运放运算电路1

合集下载

集成运算放大器的基本运算电路

集成运算放大器的基本运算电路

ui2 u
u i3
u
0
R1
R2
R3
2.加减运算电路
ui1
R1
Rf
ui2
R2
N
-∞
ui3
R 3
P

R
ui4
4
R'
当ui1、ui2短路时 当Ui1、Ui2、Ui3、Ui4共同作用时
若又满足Rf =R1=R2=R3=R4时则
利用叠加定理求uo与ui1、ui2、 ui3各ui4之间的关系
uo
当ui3、ui4短路时
(ui1 ui2 ui3 )
Uo (ui1 ui2 ui3 )
上式中比例系数为-1,实现了加法运算。
2)同相求和运算电路
R'
ui1 i1
R 1
ui2 i2
R2
ui3 i3
R 3
i f
Rf
N

u-

P u+ +
R1//R2//R3=R′//Rf
根据 “虚断”概念
uo
i1+i2+i3=0
ui1 u
2.一般单限比较器
图4-22所示的电路是一般单限比较器. UREF为外加参考电压。 集成运放的反相输入端接信号ui,同相输入端接参考电压UREF。
由于Aod→∞,所以当U﹣<U+时,ui<UREF时,受电源电压的 限制,uo只能为正极限值UOM,即UOH=﹣UOM; 反之,当U﹣>U+时,uo为负极限值,即UOL=﹣UOM。 其传输入特性如图4-22(b)实线所示。
I1
U i1 R1
因虚地, u﹢=u﹣=
,
I2
Ui2 R2

集成运放组成的基本运算电路

集成运放组成的基本运算电路

K2
C 1μF
R2 1M
K1 +15V
vS

R1 100K
A
vO

R′ 100K
-15V
vo
1 R1
t
0 vsdt
积分运算电路
4. 积分运算电路
将实验数据及波形填入下述表格中:
vs波形
vs幅度值
vo波形
vo频率
vo幅度值
5. 用积分电路转换方波为三角波
电路如下图所示。图中电阻R2的接入是为了抑制由 IIO、VIO所造成的积分漂移,从而稳定运放的输出零 点。
A
vO
υS

R′ 10K
-15V
v0
(1
RF R1
)vs
同相比例运算电路
2. 实现同相比例运算
将实验数据及波形填入下述表格中:
输入信号vs1 (V)
有效值
波形
输入信号vs2 (V)
有效值
波形
有效值
输出电压vo (V)
峰值
波形
注:上表针对正弦波输入,若是其他信号输入表作相应改变。
3. 减法器(差分放大电路)
减法器(差分放大电路)运算仿真电路
3. 减法器(差分放大电路)
减法器(差分放大电路)运算仿真电路
3. 减法器(差分放大电路)
将实验数据及波形填入下述表格中:
输入信号vs1 (V)
有效值
波形
输入信号vs2 (V)
ቤተ መጻሕፍቲ ባይዱ
有效值
波形
有效值
输出电压vo (V)
峰值
波形
注:上表针对正弦波输入,若是其他信号输入表作相应改变。
vs波形

模电实验模拟运算放大电路(一)

模电实验模拟运算放大电路(一)

实验目的和要求:① 了解运放调零和相位补偿的基本概念。

② 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。

③ 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。

实验原理:预习思考:1、 设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 电路图如P20页5-1所示,电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ2、 设计一个同相比例放大器,要求:|A V|=11,Ri>100KΩ,将设计过程记录在预习报告上;R F R LVo电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ 3、 设计一个电路满足运算关系 VO= -2Vi1 + 3Vi2减法运算电路:1123213111113232)()()(i f i f i f i i O V R R V R R R R R R V R R R V R R R V V -++=++-+=3)()(32131=++R R R R R R f ,0,22211==⇒=R R R R R f f取Ω=Ω=Ω=Ω=K R K R K R K R f 100,0,20,10321实验电路如实验内容:1、反相输入比例运算电路(I ) 按图连接电路,其中电源电压为±15V ,R 1=10 kΩ, R F =100 kΩ, R L =100 kΩ, R P =10 kΩ//100 kΩAR1R F Rp=R F //R1R LVoVi+Vcc-Vcc输入端接地,用万用表测量并记录输出端电压值,此时测出失调电压0.016 V 分析:失调电压是直流电压,将会直接影响直流放大器的放大精度。

