高等代数与解析几何第七章
高等数学第七章向量代数与空间解析几何习题
解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
高等代数课件(北大版)第七章-线性变换§7.7
若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1
高代第7章习题参考答案
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数 讲义 第七章
(στ ) δ
= σ (τδ )
D( f ( x )) = f ′( x )
J ( f ( x ) ) = ∫ f ( t )dt
x
(2) Eσ = σ E = σ ,E为单位变换 (3)交换律一般不成立,即一般地,
( DJ ) ( f ( x ) ) = D ∫0 f ( t ) dt
x
στ ≠ τσ .
2.线性变换保持线性组合及关系式不变,即
若 β = k1α1 + k2α 2 + L + krα r , 则 σ ( β ) = k1σ (α1 ) + k2σ (α 2 ) + L + krσ (α r ).
例4. 闭区间 [a , b]上的全体连续函数构成的线性空间
C ( a , b ) 上的变换
σ ( X ) = AX , τ ( X ) = XB ,
∀X ∈ P n×n
则 σ ,τ 皆为 P n×n 的线性变换,且对 ∀X ∈ P n×n , 有
(στ )( X ) = σ (τ ( X )) = σ ( XB ) = A( XB ) = AXB , (τσ )( X ) = τ (σ ( X )) = τ ( AX ) = ( AX ) B = AXB .
= σ (τ (α )) + σ (τ ( β )) = (στ )(α ) + (στ )( β ), (στ )( kα ) = σ (τ ( kα )) = σ ( kτ (α )) = kσ (τ (α )) = k (στ )(α )
§7.1 线性变换的定义
2.基本性质
(1)满足结合律:
例1. 线性空间 R[ x ]中,线性变换
高等数学第七章空间解析几何与向量代数课件.ppt
D
b a BD
2 MB
b M
MA
1 2
(
a
b
)
MB
1 2
(
b
a
)
A
a
MC
1 2
(
a
b
)
MD
1 2
(
b
a
)
首页
上页
返回
下页
结束
C B
第9页,共33页。
三、空间直角坐标系
1. 空间直角坐标系的基本概念
过空间一定点 o ,由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点
Ⅲ
z z 轴(竖轴)
和
计算向量
的模 、方向余弦和方向角 .
解: M1M 2 ( 1 2, 3 2 , 0 2 ) (1, 1, 2 )
(1)2 12 ( 2)2 2
cos 1 , cos 2
2
2
2 ,
,
3
3
3
4
首页
上页
返回
下页
结束
第21页,共33页。
3. 向量在轴上的投影与投影定理
z
r
在三个坐标轴上的分向量:
cos
x r
x x2 y2 z2
z
r
o
y
x
首页
上页
返回
下页
结束
第19页,共33页。
cos x
r
cos y
r
cos rz
x x2 y2 z2
y x2 y2 z2
z x2 y2 z2
方向余弦的性质:
z
r
o
y
高等代数与解析几何第七章知识题7答案解析
习题7.4习题7.4.1设A 是一个n 阶下三角矩阵。
证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则A 不可对角化。
证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。
(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B λλλO21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。
又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=O,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。
习题7.4.2设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。
证明:(1)s V V V +++Λ21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。
证明:(1)取s V V V +++Λ21的零向量0,写成分解式有021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。
现用12,,,-s σσσΛ分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s ss s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。
高等代数和解析几何第七章(1~3习题集)线性变换和相似矩阵答案解析
第七章线性变换与相似矩阵习题7.1习题7.1.1判别下列变换是否线性变换?(1)设是线性空间中的一个固定向量,(Ⅰ),,解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。
