等边三角形、等腰直角三角形之间的旋转问题(精华)
专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)
专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。
模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。
其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。
1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。
2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。
结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。
3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。
结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。
4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。
结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。
例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
2020年八年级数学下册解法技巧:常见三角形的旋转模型(北师大原卷)
八下数学思维解法技巧培优小专题专题6 常见三角形的旋转模型题型一等边三角形的旋转【典例1】(2019•凤山县期中)如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC =90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.【点拨】(1)利用旋转的性质和等边三角形的性质先判断出△ADE是等边三角形即可;(2)利用四边形的内角和即可求出结论;(3)先求出CD,再用勾股定理即可求出结论.【典例2】(2019•金湖县期末)问题背景:如图①设P是等边△ABC内一点,P A=6,PB=8,PC=10,求∠APB的度数.小君研究这个问题的思路是:将△ACP绕点A逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且P A=5,PB=3,PC=2√2,则∠BPC=°(2)如图3,在等边△ABC中,P为△ABC内一点,且P A=5,PB=12,∠APB=150°,则PC=.拓展廷伸:①如图4,∠ABC=∠ADC=90°,AB=BC.求证:√2BD=AD+DC.②若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.【点拨】简单应用:(1)先利用旋转得出BP'=AP=5,∠PCP'=90°,CP'=CP=2√2,再根据勾股定理得出PP'=√2CP=4,最后用勾股定理的逆定理得出△BPP'是以BP'为斜边的直角三角形,即可得出结论;(2)同(1)的方法得出∠APP'=60°,进而得出∠BPP'=∠APB﹣∠APP'=90°,最后用勾股定理即可得出结论;拓展廷伸:①先利用旋转得出BD'=BD,CD'=AD,∠BCD'=∠BAD,再判断出点D'在DC的延长线上,最后用勾股定理即可得出结论;②同①的方法即可得出结论.题型二等腰直角三角形的旋转【典例3】(2020•新宾县二模)如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由;(3)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.【点拨】(1)由旋转的性质可得△BCD'≌△ACE,可得BC=AC,即可求旋转角的度数;(2)由全等三角形的性质可得∠DBC=∠EAC,由直角三角形的性质可求∠AND=90°,即可得AE⊥BD;(3)由勾股定理可求DE的长,再由勾股定理可求AE=BD的长.题型三一般等腰三角形的旋转【典例4】(2019•武侯区期末)如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.(1)求证:∠DEF=∠ABF;(2)求证:F为AD的中点;(3)若AB=8,AC=10,且EC⊥BC,求EF的长.【点拨】(1)根据等角的余角相等证明即可.(2)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.利用全等三角形的性质证明即可.(3)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.想办法求出FM,EM即可.【典例5】(2019•汉川市期中)如图,在Rt△ABC中,∠C=90°,AC=2,∠ABC=30°,点O为Rt△ABC内一点,连接AO.BO.CO,且∠AOC=∠COB=∠BOA=120°.以点B为旋转中心,将△AOB 绕点B顺时针方向旋转60°,得到△A′O′B,连接OO′,求:(1)∠OBO′的度数;(2)OA+OB+OC的长.【点拨】(1)根据旋转的性质即可得出结论;(2)先判断△BOO′为等边三角形,所以OO′=BO,∠BOO′=∠BO′O=60°,再证明点C、O、O′、A′共线,从而得到A′C=OC+OB+OA,然后利用勾股定理计算A′C即可.巩固练习1.(2019•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A 绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.2.(2019•西湖区校级月考)将Rt△ABC绕点直角顶点C逆时针旋转90°后得到△A'B'C,A'B'的延长线与AB交于点D,连接DC.①求证:AB⊥A'D;②求∠A'DC的度数.3.(2019•盐田区校级期末)在Rt△ABC中,∠BAC=90°.现有一块足够大的三角板,其直角顶点D是BC边上一点,AD平分∠BAC,两直角边分别交AB,AC于点E,F.(1)当DE⊥AB(如图1)时,判断四边形AEDF的形状,并说明理由.(2)将三角板绕点D旋转一定的角度(如图2),求证:AE+AF=√2AD.4.(2019•延庆县一模)如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.下面的证法供你参考:把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD实践探索:(1)请你仿照上面的思路,探索解决下面的问题:如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>√2AD.(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.创新应用:(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.5.(2019•和平区期末)已知,在Rt△OAB中,∠OAB=90°,∠ABO=30°,OB=4.将Rt△OAB绕点O 顺时针旋转60°.得到Rt△ODC.点A、B的对应点分别为点D,C.连接BC.(Ⅰ)如图①,OD的长=,∠BOC的大小=(度),∠OBC的大小=(度);(Ⅱ)动点M,N同时从点O出发,在△OCB边上运动,动点M沿O→C→B路径匀速运动,动点N沿O→B→C路径匀速运动,当两点相遇时,运动停止.已知点M的运动速度为1.5个单位/秒,点N的运动速度为1个单位/秒,设运动时间为t秒(t>0),△OMN的面积为S.①如图②,当点M在边OC上运动,点N在边OB上运动时,过点N作NE⊥OC,垂足为点E,试用含t的式子表示S,并直接写出t的取值范围;②求当t为何值时,S取得最大值,并求出S的最大值(直接写出结果即可).。
关于全等三角形的旋转难题93287
旋转已知,如图,三角形ABC是等腰直角三角形,∠ACB=90°,F是AB的中点,直线l经过点C,分别过点A、B作l 的垂线,即AD⊥CE,BE⊥CE,(1)如图1,当CE位于点F的右侧时,求证:△ADC≌△CEB;(2)如图2,当CE位于点F的左侧时,求证:ED=BE-AD;(3)如图3,当CE在△ABC的外部时,试猜想ED、AD、BE之间的数量关系,并证明你的猜想.考点:全等三角形的判定与性质.专题:证明题;探究型.分析:(1)利用同角的余角相等得出∠CAD=∠BCE,进而根据AAS证明△ADC≌△CEB.(2)根据AAS证明△ADC≌△CEB后,得其对应边相等,进而得到ED=BE-AD.(3)根据AAS证明△ADC≌△CEB后,得DC=BE,AD=CE,又有ED=CE+DC,进而得到ED=AD+BE.解答:(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中∠ADC=∠CEB ∠CAD=∠BCE AC=BC ,∴△ADC≌△CEB(AAS).(2)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中∠ADC=∠CEB ∠CAD=∠BCE AC=BC ,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CD-CE,∴ED=BE-AD.(3)ED=AD+BE.证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中∠ADC=∠CEB ∠CAD=∠BCE AC=BC ,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CE+DC,∴ED=AD+BE.点评:本题考查了全等三角形的判定和性质;利用全等三角形的对应边相等进行等量交换,证明线段之间的数量关系,这是一种很重要的方法,注意掌握3.如图1、图2、图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º,(1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。
2023学年人教中考数学重难点题型分类必刷题 专题05 等腰三角形、等边三角形压轴题真题(含详解)
专题05 高分必刷题-等腰三角形、等边三角形压轴题真题(原卷版)题型一:等腰三角形、等边三角形中的动点问题1.(湘一芙蓉)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为16cm,设运动时间为t,问:是否存在某一时刻t,使得△CPQ是等腰三角形?如存在,请求出t的值,若不存在,请说明理由.2.(中雅)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.(青竹湖)已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s 的速度同时出发.①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.4.(广益)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.5.(长郡、雅礼)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A 出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.6.(师梅)如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接QD并延长,交y轴于点P,当点C运动到什么位置时,满足PD=DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.7.(郡维)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC 交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,问当点B在y 轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.8.(长郡)如图,在△ABC中.AB =AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC 于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.9.(广益)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.题型二:等腰三角形、等边三角形综合类压轴题10.(雅境)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.11.(郡维)如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.12.(北雅)已知:△ABC为等边三角形,点E为射线AC 上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC 的延长线上且CE=CD时,求证:BD=CD;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.13.(中雅)已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE 为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.14.(雅实)如图1,△ABC 为等腰三角形,∠ABC=90°,点P在线段BC上(不与B、C重合),以点A为直角顶点作等腰直角△P AQ,且点Q在AP的左下方,过点Q作QE⊥AB于点E.(1)求证:△P AB≌△AQE;(2)连接CQ交AB于M,若PC=2PB,求的值.