直流信号测量:Vi/V V O /V Avf测量值 理论值 -2 14.25 -7.125 -10 -0.5 4.98 -9.96 -10 0.5 -5.02 -10.04 -10 2-12.87-6.435-10实验结果分析:运算放大器的输出电压摆幅受器件特性的限制,当输入直流信号较大时,经过运放放大后的输出电压如果超过V OM ,则只能输出V OM 的值。

运放基本应用电路

运放基本应用电路

运放基本应用电路运放基本应用电路运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。

若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。

当反馈网络为线性电路时可实现乘、除等模拟运算等功能。

运算放大器可进行直流放大,也可进行交流放大。

R f使用运算放大器时,调零和相位补偿是必须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。

U O 1.反相比例放大器 电路如图1所示。

当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。

若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。

放大器的输入电阻为:R i ≈R 1直流平衡电阻为:R P = R f // R 1 。

其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。

R 1的值应远大于信号源的 O 内阻。

2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻很低的特点,广泛用于前置放大器。

电路原理图如图2所示。

当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为:1111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。

同相放大器的输入电阻为:R i = r ic其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。

若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。

此时由于放大器几乎不从信号源吸取电流,因此 U可视作电压源,是比较理想的阻抗变换器。

1倍运算放大器电路

1倍运算放大器电路

1倍运算放大器电路1.引言1.1 概述概述:1倍运算放大器电路是一种电子电路,用于将输入信号放大至相同的输出信号。

它是一种特殊的电路,可以将输入信号放大一倍,并将其输出。

1倍运算放大器电路通常由运算放大器、电阻网络和反馈路径组成。

运算放大器是这个电路中最重要的组件,它能够增大电压信号的幅度,并将其输出给下一级电路。

电阻网络用于确定输入和反馈路径之间的放大倍数,使得输出信号等于输入信号的两倍。

1倍运算放大器电路具有广泛的应用领域。

它可以用于信号放大、滤波和电路调节等方面。

在音频放大器、通信设备和仪器测量中,1倍运算放大器电路常常被用于放大小的输入信号,从而提高信号的强度和清晰度。

1倍运算放大器电路的优势在于其简单性和灵活性。

由于其基本原理简单明了,所以它的设计和实现相对容易。

此外,它的输出信号与输入信号成正比,因此可以轻松进行信号放大和缩小的控制调节。

未来,1倍运算放大器电路可能会在更多的领域得到应用。

随着科技的发展和需求的增长,对于信号放大和调节的需求将会不断增加。

因此,1倍运算放大器电路有望进一步发展和改进,以适应不同领域的要求,并在电子电路设计中扮演重要的角色。

1.2文章结构1.2 文章结构本文将按照以下结构来展开讨论1倍运算放大器电路的相关内容:1. 引言:首先,我们将对1倍运算放大器电路进行概述,介绍其基本原理和作用。

2. 正文:2.1 什么是1倍运算放大器电路:在这一部分,我们将详细解释1倍运算放大器电路的定义和组成部分,包括不同的器件和元件,并介绍其基本工作原理。

2.2 1倍运算放大器电路的应用领域:在这一部分,我们将探讨1倍运算放大器电路在实际应用中的一些具体领域,如通信、测量和控制等,并举例说明其使用的优势和效果。

3. 结论:3.1 1倍运算放大器电路的优势:在这一部分,我们将总结1倍运算放大器电路的优势和特点,包括其高增益、低失真和稳定性等方面的优势,并分析其在实际应用中的作用。

经典的运算放大器基本电路大全

经典的运算放大器基本电路大全

运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明Voh 和Vol 。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3V 也或者会更低。

