函数信号发生器课程设计

合集下载

信号发生器课程设计报告完整版

信号发生器课程设计报告完整版

信号发生器课程设计报告HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。

它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。

三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。

2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。

4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。

5、在仿真结果的基础上,实现实际电路。

四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。

(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

函数信号发生器课程设计

函数信号发生器课程设计

信号发生器一、设计目的1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力。

2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3.学会运用Multisim10仿真软件对所作出的理论设计进行仿真测试,并能进一步完善设计。

4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法。

二、设计内容与要求1.设计、组装、调试函数信号发生器2.输出波形:正弦波、三角波、方波3.频率范围:10Hz-10KHz范围内可调4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V三、设计方案仿真结果1.正弦波—矩形波—三角波电路原理图:首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。

正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。

正弦—矩形波—三角波产生电路:总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。

左边第一个运放与RC 串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形:调频和调幅原理调频原理:根据RC 振荡电路的频率计算公式RCfoπ21=可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。

调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。

其最大幅值为电路的输出电压峰值,最小值为0。

RC 串并联网络的频率特性可以表示为)1(31111212RCRC j RC j R C j R RCj Rf Z Z ZUU F ωωωωω-+=++++=+==∙∙∙令,1RCo =ω则上式可简化为)(31ωωωωOOjF -+=∙,以上频率特性可分别用幅频特性和相频特性的表达式表示如下:|F∙|)(3122ωωωωo o -+=)(3arctanωωωωϕooF--=,根据上式可以分别画出RC 串并联网络的幅频特性和相频特性:1.正弦波振荡电路的原理如下图a 、b 所示:由上图得出正弦波振荡的条件为:根据RC 串并联网络的选频特性及上述平衡条件容易得到RC 正弦波振荡电路的振荡频率为:RCfoπ21=; 振荡的幅度平衡条件|F A ∙∙|1=是表示振荡电路已达到稳幅振荡时的情况。

模电课程设计:函数信号发生器的设计

模电课程设计:函数信号发生器的设计

《电路与模拟电子技术》课程设计任务书低频函数信号发生器的设计任务和要求:1 设计并制作能产生正弦波、矩形波(占空比可调)和锯齿波等多种信号的函数信号发生器。

2 主要技术指标和要求(1)输出的各种信号波形工作频率范围10Hz~10kHz,连续可调;(2)输出的各种信号波形幅值0~10V,连续可调。

高精度60Hz信号频率,经电容C3耦合到运放器741的②脚进行信号放大,然后从741的⑥脚输出。

调节电位器RP时,XS1插口输出0~1V,XS2插口输出0~0.1V的低频信号。

其实,C2、C5为电源滤波电容。

c3、C6为741的输入、输出耦合电容。

R5、R4为高频补偿电路。

R2、R4构成分压衰减电路。

R6为反馈电阻用以提高电路的稳定度。

CD4060各脚的输出频率:③脚为2Hz,②脚为4Hz,⑥脚为240Hz,④脚为480Hz,⑤脚为960Hz,⑦脚为1920Hz。

1 画原理图本设计中要求用Protel软件完成原理图以及PCB板。

我用的是Protel2004版本。

电路原理图的设计是印制电路板设计中的第一步,也是非常重要的一步。

电路原理图设计得好坏将直接影响到后面的工作。

首先,原理图的正确性是最基本的要求,因为在一个错误的基础上所进行的工作是没有意义的;其次,原理图应该布局合理,这样不仅可以尽量避免出错,也便于读图、便于查找和纠正错误;最后,在满足正确性和布局合理的前提下应力求原理图的美观。

电路原理图的设计过程可分为以下几个步骤:1、设置电路图纸参数及相关信息根据电路图的复杂程度设置图纸的格式、尺寸、方向等参数以及与设计有关的信息,为以后的设计工作建立一个合适的工作平面。

2、装入所需要的元件库将所需的元件库装入设计系统中,以便从中查找和选定所需的元器件。

3、设置元件将选定的元件放置到已建立好的工作平面上,并对元件在工作平面上的位置进行调整,对元件的序号、封装形式、显示状态等进行定义和设置,以便为下一步的布线工作打好基础。

