2003年高考试题数学文科-(全国卷)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.已知圆锥的底面半径为R,高为3R,它的内接圆柱的底面半径为,
该圆柱的全面积为( )
A. B. C. D.
11.已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和
D(0,1),一质点从AB的中点沿与AB夹角为的方向射到BC上的点
后,依次反射到CD、DA和AB上的点、和(入射角等于反射角)
2003年普通高等学校招生全国统一考试(全国卷)
数学(文史类)
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的
四个选项中,只有一项是符合要求的
1.直线对称的直线方程为
()
A. B. C. D.
2.已知,,则
()
A.
B.
C.
D.
3.抛物线的准线方程是的值为
()
A.
B.
C.
D.
4.等差数列中,已知为( )
18.解:设z= 由题设 即 (舍去) 即|z|=
19.(I)解∵ (II)证明:由已知
= 所以 20.解(I)
所以函数的最小正周期为π,最大值为. (Ⅱ)由(Ⅰ)知
1
1
1
故函数在区 间上的图象是
21.解:如图建立坐标系:以O为原点,正东方向为x轴正向. 在时刻:t(h)台风中心的坐标为 此时台风侵袭的区域是,其中t+60, 若在t时,该城市O受到台风的侵袭,则有 即 即, 解得. 答:12小时后该城市开始受到台风气侵袭
A.48
B.49
C.50
D.51
5.双曲线虚轴的一个端点为M,两个焦点为,则双曲线的离心率为(

A.
B.
C.
D.
6.设函数 ,若,则的取值范围是 ( )
A.(,1)
B.(,)
C.(,)(0,)
D.(,)(1,)
7.已知( )
A.
B.
C.
D.
8.函数( )
A.0
B.
C.
D.
9.已知( )
A.
B.
C.
D.
2003年普通高等学校招生全国统一考试
数学试题(文)参考解答及评分标准
说明: 一. 本解答指出了每题要考查的主要知识和能力,并给出了一种
或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要 考查内容比照评分标准制订相应的评分细则.
二. 对计算题,当考生的解答在某一步出现错误时,如果后继部 分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分, 但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严 重的错误,就不再给分.
19.(本小题满分12分) 已知数列满足
(Ⅰ)求; (Ⅱ)证明
20.(本小题满分12分) y O O O x
已知函数
(Ⅰ)求函数的最小正周期和最大值; (Ⅱ)在给出的直角坐标系中,画出函数在区间上的图象
21.(本小题满分12分)
在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市 O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北 方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以 10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭? O 北 东O y 线 岸 O x O r(t) P 海
22.(本小题满分14分) 已知常数,在矩形ABCD中,,,O为AB的中点,点E、F、G分别在
BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在 两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐 标及此定值;若不存在,请说明理由
O P A G D F E C B x y
∵F为BD1中点, ∴FM∥D1D且FM=D1D 又EC=CC1,且EC⊥MC, ∴四边形EFMC是矩形 ∴EF⊥CC1 又CM⊥面DBD1 ∴EF⊥面DBD1 ∵BD1面DBD1, ∴EF⊥BD1 故EF为BD1与CC1的公垂线
(II)解:连结ED1,有V 由(I)知EF⊥面DBD1,设点D1到面BDE的距离为d, 则S△DBC·d=S△DCD·EF. ∵AA1=2·AB=1. 故点D1到平面BDE的距离为.
”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底 面面积间的关系,可以得出的正确结论是:“设三棱锥的三个侧面两两 互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域 不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________
若重合,则tg= ( )
A.
B.
C.
D.1
12.一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表
面积为( )
A. B. C. D.
2003年普通高等学校招生全国统一考试
数 学(文史类)
第Ⅱ卷(非选择题共90分)
二.填空题:本大题共4小题,每小题4分,共16分
把答案填在题中横线上
13.不等式的解集是____________________. 14.的展开式中系数是 ________ . 15.在平面几何里,有勾股定理:“设
三. 解答右端所注分数,表示考生正确做到这一步应得的累加分 数.
四. 只给整数分数.选择题和填空题不给中间分.
一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60 分. 1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13. 14. 15. 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过 程或演算步骤. 17.(I)证明:取BD中点M,连结MC,FM,
(以数字作答) 2 1 5 3 4
三、解答题:本大题共6小题,共74分,解答应来自百度文库出文字说明,证明过
程或或演算步骤 17.(本小题满分12分)
已知正四棱柱点中点
(Ⅰ)证明的公垂线 E D1 B1 A1 C1 B D C A F M (Ⅱ)求点的距离
18.(本小题满分12分) 已知复数的辐角为,且是和的等比中项,求.
22.解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是 否存在两定点,使得点P到定点距离的和为定值.
按题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a) 设, 由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak). 直线OF的方程为:, ① 直线GE的方程为:. ② 从①,②消去参数k,得点P(x,y)坐标满足方程, 整理得. 当时,点P的轨迹为圆弧,所以不存在符合题意的两点. 当时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定 长. 当时,点P到椭圆两个焦点的距离之和为定值. 当时,点P到椭圆两个焦点的距离之和为定值.
相关文档
最新文档