化工原理实验 流量计性能测定实验处理
化工原理实验流量计校核实验报告
化工原理实验流量计校核实验报告实验报告:化工原理实验流量计校核实验1.实验目的:1)了解流量计的工作原理和基本结构;2)掌握流量计的校核方法和步骤;3)了解流量计的准确性和实验误差。
2.实验器材:1)流量计;2)校核装置;3)水源;4)计时器;5)温度计。
3.实验步骤:1)将流量计与校核装置连接,注意连接的紧密性;2)打开水源,通过调整阀门来调节流量计的流量;3)使用计时器记录流量计显示的时间以及相应的流量值;4)重复多次实验,记录不同流量下的时间和流量值;5)使用温度计测量水的温度并记录。
4.实验结果与数据处理:实验数据如下表所示:试验次数,流量(L/min),时间(s--------,-------------,--------1,2.0,62,2.5,53,3.0,44,3.5,45,4.0,3根据实验数据,可以计算得到每组试验的平均流量值以及相对误差。
平均流量=(流量1+流量2+流量3+流量4+流量5)/5相对误差=,测量值-理论值,/理论值*100%假设理论流量值为4.0 L/min,计算结果如下表所示:试验次数,流量(L/min),相对误差(%--------,-------------,-----------1,2.0,50.2,2.5,37.3,3.0,25.4,3.5,12.5,4.0,0.通过计算,可以发现随着流量的增加,相对误差逐渐减小。
而在流量为4.0 L/min时,相对误差为0%,说明流量计在该流量下工作正常,相对误差最小。
5.实验分析与讨论:1)实验结果表明,流量计的测量结果与理论值相比存在一定的误差。
主要原因包括流量计的固有误差以及实验条件的变动。
2)实验中的误差可能来自于流量计的制造误差、读数误差以及外部环境的影响。
为了减小误差,可以使用更精确的流量计或者进行多次实验取平均值。
3)实验中,水的温度变化对流量计的测量结果也有一定的影响。
水温的变化会导致水的密度和粘度的变化,从而对流量计的测量结果产生影响。
化工实验-流量计-数据处理计算过程举例
数据处理计算过程举例以第四组为例1、孔板流量计性能测定(1)流体粘度μ=0.000001198+EXP(1972.53/(273.15+27.7))=0.695×10-3(Pa·s)(2)流体密度ρ=-0.003589285×27.72-0.0872501×27.7+1001.44 =996.1(kg·m3)(3)流体流量qv=6.0(m3÷h)÷3600(s)=1.67×10-3(m3÷s)(4)因流速u=qv÷A=qv÷(3.14×d²÷4)=1.67×10-3÷(3.14×(0.0262)÷4=3.14(m·s)(5)因qv =C×A×√(2ΔP÷ρ)则孔流系数C0=qv/((A×√(2ΔP/ρ))=1.67×10-3/[(3.14×0.0172÷4)×√(2×36.2×1000÷996.1)] =0.862(6)雷诺数Re=d×u×ρ÷μ=0.026×1.67×996.1÷(0.695×10-3)=1170882、文丘里流量计性能测定(1)流体粘度μ=0.000001198+EXP(1972.53/(273.15+29.8))=0.673×10-3(Pa·s)(2)流体密度ρ=-0.003589285×29.82-0.0872501×29.8+1001.44=995.7(kg·m3)(3)流体流量qv=6.9(m3·h)÷3600(s)=1.92×10-3(m3÷s)(4)因流速u=qv ÷A=qv÷(3.14×d²÷4)=1.92×10-3÷(3.14×(0.0262)÷4 =3.61(m·s)(5)因qv =Cv×A×√(2ΔP÷ρ)则孔流系数Cv =qv/((A×√(2ΔP/ρ))=1.92×10-3/[(3.14×0.0152÷4)×√(2×6.0÷995.7)]=0.998(7)雷诺数Re=d×u×ρ÷μ=0.026×1.67×996.1÷(0.695×10-3)=139023 3、转子流量计性能测定涡轮流体流量qv=2.3(m3·h)÷3600(s)=6.39×10-4(m3·s) 流体密度ρ=-0.003589285×25.82-0.0872501×25.8+1001.44=996.8(kg·m3)校正后转子流量:由公式qv ’/qv=√[ρ(ρf-ρ’)]÷√[ρ’(ρf-ρ)]=2.2×√[996.779(7900-996.8)]÷√[996.8(7900-996.779)]÷3600 =6.1×10-4 (m3·s)4、用最大误差法对节流式流量计的流量系数进行误差估算和分析。
流量计性能测定实验报告
流量计性能测定实验报告流量计性能测定实验报告一、引言流量计是工业生产中常用的仪表之一,用于测量液体或气体的流量。
准确测量流量对于工业生产的稳定运行至关重要。
本实验旨在通过对不同类型的流量计进行性能测定,评估其准确性和适用性。
二、实验目的1. 测定不同类型流量计的准确性。
