现代控制理论综合设计报告—你懂得
现代控制理论课程设计心得【模版】
宁波理工学院现代控制理论课程设计报告题目打印机皮带驱动系统能控能观和稳定性分析项目成员史旭东童振梁沈晓楠专业班级自动化112指导教师何小其分院信息分院完成日期 2014-5-28目录1. 课程设计目的 (4)2.课程设计题目描述和要求 (4)3.课程设计报告内容 (4)3.1 原理图 (4)3.2 系统参数取值情况 (5)3.3 打印机皮带驱动系统的状态空间方程 (5)4. 系统分析 (8)4.1 能控性分析 (8)4.2 能观性分析 (8)4.3 稳定性分析 (9)5. 总结 (11)项目组成员具体分工打印机皮带驱动系统能控能观和稳定性分析课程设计的内容如下:1.课程设计目的综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。
加强大家对专业理论知识的理解和实际运用。
培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会应用标准、手册、查阅有关技术资料。
加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。
2.课程设计题目描述和要求(1)环节项目名称:能控能观判据及稳定性判据(2)环节目的:①利用MATLAB分析线性定常系统的可控性和客观性。
②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。
(3)环节形式:课后上机仿真(4)环节考核方式:根据提交的仿真结果及分析报告确定成绩。
(5)环节内容、方法:①给定系统状态空间方程,对系统进行可控性、可观性分析。
②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验证上述判断。
3.课程设计报告内容3.1 原理图在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。
它用于驱动打印头沿打印页面横向移动。
图1给出了一个装有直流电机的皮带驱动式打印机的例子。
其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。
图1 打印机皮带驱动系统3.2 系统参数取值情况表1打印装置的参数3.3 打印机皮带驱动系统的状态空间方程图2 打印机皮带驱动模型状态空间建模及系统参数选择。
现代控制理论实训报告
一、前言随着科技的飞速发展,自动化、智能化已成为现代工业生产的重要特征。
为了更好地掌握现代控制理论,提高自己的实践能力,我参加了现代控制理论实训课程。
本次实训以状态空间法为基础,研究多输入-多输出、时变、非线性一类控制系统的分析与设计问题。
通过本次实训,我对现代控制理论有了更深入的了解,以下是对本次实训的总结。
二、实训目的1. 巩固现代控制理论基础知识,提高对控制系统的分析、设计和调试能力。
2. 熟悉现代控制理论在工程中的应用,培养解决实际问题的能力。
3. 提高团队合作意识,锻炼动手能力和沟通能力。
三、实训内容1. 状态空间法的基本概念:状态空间法是现代控制理论的核心内容,通过建立状态方程和输出方程,描述系统的动态特性。
2. 状态空间法的基本方法:包括状态空间方程的建立、状态转移矩阵的求解、可控性和可观测性分析、状态反馈和观测器设计等。
3. 控制系统的仿真与实现:利用MATLAB等仿真软件,对所设计的控制系统进行仿真,验证其性能。
4. 实际控制系统的分析:分析实际控制系统中的控制对象、控制器和被控量,设计合适的控制策略。
四、实训过程1. 理论学习:首先,我对现代控制理论的相关知识进行了复习,包括状态空间法、线性系统、非线性系统等。
2. 实验准备:根据实训要求,我选择了合适的实验设备和软件,包括MATLAB、控制系统实验箱等。
3. 实验操作:在实验过程中,我按照以下步骤进行操作:(1)根据实验要求,建立控制系统的状态空间方程。
(2)求解状态转移矩阵,并进行可控性和可观测性分析。
(3)设计状态反馈和观测器,优化控制系统性能。
(4)利用MATLAB进行仿真,观察控制系统动态特性。
(5)根据仿真结果,调整控制器参数,提高控制系统性能。
4. 结果分析:通过对仿真结果的分析,我对所设计的控制系统进行了评估,并总结经验教训。
五、实训成果1. 掌握了现代控制理论的基本概念和方法。
2. 提高了控制系统分析与设计能力,能够独立完成实际控制系统的设计。
现代控制理论综合设计报告—你懂得
《现代控制理论综合设计报告》问题重述:图示为单倒立摆系统的原理图,其中摆的长度l=1m,质量m=0.1kg,通过铰链安装小车上,小车质量M=1kg,重力加速度g=9.8m/s2。
控制的目的是当小车在水平方向上运动时,将倒立摆保持在垂直位置上。
分别列写小车水平方向的力平衡方程和摆的转矩平衡方程,通过近似线性化处理建立系统的状态空间表达式;绘制带状态观测器状态反馈系统的模拟仿真图,要求系统期望的特征值为:-1,-2,-1+j,-1-j;状态观测器的特征值为:-2,-3,-2+j,-2-j;根据模拟仿真图,分别绘制系统综合前后的零输入响应曲线本文的仿真实验亮点如下:●对单倒立摆进行传统的传递函数、状态空间建模,全面分析了单倒立摆的物理性质。
●在物理模型建立时,强调了角速度θ不能近似为0。
●建立状态空间表达时,选择位移x和角度θ作为输出,是一个多输出系统。
但增加了状态观测器设计的复杂度。
●在摆运动过程中,初始扰动角θ可达60度左右;而且调节过程中,倒立摆θ在(-90,90)范围内变化,符合实际情况。
●在仿真波形图中,展示了状态观测器的跟踪过程,体现了其在反馈控制中起到的作用。
●在初始扰动60度下,分别在原始系统、状态反馈系统、带状态观测器反馈系统,进行了零输入响应、阶跃输入响应的仿真实验。
●解释了带状态观测器反馈时,阶跃输入,但系统前1秒处于稳态的现象的原因。
1单级倒立摆数学模型的建立倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,许多抽象的控制概念都可以通过倒立摆直观地表现出来。
本设计是以一阶倒立摆为被控对象来进行设计的。
传递函数法:对SISO 系统进行分析设计,在这个系统中θ作为输出,因为它比较直观,作用力u 作为输入。
状态空间法:状态空间法可以进行单输入多输出系统设计,因此在这个实验中,我们将尝试同时对摆杆角度和小车位置进行控制,并给小车加一个阶跃输入信号。