(Ⅱ),;解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。
(2)在中,(Ⅰ),解:不是的线性变换。
因对于,有,,所以。
(Ⅱ);解:是的线性变换。
设,其中,,则有,。
(3)在中,(Ⅰ),解:是的线性变换:设,则,,。
(Ⅱ),其中是中的固定数;解:是的线性变换:设,则,,。
(4)把复数域看作复数域上的线性空间,,其中是的共轭复数;解:不是线性变换。
因为取,时,有,,即。
(5)在中,设与是其中的两个固定的矩阵,,。
解:是的线性变换。
对,,有,。
习题7.1.2在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换。
证明(表示恒等变换),,;并说明是否成立。
证明:在中任取一个向量,则根据,及的定义可知:,,;,,;,,,即,故。
因为,,所以。
因为,,所以。
因为,,所以。
习题7.1.3在中,,,证明。
证明:在中任取一多项式,有。
所以。
习题7.1.4设,是上的线性变换。
若,证明。
证明:用数学归纳法证明。
当时,有命题成立。
假设等式对成立,即。
下面证明等式对也成立。
因有,即等式对也成立,从而对任意自然数都成立。
习题7.1.5证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且。
证明:(1)设都是的逆变换,则有,。
进而。
即的逆变换唯一。
(2)因,都是上的可逆线性变换,则有,同理有由定义知是可逆线性变换,为逆变换,有唯一性得。
习题7.1.6设是上的线性变换,向量,且,,,都不是零向量,但。
证明,,,线性无关。
证明:设,依次用可得,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得。
高等代数与解析几何第七章习题7答案
习题7.4习题7.4.1设A是一个n阶下三角矩阵。
证明:(1)如果A的对角线元素aii a(i,j1,2,,n),则A必可对角化;jj(2)如果A的对角线元素a1122,且A不是对角阵,则aannA不可对角化。
证明:(1)因为A是一个n阶下三角矩阵,所以A的特征多项式为|E|()()(),又因a ii a jj(i,j1,2,,n),所以A有Aa11aa nn22n个不同的特征值,即A有n个线性无关的特征向量,以这n个线性无1为对角阵,故A必关的特征向量为列构成一个可逆阵P,则有PAP可对角化。
1(2)假设A可对角化,即存在对角阵2,使得ABn与B相似,进而A与B有相同的特征值1,2,,。
又因为矩阵A的特n征多项式为n|EA|(a11),所以12na11,从而a 11Ba22 aE11,于是对于任意非退化矩阵X,都有ann1,而A不是对角阵,必有X1BXBA,与1XBXXa11EXa11EB假设矛盾,所以A不可对角化。
习题7.4.2设n维线性空间V的线性变换有s个不同的特征值1,V i是i的特征子空间(i1,2,,s)。
证明:s,2,,(1)V1VV是直和;2s(2)可对角化的充要条件是 V 12。
VVVs证明:(1)取VV1V 的零向量0,写成分解式有2s1s0,其中iV i ,i1,2,,s 。
现用2, 2,,s1分别作用分解式两边,可得012s 01122ss。
s 1 1 1s 2 1 2s s 1 s 0写成矩阵形式为 11 s 1 1( , 1 , 2,s11 22s )。
(0,0,,0)1ss s11 1s 11 由于1,2,,是互不相同的,所以矩阵ss1122B 的行列式不1 ss s1 为零,即矩阵B 是可逆的,进而有 (11 1s BBB ,(1,2,,s )(0,0,,0)。
,,,)(0,0,,0)(0,0,,0) 2这说明V 1V 2V s 的零向量0的分解式是唯一的,故由定义可得 V 12是直和。
高等代数.第七章.线性变换.课堂笔记
第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。
高等代数课件 第七章
二、坐标变换
设V是F上一个n 维向量空间, {1, 2 ,,n}
是它的一个基, ξ关于这个基的坐标是 (x1, x2,, x而n ),
σ(ξ)的坐标是
( y1, y2,,问yn:).
( y1, y2,和, yn )
(x1, x2,, xn ), 之间有什么关系?
设
x11 x22 xnn
(5)
k( ) k k ,
(6)
(k l) k l ,
(7)
(kl) k(l ),
(8)
1 ,
这里k,l是F中任意数,σ,τ是V的任意线性变换.
定理7.2.1 L(V)对于加法和数乘来说作成数 域F上一个向量空间.
二、线性变换的积
设 , L(V ),容易证明合成映射 也是V上的 线性变换,即 L(V ). 我们也把合成映射 叫
坐标. 3.已知线性变换关于某个基的矩阵,熟练地求出σ关于
另一个基的矩阵。 三、重点难点:
线性变换和矩阵之间的相互转换, 坐标变换, 相似矩阵。
一、线性变换的矩阵
设V是数域F上一个n维向量空间,令σ是V的一 个线性变换,取定V的一个基 1,2,,令n,
(1) a111 a212 an1n (2 ) a121 a222 an2n
二、教学目的:
掌握线性映射的加法、数乘和积定义,会做运算. 掌握线性变换的多项式, 能够求出给定线性变换的多 项式.