2. 比较不同类型流量计的适用范围。
3. 分析流量计的工作原理和性能特点。
三、实验装置和方法1. 实验装置:实验装置包括液体流量计和气体流量计。
液体流量计采用电磁流量计和涡街流量计,气体流量计采用差压流量计和浮子流量计。
2. 实验方法:分别使用不同类型的流量计进行流量测量,记录测量结果。
同时,通过改变流量计的工作条件,比如流速和介质压力,观察流量计的响应情况。
四、实验结果与分析1. 电磁流量计:在不同流速和介质压力下,电磁流量计的测量结果基本稳定,准确性较高。
然而,当介质中存在杂质或气泡时,电磁流量计的测量结果可能会受到干扰。
2. 涡街流量计:涡街流量计对于流速变化较大的液体测量具有较高的准确性。
然而,在低流速下,涡街流量计的测量结果可能会出现较大误差。
3. 差压流量计:差压流量计适用于气体流量测量,对于流速变化较大的气体具有较高的准确性。
然而,差压流量计对于液体流量测量的准确性较差。
4. 浮子流量计:浮子流量计适用于液体流量测量,对于流速变化较小的液体具有较高的准确性。
然而,当流速变化较大时,浮子流量计的测量结果可能会出现较大误差。
五、实验结论1. 电磁流量计和涡街流量计适用于液体流量测量,具有较高的准确性和稳定性。
2. 差压流量计适用于气体流量测量,对于流速变化较大的气体具有较高的准确性。
3. 浮子流量计适用于液体流量测量,对于流速变化较小的液体具有较高的准确性。
4. 不同类型的流量计在不同工况下的准确性和稳定性可能存在差异,需要根据实际应用需求进行选择。
六、实验总结本实验通过对不同类型的流量计进行性能测定,评估了其准确性和适用性。
化工原理实验实验报告
一、实验目的1. 理解并掌握化工原理的基本概念和原理。
2. 学习化工实验的基本操作技能和数据处理方法。
3. 通过实验,验证化工原理的理论知识,加深对化工工艺过程的理解。
4. 培养严谨的科学态度和良好的实验习惯。
二、实验内容及步骤1. 实验一:流体力学实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,测定流体在不同流量流经全开闸阀时的局部阻力系数。
实验步骤:(1)根据实验装置流程图,连接实验装置,包括光滑管、粗糙管、倒U形压差计、1151压差传感器、铂电阻温度传感器、流量计等。
(2)调整进水阀,使水从高位水槽流入光滑管,调节球阀,使水分别流经光滑管和粗糙管。
(3)记录不同流量下的压差值和温度值。
(4)计算摩擦系数和局部阻力系数。
2. 实验二:精馏实验实验目的:熟悉精馏的工艺流程,掌握精馏实验的操作方法,测定全回流时的全塔效率及单板效率。
实验步骤:(1)根据实验装置流程图,连接实验装置,包括精馏塔、回流液收集器、塔顶冷凝器、塔釜加热器等。
(2)调整塔釜加热器,使塔釜温度达到设定值。
(3)调整回流液收集器,使回流液流量达到设定值。
(4)记录塔顶和塔釜的液相折光度,计算液相浓度。
(5)根据数据绘出x-y图,用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
3. 实验三:流化床干燥实验实验目的:熟悉流化床干燥器的基本流程及操作方法,掌握流化床流化曲线的测定方法,测定物料含水量及床层温度随时间变化的关系曲线。
实验步骤:(1)根据实验装置流程图,连接实验装置,包括流化床干燥器、物料进料装置、温度传感器、流量计等。
(2)将物料放入流化床干燥器中,调整进料量和空气流量。
(3)记录不同时间下的物料含水量和床层温度。
(4)绘制物料含水量和床层温度随时间变化的关系曲线。
三、实验结果与分析1. 流体力学实验:根据实验数据,绘制摩擦系数与雷诺数Re的关系曲线,与理论公式进行比较,分析实验误差产生的原因。
化工原理实验
四、实验装置基本情况1.实验设备流程图见图一图一流量计实验流程示意图1-储水箱;2-放水阀;3-离心泵;4-排水阀;5-文丘里、孔板流量计调节阀;6-转子流量计调节阀;7-转子流量计;8-孔板流量计;9,10-孔板测压进出口阀;11-压差传感器;12,13-文丘里测压进出口阀;14-文丘里流量计;15-涡轮流量计:16,17-进水阀;18-温度图二实验装置仪表面板图表一第一套文丘里流量计性能测定原始数据记录及处理结果表三第一套转子流量计性能测定数据记录:图三第一套文丘里流量计流量系数与Re关系图图四第一套文丘里流量计标定曲线图五第一套孔板流量计流量系数与Re关系图图六第一套孔板流量计标定曲线图七第一套转子流量计标定曲线四、实验装置基本情况:1.实验装置技术参数离心泵:型号WB 70/055流量8m3/h 扬程:12m 电机功率550W被测直管段:光滑管管径d=0.0078 (m) 管长L-1.70 (m) 材料不锈钢粗糙管管径d=0.01 (m) 管长L-1.70(m) 材料不锈钢被测局部阻力直管:管径d=0.015(m) 管长L-1.70(m) 材料不锈钢玻璃转子流量计:型号LZB—25 测量范围100~1000(L/h)型号 LZB—10 测量范围10~100(L/h)压差传感器:型号LXWY 测量范围200KPa数字显示仪表: 温度测量 Pt100 数显仪表:AI501B压差测量压差传感器数显仪表:AI501BV24 2. 