(3)如图2,过点Q作QF⊥AQ于AB的延长线于点F,过P点作DP⊥AP交AC于点D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由.15.(师梅)如图1,在平面直角坐标系中,点A在y轴上,点B在x轴上,AB=AC,∠BAC=90°,CM⊥y轴,交y轴于点M.(1)求证∠ABO=∠CAM;(2)如图2,D,E为y轴上的两个点,BD=BE,BD⊥BE,求∠CEM的度数;(3)如图3,△P AQ是等腰直角三角形,∠P AQ为顶角,点Q在x轴负半轴上,连接CB,交y轴于点H,AC与x轴交于点G,连接PC,交AQ于点K,交x轴于点N,若CN=CM,NG=3,HM=2,求GH.16.(博才)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y 轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.17.(青竹湖)如图,四边形OABC 的位置在平面直角坐标系中如图所示,且A(0,a),B(b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.专题05 高分必刷题-等腰三角形、等边三角形压轴题真题(解析版)题型一:等腰三角形、等边三角形中的动点问题1.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为16cm,设运动时间为t,问:是否存在某一时刻t,使得△CPQ是等腰三角形?如存在,请求出t的值,若不存在,请说明理由.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP =60°,又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM =∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°2.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B 同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°,又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°3.已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.【解答】解:(1)当△PBC是直角三角形时,∠B=60°,∠BPC=90°,所以BP=1.5cm,所以t=,(2)①∵∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,∴∠PDA=∠CDQ=∠CQD=30°,∵∠A=60°,∴AD=2AP,∴2t+t=3,解得t=1(s);②相等,如图所示:作PE垂直AD,QG垂直AD延长线,则PE∥QG,∴∠G=∠AEP,在△EAP 和△GCQ,,∴△EAP≌△GCQ(AAS),∴PE=QG,∴△PCD和△QCD同底等高,所以面积相等.4.如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a ﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【解答】(1)证明:∵直线AB分别交x 轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,∴a=b=4t,当x=0时,y=4t,当y=0时,﹣x+4t=0,解得x=4t,∴点A、B的坐标是A(4t,0),B(0,4t),∴△AOB是等腰直角三角形,∵点M是AB的中点,∴OM⊥AB,∴∠MOA=45°,∵直线BD平分∠OBA,∴∠ABD=∠ABO=22.5°,∴∠OND=∠BNM=90°﹣∠ABD=90°﹣22.5°=67.5°,∠ODB=∠ABD+∠BAD=22.5°+45°=67.5°,∴∠OND=∠ODB,∴ON =OD(等角对等边);(2)答:BD=2AE.理由如下:延长AE交BO于C,∵BD平分∠OBA,∴∠ABD=∠CBD,∵AE⊥BD 于点E,∴∠AEB=∠CEB=90°,在△ABE≌△CBE中,,∴△ABE≌△CBE(ASA),∴AE=CE,∴AC=2AE,∵AE⊥BD,∴∠OAC+∠ADE=90°,又∠OBD+∠BDO=90°,∠ADE=∠BDO (对顶角相等),∴∠OAC=∠OBD,在△OAC与△OBD中,,∴△OAC≌△OBD(ASA),∴BD=AC,∴BD=2AE;(3)OG的长不变,且OG=4t.过F作FH⊥OP,垂足为H,∴∠FPH+∠PFH=90°,∵∠BPF=90°,∴∠BPO+∠FPH=90°,∴∠FPH=∠BPO,∵△BPF是等腰直角三角形,∴BP=FP,在△OBP与△HPF 中,,∴△OBP≌△HPF(AAS),∴FH=OP,PH=OB=4t,∵AH=PH+AP=OB+AP,OA=OB,∴AH=OA+AP=OP,∴FH=AH,∴∠GAO=∠F AH=45°,∴△AOG是等腰直角三角形,∴OG=OA=4t.5.如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.【解答】解:(1)∵(a﹣6)2+|a ﹣b|=0,又∵(a﹣6)2,≥0,|a﹣b|≥0,∴a=6,b=6∴点A(6,6).(2)如图1中,∵△AOB是等边三角形,点A(6,6),∴AO=BO=AB=12,∠AOB=∠ABO =60°=∠A,∵∠OCP=60°=∠AOB,∴∠AOB=∠QOB+∠AOQ=∠QOB+∠PBO=∠PCO,∴∠AOQ =∠PBO,且AO=BO,∠A=∠AOB,∴△AOQ≌△OBP(ASA),∴OP=AQ,∴12﹣2t=3t∴t=2.4∴当t=2.4时,∠OCP=60°.(3)如图2中,过点D作DF⊥AO,DE⊥AB,连接AD,∵△ABO是等边三角形,D是OB中点,点A(6,6),∴OD=BD=6,∠AOB =∠ABO=60°,AD=6,又∵∠DFO=∠DEB=90°,∴△ODF≌△BDE(AAS),∴OF=BE,DF=DE,∵AO=AB,∴AO﹣OF=AB﹣BE,∴AF=AE,∵DF=DE,PD=DQ,∴Rt△DFP≌Rt△DEQ(HL),∴PF=EQ,∵OD=6,∠AOD=60°,∠DFO=90°,∴∠ODF=30°∴OF=3,DF=OF=3,∴AF=AO﹣OF=9=AE,BE=OF=3,∵AP+AQ=AP+AE+EQ=AP+PF+AE=AF+AE=2AF,∴2t+3t=18∴t=3.6,∴当t=,3.6时,D,P,Q三点是能构成使∠PDQ=120°的等腰三角形,∵Rt△DFP≌Rt△DEQ,∴S△DFP=S△DEQ,∴S四边形APDQ=S四边形AFDQ=S△AOB﹣2S△OFD=×12×6﹣2××3×3=27.6.如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长6.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接QD并延长,交y轴于点P,当点C运动到什么位置时,满足PD=DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【解答】解:(1)作∠DCH=10°,CH交BD的延长线于H,∵∠BAO=60°,∴∠ABO=30°,∴AB=2OA=6,∵∠BAO=60°,∠BCO=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=40°,∴∠CBD=∠DCB,∠OBD=40°﹣30°=10°,∴DB=DC,在△OBD和△HCD中,,∴△OBD≌△HCD(ASA),∴OB=HC,在△AOB和△FHC中,,∴△AOB≌△FHC(ASA),∴CF=AB=6,故答案为:6;(2)∵△ABD和△BCQ是等边三角形,∴∠ABD=∠CBQ=60°,∴∠ABC=∠DBQ,在△CBA和△QBD中,,∴△CBA≌△QBD(SAS),∴∠BDQ=∠BAC=60°,∴∠PDO =60°,∴PD=2DO=6,∵PD=DC,∴DC=9,即OC=OD+CD=12,∴点C的坐标为(12,0);(3)如图3,以OA为对称轴作等边△ADE,连接EP,并延长EP交x轴于点F.由(2)得,△AEP≌△ADB,∴∠AEP=∠ADB=120°,∴∠OEF=60°,∴OF=OA=3,∴点P在直线EF上运动,当OP⊥EF时,OP则OP的最小值为.最小,∴OP=OF=,7.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B 分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.【解答】解:(1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CF A=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1);(2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO =90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO (AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2.8.如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.【解答】(1)证明:如图1中,∵GD∥AB,∴∠B=∠EFG,在△ABE和△GFE中,,∴△ABE≌△GFE(AAS).(2)解:如图1中,∵AB=AC,∴∠B=∠ACB,∵DF∥AB,∴∠DFC=∠B,∴∠DFC=∠DCF,∴DC=DF=1,∵DG=3,∴FG=DG﹣DF=2,∵△ABE≌△GFE,∴AB=GF=2.(3)解:如图2中,∵AB=AC=2,∴∠B=∠C=45°,∴∠BAC=90°,∵AB∥FD,∴∠FDC=∠BAC =90°,即FD⊥AC∵AC=AB=2,CD=1,∴DA=DC,∴F A=FC,∴∠C=∠F AC=45°,∴∠AFC=90°,∴DF=DA=DC=1,∴AF=,∵DH⊥CF,∴FH=CH,∴点F与点C关于直线PD对称,∴当点P与D重合时,△P AF的周长最小,最小值=△ADF的周长=2+.9.如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.【解答】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°,∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=38°,∴∠DCF=38°;(2)如图,过点D作DH⊥x轴于H,∴∠CHD=90°∴∠AOC=∠CHD=90°,∵等腰直角三角形ACD,∠ACD=90°∴AC=CD,由(1)知,∠DCF=∠OAC,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO =CH=3,∴点D的坐标(n+3,n);(3)不会变化,理由:∵点A(0,3)与点B关于x轴对称,∴AO=BO,又∵OC⊥AB,∴x轴是AB垂直平分线,∴AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=3,∴OF的长不会变化.题型二:等腰三角形、等边三角形综合类压轴题10.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CEB=∠CDA=120°,∴∠AEB=60°,故答案为:60°;②AD=BE,证明:∵△ACD≌△BCE,∴AD=BE,故答案为:AD=BE;(2)∠AEB=90°,AE﹣BE=2CM,证明:∵△DCE是等腰直角三角形,CM是中线,∴CM=DM=EM=DE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CDA=∠CEB,∵∠CDA=135°,∴∠AEB=135°﹣45°=90°,∴BE=AD,∴AE﹣AD=DE=2CM,∴AE﹣BE=2CM.11.如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.【解答】(1)证明:∵△ABC和△EFC都是等边三角形,∴∠A=∠ABC=∠ACB=∠ECF=60°,AC=BC,CE=FC,∴∠ACE=∠BCF,在△ACE与△FCB中,,∴△ACE≌△FCB(SAS),∴∠A=∠CBF=60°,∵∠ABC=60°,∴∠A+∠ABC+∠CBF=180°,∴∠A+∠ABF=180°,∴AC∥BF;(2)解:△AEG是等边三角形,理由如下:如图1所示:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB =60°,∵EG∥BC,∴∠AEG=∠ABC=60°,∠AGE=∠ACB=60°,∴∠A=∠AEG=∠AGE=60°,∴△AEG是等边三角形;(3)证明:如图2,过E作EM∥BC交AC于M,则∠AEM=∠ABC=60°,∠AME=∠ACB=60°,∵∠A=∠ABC=∠ACB=60°,∴∠A=∠AEM=∠AME=60°,∴△AEM是等边三角形,∴AE=EM=AM,∴∠DAE=∠EMC=120°,∵DE=CE,∴∠D=∠MCE,在△ADE和△MCE中,,∴△ADE≌△MCE(AAS),∴AD=CM,∴AC=AM+CM,由(1)得△ACE≌△FCB,∴BF=AE,∴BF=AM,∴AC=BF+AD,∴AB=AD+BF.12.