常用运算放大器16个基本运算电路

常用运算放大器16个基本运算电路

5. 微分运算电路
微分运算电路如图 5 所示,
XFG1
R2 15kΩ
C2
22nF
V3
R1
C1
4
12 V
2
1kΩ
22nF
U1A
1
3
T L082CD
8
V2 12 V
XSC1
A +_
B +_
Ext Trig +
_
图5
电路的输出电压为 uo 为:
uo = −R2C1 dui dt
式中, R2C1 为微分电路的时间常数。若选用集成运放的最大输出电压为UOM ,
式中,Auf = 1+ RF / R1 为同相比例放大电路的电压增益。同样要求 Auf 必须小于 3, 电路才能稳定工作,当 f = fo 时,带通滤波器具有最大电压增益 Auo ,其值为:
Auo = Auf / (3 − Auf )
10. 二阶带阻滤波电路
二阶带阻滤波电路如图 10 所示,
C1
1nF R1
_
图 15 全波整流电路是一种对交流整流的电路,能够把交流转换成单一方向电 流,最少由两个整流器合并而成,一个负责正方向,一个负责负方向,最典 型的全波整流电路是由四个二极管组成的整流桥,一般用于电源的整流。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需 要中心抽头、制造麻烦,整流二极管需承受的反向电压高,故一般适用于要 求输出电压不太高的场合。
R1 10kΩ
4 2
12 V
U1A 1
3
8 TL082CD
R3 9kΩ
V2 12 V
D2 1N4148
XSC1
A +_

运算放大器详细的应用电路(很详细)

运算放大器详细的应用电路(很详细)

积分电路的其它用途:
去除高频干扰
将方波变为三角波
移相
在模数转换中将电压量变为时间量
§8.3?积分电路和微分电路
8.3.2?微分电路
微分实验电路
把三角波变为方波
(Vi:三角波,频率 1KHz,幅度 0.2V)
输入正弦波
(Vi:正弦波,频率 1KHz,幅度 0.2V)
思考:输入信号与输出信号间的相位关系?
根据与 R1?、Rf?的关系,集成运放两输入端外接电阻的对称条件。
计算出:R=3979Ω?取 R=3.9KΩ 2.根据Q值求和,因为时,根据与、的关系,集成运放两输入端外接电阻的对称条件
例题 1 仿真结果 例题与习题 2 LPF 例题与习题 2 仿真结果 例题与习题 3 HPF 例题与习题 3 仿真结果 例题与习题 4 例题与习题 4 仿真结果 vo1:红色 vo?:蓝色

e.?全通滤波器(APF)?
4.?按频率特性在截止频率 fp 附近形状的不同可分为 Butterworth,?Chebyshev?和?Bessel 等。 理想有源滤波器的频响: 滤波器的用途 滤波器主要用来滤除信号中无用的频率成分,例如,有一个较低频率的信号,其中包含一些较高频率成分的
干扰。滤波过程如图所示。 §8.6?有源滤波电路 8.6.2?低通滤波电路?(LPF) 低通滤波器的主要技术指标
组成:简单 RC 滤波器同相放大器特点:│Avp?│>0,带负载能力强缺点:阻带衰减太慢,选择性较差。 二.?性能分析
有源滤波电路的分析方法: 1.电路图→电路的传递函数 Av(s)→频率特性 Av(jω) 2.?根据定义求出主要参数 3.?画出电路的幅频特性 一阶 LPF 的幅频特性: 8.6.2.2?简单二阶?LPF

运放基本电路全解析!

运放基本电路全解析!

运放基本电路全解析!我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明Voh 和Vol 。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3V 也或者会更低。

运算放大电路

运算放大电路

比较器电路本身也有技术指标要求:如精度、 响应速度、传播延迟时间、灵敏度等,大部分 参数与运放的参数相同。在要求不高时可采用 通用运放来作比较器电路。如在A/D变换器电 路中要求采用精密比较器电路。 由于比较器与运放的内部结构基本相同,其 大部分参数(电特性参数)与运放的参数项基本 一样(如输入失调电压、输入失调电流、输入偏 置电流等)。
大学生电子设计大赛系列讲座
集成运算放大电路
物理系 葛汝明
运算放大电路