三、重点难点:
会做运算.
一、线性变换的加法和数乘
令V是数域F上一个向量空间,V到自身的一个线 性映射叫做V 的一个线性变换.
我们用L(V)表示向量空间和一切线性变换所成的 集合,设 , L(v), k F, 定义
所以 是V的一个线性变换
高等代数课件(北大三版)--第七章-线性变换
尤其,向量空间V 在σ之下旳象是W 旳一种
子空间,叫做σ旳象, 记为 Im( ),
即 Im( ) (V ).
另外,W 旳零子空间 { 0 } 在σ之下旳原象是 V 旳一种子空间,叫做σ旳核,
记为 Ker( ),
即 Ker( ) { V | ( ) 0}.
定理7.1.2 设V和W是数域F向量空间,而是一种线 性映射,那么 :V W (i) σ是满射 Im( ) W (ii) σ是单射 Ker( ) {0} 证明 论断(i)是显然旳,我们只证论断(ii) 假如σ是单射,那么ker(σ)只能是具有唯一旳零向量. 反过来设ker(σ) = {0}.
轻易证明上面旳两个条件等价于下面一种条件:
③对于任意 a,b F 和任意 , V ,
(a b) a ( ) b ()
在②中取 a 0,对③进行数学归纳,能够得到:
(1) (0) 0
(2) (a11 ann ) a1 (1) an (n )
例1 对于 R 2 旳每历来量 x1, x2 定义 x1, x1 x2 , x1 x2 R3
x1
(1
,
2
,,
n
)
x2
.
xn
因为σ是线性变换,所以
( ) x1 (1) x2 (2 ) xn (n )
(2)
x1
(
(1),
(
2
),,
(
n
))
x2
.
xn
将(1)代入(2)得
x1
(
)
(1,
2
,,
n
)
A
x2
.
xn
最终,等式表白, ( )关于(1,2 ,n ) 旳坐标所构成 旳列是
高等代数与解析几何第七章习题7答案
习题习题设A 是一个n 阶下三角矩阵。
证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则A 不可对角化。
证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。
(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B λλλO21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。
又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=O,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。
习题设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。
证明:(1)s V V V +++Λ21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。
证明:(1)取s V V V +++Λ21的零向量0,写成分解式有021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。
现用12,,,-s σσσΛ分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s ss s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。
高等代数第7章习题解
第七章习题解答习题7.11、 在4R 中,设11022213(,,,),(,,,)αβ=-=--,计算:(1)α与β的内积;(2)α与β的长度;(3)α与β的距离;(4)α与β的夹角; 解:(1)22064αβ⋅=++-=-; (2)||||αβ====(3)||αβ-==(4)9cos ||||αβθαβ⋅===-=-所以9,arccosαβπ<>=-2、求齐次线性方程组20x y +=的所有解,说明其任一解与向量(1,2)的关系。
解这个方程组的通解为21x k y ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭,记2112(,),(,)αβ=-=,则0αβ⋅=,所以这两个向量正交。
3、证明:在2R 中,以坐标原点为起点,单位圆周上的点为终点的向量是单位向量。
证明:以坐标原点为起点,单位圆周上的点为终点的向量的长度为1,所以以坐标原点为起点,单位圆周上的点为终点的向量是单位向量。
4、证明定理7.1.2定理内容:(1)()()k k αβαβ⋅=⋅;(2)()αβγαβαγ⋅+=⋅+⋅; (3)00α⋅=;(4)1111()s tsti ij j i j i j i j i j x y x y αβαβ====⎛⎫⎛⎫⋅=⋅ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑证明:设121212(,,,),(,,,),(,,,)n n n a a a b b b c c c αβγ=== ,那么 (1)1122()()()()n n k a kb a kb a kb αβ⋅=+++1122()()n n k a b a b a b k αβ=+++=⋅ (2)111222()()()()n n n a b c a b c a b c αβγ⋅+=++++++11112222()()()n n n n a b a c a b a c a b a c =++++++11221122()()n n n n a b a b a b a c a c a c =+++++++αβαγ=⋅+⋅(3)1200000n a a a α⋅=+++= (4)略5、证明度量矩阵是可逆矩阵。
高等代数(第7章)
例如,零变换将线性无关的向量组变成线性相关 的向量组.