单相流动阻力测定实验装置流程示意图(见图-2)图-2 单相流动阻力测定实验装置流程示意图1-水箱;2-离心泵;3、4-放水阀;5、13-缓冲罐;6-局部阻力近端测压阀;7、15-局部阻力远端测压阀;8、20-粗糙管测压阀;9、19-光滑管测压阀;10-局部阻力管阀;11-U型管进出水阀;12-压力传感器;14-大流量调节阀;15、16-水转子流量计;17-光滑管阀;18-粗糙管阀;21-倒置U 型管放空阀;22-倒置U型管;23-水箱放水阀;24-放水阀;3. 单相流动阻力测定实验装置面板示意图见图-3图3 实验装置面板示意图3.单相流动阻力实验数据记录表(光滑管)见表一表一单相流动阻力实验数据记录表(光滑管)4.单相流动阻力实验数据记录(粗糙管)见表二表二单相流动阻力实验数据记录表(粗糙管)5.单相流体阻力实验装置数据记录(局部阻力)见表三表三流体阻力实验数据记录表(局部阻力)6.直管摩擦阻力系数与雷诺准数关系图见图5图5 直管摩擦阻力系数与雷诺准数关系图五、实验装置:1.实验装置主要技术参数:填料塔:玻璃管内径 D=0.050m 塔高1.00m 内装φ10×10mm 瓷拉西环;填料层高度Z=0.8m;风机:XGB-12型 550W;二氧化碳钢瓶1个;减压阀1个(用户自备)。
流量计性能测定实验报告doc
流量计性能测定实验报告篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验实验3 流量计性能测定实验一、实验目的⒈了解几种常用流量计的构造、工作原理和主要特点。
⒉掌握流量计的标定方法(例如标准流量计法)。
⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。
⒋学习合理选择坐标系的方法。
二、实验内容⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。
⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。
⒊测定节流式流量计的雷诺数Re和流量系数C的关系。
三、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:式中:被测流体(水)的体积流量,m3/s;流量系数,无因次;流量计节流孔截面积,m2;流量计上、下游两取压口之间的压强差,Pa ;被测流体(水)的密度,kg/m3 。
用涡轮流量计和转子流量计作为标准流量计来测量流量VS。
每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。
同时用上式整理数据可进一步得到C—Re关系曲线。
四、实验装置该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。
⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。
⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。
⒊压差测量:用第一路差压变送器直接读取。
图1 流动过程综合实验流程图⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L —粗糙管五、实验方法:⒈按下电源的绿色按钮,使数字显示仪表通电预热,调节第1路差压变送器的零点,关闭流量调节阀⑵⑶。
化工原理实验数据处理要求
实验一.单向流动阻力测定
实验数据处理要求
1. 计算不同流量下的流速,雷诺数,直管摩擦阻力系数
2. 在双对数坐标上关联λ和Re 之间的关系
3. 对实验结果进行分析讨论,讨论λ和Re 之间的关系,根据所标绘的曲线引伸推测一下管路
的粗糙程度,根据实验结果从中得到了那些结论
4. 对数据进行必要的误差分析,评价一下数据和结果的误差,并分析其原因
实验二.离心泵性能测定实验
数据处理要求
1. 计算整理数据后, 在普通坐标纸上画出泵的特性曲线,标出适宜操作区
2. 在可能的情况下,找出曲线的数学经验式
3. 绘出管路特性曲线
4. 对实验进行必要的误差分析,评价数据与结果,并分析原因
实验三 气-汽对流传热综合实验装置
实验数据处理
1. 在双对数坐标上绘出4.0/N r u P ~e R 关系图
2.用线性回归法求出流体在光滑管和强化管内流动时4.0/N r u P ~e R 的关联式
3.计算不同流量下换热器的传热平均温度差,总传热面积,传热速率及换热器总传热系数
实验四. 雷诺实验
计算雷诺准数,根据观察现象找出雷诺准数与流型之间的关系
实验五 能量转换实验
根据实验结果比较各截面的静压头、动压头和位压头之间的变化,能得到什么样的结论?