本文利用Matlab ,对系统的传递函数和状态空间进行分析,并用指令计算状态空间的各种矩阵,仿真系统的开环阶跃响应。
2024年现代控制理论心得
2024年现代控制理论心得2024年,现代控制理论取得了长足的发展,为各个领域的控制系统设计和应用提供了新的思路和方法。
在新的技术和理论的推动下,控制系统的性能和稳定性得到了极大的提升,为实现更高效、精确、自动化的控制提供了强大支持。
在这里,我将分享我对于2024年现代控制理论的心得体会。
首先,在2024年的现代控制理论中,我观察到了一些重要的趋势和发展。
一方面,随着深度学习和人工智能的快速发展,控制系统中的智能化技术日益成熟。
智能控制方法的应用使得控制系统能够更好地应对复杂、非线性、时变的系统环境,提高了系统的自适应性和鲁棒性。
另一方面,控制系统的优化设计成为了研究热点,通过对控制系统的状态、输入进行优化,能够使系统在满足一定性能指标的前提下获得最优的控制效果。
其次,现代控制理论的应用领域得到了进一步的扩展。
在工业自动化领域,现代控制理论的应用使得生产线的自动化程度迈上了一个新台阶。
利用先进的控制方法,生产线能够实现更精细的控制,提高生产效率和产品质量。
在航空航天、交通运输、能源等领域,现代控制理论的应用有效提高了系统的安全性和可靠性,同时也为系统性能的优化提供了新的手段。
此外,在现代控制理论的研究中,我也发现了一些值得关注的问题。
首先是理论与实际应用之间的差距。
尽管现代控制理论在理论方面已取得了很大的突破,但在实际应用中仍面临一些挑战。
控制系统的复杂性和实时性要求对控制算法和硬件设备提出了更高的要求。
因此,我们仍需要进一步将理论成果转化为实际应用,同时加强技术创新和实践经验的积累。
另一个问题是控制系统的安全性和鲁棒性。
随着网络和信息技术的发展,控制系统面临着越来越多的攻击和破坏风险。
为了确保控制系统的稳定和可靠运行,我们需要加强对控制系统的安全性研究,研发出更加鲁棒和可靠的控制算法和方法。
总体而言,2024年的现代控制理论在智能化、优化设计和应用拓展等方面取得了许多新的突破。
我对此深感振奋和期待。
现代控制理论实验报告
现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----MATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。
零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。
传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第iu 个输入量求传递函数;对单输入iu 为1;验证教材P438页的例9-6。
求P512的9-6题的状态空间描述。
>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。
现代控制理论实验报告(汇编)
现代控制理论实验报告二〇一六年五月实验一 线性定常系统模型一 实验目的1. 掌握线性定常系统的状态空间表达式。
学会在MATLAB 中建立状态空间模型的方法。
2. 掌握传递函数与状态空间表达式之间相互转换的方法。
学会用MATLAB 实现不同模型之间的相互转换。
3. 熟悉系统的连接。
学会用MATLAB 确定整个系统的状态空间表达式和传递函数。
4. 掌握状态空间表达式的相似变换。
掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。
学会用MATLAB 进行线性变换。
二 实验内容1. 已知系统的传递函数)3()1(4)(2++=s s s s G (1)建立系统的TF 或ZPK 模型。
(2)将给定传递函数用函数ss( )转换为状态空间表达式。
再将得到的状态空间表达式用函数tf( )转换为传递函数,并与原传递函数进行比较。
(3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。
再将得到的对角标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
(4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。
再将得到的能控标准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
2. 已知系统的传递函数u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=106510 []x y 11=(1)建立给定系统的状态空间模型。
用函数eig( ) 求出系统特征值。
用函数tf( ) 和zpk( )将这些状态空间表达式转换为传递函数,记录得到的传递函数和它的零极点。
比较系统的特征值和极点是否一致,为什么?(2)用函数canon( )将给定状态空间表达式转换为对角标准型。
用函数eig( )求出系统特征值。
比较这些特征值和(1)中的特征值是否一致,为什么? 再用函数tf( )和zpk( )将对角标准型或约当标准型转换为传递函数。
比较这些传递函数和(1)中的传递函数是否一致,为什么?(3)用函数ctrlss( )将给定的状态空间表达式转换为能控标准型和能观测标准型。
现代控制理论实验体会
现代控制理论在工程领域中扮演着至关重要的角色,通过实验可以帮助我们更好地理解和应用这些理论。
进行现代控制理论的实验可以让我们验证理论模型的准确性,调节控制器参数以实现系统稳定性和性能要求,并且深入理解各种控制策略的优缺点。
以下是一些可能的实验体会:
1. 系统响应特性:通过实验观察不同控制器对系统的响应特性的影响,包括超调量、调节时间、稳态误差等。
比较不同控制器(如P、PI、PD、PID控制器)的性能表现,理解各自的优劣。
2. 鲁棒性分析:实验中可以考虑引入干扰或参数变化,观察系统的鲁棒性能。
了解控制系统对外界干扰的抵抗能力,以及参数变化对系统性能的影响。
3. 系统优化:通过调节控制器参数,优化系统的性能指标。
比如,通过自整定控制器(Self-Tuning Controller)实现对系统动态性能的在线调节和优化。
4. 状态空间分析:利用状态空间方法建立系统模型,实现状态反馈控制。
通过实验验证状态反馈控制对系统性能的改善效果。
5. 非线性控制:尝试应用现代非线性控制理论,如模糊控制、神经
网络控制等,对非线性系统进行控制。
观察非线性控制方法相比传统控制方法的优势。