§7.2 线性变换的运算
设V是数域P上的线性空间, 、是V的两个线 性变换. 1.线性运算 (1)加法: 与的和定义为 ( +)()=()+() ( V) (2)数量乘法:数域P中的数k与的数量乘法定义为 (k)( ) =k(()) ( V) (3) 负变换:的负变换 -定义为 (-)()= - () ( V) 结论:线性空间V上的线性变换的全体,对于如上定 义的加法与数乘运算构成数域P上的线性空间.即
例2 设是几何空间中一个固定的非零向量, 将每个 向量变到它在上的内射影的变换
( , ) ( ) ( , ) .
( )
是一个线性变换.
2.线性变换的简单性质 设 是数域P上线性空间V的一个变换. (i)(0)=0, (-)= - (), V. (ii)(k11+…+ kmm)= k1(1) +…+ km(m) i V, ki P (i=1,2,…,m) (iii) 设i V, (i=1,2,…,m) .若 1,2,…,m线性相关,则 (1),(2),…,(m)线性相关;反之不然.
线性变换被基向量的像唯一确定!
定理1: 设1, 2,…,n是数域P上n维线性空间V 的一组 基, 1,2,…,n是V中任意n个向量,则存在唯一的线性 变换使 (j)= j , j=1,2,…,n.
证明:(i)存在性
x i i V , 定义V的变换: x i i .
仍是线性变换
()()=(()) ( V)
运算律: (i)()= () (ii) (+) = + , (+)+= +(+) (iii)k()=(k)= (k) 注意:线性变换的乘积一般是不可交换的,即 . 例1 在P22中,定义线性变换、 、为
高数答案第七章
第七章空间解析几何与向量代数§向量及其线性运算必作题:P300 —301 :1, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 18, 19. 必交题:1. 求点(aM分别关于⑴各坐标而:⑵"坐标轴:⑶坐标原点的对称点的坐标.解:(1) xoy 而(a,b, ? c)理oz 面(? a,b , c) , xoz 面(a 广bQ ;(2) ox 轴(a A brc) z oy 轴(? ab? c) , oz 轴(? a,-b,c);(2)关于原点(? a,-b? c)a3、坐标而上的点与坐标轴上的点的坐标各有什么特征,指出下列各点的位置A(3,4,0), 3(0,4,3), C(3,0,0), £ >(0-1,0).解: xoy 而:z=0, yoz 而:x=0> xoz 而:y=0 ?ox 轴:y=O,z=O. oy 轴:x=0,z=0, oz 轴:x=0z y=0tA在xoy而上,B在yoz而上,C在x轴上,D在y轴匕4、在z 轴上求与点AM, 1,7) 和点B(3,5,-2) 等距离的点的坐标.14 14 解:设 C (0, 0, z),有|AC| = |BC|,解得:z=—,所求点为(0Q —).9 95、设“ =a-b + 2c.v = -a + 3b-c, 试用a.b.c 表示2u-3v? 解:2M一3” = 5a —1 仍+ 7c5、已知两点和M,3,0.2), 求向的模,方向余弦和方向角.解:={-1-72,1} , = 2 ,方向余弦为cos a =~~方向角汀上疗= cos y =—"辛: :P = ---- t Y ——4 3解:设0 "戯的模厨 i 方向余弦= = = 求2={5},贝2 2* = x/J * “ = {o 丄苗}7、设有向疑片A , kR| = 2,它与x 轴、y 轴的夹角分别为彳和?如果已知人(1,0,3),求g 的坐标.解:设巴的坐标为(x,y,z ) ?叶马={x-l,y,乙一 3},-八一! ■= cos —=—,所以x = 2 :I = cos-=八,所以 y = V2 ,又障可=2,,所以 J1 + 2 + (Z _3)2 =2,解得 z = 2 或 z =4,所以人的坐标为(2,72,2)或者(2,72,4).