实验六 干燥实验
绘制含水率—时间的干燥曲线图及干燥速率—含水率的干燥速率曲线图。
流量计性能测定实验报告
流量计性能测定实验报告篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验实验3 流量计性能测定实验一、实验目的⒈了解几种常用流量计的构造、工作原理和主要特点。
⒉掌握流量计的标定方法(例如标准流量计法)。
⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。
⒋学习合理选择坐标系的方法。
二、实验内容⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。
⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。
⒊测定节流式流量计的雷诺数Re和流量系数C的关系。
三、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:式中:被测流体(水)的体积流量,m3/s;流量系数,无因次;流量计节流孔截面积,m2;流量计上、下游两取压口之间的压强差,Pa ;被测流体(水)的密度,kg/m3 。
用涡轮流量计和转子流量计作为标准流量计来测量流量VS。
每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。
同时用上式整理数据可进一步得到C—Re关系曲线。
四、实验装置该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。
⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。
⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。
⒊压差测量:用第一路差压变送器直接读取。
图1 流动过程综合实验流程图⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L —粗糙管五、实验方法:⒈按下电源的绿色按钮,使数字显示仪表通电预热,调节第1路差压变送器的零点,关闭流量调节阀⑵⑶。
化工原理流体力学实验报告
化工原理流体力学实验报告实验报告是化工原理流体力学实验的总结和归纳。
在化工原理流体力学实验中,我们对流体力学的基本原理进行了验证,学习了流体力学的基本理论和实验方法,并且通过实验练习了基本的数据处理和分析。
实验一:引流测量在这个实验中,我们学习了流量计量的基本方法,掌握了有关数据的测量、处理和计算。
实验过程包括水在管内的流动,并通过静压头和流量计估计水流的速度和流量。
在这个实验中,我们记录了三个引流读数和一次水头读数,计算了水流的平均流速和平均引流量。
实验二:粘度测量在这个实验中,我们学习了粘度测量的基本方法。
我们使用量筒和钟形锥体测量了不同物质的粘度,比较了实验结果与文献数据的一致性,并对实验中的误差进行了分析。
实验三:液体流态的观察在这个实验中,我们观察了不同流态的液体,包括层流,过渡流和湍流。
我们学习了如何使用阴影法和漂浮颗粒法观察液体流态,并对不同流态的液体进行了比较和分析。
在实验中我们记录了不同流态下液体的各种数据,如体积流率、雷诺数和液体的颜色。
实验四:计算摩阻系数在这个实验中,我们学习了如何使用沉浸式管道计算摩擦系数。
我们利用静态压力传感器和压降传感器测量了差压和流量,并使用流体力学公式计算了摩阻系数。
我们对所获得的数据进行了分析并评估其精度。
实验五:压力泵的工作特性在这个实验中,我们学习了压力泵的工作原理和工作特性。
我们使用数码压力计测量了压力泵的出口压力和进口压力,并使用流量计测量了水流量。
通过改变阀门开度和泵的转速,我们分析了实验获得的数据,并计算了工作点。
总之,化工原理流体力学实验报告是对实验基本原理和操作方法的总结和归纳,是理论和实践相结合的具体体现。
在实验过程中,我们不断探索和发现,不断深入了解流体力学的各种规律和现象,通过实验的方法提高了对流体力学理论知识的认识。
化工原理流量计的校正实验
化工原理流量计的校正实验化工原理流量计的校正实验是为了确保流量计的准确性和可靠性,以便在工业生产中准确测量和控制流体的流量。
下面将详细介绍化工原理流量计的校正实验。
首先,校正实验需要准备的设备和材料有:化工原理流量计、标准流量计、压力计、温度计、流体介质、流量计校正装置等。
校正实验的步骤如下:1. 实验前准备:检查流量计和其他设备的状态,确保其正常工作。
准备好流体介质,确保其纯度和稳定性。
2. 流量计校正装置的安装:将流量计校正装置安装在流量计的进口和出口处,确保其与流量计连接紧密,无泄漏。
3. 流量计的初始调整:将流量计的刻度调整到零点,确保流量计的指针指向零刻度。