已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,求证:BD=CD;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC;(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB﹣BH=BC﹣BD,即AH=DC,∴∠BHD=60°,BD=DH,∵AD=DE,∴∠E=∠CAD,∴∠BAC﹣∠CAD=∠ACB﹣∠E,即∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°﹣∠BHD=180°﹣∠ACB,即∠AHD=∠DCE,在△AHD和△DCE,,∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD;(3)AB=BD+AE;如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠F AE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF =∠DAF,在△AFD和△EFD中,,∴△AFD≌△EFD(SSS),∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.13.已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD 交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.【解答】证明:(1)∵△ABC,△DBE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)不存在,理由如下:如图3,过点B作BN⊥AD于N,过点B作BH⊥CE于H,∵△ABC,△DBE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE =60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,S△ABD=S△CBE,∠BAD =∠BCE,∴×AD×BN=×CE×BH,∴BN=BH,又∵BF=BF,∴Rt△BFN≌Rt△BFH(HL),∴∠AFB=∠EFB,∵∠BAD=∠BCE,∠CPF=∠APB,∴∠AFC=∠ABC=60°,∴∠AFB=∠EFB=60°,∴∠CFB=∠DFB=120°,当BF平分∠CBD时,则∠CBF=∠DBF,∴∠BCF=180°﹣∠CBF﹣∠CFB=180°﹣∠DBF﹣∠DFB=∠ADB,∴∠DAB=∠ADB,∴AB=DB,与题干DB=BC=AB相矛盾,∴BF不会平分∠CBD;(3)AF=CF+BF,理由如下:如图4,在AF上截取MF=BF,连接BM,∵∠AFB=60°,MF=FB,∴△MFB是等边三角形,∴MB=BF,∠MBF =∠ABC=60°,∴∠ABM=∠CBF,在△ABM和△CBF中,,∴△ABM≌△CBF(SAS),∴AM=CF,∵AF=AM+MF,∴AF=CF+BF.14.如图1,△ABC为等腰三角形,∠ABC=90°,点P在线段BC上(不与B、C重合),以点A为直角顶点作等腰直角△P AQ,且点Q在AP的左下方,过点Q作QE⊥AB于点E.(1)求证:△P AB≌△AQE;(2)连接CQ交AB于M,若PC=2PB,求的值.(3)如图2,过点Q作QF⊥AQ于AB的延长线于点F,过P点作DP⊥AP交AC于点D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由.【解答】(1)证明:∵△ACB 为等腰三角形,∠ABC=90°,△P AQ是等腰直角三角形,QE⊥AB于E.∴AP=AQ,∠ABP=∠QEA=90°,∠QAE+∠BAP=∠BAP+∠APB=90°,∴∠QAE=∠APB,在△P AB和△AQE中,,∴△P AB≌△AQE(AAS);(2)解:∵△P AB≌△AQE,∴AE=PB,∵AB=CB,∴QE=CB.在△QEM和△CBM中,,∴△QEM≌△CBM(AAS),∴ME=MB,∵AB=CB,AE=PB,PC=2PB,∴BE=PC,∵PC=2PB,∴PC=2MB,∴=2;(3)解:式子的值不会变化,理由如下:过A作HA⊥AC交QF于点H,如图2所示:∵QA⊥AP,HA⊥AC,AP⊥PD,∴∠QAH+∠HAP=∠HAP+∠P AD=90°,∠AQH=∠APD=90°,∴∠QAH=∠P AD,∵△P AQ为等腰直角三角形,∴AQ=AP,在△AQH和△APD中,,∴△AQH≌△APD(ASA),∴AH=AD,QH=PD,∵HA⊥AC,∠BAC=45°,∴∠HAF=∠DAF,在△AHF和△ADF中,,∴△AHF≌△ADF(SAS),∴HF=DF,∴===1.15.如图1,在平面直角坐标系中,点A在y轴上,点B在x轴上,AB=AC,∠BAC=90°,CM⊥y轴,交y轴于点M.(1)求证∠ABO=∠CAM;(2)如图2,D,E为y轴上的两个点,BD=BE,BD⊥BE,求∠CEM的度数;(3)如图3,△P AQ是等腰直角三角形,∠P AQ为顶角,点Q在x轴负半轴上,连接CB,交y轴于点H,AC与x轴交于点G,连接PC,交AQ于点K,交x轴于点N,若CN=CM,NG=3,HM=2,求GH.【解答】(1)证明:∵∠BOA=90°,∴∠BAO+∠ABO=90°,又∵∠BAC=∠BAO+∠CAM=90°,∴∠ABO=∠CAM;(2)解:∵CM⊥y轴,∴∠AMC=∠BOA=90°,∵AB=AC,∠ABO=∠CAM,∴△AMC≌△BOA(AAS),∴CM=AO,AM=BO,∵BD=BE,BD⊥BE,∴△BDE是等腰直角三角形,∴∠BDE=∠BED=45°,∠EBO =∠DBE=45°,∴∠EBO=∠BEO,∴BO=EO=AM,∴EO﹣OM=AM﹣OM,∴EM=AO=CM,∴△CME是等腰直角三角形,∴∠CEM=45°;(3)解:∵AB=AC,∠BAC=90°,∴∠ACB=45°,∵△P AQ是等腰直角三角形,∴P A=QA,∠P AQ=∠CAB=90°,∴∠P AQ+∠QAC=∠CAB+∠QAC,即∠P AC=∠QAB,∵AC=AB,∴△P AC≌△QAB(SAS),∴∠APC=∠AQB,∵∠AKP=∠QKN,∴∠QNK=∠P AK=90°,∵CM⊥y轴,∴CM∥NO,∴∠NCM=∠KNO=90°,在ON的延长线上截取NI=MH,连接CI,如图3所示:∵CN=CM,∠CNI=∠CMH=90°,∴△CNI≌△CMH(SAS),∴∠NCI=∠MCH,CI=CH,∴∠NCG+∠NCI =∠NCG+∠MCH=∠NCM﹣∠GCH=90°﹣45°=45°=∠GCH=∠GCI,∴△GCI≌△GCH(SAS),∴GI =GH,∵GI=IN+NG=HM+NG=2+3=5,∴GH=5.16.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y 轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.【解答】解:(1)过C 作CM⊥x轴于M点,如图1,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°则∠MAC=∠OBA在△MAC和△OBA中,则△MAC≌△OBA(AAS),则CM=OA=2,MA=OB =4,则点C的坐标为(﹣6,﹣2);(2)过D作DQ⊥OP于Q点,如图2,则OP﹣DE=PQ,∠APO+∠QPD=90°∠APO+∠OAP=90°,则∠QPD=∠OAP,在△AOP和△PDQ中,则△AOP≌△PDQ(AAS),∴OP﹣DE=PQ=OA=2;(3)结论②是正确的,m+n=﹣4,如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=2,∠FHS=∠HFT=∠FGT,在△FSH和△FTG中,则△FSH≌△FTG(AAS),则GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣2,﹣2),∴OT═OS=2,OG=|m|=﹣m,OH=n,∴GT=OG﹣OT=﹣m﹣2,HS=OH+OS=n+2,则﹣2﹣m=n+2,则m+n=﹣4.17.如图,四边形OABC的位置在平面直角坐标系中如图所示,且A(0,a),B(b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.【解答】解:(1)∵﹣+b2+4b+8=0,∴﹣+(b﹣4)2=0,∴a=4,b=4,∴A(0,4),B(﹣4,4),C(﹣4,0),故答案为(0,4),(﹣4,4),(﹣4,0);(2)由(1)知,A(0,4),B(﹣4,4),C(﹣4,0),∴AB =BC=OC=OA=4,∴四边形OABC是菱形,∵∠AOC=90°,∴菱形OABC是正方形,过点Q作QN⊥x轴于N,∴∠PNQ=90°,∴∠QPN+∠PQN=90°,∵BP⊥BQ,∴∠BPQ=90°,∴∠BPC+∠QPN=90°,∴∠PQN=∠BPC,由(1)知,B(﹣4,4),C(﹣4,0),∴BC=4,BC⊥x,∴∠BCP=∠PNQ=90°,在△BCP和△PNQ中,,∴△BCP≌△PNQ(AAS),∴CP=QN,BC=PN,∴OC=PN=4,①当点P在x轴负半轴时,如图1、OC=CP+OP,PN=OP+ON,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,②当点P在x轴正半轴时,如图2、OC=CP﹣OP,PN=ON﹣OP,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,即:∠AOQ=45°;(3)如图2,过点Q作QN⊥x轴于N,设P(m,0)(m>0),∵OP=3AM,∴AM=OP=m,∴M(0,m+4),∵点B(﹣4,4),∴直线BM的解析式为y=mx+m+4,由(2)知,PN=OC=4,∴N(m+4,0),∴Q(m+4,m+4),∵点Q在直线BM上,∴m(m+4)+m+4=m+4,∴m=0(舍)或m=4,∴M(0,).。
初中数学难点之八:等腰三角形、等边三角形、直角三角形
初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。
一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。
两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。
2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。
(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。
2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。
三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。
(2)一边的中线等于这条边的一半,这个三角形是直角三角形。
(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。
中考数学专题训练旋转模型几何变换的三种模型手拉手、半角、对角互补
范文范例学习参考几何变换的三种模型手拉手、半角、对角互补「等腰三角形手拉手模型1等腰直角三角形(包含正方形)、等边三角形(包含费马点)i 特殊角《对角互补模型W厂般角产线段变换(与圆相关)在 4ABC 中,AB=AC , /BAC =支(0口<ot<60口),将线段 BC绕点B 逆时针旋转60。
得到线段BD .(1)如图1,直接写出/ABD 的大小(用含口的式子表示);(2)如图2, /BCE=150〉,/ABE=60©,判断△ ABE 的形状并加以证明; (3)在(2)的条件下,连结 DE ,若NDEC =45°,求a 的值.角含半角模型件寺殊角:一般角旋转变换 真题演练【练1】(2013北京中考)范文范例学习参考【练2】(2012年北京中考)在4ABC中,BA = BC , /BAC =口,M 是AC的中点,P是线段上的动点,将线段PA绕点P顺时针旋转力得到线段PQ.(1)若a印且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D , 请补全图形,并写出/CDB的度数;S1(2)在图2中,点P不与点B , M重合,线段CQ的延长线与射线BM交于点D ,猜想/CDB的大小(用含豆的代数式表示),并加以证明;(3)对于适当大小的a ,当点P在线段BM上运动到某一位置(不与点B , M重合)时,能使得线段CQ的延长线与射线BM交于点D ,且PQ=QD ,请直接写出a的范围.范文范例学习参考例题精讲考点1:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)【例1】(14年海淀期末)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE .(1)如图1 ,连接BG、DG .求证:BG =DE ;(2)如图2,如果正方形ABCD的边长为近,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG // BD , BG = BD .①求ZBDE的度数;②请直接写出正方形CEFG的边长的值.【例2】(2014年西城一模) 四边形ABCD是正方形,ABEF是等腰直角三角形,ZBEF =90°, BE =EF ,连接DF , G 为DF 的中点,连接EG, CG , EC。
图形的旋转(6种题型)-2023年新九年级数学核心知识点与常见题型(浙教版)(解析版)