函数信号发生器实验教学设计与实践

函数信号发生器实验教学设计与实践

函数信号发生器实验教学设计与实践一、实验目的:1.了解函数信号发生器的基本原理和工作过程;2.掌握函数信号发生器的使用方法;3.熟练掌握函数信号发生器的参数设置及调节技巧;4.学会利用函数信号发生器产生不同类型的信号,如正弦波、方波、三角波等;5.了解函数信号的性质及其在电路实验中的应用。

二、实验原理:函数信号发生器是一种能够产生各种不同波形的信号源设备,常用于电子实验中的信号源和频率标准。

它可以产生正弦波、方波、三角波等不同类型的波形,并且可以通过调节幅度、频率、相位等参数来得到需要的信号输出。

函数信号发生器一般由振荡器、波形调制电路、幅度调节电路和频率调节电路等部分组成。

三、实验内容及步骤:1.实验仪器与材料:函数信号发生器、示波器、万用表、串联电阻、电容等元器件。

2.实验步骤:(1)连接实验电路:将函数信号发生器的输出端与示波器的输入端相连,然后通过示波器显示出信号波形。

(2)调节幅度参数:设置函数信号发生器的幅度参数,观察示波器上波形的变化。

(3)调节频率参数:设置函数信号发生器的频率参数,观察波形在示波器上的变化。

(4)产生不同波形:尝试产生不同类型的波形,如正弦波、方波、三角波等,并观察其在示波器上的输出情况。

(5)测量输出信号的频率、幅度等参数,掌握功能信号发生器的参数调节技巧。

四、实验结果与分析:1.实验通过连线和参数设置,成功连接函数信号发生器和示波器,并在示波器上显示出所需的信号波形。

2.通过调节幅度和频率参数,能够观察到输出信号的变化,并且通过示波器可以准确测量信号的频率、幅度等参数。

3.产生正弦波、方波、三角波等不同类型的波形,并观察其在示波器上的输出情况,验证函数信号发生器的功能。

五、实验总结:通过本次实验,我们深入了解了函数信号发生器的原理和工作过程,掌握了函数信号发生器的使用方法及参数调节技巧。

实验中,我们通过实际操作产生了不同类型的信号波形,并成功利用示波器观察和测量了输出信号的频率、幅度等参数。

函数信号发生器课程设计

函数信号发生器课程设计

一绪论1.1函数信号发生器的应用意义函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件也可以是集成电路。

为进一步掌握电路的基本理论及实验调试技术,本课题采用有集成运算放大器与晶体差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

具体方法是由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

通过此次设计,我们能将理论知识很好的应用于实践,不仅巩固了书本上的理论知识,而且锻炼了我们独立查阅资料、设计电路、独立思考的能力1.2设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1.3设计要求1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。

2) 输出电压:正弦波U=3V , 三角波U=5V , 方波U=14V。

3) 波形特征:幅度连续可调,线性失真小。

4)选择电路方案,完成对确定方案电路的设计;计算电路元件参数与元件选择、并画出各部分原理图,阐述基本原理。

1.4设计方案函数信号发生器是是由基础的非正弦信号发生电路和正弦波形发生电路组合而成。

由运算放大器单路及分立元件构成,方波——三角波——正弦波函数信号发生器一般基本组成框图如图1所示。

图1 函数信号发生器框图1、方波—三角波—正弦波信号发生器电路有运算放大器及分立元件构成,其结构如图1所示。

他利用比较器产生方波输出,方波通过积分产生三角波输出,三角波通过差分放大电路产生正弦波输出。

2、利用差分放大电路实现三角波—正弦波的变换波形变换原理是利用差分放大器传输特性曲线的非线性,波形变换过程如图2所示图 2 三角波和正弦波得转换示意图由图2可以看出,传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