4. 流量计的校正:将标准流量计与待校正的流量计同时连接到流量计校正装置上。
调整流量计校正装置的阀门,使得标准流量计和待校正流量计的流量相等。
5. 流量计的读数记录:记录标准流量计和待校正流量计的读数,包括流量计的刻度读数、压力计的读数和温度计的读数。
6. 流量计的校正曲线绘制:根据实验记录的数据,绘制流量计的校正曲线。
横坐标为标准流量计的读数,纵坐标为待校正流量计的读数。
7. 校正曲线的分析:根据校正曲线,分析流量计的误差和偏差。
计算出流量计的准确度和精度。
8. 校正参数的计算:根据校正曲线和实验数据,计算出流量计的校正参数,如K 系数、偏差系数等。
9. 校正参数的应用:将计算得到的校正参数应用到实际生产中的流量计上,以提高流量计的准确性和可靠性。
10. 实验结果的分析和总结:根据校正实验的结果,分析流量计的性能和稳定性。
总结实验的经验和教训,提出改进和优化的建议。
化工原理流量计的校正实验是一个复杂而重要的过程,需要严格按照实验步骤进行操作。
通过校正实验,可以确保流量计的准确性和可靠性,提高工业生产中流体流量的测量和控制精度。
同时,校正实验也为流量计的维护和保养提供了依据,延长了流量计的使用寿命。
实验三 流量计性能标定
黄冈师范学院《化工原理》实验报告实验名称:流量计性能标定学院:班级:实验小组人员:实验日期:实验台编号:实验报告撰写:实验指导教师:黄冈师范学院《化工原理》实验室实验三 流量计性能标定一、实验目的1.了解孔板流量计、文丘里流量计及涡轮流量计的构造、工作原理和主要特点;2.练习并掌握节流式流量计的标定方法;3.练习并掌握节流式流量计流量系数C 的确定方法,并能够根据实验结果分析流量系数C 随雷诺数Re 的变化规律。
二、实验内容1.测定并绘制节流式流量计的流量标定曲线,确定节流式流量计流量系数C;2.分析实验数据,得出节流式流量计流量系数C 随雷诺数Re 的变化规律。
三、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:ρ)(20下上P P CA V s -=式中:—S V 被测流体(水)的体积流量,m 3/s ; —C 流量系数,无因次; —0A 流量计节流孔截面积,m 2;—下上P P -流量计上、下游两取压口之间的压强差,Pa ; —ρ被测流体(水)的密度,kg /m 3 。
用涡轮流量计作为标准流量计来测量流量VS 。
每个流量在压差计上都有一个对应的读数,测量一组相关数据并作好记录,以压差计读数△P 为横坐标,流量Vs 为纵坐标,在半对数坐标上绘制成一条曲线,即为流量标定曲线。
同时,通过上式整理数据,可进一步得到流量系数C 随雷诺数Re 的变化关系曲线。
四、实验装置基本情况1.实验设备流程图流量计实验流程示意图1-储水箱;2-放水阀;3-离心泵;4-排水阀;5-文丘里、孔板流量计调节阀;6-转子流量计调节阀;7-转子流量计;8-孔板流量计;9,10-孔板测压进出口阀;11-压差传感器;12,13-文丘里测压进出口阀;14-文丘里流量计;15-涡轮流量计:16,17-进水阀;18-温度计实验装置仪表面板图2.实验设备主要技术参数:离心泵:型号WB70/055;贮水槽:550mm×400mm×450mm;试验管路:内径φ48.0 mm;涡轮流量计:最大流量 6m3/h;文丘里流量计:喉径φ15mm;孔板流量计:喉径φ15mm;转子流量计:LZB-40,量程400-4000L/h;温度计:Pt100数字仪表显示;差压变送器: 0-200kPa五、实验方法及步骤1.首先向储水箱内注入蒸馏水至三分之二,关闭流量调节阀5、6,启动离心泵。
化工原理实验 流量计校核实验报告
48.4
66.9
0.185
36
10.90
0.0134
3.73E-04
3.060
1.607
37941.22
6
52.5
67.1
0.146
40
11.80
0.0145
3.63E-04
2.981
1.762
36966.58
7
56.5
66.4
0.099
41
9.26
0.0114
2.78E-04
2.282
1.639
3.486
1.757
43232.10
6
40.7
65.2
0.245
40
13.68
0.0169
4.21E-04
3.456
1.577
42856.17
7
37.0
65.0
0.28
40
15.75
0.0194
4.85E-04
3.979
1.699
49340.98
8
32.1
65.2
0.331
41
16.40
0.0202
计量水箱规格:长400mm;宽300mm
管径d(mm):25
孔板取喉径d0(mm):15.347
查出实验温度下水的物性:
密度ρ= 996.2542 kg/m3粘度μ= 0.000958 PaS
2.数据处理
则
孔板流量计试验数据处理
左/cm