图形的旋转(6种题型)【知识梳理】一.生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.二.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.三.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.四.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.五.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.六.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.七.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通【考点剖析】一.生活中的旋转现象(共1小题)1.(2022秋•义乌市期中)商场卫生间旋转门锁的局部如图1所示,如图2锁芯O固定在距离门边(EF)3.5cm处(即ON=3.5cm),在自然状态下,把手竖直向下(把手底端到达A).旋转一定角度,把手底端B恰好卡住门边时,底端A、B的竖直高度差为0.5cm.当把手旋转90°到达水平位置时固定力最强,有效的固定长度(把手底端到门边的垂直距离)DN=cm,当把手旋转到OC时,∠BOC=∠BOD,此时有效的固定长度为cm.【分析】作BG⊥OA于G,设OA=OB=OC=OD=xcm,在Rt△OBG中利用勾股定理求出x,利用OD﹣ON 得到DN,连接OB,交OC于M,作CP⊥OD,MQ⊥OD,求出BD,OM,QM和OQ,证明△OPC∽△OQM,可得OP,可得PN,即可得到C到EF的距离.【解答】解:如图,作BG⊥OA于G,设OA=OB=OC=OD=xcm,则AG=0.5cm,BG=ON=3.5cm,∴OG=OA﹣AG=x﹣0.5cm,∵在Rt△OBG中,OB2=OG2+BG2,∴x2=(x﹣0.5)2+3.52,解得:x=12.5,∴OA=OB=OC=OD=12.5cm,∴DN=OD﹣ON=12.5﹣3.5=9cm.连接OB,交OC于M,作CP⊥OD,MQ⊥OD,∵BN=OG=12.5﹣0.5=12cm,DN=9cm,∴DB=DN2+BN2=15cm,又∵∠BOC=∠BOD,OD=OB,∴OC⊥BD,DM=BM=DB=7.5cm,∴OM===10cm,∵△DNB中,QM∥NB,且M是DB中点,∴QM=BN=6cm,∴Rt△OQM中,OQ===8cm,又∵CP∥MQ,∴△OPC∽△OQM,∴OC/OM=OP/OQ,∴=,∴OP=10cm,∴PN=OP﹣ON=10﹣3.5=6.5cm,∵CP⊥OD,EF⊥OD,∴C到EF的距离长等于PN 6.5cm.故答案为:9;6.5.【点评】本题考查了圆的基本性质,相似三角形的判定和性质,勾股定理,中位线定理,解题的关键是读懂题意,结合实际理解旋转门锁的运行原理.二.旋转的性质(共9小题)2.(2022秋•镇海区校级期中)如图,在正方形网格中,△ABC绕某点旋转一定的角度得到△A′B′C′,则旋转中心是点()A.O B.P C.Q D.M【分析】根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.【解答】如图,连接BB′,AA′可得其垂直平分线相交于点P,故旋转中心是P点.故选:B.【点评】本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.3.(2022秋•拱墅区校级期中)如图,将△ABC绕点A逆时针旋转70°,得到△ADE,若点D在线段BC 的延长线上,则∠B的大小是()A.45°B.55°C.60°D.100°【分析】由旋转的性质可得AB=AD,∠BAD=70°,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点A逆时针旋转70°得到△ADE,∴AB=AD,∠BAD=70°,∴∠B=∠ADB==55°,故选:B.【点评】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.4.(2023•温州三模)如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转得△ADE,使点D恰好落在AC边上,连结CE,则∠ACE的度数为()A.45°B.55°C.65°D.75【分析】由旋转的性质可知,旋转前后对应边相等,对应角相等,得出等腰三角形,再根据等腰三角形的性质求解.【解答】解:由旋转的性质可知,∠CAE=∠BAC=50°,AC=AE,∴∠ACE=∠AEC,在△ACE中,∠CAE+∠ACE+∠AEC=180°,∴50°+2∠ACE=180°,解得:∠ACE=65°,故选:C.【点评】本题主要考查了旋转的性质,找出旋转角和旋转前后的对应边得出等腰三角形是解答此题的关键.5.(2022秋•杭州期末)如图,将一个含30°角的直角三角板ABC绕点A逆时针旋转,点C的对应点为点C′,若点C′落在BA延长线上,则三角板ABC旋转的度数是()A.60°B.90°C.120°D.150°【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.6.(2023•天台县一模)如图,在矩形ABCD中,AB=1,∠CBD=18°,将矩形ABCD绕对角线中点O逆时针旋转α(0°<α<90°)得到矩形A′B′C′D′,当C′,D的距离等于1时,α的值为()A.36°B.54°C.68°D.72°【分析】根据矩形的性质以及圆周角定理可得出∠COD=∠DOC′=∠C′OB′=2∠CBD=36°,进而得出∠COC′=72°即可.【解答】解:如图,矩形ABCD的外接圆为⊙O,矩形A′B′C′D′的四个顶点也在⊙O上,∵AB=CD=B′C′=DC′=2,∴∠COD=∠DOC′=∠C′OB′=2∠CBD=36°,∴∠COC′=72°,故选:D.【点评】本题考查旋转的性质,矩形的性质,掌握矩形的性质以及旋转的性质是正确解答的前提.7.(2023•长兴县一模)如图,矩形ABCD绕点B旋转得到矩形BEFG,在旋转过程中,FG恰好过点C,过点G作MN平行AD交AB,CD于M,N.若AB=3,BC=5,则图中阴影部分的面积的是()A.3B.4C.5D.【分析】由旋转的性质可得BG=BA=3,由勾股定理可求CG,可求△BGC的面积,由平行四边形的性质可求解.【解答】解:∵矩形ABCD绕点B旋转得到矩形BEFG,∴BG=BA=3,∴CG===4,∴S△BGC=×BG•GC=6,∵MN∥AD,CD∥AB,∴四边形AMND是平行四边形,MN∥BC,∴四边形BCNM是平行四边形,∴S平行四边形BCNM=2S△BGC=12,∴阴影部分的面积=S矩形ABCD﹣S平行四边形BCNM=15﹣12=3,故选:A.【点评】本题考查了旋转的性质,矩形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.8.(2023•仙居县二模)如图,在Rt△ABC中,∠C=90°,AC=10,BC=6,点D是边AC的中点.点P 为边BC上的一个动点,将点P绕点D逆时针旋转90°得到点P′,则AP′的取值范围为.【分析】由“SAS”可证△ADP',可得AP'=PH,即可求解.【解答】解:如图,以AD为直角边,作等腰直角三角形ADH,连接PH,∴AD=DH,∠ADH=90°,∵将点P绕点D逆时针旋转90°得到点P′,∴DP=DP',∠PDP'=90°=∠ADH,∴∠ADP'=∠PDH,∴△ADP'≌△HDP(SAS),∴AP'=PH,∵AC=10,点D是边AC的中点,∴CD=AD=DH=5,∵点P为边BC上的一个动点,∴当PH⊥BC时,PH有最小值为5,当点P与点C重合时,PH有最大值为5,∴5≤HP≤5,∴,故答案为:.【点评】本题考查了旋转的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2023•萧山区二模)如图,在正方形ABCD中,,O是BC中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值为()A.8B.C.D.【分析】连接DO,将DO绕点D逆时针旋转90°得到DM,连接FM,OM,证明△EDO≌△FDM,可得FM =OE=2,由勾股定理可得,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将DO绕点D逆时针旋转90°得到DM,连接FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,在△EDO与△FDM中,,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,,O是BC边上的中点,∴,∴,∴,∵OF+MF≥OM,∴OF≥10﹣2=8,∴线段OF的最小值为8,故选:A.【点评】本题考查线段的最值问题,涉及三角形的三边关系、勾股定理、旋转的性质、正方形的性质、全等三角形的判定与性质等知识,添加辅助线构造全等三角形是解题关键.10.(2022秋•浦江县月考)阅读下面材料,并解决问题:(1)如图①等边△ABC P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段P A、PB、PC转化到一个三角形中,从而求出∠APB=;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.【分析】(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;(2)把△ABE绕点A逆时针旋转90°得到△ACE′,根据旋转的性质可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,从而得到∠EAF=∠E′AF,然后利用“边角边”证明△EAF和△E′AF全等,根据全等三角形对应边相等可得E′F=EF,再利用勾股定理列式即可得证.(3)将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.【解答】解:(1)∵△ACP′≌△ABP,∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,由题意知旋转角∠PA P′=60°,∴△AP P′为等边三角形,P P′=AP=3,∠A P′P=60°,易证△P P′C为直角三角形,且∠P P′C=90°,∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°;故答案为:150°;(2)如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,∵∠EAF=45°,∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠E′AF,在△EAF和△E′AF中,∴△EAF≌△E′AF(SAS),∴E′F=EF,∵∠CAB=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC=,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BOO′=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=,∴OA+OB+OC=A′O′+OO′+OC=A′C=.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,读懂题目信息,理解利用旋转构造出全等三角形和等边三角形以及直角三角形是解题的关键.三.旋转对称图形(共3小题)11.(2022秋•平阳县校级月考)把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°【分析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D.故选:D.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.12.(2022秋•张湾区期中)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C.【点评】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.13.(2023•婺城区模拟)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:【点评】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.四.坐标与图形变化-旋转(共8小题)14.(2022秋•莲都区期中)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,﹣2)B.(3,﹣1)C.(2,﹣3)D.(3,2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ =2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.15.(2022秋•吴兴区期中)如图,在平面直角坐标系中,线段AB的端点在方格线的格点上,将AB绕点P 顺时针方向旋转90°,得到线段A′B′,则点P的坐标为.【分析】依据旋转的性质可得,将AB绕点P顺时针方向旋转90°,得到线段A′B′,则点P到对应点的距离相等,因此作出两对对应点连线的垂直平分线,其交点即为所求.【解答】解:如图所示,作线段AA'和BB'的垂直平分线,交于点P,则点P即为旋转中心,由图可得,点P的坐标为(1,2),故答案为:(1,2).【点评】本题主要考查了坐标与图形变换,解决问题的关键是掌握旋转的性质.一般情况,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.16.(2022秋•苍南县期中)如图,点A的坐标为(0,3),点C的坐标为(1,0),B的坐标为(1,4),将△ABC沿y轴向下平移,使点A平移至坐标原点O,再将△ABC绕点O逆时针旋转90°,此时B的对应点为B′,点C的对应点为C′,则点C′的坐标为()A.(4,1)B.(1,4)C.(3,1)D.(1,3)【分析】首先根据点A的平移规律得到C的平移后坐标,再根据旋转规律得到C′的坐标.【解答】解:∵点A平移至坐标原点O,点A的坐标为(0,3),∴向下平移三个单位长度,∴C平移后的坐标为(1,﹣3),∵平移后再将△ABC绕点O逆时针旋转90°,∴点C′的坐标为(3,1).