通过实验,可以更深入地理解现代控制理论的原理和方法,掌握控制系统设计和调试的技巧,提升工程实践能力。
同时,实验也有助于培养工程师的创新思维和问题解决能力。
现代控制理论基础实验报告
现代控制理论基础实验报告专业:年级:姓名:学号:提交日期:实验一系统能控性与能观性分析1、实验目的:1. 通过本实验加深对系统状态的能控性和能观性的理解;2. 验证实验结果所得系统能控能观的条件与由它们的判据求得的结果完全一致。
2、实验内容:1•线性系统能控性实验 2.线性系统能观性实验。
3、实验原理:系统的能控性是指输入信号u 对各状态变量x 的控制能力。
如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态变量转移到状态空间的坐标原 点。
则称系统是能控的。
系统的能观性是指由系统的输出量确定系统所有初始状态的能力。
如果在有限的时间内,根据 系统的输出能唯一地确定系统的初始状态,则称系统能观。
(10-1)i Ly=U c =[01]U c由上式可简写为x Ax bU y cxR 3对于图10-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中旦R 2 &则输入电压U 能控制i L 和U c 状态变量的变化,此时,状态是能控的;状态变量i L 与U c 有耦合关系, 输出U c 中含有i L 的信息,因此对U c 的检测能确定i L 。
即系统能观的。
R 1 R 3反之,当」时, R 2 R 4变i L 的大小,故系统不能控; 即系统不能观。
Ri R 31.1当13时R 2 R 4电桥中的由于输出R 31( R 1R 2 L (R , R 2R 3 R 4R3R4R 2c 点和d 点的电位始终相等,U c 不受输入U 的控制,u 只能改U c 和状态变量i L 没有耦合关系,故 U c 的检测不能确定i L ,丄(亠亠)C R R 2R 3 R 41 ( R 1R2 L (R R 2R 3 R 4R3R4I L U C(10-2)I LR 2R 1 R 2 i L式中X U C1 (L R 1 R 21 R2 ( —— C R 1 R 2 R3 R 4)R3 R 4R 3 R 4R 1 R 2 1 (L R 1 R 21 1 -( CR 1R 2R3 R 4) R 4 1 )R 3 R 4[0 1]由系统能控能观性判据得 ran k[b Ab] =2c rank cA 故系统既能控又能观。
《现代控制理论》实验报告
.现代控制理论实验报告组员:院系:信息工程学院专业:指导老师:年月日实验1 系统的传递函数阵和状态空间表达式的转换[实验要求]应用MATLAB 对系统仿照[例1.2]编程,求系统的A 、B 、C 、阵;然后再仿照[例1.3]进行验证。
并写出实验报告。
[实验目的]1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
[实验内容]1 设系统的模型如式(1.1)示。
p m n R y R u R x DCx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1.1)其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。
系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。
D B A SI C s den s num s G +-==-1)()()(()( (1.2)式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。
2 实验步骤① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式(1.2),采用MATLA 的file.m 编程。
注意:ss2tf 和tf2ss 是互为逆转换的指令;② 在MATLA 界面下调试程序,并检查是否运行正确。
③ [1.1] 已知SISO 系统的状态空间表达式为(1.3),求系统的传递函数。
,2010050010000100001043214321u x x x x x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43210001x x x x y (1.3)程序:A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0;[num,den]=ss2tf(A,B,C,D,1)程序运行结果:num =0 -0.0000 1.0000 -0.0000 -3.0000 den =1.0000 0 -5.0000 0 0从程序运行结果得到:系统的传递函数为:24253)(ss s S G --= ④ [1.2] 从系统的传递函数式求状态空间表达式。
现代控制理论课程设计方案书(大作业)
现代控制理论课程设计报告题目打印机皮带驱动系统能控能观和稳定性分析项目成员史旭东童振梁沈晓楠专业班级自动化112指导教师何小其分院信息分院完成日期 2014-5-28目录1. 课程设计目的 (4)2.课程设计题目描述和要求 (4)3.课程设计报告内容 (4)3.1 原理图 (4)3.2 系统参数取值情况 (5)3.3 打印机皮带驱动系统的状态空间方程 (5)4. 系统分析 (8)4.1 能控性分析 (8)4.2 能观性分析 (8)4.3 稳定性分析 (9)5. 总结 (11)项目组成员具体分工打印机皮带驱动系统能控能观和稳定性分析课程设计的内容如下:1.课程设计目的综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。
加强大家对专业理论知识的理解和实际运用。
培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会应用标准、手册、查阅有关技术资料。
加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。
2.课程设计题目描述和要求(1)环节项目名称:能控能观判据及稳定性判据(2)环节目的:①利用MATLAB分析线性定常系统的可控性和客观性。
②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。
(3)环节形式:课后上机仿真(4)环节考核方式:根据提交的仿真结果及分析报告确定成绩。