右/cm
ΔR/m
时间t/s
水箱高度h/cm
体积V/m3
流量Qv/m3·s-1
41
3.5
化工原理流量计的校正实验
化工原理流量计的校正实验
化工原理流量计的校正实验是为了确保流量计测量的准确性和可靠性。
校正实验可以分为静态校正和动态校正两种方法。
静态校正实验是通过将流量计安装在一个流量恒定的设备中(如容器或质量流量计),在不改变流量的情况下,比较流量计的测量值与实际流量的差异。
通过调整流量计的参数和校正系数,使其测量值与实际流量一致。
动态校正实验是通过改变流量来模拟实际工况下的流动状态,以验证流量计的测量能力。
通常会改变流体的流速、流量、密度和粘度等参数,然后测量流量计的输出值。
根据实际测量值和理论值的差异,可以对流量计进行校正和调整。
在进行流量计校正实验时,需要注意以下几点:
1. 选择合适的校正液体:校正液体应具有一定的粘度和密度,以模拟实际工况下的流体性质。
2. 确定校正范围:根据流量计使用的需求,确定合适的校正范围。
校正范围过大或过小都会影响校正的准确性。
3. 测量和记录数据:在实验过程中,需要准确测量和记录流量计的输出值、流体参数以及校正条件等数据。
4. 进行数据处理:根据实验数据进行数据分析和处理,可以使用拟合曲线等方法来确定校正系数和误差修正。
5. 定期重复校正:由于流量计的性能会随时间和使用条件发生变化,建议定期进行校正以保持其准确性和可靠性。
需要注意的是,流量计校正实验需要在实验室或特定设备中进行,需要遵循实验室安全操作规范,并且需要了解流量计的原理和使用说明,以确保实验的准确性和安全性。
流量计性能测定实验报告.doc
流量计性能测定实验报告.doc流量计性能是流量计在实际使用中的各种性能指标,包括测量精度、重复性、线性度、零点漂移等。
为了确保流量计能够在实际使用中达到预期效果,需要进行性能测定实验。
本文介绍了一次流量计性能测定实验并给出了实验结果和分析。
一、实验目的本次实验的目的是通过对流量计的测量精度、重复性、线性度和零点漂移等性能指标的测试,评估流量计的性能,并为实际使用提供参考。
二、实验原理本次实验采用的是标准溢流法,即在方形截面管道中进行液体流量的测量。
流量计的测量原理是基于流体运动定理,即根据质量守恒定律和动量守恒定律计算流量。
实验中使用的流量计是多点式浮子流量计,其原理是浮子随流体的流速变化而升降,通过浮子的位置变化实现流量的测量。
三、实验步骤1. 将流量计安装在实验系统中,并连接好管路。
2. 利用薄膜式生产流量计调节流量计刻度,使标准溢流法流量控制阀的开度按照规定的流量变化。
3. 开始实验前,先进行调零操作,将流量计的零点调整至真空状态,确保实验数据的准确性。
4. 开始实验,逐渐增大流量,记录流量计的读数。
四、实验结果根据实验测量数据,我们得到了流量计在不同流量下的性能指标,具体如下表所示:流量(L/min)|读数1(L/min)|读数2(L/min)|读数3(L/min)|平均值(L/min)|偏差| :--:|:--:|:--:|:--:|:--:|:--:|30|29.8|29.9|29.7|29.8|0.17%|40|39.7|39.8|39.9|39.8|0.25%|50|49.8|49.7|49.6|49.7|0.2%|60|59.6|59.5|59.8|59.6|0.17%|70|70.2|70.0|70.1|70.1|0.29%|五、实验分析流量计是一种重要的流体测量仪表,其性能的优劣直接影响到工业生产的质量和效益。
从实验数据来看,流量计的测量精度较高,偏差在0.3%以内,说明流量计在中低流量下有比较好的表现。
流量检验实验报告处理
一、实验目的1. 掌握流量计的校准方法,提高流量测量的准确性。
2. 熟悉不同类型流量计的构造、工作原理和适用范围。
3. 通过实验,了解流量计校准过程中可能遇到的问题及解决方法。
二、实验原理流量计是一种测量流体流量的仪表,其校准方法主要有容积法、速度法和质量法。
本实验采用容积法进行流量计校准。
容积法是通过测量单位时间内流过流量计的流体体积,从而得到流量计的示值。
其原理如下:Q = V/t式中:Q为流量,单位为m³/h;V为流体体积,单位为m³;t为时间,单位为h。
三、实验仪器与设备1. 流量计:孔板流量计、电磁流量计、涡轮流量计等。
2. 水箱:用于盛装待测流体。
3. 调节阀门:用于控制流量。
4. 时间计量器:用于测量时间。
5. 体积计量器:用于测量流体体积。
四、实验步骤1. 准备实验装置,确保各部件连接正确。
2. 将水箱充满待测流体,关闭调节阀门。
3. 打开调节阀门,让流体流入流量计。
4. 同时启动时间计量器和体积计量器,记录时间t和体积V。
5. 关闭调节阀门,停止流体流动。
6. 重复步骤3-5,进行多次测量,取平均值作为最终结果。
五、实验数据处理1. 计算每次测量的流量Q,公式为Q = V/t。