函数信号发生器课程设计

函数信号发生器课程设计

函数信号发生器课程设计一、课程目标知识目标:1. 学生能理解函数信号发生器的基本原理,掌握其工作流程及各部分功能。

2. 学生能描述函数信号发生器产生的常见信号类型,如正弦波、方波、三角波等。

3. 学生能运用数学知识分析函数信号发生器产生的信号特点及其应用场景。

技能目标:1. 学生能正确操作函数信号发生器,进行信号生成、频率调节、幅度调节等基本操作。

2. 学生能运用函数信号发生器进行简单的信号实验,如叠加、调制等。

3. 学生能通过实验观察和分析信号波形,提高实验操作能力和问题解决能力。

情感态度价值观目标:1. 学生培养对电子技术及信号处理领域的兴趣,激发学习热情。

2. 学生通过合作实验,培养团队协作能力和沟通能力。

3. 学生在学习过程中,树立正确的科学态度,认识到科学技术对社会发展的作用。

课程性质:本课程为电子技术实践课程,注重理论与实践相结合,提高学生的实际操作能力。

学生特点:高二年级学生,已具备一定的电子技术基础知识和实验操作技能。

教学要求:结合学生特点,采用启发式教学,引导学生主动探究,提高学生的实践能力和创新能力。

在教学过程中,注重培养学生的安全意识和实验素养。

通过课程学习,使学生能够将所学知识应用于实际电子电路设计和实验中。

二、教学内容1. 函数信号发生器原理介绍:包括振荡器、放大器、波形发生器等组成部分及其工作原理。

- 教材章节:第二章第三节“函数信号发生器的组成与原理”2. 常见信号类型及其特点:正弦波、方波、三角波、脉冲波等信号的数学描述和实际应用。

- 教材章节:第二章第四节“函数信号发生器的波形及其应用”3. 函数信号发生器操作与使用:基本操作方法、功能键的使用、频率和幅度的调节。

- 教材章节:第三章第一节“函数信号发生器的操作与使用”4. 实验教学:利用函数信号发生器进行信号叠加、调制等实验操作。

- 教材章节:第三章第二节“函数信号发生器实验”5. 信号分析与应用:分析实验中产生的信号波形,探讨其在电子技术领域的应用。

微机原理课程设计-函数信号发生器

微机原理课程设计-函数信号发生器

课程设计报告课程微机原理课程设计题目函数信号发生器系别物理与电子工程学院年级08级专业电子信息工程班级 3 学号学生姓名Q指导教师职称讲师设计时间2011.5.30~2011.6.3目录绪论 (2)第一章题目要求 (3)1.1 设计要求 (3)1.2 设计目的 (3)1.3设计环境 (3)第二章方案设计与论证 (4)2.1主要芯片介绍 (4)2.1.1 DAC0832芯片介绍 (4)2.1.2 8255A芯片介绍 (7)2.2 主要设计思想 (8)第三章结构框图等设计步骤 (9)3.1总体设计流程图 (9)3.2 锯齿波实现过程 (9)3.3三角波实现过程 (10)3.4 正弦波实现过程 (11)3.5 方波实现过程 (12)第四章测试结果及相关分析 (13)4.1 调试步骤 (13)4.2 硬件实物连线图 (13)4.3运行结果 (14)第五章总结与体会 (19)参考文献 (20)绪论函数信号发生器是指产生所需参数的电测试信号的仪器。

按信号波形可分为正弦信号、函(波形)信号、脉冲信号和随机信号发生器等四大类。

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。

但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。

在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。

而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。

函数信号发生器_模拟电路课程设计

函数信号发生器_模拟电路课程设计

模拟电路课程设计报告目录一、课程设计的任务、要求及步骤二、设计方案的选择三、电路设计主要的技术指标四、函数信号发生器电路原理分析五、函数信号发生器元件参数的选择六、函数信号发生器的安装和调试七、课程设计的过程中遇到的问题及解决方法八、课程设计的仿真九、试验评价与问题分析十、课程设计的心得和体会十一、附录姓名学号班级学院电子信息学院题目函数信号发生器设计任务设计一函数信号发生器,能输出方波和三角波两种波形1.输出为方波和三角波两种波形,用开关切换输出;2.输出电压均为双极性;3.输出阻抗均为50Ω;4.输出为方波时输出电压峰值为0~5V可调,输出信号频率为200Hz ~ 2KHz可调。

5.输出为三角波时输出电压峰值为0~5V可调,输出信号频率为200Hz ~ 2KHz可调。

时间进度18周星期一布置设计方案,预设计。

18周星期二领设备、安装18周星期三至周四安装、调试教师检查18周星期五、六、日写设计报告原始参资考料文和献主要电子技术基础(模拟部分)模拟电子技术课程设计指导书电子技术基础实验指导书一、课程设计的任务、要求及步骤1.设计任务a.输出为方波和三角波两种波形,用开关切换输出;b.输出电压均为双极性;c.输出阻抗均为50Ω;d.输出为方波时输出电压峰值为0~5V可调,输出信号频率为200Hz ~ 2KHz可调。

