知a=______,b=______.15.平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是______.16.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是______.17.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中______号点的位置时,接收到的信号最强(填序号①,②,③或④).18.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域______时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有______种连线方案.三、计算题(本大题共1小题,共4.0分)19. 有一张面积为100cm 2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm 2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共8小题,共50.0分)20. 计算:(1)√(−4)2+(√13)2-√83; (2)√2(3−√2)−5√2.21. 求出下列等式中x 的值:(1)12x 2=36;(2)x 38−3=38.22.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(-3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:______;(2)若中国人民大学的坐标为(-3,-4),请在坐标系中标出中国人民大学的位置.23.如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.25.在平面直角坐标系xOy中,已知点A(a,a),B(a,a-3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1<y<√5,直接写出a的所有可能取值:______.26.如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.时,α=______;(1)当∠AEF=a2(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:______.27.对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:,1),B(2,1)若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(12互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为______;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.______(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(12,12),点D坐标为(32,12),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:______.答案和解析1.【答案】C【解析】解:∵2的平方为4,∴4的算术平方根为2.故选:C.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.【答案】B【解析】解:点P(-3,2)在第二象限,故选:B.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】D【解析】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识.4.【答案】D【解析】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°-∠CAB=36°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质的应用,能求出∠1+∠2=180°是解此题的关键.5.【答案】B【解析】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.根据平行线的判定定理即可得到结论.本题考查了作图-复杂作图,平行线的判定定理,熟练掌握平行线的定理是解题的关键.6.【答案】C【解析】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.根据平移的性质确定平移过程中扫过的图形的形状,从而确定面积;考查了平移的性质,能够确定平移形成的图形是确定面积的基础,难度不大.7.【答案】B【解析】解:由图可知,(-1.9,0.7)距离原点最近,故选:B.根据平面直角坐标系的定义建立平面直角坐标系,然后根据象限特点解答即可.本题考查了坐标确定位置,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的位置的方法.8.【答案】A【解析】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.根据平行线的判定、垂直和互余进行判断即可.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.【答案】D【解析】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.将各个选项的x的值代入程序框图得输出的y值,依次进行判断即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10.【答案】C【解析】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.根据表格中的信息可知x2和其对应的算术平方根的值,然后依次判断各选项即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.11.【答案】(-1,7)【解析】解:将点A(-1,4)向上平移三个单位,得到点A′,则A′的坐标为(-1,7),故答案为:(-1,7),直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.本题考查了坐标与图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12.【答案】√3(答案不唯一,无理数在-1与2之间即可)【解析】解:由C点可得此无理数应该在-1与2之间,故可以是,故答案为:(答案不唯一,无理数在-1与2之间即可),根据无理数的估计解答即可.此题考查实数与数轴,关键是根据无理数的估计解答.13.【答案】135°【解析】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°-45°=135°,故答案为:135°.依据∠1与∠2互余,∠1=∠2,即可得到∠1=∠2=45°,进而得出∠3的度数.本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.14.【答案】-2019 -2019【解析】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是-m,∴m3=2019,(-m)3=a,∴a=-2019;又∵n的平方根是2019和b,∴b=-2019.故答案为:-2019,-2019.利用立方根和平方根的定义及性质即可解决问题.本题考查了立方根和平方根的定义及性质,熟练掌握定义及性质是解题的关键.15.【答案】(-2,2)或(8,2)【解析】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3-5=-2,点B在点A的右边时,3+5=8,∴点B的坐标为(-2,2)或(8,2).故答案为:(-2,2)或(8,2).根据平行于x轴的直线上的点的纵坐标相等,再分点B在点A的左边与右边两种情况讨论求解.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.【答案】15°【解析】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB-∠EDF=45°-30°=15°,故答案为15°.利用平行线的性质即可解决问题.本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】①【解析】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.根据垂线段最短得出即可.本题考查了直角三角形的性质和垂线的性质,能知道垂线段最短是解此题的关键.18.【答案】② 6【解析】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.(1)由相交线的定义可以找到点Q所在的区域;(2)因为要求所有连线不能相交,所以可按图示6种方法连接.本题考查了直线、射线、线段的画法,掌握它们的定义是解题的关键.19.【答案】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=√10(负值舍去)所以长方形信封的宽为:3x=3√10,∵√100=10,∴正方形贺卡的边长为10cm.∵(3√10)2=90,而90<100,∴3√10<10,答:不能将这张贺卡不折叠的放入此信封中.【解析】设长方形信封的长为5xcm,宽为3xcm.根据长方形的面积列出关于x的方程,解之求得x的值,再由其宽和长与10的大小可得答案.本题主要考查一元二次方程的应用,解题的关键是根据长方形的面积得出关于x的方程.−220.【答案】解:(1)原式=4+13=73(2)原式=3√2−2−5√2=−2−2√2.【解析】(1)根据实数的混合计算解答即可;(2)根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.21.【答案】解:(1)x2=3∴x=±√3(2)x3-24=3x3=27∴x=3【解析】(1)根据等式的性质方程两同时除以12,再由平方根的定义问题可解.(2)方程可先去分母,得x3-24=3,再移项合并同类项,最后根据立方根定义可求解.本题考查用平方根,立方根定义法解方程,理解平方根,立方根定义是解题的关键.22.【答案】(3,1)【解析】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:(1)利用清华大学的坐标为(0,3),北京大学的坐标为(-3,2)画出直角坐标系;(2)根据点的坐标的意义描出中国人民大学所表示的坐标.本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.23.【答案】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.【解析】想办法证明∠BDF=∠A即可解决问题.本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=-4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=√2.【解析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.25.【答案】2,3,4,5【解析】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a-1),(a,a-2)或(a,a-3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.(1)根据坐标与图形的特点解答即可;(2)根据x轴的点的特点解答即可;(3)根据无理数的估计和坐标特点解答即可.本题考查了坐标与图形,关键是根据坐标与图形的特点和代数式求值解答.26.【答案】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=a,2∴α+α=180°,2∴α=120°;(2)如图1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°-160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF-∠NMP=90°-20°=70°.∴α=180°-∠PMF=180°-70°=110°;(3)如图2所示,∵FQ平分∠CFE,∴∠QFM=α,2∵AB∥CD,∴∠NEM=180°-α,∵MN∥FQ,∴∠NME=α,2∵∠ENM=180°-∠ANM=20°,∴20°+α+180°-α=180°,2∴α=40°.【解析】本题考查了平行线的性质,角平分线定义,熟练掌握平行线的性质定理是解题的关键.(1)根据平行线的性质即可得到结论;(2)如图1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD,根据平行线的性质即可得到结论;(3)如图2,根据角平分线的定义和平行线的性质即可得到结论.27.【答案】(1,1)是 13【解析】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(-1,3),B′(-1,),∵-1×(-1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.(1)设A(x1,y1),B(x2,y2),由题意得出x2=1,y2=,点B的坐标为(1,),由平移的性质得出A′(-1,3),B′(-1,),即可得出结论;(2)①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,得出N(,),此时点M(,)在线段EF上,满足题意;(3)由题意得出各边上点的横坐标和纵坐标的绝对值都≤1,得出正方形面积的最大值为1即可.本题是四边形综合题目,考查了正方形的性质、新定义“倒数点”、平面直角坐标系、平移的性质等知识;熟练掌握正方形的性质,正确理解新定义“倒数点”是解题的关键.。