故选:C.【点评】此题主要考查了坐标与图形的变化中的旋转与平移,正确使用坐标与图形变化的规律是解题的关键.17.(2022秋•衢江区校级期末)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣1,4)的对应点A′的坐标是()A.(1,4)B.(4,1)C.(1,﹣4)D.(4,﹣1)【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出∠AOA′=90°,AO=A′O,作AC ⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O90°得到线段A′B′,∴∠AOA′=90°,AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣1,4),∴AC=1,CO=4,∴A′C′=1,OC′=4,∴A′(4,1).故选:B.【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,点的坐标的运用,正确作出辅助线并证得△ACO≌△A′C′O是解决问题的关键.18.(2022秋•西湖区校级期中)在平面直角坐标系中,把点P(1,﹣2)绕原点O顺时针旋转90°,所得到的对应点Q的坐标为.【分析】作PQ⊥y轴于Q,如图,把点P(1,﹣2)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(1,﹣2),∴PQ=1,OQ=2,∵点P(1,﹣2)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=1,OQ′=OQ=2,∴点P′的坐标为:(﹣2,﹣1).故答案为:(﹣2,﹣1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.19.(2023•金华)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标.【分析】利用旋转变换的性质作出图形可得结论.【解答】解:如图,点A(4,5)绕原点O逆时针方向旋转90°,得到的点B的坐标(﹣5,4).故答案为:(﹣5,4).【点评】本题考查坐标与图形变化﹣旋转,解题的关键是正确作出图形,利用图象法解决问题.20.(2022秋•柯桥区期中)在平面直角坐标系中,O为坐标原点,已知点B(0,4),点A在x轴负半轴上,且∠BAO=30°,将△AOB O顺时针旋转,得△COD,点A、B旋转后的对应点分别为C,D,记旋转角为α.(1)如图1,CD恰好经过点B时,①求此时旋转角α的度数;②求出此时点C的坐标;(2)如图2,若0°<α<90°,设直线AC和直线DB交于点P,猜测AC与DB的位置关系,并说明理由.【分析】(1)①根据旋转的性质得到OB=OD,求得∠ABO=60°=∠D,得到△BOD是等边三角形根据等边三角形的性质得到∠BOD=60°,于是得到结论;②过点C作CE⊥x轴于E,根据等腰三角形的性质得到CO=AO=4,求得∠AOC=60°,求得OE=2,CE=6,于是得到C(﹣2,6);(2)根据等腰三角形的性质得到∠OBD=90°﹣,求得∠ABP=180°﹣60°﹣(90°﹣)=30°+,根据垂直的定义即可得到结论.【解答】解:(1)①由旋转可知,OB=OD,∵∠BAO=30°,∴∠ABO=60°=∠D,∴△BOD是等边三角形,∴∠BOD=60°,∴旋转角α的度数为60°;②过点C作CE⊥x轴于E,∵∠AOB=90°,B(0,4),∴CO=AO=4,∵α=60°,∴∠AOC=60°,∴OE=2,CE=6,∴C(﹣2,6);(2)AC⊥BD,理由:∵∠AOC=α,OB=OD,∴∠OBD=90°﹣,∴∠ABP=180°﹣60°﹣(90°﹣)=30°+,∴∠PBA+∠PAB=60°﹣30°+=90°,∴∠APB=90°,∴AC⊥BD.【点评】本题考查了坐标与图形性质﹣旋转,等边三角形的性质,直角三角形的性质,旋转的性质,正确地作出辅助线是解题的关键.21.(2022秋•鄞州区校级期末)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,继续旋转至2022次得到正方形OA2022B2022C2022,则点B2022的坐标是.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,再由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,然后发现规律是8次一循环,进而得出答案.【解答】解:∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:OB==,由旋转的性质得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(1,﹣1),故答案为:(1,﹣1).【点评】本题考查了旋转的性质、正方形的性质、坐标与图形性质、勾股定理、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.五.作图-旋转变换(共5小题)22.(2023•龙游县一模)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC绕着原点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出C1的坐标.(2)若△ABC中的一点P(a,b),在①中变换下对应△A′B′C′中为P′点,请直接写出点P′的坐标(用含a、b的代数式表示)【分析】(1)根据图形旋转的性质画出△A1B1C1,并写出C1的坐标即可;(2)根据(1)中C点坐标找出规律即可得出结论.【解答】解:(1)如图所示,C1的坐标(1,4).(2)∵C(4,﹣1),C1(1,4),∴P’(﹣b,a).【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.23.(2023•温州一模)如图,在6×4的方格纸中,已知线段AB(A,B均在格点上),请按要求画出格点四边形(顶点均在格点上).(1)在图1中画一个以AB为边的四边形ABCD,使其为轴对称图形.(2)在图2中画一个以AB为对角线的四边形AEBF,使其为中心对称图形.【分析】(1)根据轴对称图形的定义画出图形即可;(2)根据中心对称图形的定义画出图形即可.【解答】解:(1)如图,四边形即为所求作:;(2)如图,四边形即为所求作:.【点评】本题考查了作图﹣旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.(2023•乐清市模拟)如图是由边长为1的小正方形构成的6×6的网格,点A,B均在格点上,请按要求画出以AB为对角线的格点四边形(顶点均在格点上).(1)在图1中画一个周长为整数的四边形ACBD;(2)在图2中画一个面积为8的四边形AEBF,且使其是中心对称图形但不是轴对称图形.【分析】(1)利用勾股定理作出,据此即可画出一个周长为整数的四边形ACBD;(2)根据三角形的面积公式以及平行四边形的性质即可画出一个面积为8的四边形AEBF,且使其是中心对称图形但不是轴对称图形.【解答】解:(1)如图,四边形ACBD即为所求作.(2)如图,四边形AEBF即为所求作.【点评】本题考查作图﹣旋转变换,勾股定理,平行四边形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题.25.(2022•平阳县一模)如图,在10×8的方格纸巾,请按要求画图.(1)在图1中画一个格点C,使△ABC为等腰三角形.(2)在图2中两个格点F,G,使四边形DEFG为中心对称图形,且对角线互相垂直.【分析】(1)根据等腰三角形的概念作图即可(答案不唯一);(2)根据中心对称图形的概念及菱形、正方形的性质作图即可(答案不唯一).【解答】解:(1)如图所示,△ABC即为所求(答案不唯一).(2)如图所示,四边形DEFG即为所求(答案不唯一).【点评】本题主要考查作图—旋转变换,解题的关键是掌握旋转变换的定义与性质、等腰三角形的定义、菱形与正方形的性质.26.(2023•温州二模)如图在6×6的方格纸中,点A,B,C均在格点上,请按要求画出相应格点图形.(1)画出△ABC关于点C成中心对称的格点三角形△A1B1C(点A,B的对应点分别为A1,B1).(2)画出△ABD,使得S△ABD=3S△ABC.【分析】(1)根据中心对称的性质作图即可.(2)由图可得S△ABD=3S△ABC=6,结合三角形的面积找出点D的位置即可.【解答】解:(1)如图,三角形△A1B1C即为所求.(2)由图可得,S△ABC==2,∴S△ABD=3S△ABC=6.如图,△ABD1,△ABD2,△ABD3均满足要求.【点评】本题考查中心对称、三角形的面积,熟练掌握中心对称的性质、三角形的面积是解答本题的关键.六.利用旋转设计图案(共3小题)27.(2022秋•宁波期末)如图,在4×4的网格纸中,△ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将△ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点N B.点M,点Q C.点N,点P D.点P,点Q【分析】画出中心对称图形即可判断【解答】解:观察图象可知,点P.点N满足条件.故选:C.【点评】本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.28.(2022秋•定海区校级月考)在冬奥会开幕式上,美丽的冬奥雪花呈现出浪漫空灵的气质.如图,雪花图案本身的设计呈现出充分的美感,它是一个中心对称图形.其实“雪花”图案也可以看成自身的一部分围绕图案的中心依次旋转一定角度得到的,这个角的度数可以是()A.30°B.45°C.60°D.90°【分析】根据图形的对称性,用360°除以6计算即可得解.【解答】解:∵360°÷6=60°,∴旋转角是60°的整数倍,∴这个角的度数可以是60°.故选:C.【点评】本题考查了旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.29.(2022秋•慈溪市期末)美丽的冬奥雪花呈现出浪漫空灵的气质.如图,雪花图案是一个中心对称图形,也可以看成自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是()。
(完整)关于全等三角形的旋转难题
旋转已知,如图,三角形ABC是等腰直角三角形,∠ACB=90°,F是AB的中点,直线l经过点C,分别过点A、B作l的垂线,即AD⊥CE,BE⊥CE,(1)如图1,当CE位于点F的右侧时,求证:△ADC≌△CEB;(2)如图2,当CE位于点F的左侧时,求证:ED=BE—AD;(3)如图3,当CE在△ABC的外部时,试猜想ED、AD、BE之间的数量关系,并证明你的猜想.考点:全等三角形的判定与性质.专题:证明题;探究型.分析:(1)利用同角的余角相等得出∠CAD=∠BCE,进而根据AAS证明△ADC≌△CEB.(2)根据AAS证明△ADC≌△CEB后,得其对应边相等,进而得到ED=BE—AD.(3)根据AAS证明△ADC≌△CEB后,得DC=BE,AD=CE,又有ED=CE+DC,进而得到ED=AD+BE.解答:(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中∠ADC=∠CEB ∠CAD=∠BCE AC=BC ,∴△ADC≌△CEB(AAS).(2)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中∠ADC=∠CEB ∠CAD=∠BCE AC=BC ,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CD—CE,∴ED=BE-AD.(3)ED=AD+BE.证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中∠ADC=∠CEB ∠CAD=∠BCE AC=BC ,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CE+DC,∴ED=AD+BE.点评:本题考查了全等三角形的判定和性质;利用全等三角形的对应边相等进行等量交换,证明线段之间的数量关系,这是一种很重要的方法,注意掌握3。
初中数学专题一 旋转中的几何模型(手拉手模型、对角互补模型)(解析版)
专题一旋转中的几何模型模型一 “手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.模型说明:如图1,△ABE,△ACF都是等边三角形,可证△AEC≌△ABF.如图2,△ABD,△ACE都是等腰直角三角形,可证△ADC≌△ABE.如图3,四边形ABEF,四边形ACHD都是正方形,可证△ABD≌△AFC.图1 图2 图3等腰图形有旋转,辩清共点旋转边,关注三边旋转角,全等思考边角边。