e.输出为三角波时输出电压峰值为0~5V可调,输出信号频率为200Hz ~ 2KHz可调。

2.设计要求a.电路原理图绘制正确(或仿真电路图);b.掌握EWB仿真软件的使用和电路测试方法;c.电路仿真达到技术指标。

d.完成实际电路,掌握电路的指标测试方法;e.实际电路达到技术指标。

f.原理图(草图)要清楚,标注元件参数g.正式原理图、接线图: A4打印EWB画图。

h.要求用统一格式封面;i.使用中原工学院课程设计报告专用纸。

j.图要顶天立地,均匀分布,合理布局3、设计步骤a.原理了解,清楚设计内容。

DSP课程设计(函数信号发生器)

DSP课程设计(函数信号发生器)

DSP课程设计(函数信号发生器)DSP技术与应用实例设计题目:基于TMS320C54x DSP的函数发生器的设计指导老师:刘晋胜班级:电信09-x姓名:xxxxx学号:09034030xxx时间: 2012年6月11日~6月15日2011 ~2012 学年度第二学期广东石油化工学院计算机与电子信息学院基于TMS320C54x DSP 的函数发生器的设计一、 设计目的:1、 了解数字波形产生的原理;2、 学习用DSP 产生各种波形的基本方法和步骤;3、 掌握DSP 与D/A 转换器接口的使用。

二、 设计设备计算机、DSP 仿真器、ZYE1801B 实验箱、20M 示波器三、 设计原理波形产生是DSP 的重要应用之一。

而正弦信号发生器的设计则是波形产生应用的一个重要方面,它在通信领域有着广泛的应用。

利用DSP 产生正弦信号有三种方法:查表法(lookup table approach )、多项式逼近法(polynomial approximation )和迭代法(recursive algorithm )。

这三种方式各有其应用范围。

本设计题目以TMS320C54x DSP 为目标器件,设计并实现基于迭代法的“正弦序列生成”算法及其DSP 程序。

为了减少使用的存储器,可以采用正弦信号的对称性,复制90~180度的正弦值和180~360度的正弦值。

余弦信号的产生同样可以采用多种方法产生。

一是采用公式计算得到,二是采用正弦信号变换得到。

方波信号产生可以通过轮流输出两个不同大小的数值通过A/D 转换得到。

由于实验设备的DA 转换不正常工作,故全部采用查表的方法来仿真。

每个波形先计算出360个数,然后将内存中的值在坐标上显示出来。

四、 设计内容本设计题目以TMS320C54x DSP 为目标器件,设计并实现基于迭代法的“正弦序列生成”算法及其DSP 程序。

设计步骤:1、 熟悉正弦信号发生器的算法以及在DSP 系统的实现2、 熟悉A/D 转换的原理及实验箱的链接!9!7!5!3)sin(9753x x x x x x +-+-=))))9*81(7*61(5*41(3*21(2222x x x x x ----=3、掌握A/D转换的程序的编写4、编写DSP的正弦信号发生器的程序5、编写定时程序产生100HZ、1KHZ、10KHZ的正弦、余弦以及100K、1M的方波信号,每种类型的波形单周期360个点。

函数信号发生器课程设计.doc

函数信号发生器课程设计.doc

函数信号发生器课程设计绪论1.1函数信号发生器的应用意义函数发生器i般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等屯压波形的屯路或仪器。

根据用途不同,冇产生三种或多种波形的函数发生器,使用的器件可以是分立器件也可以是集成电路。

为进一步掌握电路的基木理论及实验调试技术,本课题采用冇集成运算放大器与品体差分放大器共同组成的方波—三角波一正弦波函数发生器的设计方法。

具体方法是由比较器和积分器组成方波一三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放人器來完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

通过此次设计,我们能将理论知识很好的应用于实践,不仅巩固了书木上的理论知识,而且锻炼了我们独立查阅资料、设计电路、独立思考的能力1.2设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1.3设计要求1)输出各种波形工作频率范围:10—100Hz,100—lKHz,lK—10KHz。