运算放大电路具有较高的输入阻抗,较大的负载能 力,很高的开环放大倍数,而芯片内部结构复杂, 而外部结构简单,所以得到广泛的应用,我们通常 无需了解其内部的结构,只需熟悉其管脚的排列和 一些基本的电气参数就可以应用了。但是,了解一 些基本的电路原理,也有助于更好的使用运算放大 电路。
Vo
反相比例运算电路
Rf R1
Vi
Af
Rf R1
基本运算原理电路图
2.同相比例运算: 由于:U+ = UI+ = I- = 0 由于反相输入端不再为 “虚地”点,且输入电流 Ii=0,故: IR = If 即:
Vo (1 Rf R1 )Vi
)
A f (1
Rf R1
3.反相加法运算电路:
4、偏置电路
偏置电路用于设置集成运放电路中各级放大电路的静态工 作点。与分立元件不同的是分立元件采用电压源供电,而 集成运放采用电流源电路为各级提供合适的集电极(或 发射极、漏极)静态工作电流,从而确定了合适的静态工 作点,保证了其工作的条件。
集成运放的主要性能指标
1.差模开环放大倍数:AOd 2.共模抑制比:KCMR 3.差模输入电阻:RId 4.输入偏置电流:IIB 5.-3dB带宽: fH 6.输入失调电压及其温漂:UIO, dUIO/dT 7.输入失调电压及其温漂:IIO , dIIO/dT

集成运算放大器基本运算电路

集成运算放大器基本运算电路

集成运算放大器的基本运算电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路(1)反相比例运算电路电路如图1所示,对于理想运放,该电路的输出电压与输入电压之间的关系为uO=-ui图1 反相比例运算电路为了减小输入偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1||RF。

(2)同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为)ui当R1→∞时,uO=ui,即得到如图3所示的电压跟随器。

图中R2=RF,用以减小漂移和起保护作用。

一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。

图2 同相比例运算电路图3 电压跟随器(3)反相加法电路电路如图4所示。

图4 反相加法运算电路输出电压与输入电压之间的关系为uO=()R3=R1||R2||RF (4) 减法运算电路对于图5所示的减法运算电路,当R1=R2,R3=RF时,有如下关系式uO=(ui2-ui1)图5 减法运算电路(5)积分运算电路反相积分电路如图6所示。

在理想化条件下,输出电压uo等于uo(t)= —式中“—”号表示输出信号与输入信号反相。

uc(o)是t=0时刻电容C两端的电压值,即初始值。

图6 积分运算电路如果ui(t)是幅值为E的阶跃电压,并设uc(o)=0,则—即输出电压uo(t)随时间增长而线性下降。

显然时间常数R1C的数值大,达到给定的uo值所需的时间就长。

积分输出电压所能达到的最大值受集成运放最大输出范围的限制。

在进行积分运算之前,首先应对运放调零。

为了便于调节,将图中K1闭合,通过电阻R2的负反馈作用帮助实现调零。

但在完成调零后,应将K1打开,以免因R2的接入造成积分误差。

K2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压uc(o)=0。

运放电路

运放电路

运放电路何为运放电路???由运算放大器组成的电路,简称为运放电路。

这些电路可以说是五花八门,是我们学习模拟电子技术的一个重要内容,更是一个电子工程师必须掌握的电路之一。

运放电路有多种类型,是不是我们把它们牢牢记住就行了呢??显然不是啦!作为知识的搬运工,我很不建议大家这样做啦!毕竟电路是会变的,换个套路考你就懵逼了,所以学习运放还是应该理解它,消化它。

其实,运放也没想象的那么难啦!今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

只要我们熟练掌握“虚短”和“虚断”两个”小武器”,就能在沙场上将“运放”这个敌人打败啦!虚短和虚断“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

(输入差模电压不大于1mv)“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性 称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