& 求平行于向疑方={6,7, — 6}的单位向量. ){6,7,-6},即必作题: P309-310 : 1, 2, 3, 4, 6, 7, 8, 9. 必交题:1、已知向量“ ={1, 一 2,2}与/? = {2,3,几}垂直,向 M c = {1,1,-2}与2={22平行,求兄和“的值解:? =736 + 49 + 36 = 11,与N 平行的单位向疑为土丄 数量积向量积混合积2、已知向Sa = 2i-3j + k9b = i-j + 3k 9c = i-2j A 别计算以下各式⑴(a A B)c-(a A c)b; (2) (a + b)x(b + c) ; (3) (axb A c.解:(1) - (a ? c)b = 8c - 8b = -8 了 - 24 斤(2) (A+b)x(b+c) = (A -4j+4k)x(2i-3j+3k) = -j-k2 一 31⑶(“ xb)0= 1-1 3=2 1 -2 0OAxOB : 解:-37-3j3、已知 OA=l+3k,OB = J + 3k f 求 AABO 的而积. AABO 的而积 S = A \OA X OB\ =.§曲面及其方程必作题;必交P318-319 : 1、2、5、6、7、8、9、10.1、一动点与两従点 A(2,3,l)和B(4,5,6)等距离,求该动点的轨迹方程解:设动点因为网=阿所以(x-2)2+(y-3) 2+(z-l) 2=(x-4) 2+(y-5)2 + (z-6)2,解得动点的轨 迹方程为 2x + 2y + 5z.2、指出下列方程在平而解析几何和空间解析几何中分别表示什么图形2 2解:(DxOy 坐标而上椭圆一+ — = 1绕6轴旋转形成,或者妝力坐标而上椭圆一+ A - 4 =1绕6轴旋转形成。
高等代数第7章线性变换PPT课件
特征向量定义
对应于特征值m的非零向量x称为A的对应于特征值 m的特征向量。
设A是n阶方阵,如果存在数m和非零n维列向 量x,使得Ax=mx成立,则称m是A的一个特 征值。
求解方法
通过求解特征多项式f(λ)=|A-λE|的根得到特 征值,再代入原方程求解对应的特征向量。
特征多项式及其性质分析
特征多项式定义
量子力学
在量子力学中,特征值和特征向量用 于描述微观粒子的状态和能量级别。
图像处理
在图像处理中,特征值和特征向量可 以用于图像压缩和图像识别等任务。
经济学
在经济学中,特征值和特征向量可以 用于分析和预测经济系统的稳定性和 发展趋势。
04
线性变换对角化条
件及步骤
可对角化条件判断方法
判断矩阵是否可对角化
线性变换的性质与 矩阵性质对应
线性变换的性质如保持加法、 数乘等运算可以通过其对应的 矩阵性质来体现。例如,两个 线性变换的和对应两个矩阵的 和;线性变换的复合对应两个 矩阵的乘积等。
02
线性变换矩阵表示
法
标准基下矩阵表示法
定义
设V是n维线性空间,e1,e2,...,en 是V的一个基,T是V上的一个线 性变换,则T在基e1,e2,...,en下的 矩阵A称为T在基e1,e2,...,en下的 标准矩阵表示。
计算矩阵的高次幂
对于可对角化的矩阵A,可以利用对角化公式A=PDP^(-1)将A的高次幂转化为对角矩阵D的高次幂, 从而简化计算过程。
求解线性方程组
对于系数矩阵为可对角化矩阵的线性方程组,可以通过对角化将系数矩阵转化为对角矩阵,进而 简化方程组的求解过程。
计算行列式和逆矩阵
对于可对角化的矩阵A,其行列式值等于对角矩阵D的行列式值,逆矩阵可以通过对角化公式求得, 从而简化相关计算。
高等代数第7章线性变换[1]
推论 设e1, e2, …, en是线性空间V的一
组基, 如果V的两个线性变换A与B在这
组基上的作用相同,即
Aei = Bei ,
则必有 A = B.