(5)环节内容、方法:①给定系统状态空间方程,对系统进行可控性、可观性分析。
②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验证上述判断。
3.课程设计报告内容3.1 原理图在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。
它用于驱动打印头沿打印页面横向移动。
图1给出了一个装有直流电机的皮带驱动式打印机的例子。
其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。
图1 打印机皮带驱动系统3.2 系统参数取值情况表1打印装置的参数3.3 打印机皮带驱动系统的状态空间方程图2 打印机皮带驱动模型状态空间建模及系统参数选择。
现代控制理论实验报告
现代控制理论实验报告实验⼀线性定常系统模型⼀实验⽬的1. 掌握线性定常系统的状态空间表达式。
学会在MATLAB 中建⽴状态空间模型的⽅法。
2. 掌握传递函数与状态空间表达式之间相互转换的⽅法。
学会⽤MATLAB 实现不同模型之间的相互转换。
3. 熟悉系统的连接。
学会⽤MA TLAB 确定整个系统的状态空间表达式和传递函数。
4. 掌握状态空间表达式的相似变换。
掌握将状态空间表达式转换为对⾓标准型、约当标准型、能控标准型和能观测标准型的⽅法。
学会⽤MATLAB 进⾏线性变换。
⼆实验内容1. 已知系统的传递函数,(1)建⽴系统的TF 或ZPK 模型。
(a) )3()1(4)(2++=s s s s G(b) 3486)(22++++=s s s s s G(2)将给定传递函数⽤函数ss( )转换为状态空间表达式。
再将得到的状态空间表达式⽤函数tf( )转换为传递函数,并与原传递函数进⾏⽐较2. 已知系统的状态空间表达式(a) u x x+--=106510 []x y 11= (1)建⽴给定系统的状态空间模型。
⽤函数eig( ) 求出系统特征值。
⽤函数tf( ) 和zpk( )将这些状态空间表达式转换为传递函数,记录得到的传递函数和它的零极点。
⽐较系统的特征值和极点是否⼀致,为什么?给定系统的状态空间模型⽤函数eig( ) 求出系统特征值⽤函数tf( ) 将状态空间表达式转换为传递函数⽤函数zpk( ) 将状态空间表达式转换为传递函数(b) u x x ??+---=7126712203010 []111=y 给定系统的状态空间模型⽤函数tf( ) 和zpk( )将状态空间表达式转换为传递函数实验⼆线性定常系统状态⽅程的解⼀、实验⽬的1. 掌握状态转移矩阵的概念。
学会⽤MA TLAB 求解状态转移矩阵。
2. 掌握线性系统状态⽅程解的结构。
学会⽤MATLAB 求解线性定常系统的状态响应和输出响应,并绘制相应曲线。
现代控制理论课程设计实验报告
现代控制理论课程设计实验报告现代控制理论课程设计系别机电⼯程系专业⾃动化⼀、题⽬:⼆、技术指标:三、设计内容第1章线性系统状态空间表达式建⽴1-1由开环系统的传递函数结构图建⽴系统的状态结构图。
1-2由状态结构图写出状态空间表达式。
第2章理论分析计算系统的性能2-1稳定性分析⽅法与结论。
2-2能控性与能观测性分析⽅法与结论。
第3章闭环系统的极点配置3-1极点配置与动态质量指标关系。
3-2极点配置的结果(闭环特征多项式)。
第4章由状态反馈实现极点配置4-1通过状态反馈可任意配置极点的条件。
4-2状态反馈增益阵的计算。
第5章⽤MATLAB编程研究状态空间表达式描述的线性系统5-1由传递函数结构图建⽴状态空间表达式。
5-2由状态空间表达式分析稳定性、能控性、能观测性。
5-3根据极点配置要求,确定反馈增益阵。
5-4求闭环系统阶跃响应特性,并检验质量指标。
第6章⽤模拟电路实现三阶线性系统6-1系统模拟电路图。
6-2各运算放⼤电路的电阻、电容值的确定。
6-3模拟实验结果及参数的修改。
课程设计⼩结1、收获。
2、经验教训与建议。
⼀、⽬的要求⽬的:1、通过课程设计,加深理解现代控制理论中的⼀些基本概念;2、掌握⽤状态⽅程描述的线性系统的稳定性、能控性、能观性的分析计算⽅法;3、掌握对线性系统能进⾏任意极点配置来表达动态质量要求的条件,并运⽤状态反馈设计⽅法来计算反馈增益矩阵和⽤模拟电路来实现。
达到理论联系实际,提⾼动⼿能⼒。
要求:1、在思想上重视课程设计,集中精⼒,全⾝⼼投⼊,按时完成个阶段设计任务。
2、重视理论计算和MATLAB 编程计算,提⾼计算机编程计算能⼒。
3、认真写课程设计报告,总结经验教训。
⼆、设计题⽬及技术指标题⽬:⽤现代控制理论中状态反馈设计三阶线性控制系统技术指标:1、已知线性控制系统开环传递函数为:0G 012K (s)=s(Ts+1)(T s+1),其中T1= 0.1 秒,T2=1.0秒,K 0=1结构图如图所⽰:2、质量指标要求:% =4.32% ,p t =1秒,ss e =0 ,ssv e = 0.1三、设计报告正⽂第1章线性系统状态空间表达式建⽴1-1由开环系统的传递函数结构图建⽴系统的状态结构图由系统结构图可得变换后的系统结构图如下:1-2由状态结构图写出状态空间表达式。
现代控制理论课程设计(大作业)
现代控制理论课程设计报告题目打印机皮带驱动系统能控能观和稳定性分析项目成员史旭东童振梁沈晓楠专业班级自动化112指导教师何小其分院信息分院完成日期2014-5-28目录1. 课程设计目的 (5)2.课程设计题目描述和要求 (5)3.课程设计报告内容 (6)3.1 原理图 (6)3.2 系统参数取值情况 (6)3.3 打印机皮带驱动系统的状态空间方程 (7)4. 系统分析 (10)4.1 能控性分析 (10)4.2 能观性分析 (10)4.3 稳定性分析 (11)5. 总结 (13)项目组成员具体分工打印机皮带驱动系统能控能观和稳定性分析课程设计的内容如下:1.课程设计目的综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。
加强大家对专业理论知识的理解和实际运用。
培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会应用标准、手册、查阅有关技术资料。
加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。
2.课程设计题目描述和要求(1)环节项目名称:能控能观判据及稳定性判据(2)环节目的:①利用MATLAB分析线性定常系统的可控性和客观性。