(差模输入电阻无穷大)运放电路类型下面给大家详细讲解几种经个深入的理解。

1.反向运算电路分析: Vi 输入信号,R2由虚短,得V-=V+=0;因此,流经R1电流Ir1=(Vi 由虚断,得Ir1=I2;I2=-Vou 所以Vout=-Vi*R2/R1这就是传说中的反向放大器2.同向运算电路几种经典的运放电路,让大家能对运放电路有R2反馈电阻,Vout 输出信号 1=(Vi-V-)/R1=Vi/R1 Vout/R2; 放大器分析过程啦!!是不是很简单啊??电路有一??哈哈分析:Vi输入信号,R1反馈电阻,Vout输出信号由虚短,得Vi=V-;再根据虚断,可知R1,R2可近似看成串联,则流经R1,R2的电流相等,即Ir1=Ir2;(Vout-V-)/R1=V-/R2即(Vout-Vi)/R1=Vi/R2;故Vout=ViR1/R2-Vi=Vi(R1/R2-1);认真看看,这个电路是不是跟之前分析得反向放大电路只差一个符号呢??没错,这就是同向放大器,是不是很惊喜,很简单呢?哈哈哈!!3.加法运算电路先分析图三,V1,V2输入信号,R3反馈电阻,Vout输出电压由虚短,得V-=V+=0;由虚断,可知流经R1,R2和R3电流分别为Ir1=V1/R1;Ir2=V2/R2;Ir3=-Vout/R3;再根据基尔霍夫电流定律,可知流经R3得电流等于Ir1+Ir2所以,Ir3=Ir1+Ir2即-Vout/R3=V1/R1+V2/R2,若取R1,R2,R3值相同,则-Vout=V1+V2;再分析图四,V1,V2输入信号,R3反馈电阻,Vout输出电压由虚断,我们可以知道R3,R4串联,流过电流相等,即Ir3=Ir4=Vout/R3+R4;所以,V-=Ir4R4=VoutR4/R3+R4;由虚短可知,V-=V+;即V+=VoutR4/R3+R4;再根据虚断,我们同样可以知道R1,R2串联,流过电流相等,即Ir1=Ir2所以,(V1-VoutR4/R3+R4)/R1=-(V2-Vout*R4/R3+R4)/R2;如果R1=R2,R3=R4,则V1+V2=Vout;顾名思义这两个电路就是电压加法器,简称加法运算电路。

集成运放基本运算电路

集成运放基本运算电路

( R 1 // R ' ) v i2 ] R f
R 2 ( R 1 // R R ' ) v i1 R 2 ( R 1 // R ' ) v i2 ] R f R
R 1 R 1 ( R 2 // R ' ) R 2 R 2 ( R 1 // R ' )
12.4 电压和电流转换电路
12.4.1 电流-电压变换器 12.4.2 电压-电流变换器
12.4.1 电流-电压变换器
图12.10是电流-电压变换器。
由图可知:vO = -iSRf
可见输出电压与输入 电流成比例,输出端的负 载电流:
图12.10电流-电压变换电路
iO
= vO RL
-iSRf RL
R
vo
( Rp R1
Rp Rn
v i1
Rp R2
v i2 )( R
Rf R
Rf
( v i1 R1
v i2 ) R2
Rf Rf
)
当 式中
RRpp RvRon1
vRRRRi1f21n//,// vRRRi22f
// R' 时,
12.1.3 双端输入求和电路
双端输入也称差动输入,双端输入求和运 算电路如图12.03所示。其输出电压表达式的推 导方法与同相输入运算电路相似。
图12.04 数据放大器原理图
解:vs1和vs2为 差模输入信号,为此vo1和vo2也是 差模信号,R1的中点为交流零电位。对A3是双端 输入放大电路。
所以
vo1
(1
R2 R1 /
2
)vS1
vo 2
(1
R2 R1 /
2
)vS2

运算放大器常用电路

运算放大器常用电路

运算放大器常用电路
运算放大器(Operational Amplifier,简称Op-Amp)常用于电子电路中的各种应用,以下是一些常见的电路:
1. 反馈放大器:最为常见的Op-Amp电路之一,包括在反馈环路中使用的非反向和反向放大器电路。

这些电路可用于放大、求和、减法等操作。

2. 比较器:将输入信号与参考电压进行比较,输出高低电平表示输入信号与参考电压的大小关系。

常用于触发器等数字电路中。

3. 仪表放大器:用于精确测量和放大微弱信号,通常包含精密的增益调节和滤波功能。

4. 信号调理电路:用于对信号进行放大、滤波、积分或微分等处理,例如用于传感器信号处理。

5. 激励电路:用于驱动电荷、电压输出等场合,如用于激励振荡器或输出给驱动器的电路。

这些是Op-Amp的一些典型应用,Op-Amp还可以在许多其他电路中发挥作用,如振荡器、滤波器、模数转换器等。

Op-Amp的灵活性使得它成为电子工程中不可或缺的组成部分。

运算放大器11种经典电路

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点.在分析它的工作原理时倘没有抓住核心,往往令人头大。

特搜罗天下运放电路之应用,来个“庖丁解牛",希望各位从事电路板维修的同行,看完后有所收获.遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=—Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断",不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上.而运放的输出电压是有限的,一般在10 V~14 V.因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路"。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短.显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路.在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