2. 计算多次测量的流量平均值Q_avg。
3. 比较流量计示值与计算得到的流量平均值,分析误差来源。
六、实验结果与分析1. 孔板流量计:实验结果显示,孔板流量计的示值与计算得到的流量平均值相差较小,说明孔板流量计的测量精度较高。
2. 电磁流量计:实验结果显示,电磁流量计的示值与计算得到的流量平均值相差较大,说明电磁流量计的测量精度较低。
分析原因可能是电磁流量计在测量过程中受到电磁干扰,或者流量计本身存在故障。
3. 涡轮流量计:实验结果显示,涡轮流量计的示值与计算得到的流量平均值相差较小,说明涡轮流量计的测量精度较高。
七、实验结论1. 本实验通过容积法对孔板流量计、电磁流量计和涡轮流量计进行了校准,验证了流量计的测量精度。
流量计性能测定实验报告
流量计性能测定实验报告离心泵性能实验报告北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100 学号:姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差?P、电机输入功率Ne以及流量Q(?V/?t)这些参数的关系,根据公式He?H真空表?H压力表?H0、N轴?N电??电??转、Ne?Q?He??以及??Ne可以得出102N轴du2p与雷诺数Re?离心泵的特性曲线;再根据孔板流量计的孔流系数C?u/00的变化规律作出C0?Re图,并找出在Re大到一定程度时C0不随Re变化时的C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差?P,根据已知公式可以求出不同阀门开度下的He?Q关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He:He?H真空表?H压力表?H0式中:H真空表——泵出口的压力,mH2O,H压力表——泵入口的压力,mH2OH0——两测压口间的垂直距离,H0?0.85m 。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入1泵的功率又比理论值高,所以泵的总效率为:??式中Ne——泵的有效效率,kW;Q——流量,m3/s;He——扬程,m;NeQ?He??,Ne? N轴102——流体密度,kg/ m3由泵输入离心泵的功率N轴为:N轴?N电??电??转式中:N 电——电机的输入功率,kW电——电机效率,取0.9;?转——传动装置的效率,一般取1.0; 2.孔板流量计空留系数的测定在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器两端连接。
流量计性能测定实验报告
流量计性能测定实验报告•精品2020-12-12【关键字】情况、方法、系统、务必、继续、平衡、合理、掌握、了解、规律、特点、需要、工程、作用、标准、关系、调节、指导篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3流量计性能测定实验实验3流量计性能测定实验一、实验目的1 •了解几种常用流量计的构造、工作原理和主要特点。
2•掌握流量计的标定方法(例如标准流量计法)。
3•了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。
4•学习合理选择坐标系的方法。
二、实验内容1•通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。
2•测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。
3•测定节流式流量计的雷诺数Re和流量系数C的关系。
三、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:式中:被测流体(水)的体积流量,m3/s;流量系数,无因次;流量计节流孔截面积,m2;流量计上、下游两取压口之间的压强差,Pa ;被测流体(水)的密度,kg/m3 o用涡轮流量计和转子流量计作为标准流量计来测量流量VS。
每一'个流量在压差计上都有一对应的读数,将压差计读数△ P 和流量Vs绘制成一条曲线,即流量标定曲线。
同时用上式整理数据可进一步得到C-Re关系曲线。
四、实验装置该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。
1 •本实验共有六套装置,流程为:A-*B (C~*D)E—F-* G->I o2•以精度0. 5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。
3•压差测量:用第一路差压变送器直接读取。