②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。
(3)环节形式:课后上机仿真(4)环节考核方式:根据提交的仿真结果及分析报告确定成绩。
(5)环节内容、方法:①给定系统状态空间方程,对系统进行可控性、可观性分析。
②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验证上述判断。
3.课程设计报告内容3.1 原理图在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。
它用于驱动打印头沿打印页面横向移动。
图1给出了一个装有直流电机的皮带驱动式打印机的例子。
其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。
图1打印机皮带驱动系统3.2 系统参数取值情况表1打印装置的参数3.3 打印机皮带驱动系统的状态空间方程图2打印机皮带驱动模型状态空间建模及系统参数选择。
现代控制理论课程设计实验报告
现代控制理论课程设计目录第1章线性系统状态空间表达式建立1.1由开环系统的传递函数结构图建立系统的状态结构图1.2由状态结构图写出状态空间表达式第2章理论分析计算系统的性能2.1稳定性分析方法与结论2.2能控性与能观测性分析方法与结论第3章闭环系统的极点配置3.1极点配置与动态质量指标关系3.2极点配置的结果(闭环特征多项式)第4章由状态反馈实现极点配置4.1通过状态反馈可任意配置极点的条件4.2状态反馈增益阵的计算第5章用MATLAB编程研究状态空间表达式描述的线性系统5.1由传递函数结构图建立状态空间表达式5.2由状态空间表达式分析稳定性、能控性、能观测性5.3根据极点配置要求,确定反馈增益阵5.4求闭环系统阶跃响应特性,并检验质量指标课程设计小结第1章 线性系统状态空间表达式建立1.1由开环系统的传递函数结构图建立系统的状态结构图由已知条件得线性控制系统开环传递函数结构图如图所示:系统开环传递函数结构框图图1-1已知线性控制系统开环传递函数为G 012K (s)=s(T s+1)(T s+1),根据系统对具体参数的要求(见表1-1),可得系统参数如下:K0=1,T1=0.4S,T2=3.3S ,则系统的开环传递函数如下为:1G (s)=s(0.4s+1)(3.3s+1)320.758G 2.7560.758s s ++(s)=系统参数要求 表1-1由系统的结构框图1-1经过变换得到系统的结构图如下1-2:系统结构图图1-21.2由状态结构图写出状态空间表达式根据系统的状态结构图得:()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-=-=-=-==3303232232121121.300.31 2.52.51x x k y x x x x T x x x x x T x u x 系统的状态空间方程和输出方程如下:⎩⎨⎧+=+=D Cx y B Ax x 其中A,B,C,D 矩阵分别为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0.3-.30002.5-2.5000A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001B []100=C0=D第2章 理论分析计算系统的性能2.1稳定性分析方法与结论稳定性是控制系统能否正常工作的前提条件:系统的稳定性与系统的结构和参数有关,与外界初始条件无关,与外界扰动大小无关;非线性系统的稳定性与系统的结构和参数有关,与外界初始条件有关,与外界扰动大小有关。
现代控制理论实验报告
现代控制理论实验报告学院:机电学院学号:XXXXX姓名:XXXXX班级:XXXX实验一 系统的传递函数阵和状态空间表达式的转换一、实验目的1.熟悉线性系统的数学模型、模型转换。
2.了解MATLAB 中相应的函数 二、实验内容及步骤 1.给定系统的传递函数为1503913.403618)(23++++=s s s s s G 要求(1)将其用Matlab 表达;(2)生成状态空间模型。
2.在Matlab 中建立如下离散系统的传递函数模型y (k + 2) +5y (k +1) +6y (k ) = u (k + 2) + 2u (k +1) +u (k ) 3.在Matlab 中建立如下传递函数阵的Matlab 模型⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++++=726611632256512)(2322s s s s s s s s s s s s G 4.给定系统的模型为)4.0)(25)(15()2(18)(++++=s s s s s G求(1)将其用Matlab 表达;(2)生成状态空间模型。
5.给定系统的状态方程系数矩阵如下:[]0,360180,001,0100011601384.40==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=D C B A用Matlab 将其以状态空间模型表示出来。
6.输入零极点函数模型,零点z=1,-2;极点p=-1,2,-3 增益k=1;求相应的传递函数模型、状态空间模型。
三、实验结果及分析 1. 程序代码如下:num = [18 36];den = [1 40.3 391 150]; tf(num,den) ss(tf(num,den))Transfer function:18 s + 36----------------------------s^3 + 40.3 s^2 + 391 s + 150a =x1 x2 x3x1 -40.3 -24.44 -2.344x2 16 0 0x3 0 4 0b =u1x1 1x2 0x3 0c =x1 x2 x3y1 0 1.125 0.5625d =u1y1 0Continuous-time model.2.2.程序代码如下:num=[1 2 1];den=[1 5 6];tf(num,den,-1)运行结果:Transfer function:z^2 + 2 z + 1-------------z^2 + 5 z + 6Sampling time: unspecified3.