运算放大器11种经典电路

运算放大器11种经典电路

精心整理运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。

????遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

???今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

???虚短和虚断的概念???由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。

而运放的输出电压是有限的,一般在10V~14V。

因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

????“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

???由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

???在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

运算放大器详细的应用电路(很详细)

运算放大器详细的应用电路(很详细)

§8.1 比例运算电路8.1.1 反相比例电路1. 基本电路电压并联负反馈输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求放大倍数较大时,反馈电阻阻值高,稳定性差。

如果要求放大倍数100,R1=100K,Rf=10M2. T型反馈网络(T型反馈网络的优点是什么?)虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反馈输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟随器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路8.2.1 求和电路1.反相求和电路2.虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系3.同相求和电路4.虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使 Vo=2Vi1+5Vi2-10Vi3解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K例2:如图电路,求Avf,Ri解:§8.3 积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变为三角波(Vi:方波,频率500Hz,幅度1V)将三角波变为正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频干扰将方波变为三角波移相在模数转换中将电压量变为时间量§8.3 积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变为方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§8.4 对数和指数运算电路8.4.1 对数电路对数电路改进基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差不多大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性差别较大,所以运算只在较小的电流范围内误差较小。

运算放大器详细的应用电路(很详细)

运算放大器详细的应用电路(很详细)