1【问题提出】(1)如图①,△ABC,△ADE均为等边三角形,点D,E分别在边AB,AC上.将△ADE绕点A沿顺时针方向旋转,连结BD,CE.在图②中证明△ADB≅△AEC.[学以致用](2)在(1)的条件下,当点D,E,C在同一条直线上时,∠EDB的大小为度.[拓展延伸](3)在(1)的条件下,连结CD.若BC=6,AD=4直接写出△DBC的面积S的取值范围.【思路点拨】(1)根据“手拉手”模型,证明△ADB≅△AEC即可;(2)分“当点E在线段CD上”和“当点E在线段CD的延长线上”两种情况,再根据“手拉手”模型中的结论即可求得∠EDB的大小;(3)分别求出△DBC的面积最大值和最小值即可得到结论【详解】(1)∵ABC,ADE均为等边三角形,∴AD=AE,AB=AC,∴∠DAE-∠BAE=∠BAC-∠BAE,即∠BAD=∠CAE在△ADB和△AEC中,AD=AE∠BAD=∠CAE AB=AC∴ABD ≅ACE (SAS );(2)当D ,E ,C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°,∴∠AEC =180°-∠AED =120°,由(1)可知,△ADB ≅△AEC ,∴∠ADB =∠AEC =120°,∴∠EDB =∠ADB -∠ADE =120°-60°=60°②当点E 在线段CD 的延长线上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°∴∠ADC =180°-∠ADE =120°,由(1)可知,△ADB ≅△AEC∴∠ADB =∠AEC =60°,∴∠EDB =∠ADB +∠ADE =60°+60°=120°综上所述,∠EDB 的大小为60°或120°(3)过点A 作AF ⊥BC 于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3∴AF =AB 2-BF 2=62-32=33∴DF =33-4此时S .DBC =12BC ⋅DF =12×6×(33-4)=93-12;当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3,∴AF =AB 2-BF 2=62-32=33∵AD =4∴DF =AF +AD =33+4此时,S .DBC =12BC ⋅DF =12×6×(33+4)=93+12;综上所述,△DBC 的面积S 取值是93-12≤5≤93+12【点评】 利用“手拉手”模型,构造对应边“拉手线”组成的两个三角形全等是解题关键2已知正方形ABCD 和等腰直角三角形BEF ,BE =EF ,∠BEF =90°,按图1放置,使点F 在BC 上,取DF 的中点G ,连接EG ,CG .(1)探索EG,CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45°,再连接DF,取DF中点G(见图2),(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间),再连接DF,取DF中点G(见图3),(1)中的结论是否仍然成立?证明你的结论.【思路点拨】(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG= GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG;(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.【解题过程】解:(1)EG=CG且EG⊥CG.证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.∴∠EGF=2∠EDG,∠CGF=2∠CDG.∴∠EGF+∠CGF=2∠EDC=90°,即∠EGC=90°,∴EG⊥CG.(2)仍然成立,证明如下:如图②,延长EG交CD于点H.∵BE⊥EF,∴EF∥CD,∴∠1=∠2.又∵∠3=∠4,FG=DG,∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,∴△HFG≌△CDG,∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,∴HE=EC,∠BEC=∠FEH,∴∠BEF=∠HEC=90°,∴△ECH为等腰直角三角形.又∵CG=GH,∴EG=CG且EG⊥CG.针对训练11已知ΔABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EF,CF,AF.(1)问题发现:如图1,当点E在线段AD上时,且∠AFC=35°,则∠FAC的度数是;(2)结论证明:如图2,当点E 在线段AD 的延长线上时,请判断∠AFC 和∠FAC 的数量关系,并证明你的结论;(3)拓展延伸:若点E 在直线AD 上运动,若存在一个位置,使得ΔACF 是等腰直角三角形,请直接写出此时∠EBC 的度数.【答案】(1)55°;(2)∠AFC +∠FAC =90°,见解析;(3)15°或75°【解析】(1)55°,理由:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;∵∠AFC =35°,∴∠FAC =55°;(2)结论:∠AFC +∠FAC =90°,理由如下:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;(3)∠EBC =15°或75°分两种情况:①点E 在点A 的下方时,如图:∵ΔACF 是等腰直角三角形,∴AC =CF ,由(2)得ΔABE ≌ΔCBF ,∴CF =AE ,∴AC =AE =AB ,∴∠ABE =180°-30°2=75°,∴∠EBC =∠ABE -∠ABC =75°-60°=15°;②点E 在和点A 的上方时,如图:同理可得∠EBC =∠ABE +∠ABC =75°.2已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(0°<α<90°),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,∠BEF 的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出∠BEF 的度数;(3)联结AF ,求证:DE =2AF .【答案】(1)30°;(2)不变;45°;(3)见解析【解析】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE=CD,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴α=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=180°-α2=90°-α2,在△CEB中,CE=CB,∠BCE=90°-α,∴∠CEB=∠CBE=180°-∠BCE2=45°+α2,∴∠BEF=180°-∠CED-∠CEB=45°.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=2AF模型二 对角互补模型对角互补模型的特征:外观呈现四边形,且对角和为180°。
专题47 三角形中的旋转综合问题(解析版)
专题47 三角形中的旋转综合问题1、如图,点P是∠MON内的一点,过点P作PA⊥OM于点A,PB⊥ON于点B,且OA=OB.(1)求证:PA=PB;(2)如图②,点C是射线AM上一点,点D是线段OB上一点,且∠CPD+∠MON=180°,若OC=8,OD=5.求线段OA的长.(3)如图③,若∠MON=60°,将PB绕点P以每秒2°的速度顺时针旋转,12秒后,PA开始绕点P以每秒10°的速度顺时针旋转,PA旋转270°后停止,此时PB也随之停止旋转.旋转过程中,PA所在直线与OM所在直线的交点记为G,PB所在直线与ON所在直线的交点记为H.问PB旋转几秒时,PG=PH?(1)证明:如图①中,连接OP.∵PA⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°,∵OA=OB,OP=OP,∴Rt△OPA≌Rt△OPB(HL),∴PA=PB.(2)如图②中,∵∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠CPD+∠AOB=180°,∴∠CPD=∠APB,∴∠APC=∠BPD,∵PA=PB,∠PAC=∠PBD=90°,∴△PAC≌△PBD(ASA),∴AC=BD,∴OC+OD=OA+AC+OB﹣BD=2OA=13,∴OA=6.5.(3)设点P的旋转时间为t秒.①当0<t<12时,不存在.②当12≤t<21时,如图3﹣1中,∠APG=(10t﹣120)°,∠BPH=2t°,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣120=2t,t=15.③当21≤t<30时,如图3﹣2中,∠APG=180°﹣∠APA′=180°﹣(10t﹣120)°=(300﹣10t)°,∠BPH =2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时300﹣10t=2t,t=25.④当30≤t<39时,如图3﹣3中,∠APG=(10t﹣300)°,∠BPH=2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣300=2t,t=37.5,综上所述,满足条件的t的值为15s或25s或37.5s.2、(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,CD=2OD,AB=2OB,连接AC交BD的延长线于点M.请求出的值及∠AMB的度数,并说明理由;(3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC、BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=50°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=50°,∴∠OAB+∠ABO=130°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣130°=50°,故答案为:①1;②50°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DOC=90°,CD=2DO,∴∠DCO=30°,∴=tan30°=,同理得:=tan30°=,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图1,同(2)得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴,整理得:x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,∴x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图2,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴+(x+2)2=,整理得x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.3、已知在平面直角坐标系中,A(a,0),B(b,0)、C(0,c),其中a、b、c满足=0.(1)求△ABC的面积;(2)将线段BC向右平移至AD(点B对应点A,点C对应点D).①当点M为x轴上任意点(不与原点重合),ME、CF分别平分∠CMO与∠DCM,若∠AME=α,∠DCF=β,试用含α的代数式表示β;②点P为线段CD上一点(不与点C、D重合),P的横坐标为t,连接BP、AC,BP交y轴于点E,交AC于点Q,若△CQE与△PQA的面积分别为S1,S2,试用含t的代数式表示S2﹣S1.解:(1)如图1中,∵=0,又∵≥0,|b+2|≥0,(c﹣4)2≥0,∴a=5,b=﹣2,c=4,∴A(5,0),B(﹣2,0),C(0,4),∴OA=5,OB=2,OC=4,∴AB=OB+OA=2+5=7,∴S△ABC=•AB•OC=×7×4=14.(2)①如图2﹣1中,当点E在射线OB上时,α+β=90°理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∵∠DCF=∠DCM=β,∠AME=∠AMC=α,∴α+β=90°.当点M在线段AB上时,如图2﹣2中,α+β=180°.理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∠DCM=∠CMB,∵∠DCM=2∠DCF=2β,∠FCM=∠DCM,∠EMC=∠CMB,∴∠FCM=∠EMC=β,∴∠AMC=180°﹣2β,∵∠AME=∠AMC+∠EMC,∴α=β+180°﹣2β,∴α+β=180°.当点M在线段OA的延长线上时,如图2﹣3中,α=β.理由::∵CD∥AM,∴∠DCM=∠CMB,∵∠DCF=∠DCM,∠AME=∠CMB,∴∠DCF=∠AME,∴α=β.②如图3中,设E(0,m).由题意:P(t,4),A(5,0),B(﹣2,0),C(0,4),∴S△BCP=S△BCE+S△ECP,∴×t×4=×(4﹣m)×2+×(4﹣m)×t,∴m=,∴S2﹣S1=S△PCA﹣S△PCE′=×t×4﹣×t×(4﹣)=.4、如图,在平面直角坐标系中,O为原点,点A(0,4),B(﹣4,0),C(4,0).(Ⅰ)如图①,若∠BAD=15°,AD=3,求点D的坐标;(Ⅱ)如图②,AD=2,将△ABD绕点A逆时针方向旋转得到△ACE,点B,D的对应点分别为C,E.连接DE,BD的延长线与CE相交于点F.①求DE的长;②证明:BF⊥CE.(Ⅲ)如图③,将(Ⅱ)中的△ADE绕点A在平面内旋转一周,在旋转过程中点D,E的对应点分别为D1,E1,点N,P分别为D1E1,D1C的中点,请直接写出△OPN面积S的变化范围.解:(Ⅰ)∵OA=OB=4,∠AOB=90°,∴∠OAB=∠ABO=45°.∴∠DAO=∠OAB﹣∠DAB=30°.如图①中,过点D作DG⊥OA,垂足为G.在Rt△ADG中,∠DAG=30°,∴,,∴,∴点D的坐标为.(Ⅱ)①如图②中,∵∠DAE=∠BAC=90°,AD=AE=2,∴在Rt△DAE中,,②∵OA=OB=OC=4,∠AOB=∠AOC=90°,∴∠OAB=∠ABO=∠ACO=∠OAC=45°,∴∠BAC=90°,∵△ABD旋转得到△ACE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△BFC中,则有∠FBC+∠FCB=∠FBC+∠BCA+∠ACE=∠FBC+∠BCA+∠ABD=∠ABC+∠BCA=90°,∴BF⊥CE.