程序代码如下:num={[1 2 1],[1 5];[2 3],[6]};den={[1 5 6],[1 2];[1 6 11 6],[2 7]};tf(num,den)Transfer function from input 1 to output...s^2 + 2 s + 1#1: -------------s^2 + 5 s + 62 s + 3#2: ----------------------s^3 + 6 s^2 + 11 s + 6Transfer function from input 2 to output...s + 5#1: -----s + 26#2: -------2 s + 74. 程序代码如下:sys=zpk(-2,[-15 -25 -0.4],18)ss(sys)运行结果:1)Zero/pole/gain:18 (s+2)---------------------(s+15) (s+25) (s+0.4)2)a =x1 x2 x3x1 -0.4 1.265 0x2 0 -15 1x3 0 0 -25b =u1x1 0x2 0x3 8c =x1 x2 x3y1 2.846 2.25 0d =u1y1 0Continuous-time model.5.程序代码如下:A=[-40.4 -138 -160;1 0 0;0 1 0];B=[1 0 0]';C=[0 18 360];D=0;ss(A,B,C,D)运行结果:a =x1 x2 x3x1 -40.4 -138 -160x2 1 0 0x3 0 1 0b =u1x1 1x2 0x3 0c =x1 x2 x3y1 0 18 360d =u1y1 0Continuous-time model.6. 程序代码如下:sys=zpk([1 -2],[-1 2 -3],1) tf(sys)ss((sys)运行结果:Zero/pole/gain:(s-1) (s+2)-----------------(s+1) (s+3) (s-2)Transfer function:s^2 + s - 2---------------------s^3 + 2 s^2 - 5 s - 6a =x1 x2 x3x1 -1 2.828 1.414x2 0 2 2x3 0 0 -3b =u1x1 0x2 0x3 2c =x1 x2 x3y1 -0.7071 1 0.5d =u1y1 0Continuous-time model.四、实验总结本次实验主要是熟悉利用matlab建立线性系统数学模型以及模型间的相应转换(如状态空间、传递函数模型等)、并了解matlab中相应函数的使用,如tf、ss、zp2ss、ss2tf等。
现代控制理论实验报告
现代控制理论实验报告实验三典型非线性环节实验目的1.了解和掌握典型非线性环节的原理。
2.用相平面法观察和分析典型非线性环节的输出特性。
实验原理及说明实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路。
实验内容3.1测量继电特性(1)将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。
(2)模拟电路产生的继电特性:继电特性模拟电路见图慢慢调节输入电压,观测并记录示波器上的U0~U i图形。
函数发生器产生的继电特性①函数发生器的波形选择为‘继电’,调节“设定电位器1”,使数码管右显示继电限幅值为3.7V。
U0~U i图形。
实验结果与理想继电特性相符3.2测量饱和特性将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):(2)模拟电路产生的饱和特性:饱和特性模拟电路见图3-4-6。
慢慢调节输入电压观测并记录示波器上的U0~U i图形。
如下所示:函数发生器产生的饱和特性①函数发生器的波形选择为‘饱和’特性;调节“设定电位器1”,使数码管左显示斜率为2;调节“设定电位器2”,使数码管右显示限幅值为3.7V。
慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
波形如下:3.3测量死区特性模拟电路产生的死区特性慢慢调节输入电压,观测并记录示波器上的U0~U i图形。
如下所示:观察函数发生器产生的死区特性:观察时要用虚拟示波器中的X-Y选项慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
波形如下图所示:3.4测量间隙特性模拟电路产生的间隙特性间隙特性的模拟电路见图3-4-8。
现代控制理论心得
现代控制理论心得现代控制理论是研究和设计控制系统的一门学科,它在控制系统的建模、分析和设计方面取得了重要进展。
在我学习现代控制理论的过程中,我深刻认识到它在工程和科学领域的重要性和应用广泛性。
以下是我对现代控制理论的心得总结,具体分为三个方面进行论述:一、现代控制理论的基本概念和原理现代控制理论的基本概念和原理是我理解和掌握这门学科的基石。
首先,控制系统的建模是现代控制理论的关键。
控制系统可以通过数学模型来描述,通常使用微分方程、差分方程或状态空间模型等。
这些模型能够准确地把握控制系统中的物理过程和变量之间的关系,为后续的分析和设计提供了基础。
其次,现代控制理论使用反馈原理来实现系统的稳定性和性能优化。
反馈控制系统可以根据系统输出和期望输出之间的误差,通过调整系统输入来实现对系统行为的控制。
这种反馈机制能够有效地抑制系统的干扰和不确定性,使系统具有鲁棒性和适应性。
另外,现代控制理论还研究了多变量控制系统和非线性控制系统。
多变量控制系统中有多个输入和多个输出变量,需要设计适当的控制器来实现对各个变量的独立或者相互关联的控制。
非线性控制系统考虑了系统中存在的非线性特性,需要使用非线性控制算法来处理。
二、现代控制理论的分析方法和工具现代控制理论提供了一系列分析方法和工具,帮助我们理解和评估控制系统的性能和稳定性。
其中之一是传递函数和频域分析。
通过将控制系统建模为传递函数,可以在频域中分析系统的频率响应特性,如增益、相位和频率特性。
这种方法对于系统设计和调试非常有用,可以帮助我们定位和解决系统中的问题。
另外,现代控制理论还使用了时域分析方法,如状态空间和拉普拉斯变换等。
状态空间方法将控制系统表示为状态变量的方程组,通过对系统状态变量的时间响应和稳定性进行分析。
拉普拉斯变换则将控制系统以传递函数的形式表示,可以通过求解拉普拉斯变换的逆变换得到系统的时域响应。
除此之外,现代控制理论还应用了线性矩阵不等式和优化方法。
2024年现代控制理论心得(2篇)
2024年现代控制理论心得摘要。
从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。