§8.1 比例运算电路之吉白夕凡创作8.1.1 反相比例电路1. 基本电路电压并联负反应输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求缩小倍数较大时,反应电阻阻值高,稳定性差.如果要求缩小倍数100,R1=100K,Rf=10M2. T型反应网络虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反应输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟从器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2加减运算电路8.2.1 求和电路1.反相求和电路虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系2.同相求和电路虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K平衡电阻R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K例2:如图电路,求Avf,Ri解:§8.3积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变成三角波(Vi:方波,频率500Hz,幅度1V)将三角波变成正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频搅扰将方波变成三角波移相在模数转换中将电压量变成时间量§8.3积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变成方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§8.4对数和指数运算电路8.4.1 对数电路对数电路改良基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差未几大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性不同较大,所以运算只在较小的电流规模内误差较小.改良电路1:用三极管代替二极管电路在理想情况下可完全消除温度的影响改良电路3:实用对数电路如果忽略T2基极电流, 则M点电位:8.4.2 指数电路1. 基本指数电路2. 反函数型指数电路电路必须是负反应才干正常任务,所以:§8.5乘除运算电路8.5.1 基本乘除运算电路1. 乘法电路乘法器符号同相乘法器反向乘法器2. 除法电路8.5.2. 乘法器应用1. 平方运算和正弦波倍频如果输入信号是正弦波:只要在电路输出端加一隔直电容,即可得到倍频输出信号.2. 除法运算电路注意:只有在VX2>0时电路才是负反应负反应时,按照虚短、虚断概念:3. 开方运算电路输入电压必须小于0,不然电路将变成正反应.两种可使输入信号大于0的计划:3. 调制(调幅)4. 压控增益乘法器的一个输入端接直流电压(控制信号),另一个接输入信号,则输出信号与输入信号之比(电压增益)成正比.V0=KVXvY 电流-电压变换器由图可知可见输出电压与输入电流成比例.输出端的负载电流:电流-电压变换电路若Rl固定,则输出电流与输入电流成比例,此时该电路也可视为电流缩小电路.电压-电流变换器负载不接地负载接地由负载不接地电路图可知:所以输出电流与输入电压成比例.对负载接地电路图电路,R1和R2组成电流并联负反应;R3、R4和RL组成组成电压串联正反应.讨论:1. 当分母为零时, iO →∞,电路自激.2. 当R2 /R1 =R3 /R4时, 则:说明iO与VS成正比, 实现了线性变换.电压-电流和电流-电压变换器广泛应用于缩小电路和传感器的连接处,是很有用的电子电路.§8.6有源滤波电路8.6.1 滤波电路基础知识一. 无源滤波电路和有源滤波电路无源滤波电路: 由无源元件( R , C , L ) 组成有源滤波电路: 用任务在线性区的集成运放和RC网络组称,实际上是一种具有特定频率响应的缩小器.有源滤波电路的优点, 缺点: 请看书.二. 滤波电路的分类和主要参数1. 按所处理的信号可分为模拟的和数字的两种;2. 按所采取的元器件可分为有源和无源;3. 按通过信号的频段可分为以下五种:a. 低通滤波器( LPF )Avp: 通带电压缩小倍数fp: 通带截至频率过渡带: 越窄标明选频性能越好,理想滤波器没有过渡带b. 高通滤波器( HPF )c. 带通滤波器( BPF )d. 带阻滤波器( BEF )、e. 全通滤波器( APF )4. 按频率特性在截止频率fp邻近形状的不合可分为Butterworth , Chebyshev 和Bessel等.理想有源滤波器的频响:滤波器的用途滤波器主要用来滤除信号中无用的频率成分,例如,有一个较低频率的信号,其中包含一些较高频率成分的搅扰.滤波过程如图所示.§8.6有源滤波电路8.6.2 低通滤波电路( LPF )低通滤波器的主要技术指标(1)通带增益Avp通带增益是指滤波器在通频带内的电压缩小倍数,如图所示.性能良好的LPF通带内的幅频特性曲线是平坦的,阻带内的电压缩小倍数基本为零.(2)通带截止频率fp其定义与缩小电路的上限截止频率相同.通带与阻带之间称为过渡带,过渡带越窄,说明滤波器的选择性越好.8.6.2.1 一阶低通滤波电路( LPF )一. 电路组成组成:简单RC滤波器同相缩小器特点:│Avp│ >0,带负载能力强缺点:阻带衰减太慢,选择性较差.二. 性能阐发有源滤波电路的阐发办法:1.电路图→电路的传递函数Av(s)→频率特性Av(jω)2. 按照定义求出主要参数3. 画出电路的幅频特性一阶LPF的幅频特性:8.6.2.2 简单二阶LPF一. 电路组成组成: 二阶RC网络同相缩小器通带增益:二. 主要性能1. 传递函数:2.通带截止频率:3.幅频特性:特点:在f>f0 后幅频特性以-40dB/dec的速度下降;缺点:f=f0 时,缩小倍数的模只有通带缩小倍数模的三分之一.8.6.2.3 二阶压控电压源LPF二阶压控电压源一般形式二阶压控电压源LPF阐发:Avp同前对节点N , 可以列出下列方程:联立求解以上三式,可得LPF的传递函数:上式标明,该滤波器的通带增益应小于3,才干包管电路稳定任务.频率特性:当Avp≥3时,Q =∞,有源滤波器自激.由于将接到输出端,等于在高频端给LPF加了一点正反应,所以在高频端的缩小倍数有所抬高,甚至可能引起自激.二阶压控电压源LPF的幅频特性:巴特沃思(压控)LPF仿真结果Q=0.707 fp=f0=100Hz§8.6有源滤波电路8.6.2.4 无限增益多路反应滤波器无限增益多路反应有源滤波器一般形式,要求集成运放的开环增益远大于60DB无限增益多路反应LPF由图可知:对节点N , 列出下列方程:通带电压缩小倍数频率响应为:巴特沃思(无限增益)LPF仿真结果Q=0.707 fp=f0=1000Hz8.6.3 高通滤波电路( HPF )8.6.3.1 HPF与LPF的对偶关系1. 幅频特性对偶(相频特性不合错误偶)2. 传递函数对偶低通滤波器传递函数高通滤波器传递函数HPF与LPF的对偶关系3. 电路结构对偶将起滤波作用的电容换成电阻将起滤波作用的电阻换成电容低通滤波电路高通滤波电路8.6.3.2 二阶压控电压源HPF二阶压控电压源LPF 二阶压控电压源HPF电路形式相互对偶二阶压控电压源HPF传递函数: 低通:高通:二阶压控电压源HPF二阶压控电压源HPF幅频特性:8.6.3.3 无限增益多路反应HPF无限增益多路反应LPF无限增益多路反应HPF8.6.4 带通滤波器(BPF)BPF的一般组成办法:优点:通带较宽,通带截至频率容易调整缺点:电路元件较多一般带通滤波电路仿真结果二阶压控电压源BPF二阶压控电压源一般形式二阶压控电压源BPF传递函数:截止频率:RC选定后,改动R1和Rf即可改动频带宽度二阶压控电压源BPF仿真电路仿真结果8.6.5 带阻滤波器(BEF)BEF的一般形式缺点:电路元件较多且HPF与LPF相并比较困难.基本BEF电路同相比例无源带阻(双T网络)双T带阻网络双T带阻网络二阶压控电压源BEF电路正反应,只在f0邻近起作用传递函数二阶压控电压源BEF仿真电路仿真结果例题1:要求二阶压控型LPF的f0=400Hz , Q值为0.7,试求电路中的电阻、电容值.解:按照f0 ,选取C再求R.1. C的容量不容易超出 . 因大容量的电容器体积大,价格高,应尽量避免使用.取计算出:R=3979Ω取R=3.9KΩ2.按照Q值求和,因为时,按照与、的关系,集成运放两输入端外接电阻的对称条件按照与R1 、Rf 的关系,集成运放两输入端外接电阻的对称条件.例题1仿真结果例题与习题2LPF例题与习题2仿真结果例题与习题3HPF例题与习题3仿真结果例题与习题4例题与习题4仿真结果vo1 :红色vo :蓝色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、电压跟随器
V
按表2进行
3、反相加法器
测试反相加法器的输入、输出电压,并 与估算值比较 。
VI1 0.2 VI2 0.3 VO(测) ( V) VO (估) ( V) --1.3V 误差 R1 R2 R3
(V)
(V)
10K
10K
20K
估算值计算: VO(V)= –(V I1 + VI2)
R3= R1//R2//RF 求得R3
μ A741
调零