2)输出电压:正弦波U=3V,三角波U=5V,方波U =14Vo3)波形特征:幅度连续可调,线性失真小。

4)选择电路方案,完成对确定方案电路的设计;计算电路元件参数与元件选择、并画出各部分原理图,阐述基本原理。

1.4设计方案函数信号发生器是是由基础的非正弦信号发生电路和正弦波形发生电路组合而成。

曲运算放大器单路及分立元件构成,方波——三角波——正弦波函数信号发生器一般基本组成框图如图1所示。

图1函数信号发牛器框图1、方波一三角波一正弦波信号发生器电路有运算放大器及分立元件构成, 其结构如图1所示。

他利用比较器产生方波输岀,方波通过积分产生三角波输出, 三角波通过差分放大电路产生正弦波输出。

2、利用差分放大电路实现三角波一正弦波的变换波形变换原理是利用差分放大器传输特性曲线的非线性,波形变换过程如图2所示Y V图2三角波和正弦波得转换示意图由图2可以看出,传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使品体接近饱和区域或者截至区域。

函数信号发生器课程设计报告大学论文

函数信号发生器课程设计报告大学论文

《模拟电子技术》课程设计函数信号发生器姓名:学号:系别:专业:年级:指导教师:年月日函数信号发生器摘要利用集成电路LM324设计并实现所需技术参数的各种波形发生电路。

根据电压比较器可以产生方波,方波再继续经过基本积分电路可产生三角波,三角波经过低通滤波可以产生正弦波。

经测试,所设计波形发生电路产生的波形与要求大致相符。

关键词:波形发生器;集成运放;RC充放电回路;滞回比较器;积分电路目录中文摘要 .......................................................... 错误!未定义书签。

1.系统设计 (4)1.1设计指标 (4)1.2方案论证与比较 (4)2.单元电路设计 (5)2.1方波的设计 (5)2.2三角波的设计 (8)2.3正弦波的设计 (7)3.参数选择 (11)3.1方波电路的元件参数选择 (11)4.结果分析 (11)5.工作总结 (12)6.附录 (12)1.系统设计1.1设计指标1.1.1 电源特性参数①输入:双电源 12V②输出:正弦波pp V >1V ,方波pp V ≈12 V ,三角波pp V ≈5V ,幅度连续可调,线性失真小。

1.1.2工作频率工作频率范围:10 HZ ~100HZ ,100 HZ ~1000HZ1.2方案论证与比较1.2.1 方案1:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的,通过RC 文氏电桥可产生正弦波,通过滞回比较器能调出方波,并再次通过积分电路就可以调试出三角波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,是一个优秀的可实现的方案。

1.2.2 方案2:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的, 通过电压比较器可以形成方波,方波经过积分之后可以形成三角波,三角波再经过低通滤波可以形成正弦波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,相比第一方案,其操作成功率较低.2.单元电路设计2.1方波的设计2.1.1原理图2.1.2工作原理矩形波发生电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要成分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈,因为输出状态应按一定时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间.图所示的矩形波放生电路,它由反相输入的滞回比较器和RC电路组成.RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换.设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。

函数发生器课程设计

函数发生器课程设计

函数发生器课程设计目录摘要-----------------------------------------------------------------3 第一章绪论-----------------------------------------------------4 1.1 单片机的概述----------------------------------------------4 1.2函数发生器的分类------------------------------------------4 1.3 研究的目的及意义------------------------------------------5 第二章函数信号发生器设计--------------------------------6 2.1 课程设计的目的-------------------------------------------6 2.2课程设计的要求-------------------------------------------6 第三章方案的设计--------------------------------------------73.1 方案的设计与选择------------------------------------------7 3.2 设计原理简介及功能---------------------------------------8 3.3系统硬件的设计及功能------------------------------------103.31 AT89C51单片机及说明------------------------------103.32 D /A转换模块----------------------------------------11 3.4 系统软件设计及接口电路---------------------------------143.41 外部时钟电路------------------------------------------143.42 外部复位电路------------------------------------------153.43 键盘接口电路------------------------------------------153.44 数、模转换及放大电路------------------------------16 第四章系统软件设计------------------------------------------174.1 主函数----------------------------------------------------------17 4.2正弦波的程序及仿真结果----------------------------------18 4.3三角波的程序及仿真结果----------------------------------19 4.4锯齿波的程序及仿真结果----------------------------------20 4.5方波的程序及仿真结果-------------------------------------21 第五章总结与展望--------------------------------------------22 参考文献-----------------------------------------------------------23 附录一元器件清单--------------------------------------------24 附录二程序清单------------------------------------------------25 附录三电路原理图---------------------------------------------30摘要本文设计低频信号发生器,以AT89C51 单片机为核心,通过键盘输入控制信号类型和频率的选择,采用DA 转换芯片输出相应的波形。