图1流动过程综合实验流程图⑴一离心泵;⑵一大流量调节阀;⑶一小流量调节阀; ⑷一被标定流量计;⑸一转子流量计;⑹一倒U管;⑺⑻(10)—数显仪表;⑼一涡轮流量计;(ID—真空表;(⑵一流量计平衡阀;(⑷一光滑管平衡阀;(16)—粗糙管平衡阀;(13)—回流阀;(⑸一压力表;(17)—水箱;(18)—排水阀;(⑼一闸阀;(20)—截止阀;出口压力取压点;b—吸入压力取压点;i-r —流量计压差;2-2'—光滑管压差;3-3'—粗糙管压差;4-49—闸阀近点压差;5-5'—闸阀远点压差;6-6'—截止阀近点压差;7-7'—截止阀远点压差;J-M—光滑管;K-L —粗糙管五、实验方法:1 •按下电源的绿色按钮,使数字显示仪表通电预热,调节第1路差压变送器的零点,关闭流量调节阀⑵⑶。
实验五 流量计性能测定实验
化工原理实验教学研究室
一、实验目的
⒈掌握流量计的标定方法。 ⒉了解节流式流量计流量系数Cv随雷诺数 Re的变化规律,流量系数Cv的确定方法。 ⒊了解几种常用流量计的构造、工作原理 和主要特点。 ⒋学习合理选择坐标系的方法。
化工原理实验教学研究室
二、实验原理
流体通过文丘里流量计时在流量计上、下 游两取压口之间产生压强差,它与流量的关 系为: qv= CvAv(2△Pf /ρ)1/2 用涡轮流量计作为标准流量计来测量流量 qv。每一个流量在压差计上都有一对应的读 数,将压差计读数△P和流量qv绘制成一条 曲线,即流量标定曲线。同时用上式整理数 据可进一步得到Cv—Re关系曲线。
2
1 . 725 m / s
q v CA
2P
0
9 . 01 / 3600 0 . 785 ( 0 . 025 )
2
Cv
qv A0 2P
2 12300 998 . 3
1 . 029
同时用上式整理数据可进一步得到C—Re关系曲线
实验报告中上表流速u 指的是管中的流速 , 求算时带d= 0.043m,求Cv时,带do =0.025 m
qv A0 2P 9 . 01 / 3600 0 . 785 ( 0 . 025 )
2
Cv
2 12300 998 . 3
1 . 029
10
流量(m3/h)
1 1000 10000 压差(Pa) 100000 1000000
按下变频器启动按1015组数据组数据即同即同化工原理实验教学研究室五注意流量计性能测定实验数据记录涡轮流量计仪表常数次升d0043mdo0025m文丘里流量计压差读数初始值00kpad0043mdo0025m文丘里流量计压差读数初始值00kpa序号涡轮流量计文丘里流量计文丘里流量计流量qv流速urecofkpapam3hms12五注意
流量计性能测试实验
流量计性能测试实验一、实验目的1.掌握流量计性能测试的一般实验方法;2.了解倒U型压差计的使用方法;3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线;4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。
二、实验装置与流程实验装置如图1所示,由水箱、管道泵、孔板流量计、文丘里流量计、倒U型管压差计、流向转换器、计量筒、各种阀门和不锈钢进、出水管道等组成。
A11-水箱; 2-切断阀; 3-管道泵; 4-切换阀; 5-切换阀; 6-文丘里流量计;7-孔板流量计; 8、9-倒U型管压差计; 10-流量调节阀; 11-流向转换器;12-计量筒; 13-放水阀; A1、B1、A2、B2—倒U型管切断阀; C1、C2-倒U型管平衡阀; D1、D2-倒U型管排气阀图1 流量计性能测试实验装置流程示意图水从水箱1由管道泵3输送至管路,分别流经文丘里流量计6、孔板流量计7所在测试管路和流量调节阀10后,通过流向转换器11到达计量筒12进行计量,然后返回水箱,循环使用。
实验测试管路有二段并联的水平管组成,自上而下分别用于孔板流量计和文丘里流量计的性能测试。
在每段测试管路的进口上,分别装有切换阀,用于选择不同的实验测试内容。
管路内流量由计量筒12和秒表配合进行测量,并由出口流量调节阀11调节流量,流体流过孔板流量计和文丘里流量计的压差可分别用与各流量计相连的倒U型管压差计9和8测量,流体的温度可用温度计直接测量。
三、原理和方法流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。
1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量:V= a ·h / (1)式中: V ——管内流体的流量,L/s ;a ——体积系数,即计量筒内水位每增加1cm 所增加的水的体积,本实验中a =0.6154L/cm ;h ——计量筒液位上升高度,h = h 1- h 0,cm ;h 1——计量筒内水位的初始读数,cm ; h 0——计量筒内水位的终了读数,cm ; ——与h 相对应的计量时间,s 。