现代控制论是用状态空间方法表示,概念抽象,不易掌握。
对于《现代控制理论》这门课程,本人选择了最为感兴趣的几个知识点进行分析,并谈一下对于学习这么课程的一点心得体会。
关键词:现代控制理论;学习策略;学习方法;学习心得在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。
作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的主要课程。
从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。
经典控制论限于处理单变量的线性定常问题,在数学上可归结为单变量的常系数微分方程问题。
现代控制论面向多变量控制系统的问题,它是以矩阵论和线性空间理论作为主要数学工具,并用计算机来实现。
现代控制论工程实际,具有明显的工程技术特点,但它又属于系统论范畴。
系统论的特点是在数学描述的基础上,充分利用现有的强有力的数学工具,对系统进行分析和综合。
系统特性的度量,即表现为状态;系统状态的变化,即为动态过程。
状态和过程在自然界、社会和思维中普遍存在。
现代控制论是在引入状态和状态空间的概念基础上发展起来的。
状态和状态空间早在古典动力学中得到了广泛的应用。
在5o年代mesarovic教授曾提出“结构不确定性原理”,指出经典理论对于多变量系统不能确切描述系统的内在结构。
后来采用状态变量的描述方法,才完全表达出系统的动力学性质。
6o年代初,____曼(kalman)从外界输入对状态的控制能力以及输出对状态的反映能力这两方面提出能控制性和能观性的概念。
这些概念深入揭示了系统的内在特性。
实际上,现代控制论中所研究的许多基本问题,诸如最优控制和最佳估计等,都是以能能控性和能观性作为“解”的存在条件的。
现代控制理论是一门工程理论性强的课程,在自学这门课程时,深感概念抽象,不易掌握;学完之后,从工程实际抽象出一个控制论方面的课题很难,如何用现代控制论的基本原理去解决生产实际问题则更困难,这是一个比较突出的矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代控制理论综合设计报告》问题重述:图示为单倒立摆系统的原理图,其中摆的长度l=1m,质量m=0.1kg,通过铰链安装小车上,小车质量M=1kg,重力加速度g=9.8m/s2。
控制的目的是当小车在水平方向上运动时,将倒立摆保持在垂直位置上。
分别列写小车水平方向的力平衡方程和摆的转矩平衡方程,通过近似线性化处理建立系统的状态空间表达式;绘制带状态观测器状态反馈系统的模拟仿真图,要求系统期望的特征值为:-1,-2,-1+j,-1-j;状态观测器的特征值为:-2,-3,-2+j,-2-j;根据模拟仿真图,分别绘制系统综合前后的零输入响应曲线本文的仿真实验亮点如下:●对单倒立摆进行传统的传递函数、状态空间建模,全面分析了单倒立摆的物理性质。
●在物理模型建立时,强调了角速度θ不能近似为0。
●建立状态空间表达时,选择位移x和角度θ作为输出,是一个多输出系统。
但增加了状态观测器设计的复杂度。
●在摆运动过程中,初始扰动角θ可达60度左右;而且调节过程中,倒立摆θ在(-90,90)范围内变化,符合实际情况。
●在仿真波形图中,展示了状态观测器的跟踪过程,体现了其在反馈控制中起到的作用。
●在初始扰动60度下,分别在原始系统、状态反馈系统、带状态观测器反馈系统,进行了零输入响应、阶跃输入响应的仿真实验。
●解释了带状态观测器反馈时,阶跃输入,但系统前1秒处于稳态的现象的原因。
1单级倒立摆数学模型的建立倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,许多抽象的控制概念都可以通过倒立摆直观地表现出来。
本设计是以一阶倒立摆为被控对象来进行设计的。
传递函数法:对SISO 系统进行分析设计,在这个系统中θ作为输出,因为它比较直观,作用力u 作为输入。
状态空间法:状态空间法可以进行单输入多输出系统设计,因此在这个实验中,我们将尝试同时对摆杆角度和小车位置进行控制,并给小车加一个阶跃输入信号。
本文利用Matlab ,对系统的传递函数和状态空间进行分析,并用指令计算状态空间的各种矩阵,仿真系统的开环阶跃响应。
Matlab 将会给出系统状态空间方程的A,B,C 和D 矩阵,并绘出在给定输入为阶跃信号时系统的响应曲线。
在忽略了空气阻力、各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。
假设系统内部各相关参数为:φ和θ都表示摆杆与垂直向上方向的夹角 l L 、都表示 摆杆长度 1m M 小车质量 1kg m 摆杆质量 0.1kg x 小车位置单倒立摆系统力的平衡方程分析小车、摆杆力的分析图如下所示:小车的平衡方程:u H Mx -=摆杆的X 轴方向力的平衡方程:22(sin )d H m x l dtθ=+摆杆Y 轴方向,力的平衡方程:22(lcos )d V mg m dtθ-=摆杆的转矩平衡方程:sin cos VL HL I θθθ-=选择摆杆的质心在端点处,则惯性惯量212ml I =方程的线性化处理当θ很小时,可对方程进行线性化。
由于控制的目的当小车在水平方向上运动时,将倒立摆保持在垂直位置上。
在施加合适的外力下,θ比较小,接近于0,sin ,cos 1θθθ→→,对以上方程进行线性化。
但要注意的是,θ不能约等于0,因为摆杆的角速度在实际情况中是比较快的。
但对以上方程先求导会产生θ及其平方项,但这些项都和sin θ相乘,于是这些项还是约等于0。
另外,如果先线性化,再求导,则不会产生以上需要考虑的问题。
线性化后方程如下:线性化方程: 2+12u H Mx H mx ml V mg ml VL HL θθ-===-=1.1系统的传递函数分析对SISO 系统进行分析设计,可选择传递函数法,在这个系统中θ作为输出,因为它比较直观,作用力u 作为输入。