函数信号发生器课程设计

函数信号发生器课程设计

一绪论1.1函数信号发生器的应用意义函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件也可以是集成电路。

为进一步掌握电路的基本理论及实验调试技术,本课题采用有集成运算放大器与晶体差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

具体方法是由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

通过此次设计,我们能将理论知识很好的应用于实践,不仅巩固了书本上的理论知识,而且锻炼了我们独立查阅资料、设计电路、独立思考的能力1.2设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1.3设计要求1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。

2) 输出电压:正弦波U=3V , 三角波U=5V , 方波U=14V。

3) 波形特征:幅度连续可调,线性失真小。

4)选择电路方案,完成对确定方案电路的设计;计算电路元件参数与元件选择、并画出各部分原理图,阐述基本原理。

1.4设计方案函数信号发生器是是由基础的非正弦信号发生电路和正弦波形发生电路组合而成。

由运算放大器单路及分立元件构成,方波——三角波——正弦波函数信号发生器一般基本组成框图如图1所示。

图1 函数信号发生器框图1、方波—三角波—正弦波信号发生器电路有运算放大器及分立元件构成,其结构如图1所示。

他利用比较器产生方波输出,方波通过积分产生三角波输出,三角波通过差分放大电路产生正弦波输出。

2、利用差分放大电路实现三角波—正弦波的变换波形变换原理是利用差分放大器传输特性曲线的非线性,波形变换过程如图2所示图 2 三角波和正弦波得转换示意图由图2可以看出,传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

波形发生器函数信号发生器设计课程设计

波形发生器函数信号发生器设计课程设计

目录一、设计要求------------------------------------------------2二、设计的作用与目的------------------------------------2三、波形发生器的设计------------------------------------31、函数波形发生器原理和总方案设计-------------------32、方案选择及单元电路的设计---------------------------53、仿真与分析----------------------------------------------94、PCB版电路制作-----------------------------------------13四、心得体会-----------------------------------------------15五、参考文献-----------------------------------------------16附录波形发生器的设计电路函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。

一、设计要求设计一台波形信号发生器,具体要求如下:1.该发生器能自动产生正弦波、三角波、方波。

2.指标:输出波形:正弦波、三角波、方波。

频率范围:1Hz~10Hz,10Hz~100Hz ,100Hz~1KHz,1KHz~10KHz。

输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V;3.频率控制方式:通过改变RC时间常数手控信号频率。

4.用分立元件和运算放大器设计的波形发生器要求用EWB进行电路仿真分析,然后进行安装调试。

二、设计的作用与目的1.通过这次课程设计从而掌握方波——三角波——正弦波函数发生器的原理及设计方法。

课程设计--函数信号发生器

课程设计--函数信号发生器

函数信号发生器的设计函数信号发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电压或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如视频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块5G8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题要求设计由集成运算放大器与晶体管差分放大器共同组成的方波-三角波-正弦波函数发生器。

一、设计任务书1.设计课题函数信号发生器设计。

2.主要技术指标1)输出波形:正弦波、方波、三角波等2)频率范围:1~10Hz,10~100Hz3) 输出电压:方波U p-p=24V,三角波U p-p=6V,正弦波U>1V;4) 波形特征:方波t r<10s(1kHz,最大输出时),三角波失真系数THD<2%,正弦波失真系数THD<5%。

二、设计过程举例1.课题分析根据任务,函数信号发生器一般基本组成框图如图4.2.15所示。

图4.2.15 函数信号发生器框图2.方案论证(1)确立电路形式及元器件型号1)方波-三角波电路 图4.2.16所示为产生方波-三角波电路。

工作原理如下:若a 点短开,运算放大器A1与R 1、R 2及R 3、R P 1组成电压比较器,C 1为加速电容,可加速比较器的翻转。

图4.2.16 方波-三角波产生电路由图4.2.16分析可知比较器有两个门限电压CC th V RP R R U 1321+-= CC th V RP R R U 1322+=运放A2与R 4、R P 2、C 2及R 5组成反相积分器,其输入信号为方波U o1时,则输出积分器的电压为t U C RP R U o o d )(112242⎰+-= 当U o1=+V CC 时t C RP R U o 224CC 2)(V +-= 当U o1=-V EE 时t C RP R U o 224EE 2)(V += 可见积分器输入方波时,输出是一个上升速率与下降速率相等的三角波,其波形如图4.2.17所示。