(Ⅲ)如图③中,∵OB=OC,PC=PD1,NE1=ND1,∴OP=BD1,PN=E1C,OP∥BD1,PN∥CE1∵BD1⊥E1C,BD1=E1C,∴OP⊥PN,OP=PN,∴△OPN是等腰直角三角形,∵AB=4,AD1=2,∴4﹣2≤BD1≤4+2,∴2﹣1≤OP≤2+1,∴△OPN面积的最小值=(2﹣1)2=﹣2,△OPN的面积的最大值=+2,∴.5、问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴BH=CD=2,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∴==,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.6、已知△ABC是等边三角形,D是BC上一点,△ABD绕点A逆时针旋转到△ACE的位置.(1)如图,旋转中心是,∠DAE=°;(2)如图,如果M是AB的中点,那么经过上述旋转后,点M转动了度;(3)如果点D为BC边上的三等分点,且△ABD的面积为3,那么四边形ADCE的面积为.解:(1)∵△ABC为等边三角形,∴∠BAC=60°∵△ABD绕点A逆时针旋转到△ACE的位置,∴旋转中心是点A,∠DAE=∠BAC=60°;(2)∵AB和AC为对应边,∴经过上述旋转后,点M转到了AC的中点位置,如图,∴∠MAM′=60°,∴点M转动了60°;(3)∵△ABD绕点A逆时针旋转到△ACE的位置,∴△ABD≌△ACE,∵BD=BC,或BD=BC,∴CD=2BD,或CD=BD,∴S△ABC=3S△ABD=3×3=9,或S△ABC=S△ABD=3×=,∴S=S△ABC=9或.四边形ADCE故答案为点A,60;60;9或.7、如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN=2+5=7,最大∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.8、如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)结论:AE=BD,AE⊥BD.理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,∴EH=DH,CH=DE=5,在Rt△ACH中,∵AC=13,CH=5,∴AH==12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,综上所述,满足条件的AD的值为17或7.9、如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现当α=0°时,=;β=°.(2)拓展探究试判断:当0°≤α<360°时,和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.解:(1)如图1中,∵∠B=90°,BA=BC,∴∠A=45°,AC=AB,∵点D、E分别是边AB、AC的中点,∴BD=AB,EC=AC,∴=,β=45°,故答案为,45°.(2)结论:和β的大小无变化.理由:如图2中,延长CE交AB于点O,交BD于K.∵AE=AD,AC=AB,∴==,∴=,∵∠DAE=∠BAC,∴∠DAB=∠EAC,∴△DAB∽△EAC,∴==,∠OBK=∠OCA,∵∠BOK=∠COA,∠BKO=∠CAO=45°,∴和β的大小无变化.(3)当点E在线段AB上时,S△BCE=×4×(4﹣2)=8﹣4,当点E在线段BA的延长线上时,S△BCE=×4×(4+2)=8+4.综上所述,△BCE的面积为8﹣4或8+4.10、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.11、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.解:(1)如图1中,连接EC,BD.结论:BD=CE.理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE.(2)如图2中,由题意:∠CAE=45°,∵AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∴AE∥BC.∴△CBE的面积与△ABC的面积相等.∵△ABC的面积为4.5,∴△CBE的面积4.5.(3)如图3中,延长AM到N,使得MN=AM,连接CN,DM.∵AM=MN,CM=MD,∴四边形ADNC是平行四边形,∴AD=CN=1,∵AC=3,∴3﹣1≤AN≤3+1,∴2≤2AM≤4,∴1≤AM≤2,∴AM的最小值为1.故答案为1.12、综合与实践问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)解:(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.(3)如图③中,作CH⊥AD于H.∵∴AC=CD=AB=2,∵B,A,E共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A,E,D,C四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD,CH⊥AD,∴AH=DH=AC•cos30°=,∴AD=2,∴BD===2.(4)如图①中,设DE交BC于T.因为含有30°的直角三角形的三边之比为1::2,由(1)可知△BDT,△DCT,△ECT都是含有30°的直角三角形,∴△BDT,△DCT,△ECT符合条件.。
专题等腰三角形的性质与运用(三)
专题 等腰三角形的性质与运用(三)教学目标: 知识与技能:(1) 能从矩形、菱形、正方形、等腰梯形等图形中分解出等腰三角形,并运用等腰三角形的性质解决相关问题; (2) 建立等腰三角形与图形的旋转之间的联系,能从旋转的角度看含有两个等腰三角形的组合图形。
过程与方法:通过对图形的拆分,认识图形结构,建立图形间的有效关系,初步找到解决问题的通法。
情感态度与价值观:经历从简单到复杂的过程,发展学生思维的全面性和深刻性。
教学重难点:建立等腰三角形与特殊四边形及图形的旋转之间的联系,通过对图形的拆分认识图形结构,建立图形间的有效关系,解决较复杂的问题。
教学过程:引入:(设疑)上节课介绍了一些特有的图形关系中隐含的等腰三角形,一旦识别出其中的等腰三角形,则应用相关的性质可解决问题。
除上述图形关系可形成等腰三角形,圆中存在等腰三角形,还有哪些图形中隐含着等腰三角形?引例:如图1,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE =15°。
解读矩形ABCD 的隐含信息。
例1.如图1-1,菱形ABCD,E 、F 分别为BC 、CD 上的点,且∠B=∠EAF=60°,若∠BAE=20°,求∠CEF 的度数. 分析:由菱形定义知,菱形中隐含了4个等腰三角形,结合已知∠B=60°,所以△ABC 是等边三角形。
又∠EAF=60°,可证△ABE ≌△ACF,故△AEF 也是等边三角形,问题得以解决。
解:如图1-2,连结AC. ∵ 在菱形ABCD 中, ∴ AB=BC,AB //CD. ∵ ∠B=60°, ∴ ∠BCD=120°. ∴ △ABC 为等边三角形. ∴ ∠1=∠BAC=60°,AB=AC. ∴ ∠2=60°. ∴ ∠B=∠2. ∵ ∠EAF=60°,∴ ∠3=∠4.∵ 在△ABE 和△ACF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠34AC,AB 2B ∴ △ABE ≌△ACF.B图1图1-1C图1-2∴ AE=AF. ∴ △AEF 是等边三角形. ∴ ∠5=60°.∵ ∠AEC=∠B+∠4, ∴∠CEF=∠BAE=20°.点拨:矩形、菱形、正方形、等腰梯形等图形也都是轴对称图形,从这些图形中都可以分解出等腰三角形,进而应用等腰三角形的性质解决问题。
旋转中常见的几何模型
CD=CE,
∴△ACD≌△BCE(SAS). ∴AD=BE,∠CAD=∠CBE. ∵∠BFC=∠AFG,∠BFC+∠CBE=90°, ∴∠AFG+∠CAD=90°. ∴∠AGF=90°.∴BE⊥AD.
模型特征:大角含半角+有相等的边,通过旋转“使相等的边重合, 拼出特殊角”. 模型说明:如图,在正方形 ABCD 中,∠EAF=45°,将△ ADF 绕 点 A 顺时针旋转 90°,得到△ ABG,可证△ AEF≌△AEG.所以可得 DF+BE=EF.
AE=AE, ∴△DAE≌△D′AE(SAS).∴DE=D′E.
(2)∠DAE=12∠BAC,理由如下: ∵△ABD 绕点 A 旋转,得到△ ACD′, ∴∠DAD′=∠BAC,AD=AD′. 在△ DAE 和△ D′AE 中,DAED==DA′DE′,,
AE=AE,
∴△DAE≌△D′AE(SSS). ∴∠DAE=∠D′AE=12∠DAD′. ∵∠DAD′=∠BAC,∴∠DAE=12∠BAC.
若一个图形中含有相等的线段和特殊的角度,通常是以等线段的公 共端点为旋转中心进行旋转,使得相等的边重合,得出特殊的图形.
5.【注重阅读理解】请阅读下列材料: 问题:如图 1,在等边△ ABC 内有一点 P,且 PA=2,PB= 3,PC =1,求∠BPC 的度数和等边△ ABC 的边长. 李明同学的思路是:将△ BPC 绕点 B 逆时针旋转 60°,画出旋转后 的图形(如图 2),连接 PP′,可得△ P′PB 是等边三角形,而△ PP′A 又是直角三角形(由勾股定理的逆定理可证),所以∠BPC=∠AP′B =150°,进而求出等边△ ABC 的边长为 7,问题得到解决. 请你参考李明同学的思路,探究并解决下列问题:如图 3,在正方形 ABCD 内有一点 P,且 PA= 5,BP= 2,PC=1.求∠BPC 的
数学人教版八年级上册全等三角形与旋转问题
课题概述八年级学生虽然已经在七年级学习了平行线与相交线,但是平行线与相交线的证明很简单,本学期学习连续学习《三角形》,《全等三角形》,《轴对称》三章,图形变化较多,学生在寻找图形边角关系上还存在问题,证明也有一定难度,只能见一个图形硬性记一个图形,所以本节课设计意图就是将看似分隔的图形通过几何画板的演示整合到一起,形成一个图形的不同变换形式,而实质是不变的,从而帮助学生理解图形的内在联系。
对于以后学习旋转规律图形也会有相当大的帮助。
学习目标阐述(1)通过观察图形的变化过程,探究发现图形变化的实质,从而抓住本质规律,找到证明全等的条件.(2)通过观察几何画板的图形变换的演示,将看似分割的图形整合到一起,抓住事物本质.完成目标(1)的标志是:学生能用旋转的角度理解两个三角形能重合,所以全等,进而理解边角关系,找到证明条件。
完成目标(2)的标志是:学生发挥想象力和创意移动点C,B位置,发现不同图形式可以整合到一起,从而将图形统一,抓住图形本质。
学习者特征分析学生在八年级上学期刚刚学习了《三角形》,《全等三角形》和《轴对称》三章,三大章几何连在一起学习,学生的几何体系还没有建立起来,还不能熟练辨析图形之间的关系,对于图形的变换还比较陌生,对于判定两个三角形全等方法的选择以及利用等边三角形证明两个三角形全等也还有一定难度。
教学策略选择与教学活动设计教学策略:八年级学生好奇心强,对新鲜事物感到新奇,创意无限,喜欢探索。
几何画板的动态演示过程,能激发学生的学习兴趣,帮助学生发现并理解图形的变化过程及变换的实质,让学生能够更积极主动地探索新知。
教学活动设计教师创设背景,由学生发挥想象和创意改变图形,发现图形规律和内在联系,并由学生尝试总结规律,给出证明。
教学资源与工具的设计和使用八年级上册数学课本几何画板V5.05演示正方形旋转过程,通过观察发现题目本质,引导学生观察P点的变化范围,其轨迹像在荡秋千,引导学生观察P在AE’上,P标最大,需使直线AE’倾斜程度最大,那么倾斜NMD ECBA 教学评价与反馈设计1.如图,四边形ACDE,BCMN 为正方形,AM_____BD, ∠MAC_____∠BDC(填<,=,>)第1题 第2题2.如图,在ABC 中,D 在AB 上,且ΔCAD 和ΔCBE 都是等边三角形,(1)DE______AB ,(2)∠EDB=_________°3. 如图,已知△ABC 是等边三角形,E 是AC 延长线上任一点,选择一点D ,使得△CDE 是等边三角形,如 果M 是线段AD 的中点,N 是线段BE 的中点.则∠CMN=_____________°第3题 第4题4.已知:如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形. 求证:BD=CE 且BD ⊥CE总结与帮助放飞学生的心灵,尊重学生独特的体验探究学习是一种发现学习,具有深刻的问题性、广泛的参与性、丰富的实践性和开放性。
中考数学教学指导:等腰直角三角形旋转问题的分类探析
等腰直角三角形旋转问题的分类探析等腰直角三角形在旋转变换下的探究性问题,是近几年中考数学命题的热点,其探究过程常与三角形的全等和相似、勾股定理、正方形的性质以及函数方程等知识有关,是一类对能力要求较高的问题。