+
--12V
实验器件
集成运放μA741调零用法如图6-7所示。
电位器可变端接 4脚 (-VEE) 1脚 RW 100k 图6-7 注意: 所谓调零是直流调零。为了减少测量误差, 进行直流运算前,要先调零。 5脚
μA741的工作电压 ±15V。 正负电源: 具体接法: 把A、B两路稳压电源调到 12V。将+15V的输出接
各元件按自 己设计值
用示波器观察并记录输入、输出波形(标注主要参 数),比较相位关系 。 讨论输出波形与积分常数的关系 。
11
报告要求
按实验指导书 注意:不要照抄! 按要求去做, 回答问题。
实验二
集成运放组成的
基本运算电路
实验器件
由于集成运放具有高增 益、高输入电阻的特点,它组 成运算电路时,必须工作在深 度负反馈状态,此时输出电压 与输入电压的关系仅取决于反 馈电路的结构与参数,因此, 把它与不同的外部电路连接, 可实现比例、加法、减法等数 学运算。
iN
- A
vN vP
iP


vO
取R标称相近值
3、反相加法器
V I1
直流可 调信号 源 0.1V--1V
V
V I2

按表3进行
各电阻按自 己设计值
Rf=100k
4、 积分电路
ui
信 号 源 ch1
R1 10 k R’ 9.1 k
+15 v
②- ⑦ UA741 ③+ ④ ⑥
6
uo
ch2
-15v
反相积分电路:在反向比例电路的输入/输 出间(电阻Rf )并联0.1和 0.01uf的电容 . 输入方波 ui (1khz, 1Vp-p), 注意:采用直流耦合方式!
图2—1
实验器件
双电源单运放集成电路 μA741
集成运放μA741的管脚排列
μA741共有8个引脚,是个 双电源、单运放器件,同名 端在左下端。 2脚是反向输入端,3脚是同向 输入端, 6是输出端,4脚是负 电源端,7脚是正电源端,1、5 是调零端, 8是空脚。
8
1 +12V 调零
Vo
7
2
6
3
5
4
V
Rf
100k
+
VI
R1
vP
100K + A
10k–Βιβλιοθήκη VN-R2 9.1k

Vo
V
1、反相比例运算
(1)测试反相比例放大器的输入、输出电压,求电 压放大倍数并与估算值比较(按表1) 。 理论估算:
RF AV R1
实测值计算:
A V VO VI
(2)用示波器观察并记录输入、输出波形(标注主 要参数),比较相位关系 。
集成块的正电源端(7脚) ,同时将–15V输出接集成块的负电源 端(4脚),然后将稳压电源的地与被测电路的地相连。待测量电 路接好,检查无误后,再打开电源。

A
直 流 稳 压 电 源 取自实验台±15V - + B

7脚 +15V 共地
4脚 –15V
1、反相比例运算
If Ii
直流可 调信号 源 0.05V--0.5V
相关文档
最新文档