函数信号发生器课程设计

函数信号发生器课程设计

函数信号发生器课程设计一、课程目标知识目标:1. 理解函数信号发生器的原理与功能,掌握其基本组成部分及其作用。

2. 掌握使用函数信号发生器产生常见波形(如正弦波、方波、三角波等)的方法。

3. 学会读取和解释函数信号发生器显示的波形参数,如频率、幅度、相位等。

技能目标:1. 能够独立操作函数信号发生器,进行基本波形的设置与调整。

2. 能够运用函数信号发生器设计简单的信号处理电路,并进行调试。

3. 培养学生动手实践能力,学会使用函数信号发生器解决实际问题的方法。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发他们探索科学原理的精神。

2. 增强学生的团队合作意识,培养他们在实践过程中互帮互助、共同进步的精神。

3. 培养学生严谨、务实的学习态度,使他们认识到实践操作中规范操作的重要性。

课程性质:本课程为电子技术学科的课程设计,以实践操作为主,理论讲解为辅。

学生特点:学生处于高中年级,具有一定的电子技术基础,对实践操作充满兴趣。

教学要求:结合学生特点,注重理论与实践相结合,强调动手实践能力的培养。

通过课程设计,使学生将所学知识应用于实际电路设计中,提高他们的综合运用能力。

同时,关注学生的情感态度价值观的培养,使他们形成积极向上的学习态度。

课程目标的分解与实施将贯穿于整个教学设计和评估过程,以确保学生达到预期学习成果。

二、教学内容本课程教学内容主要包括以下三个方面:1. 函数信号发生器原理及功能:介绍函数信号发生器的基本原理、组成部分、工作方式及其在电子技术中的应用。

- 教材章节:第五章第三节“函数信号发生器”- 内容列举:原理讲解、组成部分、波形种类、应用领域2. 函数信号发生器操作与使用:学习如何操作函数信号发生器,掌握各种波形参数的设置与调整方法。

- 教材章节:第五章第四节“函数信号发生器的使用”- 内容列举:面板介绍、操作步骤、参数设置、波形观察3. 函数信号发生器应用案例:通过实际案例,让学生学会使用函数信号发生器解决实际问题,培养动手实践能力。

函数信号发生器课程设计

函数信号发生器课程设计

1、仿真软件简介Proteus软件是来自英国Labcenter electronics公司的EDA工具软件,Proteus 软件有近20年的历史,在全球广泛使用,除了其具有和其它EDA工具一样的原理布图、PCB自动或人工布线及电路仿真的功能外,其革命性的功能是,他的电路仿真是互动的,针对微处理器的应用,还可以直接在基于原理图的虚拟原型上编程,并实现软件源码级的实时调试,如有显示及输出,还能看到运行后输入输出的效果,配合系统配置的虚拟仪器如示波器、逻辑分析仪等,Proteus能够很容易的为用户建立了完备的电子设计开发环境。

Proteus 产品系列也包含了革命性的VSM技术,用户可以对基于微控制器的设计连同所有的周围电子器件一起仿真。

不愧为一款非常优秀的单片机仿真软件。

Proteus组合了高级原理布图、混合模式SPICE仿真,PCB设计以及自动布线来实现一个完整的电子设计系统。

此系统受益于15年来的持续开发,被《电子世界》在其对PCB设计系统的比较文章中评为最好产品—“The Route to PCB CAD”。

Proteus 产品系列也包含了我们革命性的VSM技术,用户可以对基于微控制器的设计连同所有的周围电子器件一起仿真。

用户甚至可以实时采用诸如LED/LCD、键盘、RS232终端等动态外设模型来对设计进行交互仿真。

PROSPICE 仿真器的一个扩展PROTEUS VSM:便于包括所有相关的器件的基于微处理器设计的协同仿真。

此外,还可以结合微控制器软件使用动态的键盘,开关,按钮,LEDs甚至LCD显示CPU模型.支持许多通用的微控制器,如PIC,***R,HC11以及8051.交互的装置模型包括:LED和LCD显示,RS232终端,通用键盘,强大的调试工具,包括寄存器和存储器,断点和单步模式IAR C-SPY 和Keil uVision2等开发工具的源层调试应用特殊模型的DLL界面-提供有关元件库的全部文件Proteus与其它单片机仿真软件不同的是,它不仅能仿真单片机CPU的工作情况,也能仿真单片机外围电路或没有单片机参与的其它电路的工作情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一绪论
1.1函数信号发生器的应用意义
函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件也可以是集成电路。