现以中考试题为例,具体归纳为以下几种类型进行分析. 一、90°角绕直角顶点旋转例1 .在Rt ABC ∆中,90,4,,A AC AB D E ∠=︒==分别是边,AB AC 的中点.若等腰Rt ADE ∆绕点A 逆时针旋转,得到等腰11Rt AD E ∆,设旋转角为(0180)αα<≤︒,记直线1BD 与1CE 的交点为P .(1)如图1,当90α=︒时,线段1BD 的长等于 ,线段1CE 的长等于 ;图1 图2(2)如图2,当135α=︒时,求证:11BD CE =,且11BD CE ⊥;(3)求点P 到AB 所在直线的距离的最大值(直接写出结果).解(1)(2)当135α=︒时,Rt ADE ∆ 旋转135°到11Rt AD E ∆, 1111,135AD AE D AB E AC ∴=∠=∠=︒.1,A B A C D A B =∴∆ ≌1E AC ∆,又‘:L1=L2,1111,BD CE D BA E CA ∴=∠=∠.又12∠=∠ ,90CPB CAB ∴∠=∠=︒,即11BD CE ⊥;(3)最大值二、90°角绕斜边中点旋转例2 将一副三角尺如图3摆放(在Rt ABC ∆中,90,60ACB B ∠=︒∠=︒;在Rt DEF ∆中,90,45EDF E ∠=︒∠=︒,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .)(1)求ADE ∠的度数;(2)如图3,将DEF ∆绕点D 顺时针方向旋转角(060)αα︒<<︒,此时的等腰直角三角尺记为DE F ''∆, DE '交AC 于点M ,DF '交BC 于点N ,试判断PM CN 的值是否随着α的变化而变化?如果不变,请求出PM CN 的值;反之,请说明理由.图3解 (1)由题意,知CD 是Rt ABC ∆中斜边AB 上的中线,AD BD CD ∴==.在BCD ∆中,BD CD =且60B ∠=︒, BCD ∴∆为等边三角形,60BCD BDC ∴∠=∠=︒,180180609030ADE BDC EDF ∴∠=︒-∠-∠=︒-︒-︒=︒. (2)PM CN的值不会随着α的变化而变化,理由如下: APD ∆ 的外角MPD ∠303060A ADE =∠+∠=︒+︒=︒,60MPD BCD ∴∠=∠=︒.在MPD ∆和NCD ∆中,60,MPD BCD PDM CDN α∴∠=∠=︒∠=∠=,MPD ∴∆∽NCD ∆,PM PD CN CD∴=. 又由(1)知AD CD =,PM PD PD CN CD AD∴==. 在APD ∆中,30A ADE ∠=∠=︒, ∴在等腰APD ∆中,3PD AD ==, PM PD PD CN CD AD ∴===三、45°角绕直角顶点旋转例3 在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且45EAF CEF ∠=∠=︒.(1)将ADF ∆绕着点A 顺时针旋转90°,得到ABG ∆(如图4).求证: AEG ∆≌AEF ∆;(2)若直线EF 与AB 、AD 的延长线分别交于点M 、N (如图5),求证:222EF ME NF =+;图4 图5(3)将正方形改为长与宽不等的长方形,若其余条件不变(如图6),请你直接写出线段EF 、BE 、DF 之间的数量关系.图6解 (1)ADF ∆ 绕着点A 旋转90°到ABG ∆,,90,AF AG FAG ∴=∠=︒ 45GAE FAG EAF EAF ∴∠=∠-∠=︒=∠,AE AE AGE =∴∆ ≌AFE ∆.(2) ADF ∆绕着点A 旋转90°到ABG ∆,如图7,得DF BG =.图7ABCD 是正方形,,90,BC DC C ABC ADC ∴=∠=∠=∠=︒9045,90CFE CEF CEF BEM MBE NDF ∴∠=︒-∠=︒=∠=∠∠=∠=︒,45,CE CF DFN CFE BEM ∴=∠=∠=︒=∠,BE DF BG ∴==BEM ∴∆≌,,,45,DFN MG ME FN ME MG MGE BEM ∆=∴==∠=∠=︒180454590,GME ∴∠=︒-︒-︒=︒222GE MG ME ∴=+.AGE ∆ ≌,,AFE EF GE ∆∴=222EF FN ME ∴=+.四、45°角绕斜边中点旋转例 4 如图8 ,ABC ∆和DEF ∆是两个全等的等腰直角三角形,L 90BAC EDF ∠=∠=︒,DEF ∆的顶点E 与ABC ∆的斜边BC 的中点重合.将DEF ∆绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图8,当点Q 在线段AC 上,且AP AQ =时,求证: BPE ∆≌CQE ∆.(2)如图9,当点Q 在线段CA 的延长线上时,求证:BPE ∆∽CEQ ∆;并求当9,2B P a C Q a ==时,P 、Q 两点间的距离(用含a 的代数式表示).图8 图9解 (1)略.(2)连结PQ (如图10).ABC ∆ 和DEF ∆是两个全等的等腰直角三角形,45B C DEF ∴∠=∠=∠=︒ .图10 ,B E Q E Q CC ∠=∠+∠ 即,BEP DEF EQC C ∠+∠=∠+∠4545,BEP EQC ∴∠+︒=∠+︒BEP EQC ∴∠=∠,BPE ∴∆∽CEQ ∆,BP BE CE CQ∴=. 9,,,2BP a CQ a BE CE === 92a BE BE a ∴=,即BE CE ==,BC ∴=,sin 453,AB AC BC a ∴==⋅︒=32AQ CQ AC a ∴=-=,2PA AB BP a =-=. ∴在Rt APQ ∆中,52PQ a ===.。
三角形旋转全等常见模型
1、绕点型(手拉手模型)(1)自旋转:自旋转构造放方法:①遇60°旋60°,构造等边三角形;②遇90°旋90°,构造等腰直角三角形;③遇等腰旋转顶角,构造旋转全等;④遇中点180°,构造中心对称。
(2)共旋转(典型的手拉手模型)例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。
(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC(2)AE=DC(3)AE与DC的夹角为60。
(4)AE与DC的交点设为H,BH平分∠AHC变式练习2、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:Array(1)△ABE≌△DBC(2)AE=DC(3)AE与DC的夹角为60。
(4)AE与DC的交点设为H,BH平分∠AHC(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF.(1) 如图1,当点D在边BC上时,求证:①BD=CF ‚②AC=CF+CD.(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。
三角形中的旋转问题
三角形中的旋转问题1.已知△ABC中,∠A=90º,AB=AC,D为BC的中点(1)如图,E,F分别是AB,AC上的点,且BE=AF求证:△DEF为等腰直角三角形(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形,为什么?2.在等腰直角△ABC中,∠A=90º,AB=AC,l为过点A的直线,BE、CF垂直l于E、F (1)求证:EF=BE+CF(2)若l绕点A旋转到△ABC内部,其他条件保持不变,猜想EF,BE,CF的关系,并证明3.已知B为线段AC上一点,以AB,BC为边分别作等边三角形△ABE,△BCF,连接AF,CE相交于点D(1)求证AF=CE(2)求∠ADE的度数(3)若△BCF绕点B顺时钟旋转一定的角度,上两问的结论是否仍然成立,为什么?4.如图所示,△ACD和△BCE都是等边三角形,△NCE经过顺时针得到△MCB.(1)旋转中心是什么?旋转了多少度?(2)如果连接MN,那么,△MNC是什么三角形?请说明理由.5.如图,已知等边三角形ABC在BC的延长线上取一点E,以CE为边作等边三角形DCE (△ABC与△DCE在同一侧)连接AE、BD.点M是BD的中点,点N是AE的中点.(1)在图中找出两对可以通过而相互得到的,并指出中心及角度数(2)△CMN是什么?为什么?6.如图,已知∠AOB=120°,OM平分∠AOB,将等边的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当绕点P到PC⊥OA时,证明:PC=PD.(2)如图②,当绕点P到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当绕点P到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.7.将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张胶片△ABC和△DEF.将这两张胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向,这时AC与DF相交于点O.(1)当△DEF至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、已知:如图1,点C为线段AB上一点,△ACM,△CBN都Байду номын сангаас等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;
(4)根据以上证明、说理、画图,归纳你的发现.
(3)此小题图形不惟一,如图第(1)中的结论仍成立.(4)根据以上证明、说理、画图,归纳如下:如图A,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.
2、如图, 和 都是等边三角形, ,试说明: (综合全等和勾股定理)
(3)将△ACM绕点C按逆时针方向旋转90 O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
5、如图所示,已知△ABC和△BDE都是等边三角形。下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=600,⑤△BFG是等边三角形;⑥FG∥AD。其中正确的有()
(1)当直线MN绕点C旋转到图1位置时,求证:① ;② ;
(2)当直线MN绕点C旋转到图2位置时,试问:DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
(3)当直线MN绕点C旋转到图3位置时,试问:DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
2.(1)如图1,若点P为正方形ABCD边上一点,以PA为一边作正方形AEFP,连BE、DP,并延长DP交BE于点H.求证: .
A 3个B 4个C 5个D 6个
6、已知,如图①所示,在 和 中, , , ,且点 在一条直线上,连接 分别为 的中点.(1)求证:① ;② ;
(2)在图①的基础上,将 绕点 按顺时针方向旋转 ,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.
7、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;
等边三角形、等腰直角三角形之间的旋转问题(精华)
1、图(1)中,C点为线段AB上一点,△ACM,△CBN是等边三角形,AN与BM相等吗?
说明理由;
如图(2)C点为线段AB上一点,等边三角形ACM和等边三角形CBN在AB的异侧,此时AN与BM相等吗?说明理由;
如图(3)C点为线段AB外一点,△ACM,△CBN是等边三角形,AN与BM相等吗?说明理由.
(2)如图2,将正方形AEFP逆时针旋转,使点P落在正方形ABCD内,其余条件不变,(1)的结论是否成立?若成立,请给出证明;若不成立,请说明理由.
3.在 中,AD是中线,O为AD的中点,直线 过O点,过A、B、C三点分别作直线 的垂线,垂足分别为G、E、F,当直线 绕O点旋转到与AD垂直时(如图1)易证:BE+CF=2AG.
②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°;⑥CP=CQ;⑦△CPQ为等边三角形;⑧共有2对全等三角形;⑨CO平分∠AOP;⑩CO平分∠BCD。恒成立的结论有______________(把你认为正确的序号都填上).
8、(1)如图7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;
求证:△CMN是等边三角形.
(根据△ACD≌△BCE,得出AD=BE,AM=BN;又△AMC≌△BNC,可得CM=CN,∠ACM=∠BCN,证明∠NCM=∠ACB=60°即可证明△CMN是等边三角形;)
1、(锦州)如图A,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图A中的△CEF绕点C旋转一定的角度,得到图B,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图A中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形C(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;
(2)如图8,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.
8题9题10题
9、如图,已知△ABC是等边三角形,∠BDC=120º,说明AD=BD+CD的理由
10、如图所示,已知△ABC中,AB=AC,D是CB延长线上一点,∠ADB=60°,E是AD上一点,且DE=DB,求证:AC=BE+BC
变式4如图所示,将等腰直角三角形ADE绕点A按逆时针方向旋转 ,其余条件不变,结论 还成立吗?
变式5如图所示,将等腰直角三角形ADE绕点A按逆时外方向旋转 ,其余条件不变,结论 还成立吗?
变式6如图所示,将等腰直角三角形ADE绕点A按逆时外方向旋转 ,其余条件不变,结论 还成立吗?
1.在 中, ,AC=BC.直线MN经过点C,且 于D, 于E.
2、如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
(1)求证:AN=MB;
(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.
3、如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
旋转的等腰直角三角形
原题:如图所示,△ABC和△ADE都是等腰直角三角形,点M为EC的中点,求证: .
变式1如图所示,将等腰直角三角形ADE绕A点按逆时针方向旋转 ,其余条件不变,结论 还成立吗?
变式2如图所示,将等腰直角三角形ADE绕点A按逆时针方向旋转 ,其余条件不变,结论 还成立吗?
变式3如图所示,将等腰直角三角形ADE绕点A按逆时针方向旋转 ,其余条件不变,结论 还成立吗?