推论 设x1, x2, …, xs是n维线性空间V的一
组线性无关向量, a1,a2,…,as是V中任意取
二、线性变换在一组基下的矩阵
定义 设e1, e2, …, en是数域P上n维
线性空间V的一组基,A是V的线性变
换,则基向量的象可唯一地被基线
性表示为
Ae1 a11e1 a21e 2 an1e n
Ae 2 a12e1 a22e 2 an2e n
Ae n a1ne1 a2ne 2 anne n
D是一个线性变换,称为微分变换.
例7 闭区间[a, b]上所有连续函数全体 组成实数域R上的线性空间C0(a, b). 定义变换
x
则J是一个J(线f (性x))变=换.a f (t)dt
二、线性变换的简单性质
1、设A是线性空间V的一个线性变换,则
A(0) = 0, A(-a) = - A(a)
2、线性变换保持向量的线性组合与线性 关系式不变.即若
,
定义 设V是数域P上的n维线性空间,
A :VV为V的一个变换, 若对任意a,bV
和数kP, 都有
A(a + b ) = A(a) + A(b)
A(ka) = kA(a)
则称A是线性空间V的一个线性变换. (linear transformation).
称A(a)或Aa为向量a在线性变换A下的
象(image).
2、(1)交换律 A +B =B +A (2)结合律 (A+B)+C =A+(B+C) (3)零变换 A+O =A (4)负变换 A+(-A) = O
高职课件《高等数学》第七章空间解析几何课件
本章内容
1 空间直角坐标系和向量 2 向量的数量积与向量积 3 空间平面与直线的方程 4 曲面与空间曲线
7.1 空间直角坐标系和向量
7.1.1 空间直角坐标系
在空间取三条相互垂直空间直角坐标系 O-xyz。
利用前述负向量的概念,我们还可以定义两个向量 a 和 b 的差为:
a b = a b
按三角形法则,向量 a 和 b 的差 a b 的求法如下:把 a 与 b
的起点放在一起,则 a b 即是以 b 的终点为起点,以 a 的终点
为终点的向量(如图7-7所示)。
容易验证,向量的加法有下列运算规律:
通常把 x 轴,y 轴放置在水平平面上,z 轴垂直于水平平面,并 规定x 轴,y 轴和z 轴的位置关系遵循右手螺旋法则:右手四指握 拳,指向为x 轴的正向,然后四指沿握拳方向转向y 轴的正向,则大 姆指所指方向为z轴正向(如图7-1所示)
在空间直角坐标系O-xyz 中,点O 称为坐标原点,简称原点; x 轴,y 轴,z 轴又分别称为横轴、纵轴与竖轴,三条数轴统称为 坐标轴;由任意两条坐标轴所确定的平面称为坐标面,共有xOy、 yOz、zOx 三个坐标面;三个坐标面把空间分隔成八个部分,每个 部分依次分别称为第一、第二直至第八卦限,其中第一卦限位于x, y,z 轴的正向位置,第二至第四卦限也位于xOy面的上方,按逆 时针方向排列;第五卦限在第一卦限的正下方,第六至第八卦限
三角形法则还可以推广到求任意有限个向量的和。例如,已
知向量a ,b ,c ,d ,求 a + b + c + d 的和 AB。
根据自由向量的特点,只要依次把后一个向量的起点移至前 一个向量的终点上,然后从a的起点向d 的终点所引的向量就是四
高等代数第七章综合例题分析与小结
内容小结
三、熟练掌握子空间正交的定义及子空间正交补的定义; 熟知欧氏空间的的任何单位正交向量组都可以扩充为标准 正交基。
四、正交变换与对称变换 1、熟练掌握正交变换的定义与等价命题 2、掌握在标准正交基下正交变换与正交矩阵的关系 3、熟练掌握对称变换的定义与等价命题 4、掌握在标准正交基下对称变换与对称矩阵的关系
第七章综合例题分析与小结
内容小结
一、欧氏空间的基本概念 1、熟练掌握内积的定义与性质,理解欧氏空间是特殊的线 性空间 2、熟练掌握向量长度、夹角、距离的定义及计算公式
3、熟练掌握向量正交的定义、单位向量的定义和单位化向、熟练掌握标准正交基的定义及等价命题
5、熟练掌握对称矩阵的特性,特别是对称矩阵与对角化 的关系
6、熟练掌握将对称矩阵对角化的方法与步骤