根据前面所建的数学模型,消除中间项后,可得到传递函数如下:21(M m)1212(M m)g13()1212L u s M m L θ-+=+-+带入题目中的数据后可得到传递函数: 20.9169.874u s θ-=- 在matlab 中,求单倒立摆传递函数的阶跃响应: G=tf(num,den) step(G)传递函数阶跃响应5Step ResponseTime (sec)A m p l i t u d eFigure 1 零初始扰动系统的零输入响应(和预期效果一样,若无初始扰动,系统处于稳态)Figure 2初始扰动0.1弧度,传递函数的零输入响应Figure 3传递函数的波特图以及相角裕度Response to Initial ConditionsTime (sec)A m p l i t u d e5Response to Initial ConditionsTime (sec)A m p l i t u deM a g n i t u d e (d B )10101010P h a s e (d e g )Bode DiagramFrequency (rad/sec)Figure 4 原始系统传递函数的根轨迹分析由以上分析可得原系统是一个不稳定的系统,存在两个极点,其中一个在右半平面1.2系统的状态空间分析系统状态方程为:X AX BuY CX Du =+=+应用牛顿-欧拉方法,可得到系统状态空间方程为:222222201()0()()0()0()()x I ml b m gl x I M m Mml I M m Mml lb mgl M m I M m Mml I M m Mml φφ⎡⎤⎢⎥⎡⎤-+⎢⎥⎢⎥⎢⎥++++⎢⎥=⎢⎢⎥⎢⎢⎥⎢-+⎢⎥⎣⎦⎢++++⎣⎦ 0 0 0 0 0 0m 0 2220()0()x I ml x I M m Mml u ml I M m Mml φφ⎡⎤⎢⎥⎡⎤+⎢⎥⎢⎥⎢⎥++⎢⎥+⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎣⎦⎥⎢⎥++⎣⎦1000000100x x x Y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦以上就是单倒立摆系统的状态空间表达式。
表达式中:x 为小车的位移;x 为小车的速度;φ(θ)为摆杆的角度;φ(θ)为摆杆的角速度;u 为输入;y 为输出。
代入题目中的数据后可得单倒立摆的状态空间表达式(其中转动惯量为212ml I =):Root LocusReal AxisI m a g i n a r y A x i s0100000.897700001009.8748000.99241000=0000100.916A B C D ⎛⎫⎪-⎪= ⎪⎪⎝⎭⎛⎫ ⎪⎛⎫⎪== ⎪⎪⎝⎭⎪-⎝⎭>> A=[0 1 0 0;0 0 -0.8977 0;0 0 0 1;0 0 9.8748 0]; B=[0;0.9924;0;-0.916]; C=[1 0 0 0;0 0 1 0] D=[0;0]GSS=ss(A,B,C,D) > eig(GSS) ans =0 0 3.1424 -3.1424开环系统的阶跃响应:图中上方是位移输出,下方是角度输出。
Figure 5阶跃响应,图中上方是位移输出,下方是角度输出从状态空间分析可知,原系统不稳定,存在四个极点,有两个位于原点处,一个处于右半平面。
阶跃响应也呈发散状。
4T o : O u t (1)T o : O u t (2)Step ResponseTime (sec)A m p l i t u d e2系统的状态反馈闭环系统设计Figure 6状态反馈闭环系统在状态空间中,可通过状态反馈求取K 阵,以任意配置极点,达到设计要求。
但状态反馈必须要求系统完全可控,现进行可控性分析。
AC=A-B*K ;B 矩阵不变;u=r-K*x; C 矩阵不变 在MATLAB 中,输入 Tc=ctrb(A,B); rank(Tc); Tc =0 0.9924 0 0.8223 0.9924 0 0.8223 0 0 -0.9160 0 -9.0453-0.9160 0 -9.0453 0 Ans=4.可知,可控性矩阵满秩,系统完全可控。
要求系统期望的特征值为:-1,-2,-1+j ,-1-j由以上指令可求得K 矩阵: ()K=-0.445560408906477-1.11390102226619-22.1801027836232-6.66532246124124验证配置的极点是否正确:eig(AC) ans =-2.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i -1.0000P=[-1 -2 -1+i -1-i]; K=place(A,B,P); AC=A-B*K; eig(AC)GCS=ss(AC,B,C,D);Figure 7零初始条件下,状态反馈系统的阶跃响应,图中上方是位移输出,下方是角度输出。
由图可知,倒立摆在阶跃输入下,摆动角度范围是(-4.6,2.29)度。
最终位移输出是-2.25m 。
Figure 8初始扰动弧度为1(60度),系统的零输入响应小结:此节内容设计了系统的状态反馈,并按要求配置了系统极点。
分析了系统的阶跃响应和60度初始扰动情况下,系统的零输入响应。
由于系统极点配置在S 平面的左半平面,可知是一个稳定的系统,从系统的阶跃响应和零输入响应可得到验证。
T o : O u t (1)T o : O u t (2)Step ResponseTime (sec)A m p l i t u deT o : O u t (1)T o : O u t (2)Response to Initial ConditionsTime (sec)A m p l i t u d e3状态观测器的设计Figure 9观测器设计图,上方为原系统,下方为观测器在设计系统的观测器前,必须对系统可观性进行判定,否则不能设计系统的状态观测器。
系统可观性判定:>> To=obsv(A,C)To =1.0000 0 0 00 0 1.0000 00 1.0000 0 00 0 0 1.00000 0 -0.8977 00 0 9.8748 00 0 0 -0.89770 0 0 9.8748>> rank(To)ans =4由上可知,系统可观测。
根据系统的要求配置极点,由于一般要求观测器响应速度要快所以配置的极点更靠左些。
状态观测器的特征值为:-2,-3,-2+j,-2-j根据以下指令求出观测器的G矩阵PS=[-2 -3 -2+i -2-i];G=place(A',C',PS)'G =4.8104 0.00845.8233 -0.4745-1.1074 4.1896-1.8985 14.8885>> AO=A-G*CAO =-4.8104 1.0000 -0.0084 0-5.8233 0 -0.4232 01.1074 0 -4.1896 1.00001.8985 0 -5.0137 0现在测试系统的跟踪性能。