为进一步掌握电路的基本理论及实验调试技术,本课题采用有集成运算放大器与晶体差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

具体方法是由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

通过此次设计,我们能将理论知识很好的应用于实践,不仅巩固了书本上的理论知识,而且锻炼了我们独立查阅资料、设计电路、独立思考的能力
1.2设计任务
设计能产生方波、三角波、正弦波的函数信号发生器电路
1.3设计要求
1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。

2) 输出电压:正弦波U=3V , 三角波U=5V , 方波U=14V。

3) 波形特征:幅度连续可调,线性失真小。

4)选择电路方案,完成对确定方案电路的设计;计算电路元件参数与元件选择、并画出各部分原理图,阐述基本原理。

1.4设计方案
函数信号发生器是是由基础的非正弦信号发生电路和正弦波形发生电路组
合而成。

由运算放大器单路及分立元件构成,方波——三角波——正弦波函数信号发生器一般基本组成框图如图1所示。

图1 函数信号发生器框图
1、方波—三角波—正弦波信号发生器电路有运算放大器及分立元件构成,其结构如图1所示。

他利用比较器产生方波输出,方波通过积分产生三角波输出,三角波通过差分放大电路产生正弦波输出。

2、利用差分放大电路实现三角波—正弦波的变换
波形变换原理是利用差分放大器传输特性曲线的非线性,波形变换过程如图2所示
图 2 三角波和正弦波得转换示意图
由图2可以看出,传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

二函数信号发生器各单元电路的设计
2.1方波产生电路图及元件参数的确定
2.1.1 方波产生电路如图3所示
图 3 方波发生电路
2.1.2 元件参数的确定
图3中U2构成同相输入迟滞比较器电路,用于产生输出方波。

可变电容C1具有调频作用,可用于调节方波的频率。

使产生的频率范围在10~~100Hz。

方波振荡周期 T = 2 R1 C1 ln(1+2R4/R3)。

R1=7K,R3=7K ,R4=7K。

振荡频率f = 1/T。

可见,f与C1成反比,调整电容C1的值可以改变电路的振荡频率。

图中稳压管 D1 D2 为调整方波幅值,U P-P = D1 +D2。

2.2方波—三角波转换电路图及元件参数确定
2.2.1 方波—三角波转换电路如图 4 所示
图 4 方波-三角波电路图
2.2.2 方波→三角波的参数确定
图4中U2构成同相输入迟滞比较器电路,用于产生输出方波。

可变电容C1
具有调频作用,可用于调节方波的频率。

运算放大器U1与电阻R5及电容C2构成
积分电路,用于将U2电路输出的方波作为输入,产生输出三角波。

图中R6在调整方波—三角波的输出频率时,不会影响输出波形的幅度。

若要
求三角波的幅值,可以调节可变电容C2。

三角波部分参数设定如下:
对于输出三角波其振荡周期 T = (4 R5 R6 C2) / R3 ,f = 1/T。

而要调整输出三角波的振幅,则需要调整可变电容C2的值。

以使三角波U P-P = 5V。

2.3正弦波参数电路及元件参数确定
2.3.1 正弦波参数电路如图 5 所示
图 5 三角波-正弦波电路图
2.3.2正弦波的参数确定
.改变输入频率,是电路中的频率一定时三角波频率为固定或变化范围很小。

加入低通滤波器,而将三角波转化为正弦波。

在图5中当改变输入频率后,三角波与正弦波的幅度将发生相应改变。

由于
振荡周期 T = (4 R5 R6 C2) / R3,
C2为调节三角波的幅度使U P-P = 5V,R10调节输出正弦波得幅值U P-P =3V。

三角波→正弦波的变换主要用差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高、抗干扰能力强等优点。

特别是做直流放大器时,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性的非线性。

2.4方波-三角波-正弦波函数发生器整体电路图
根据以上设计,画出方波-三角波-正弦波函数发生器电路图如图 6 所示。

图 6 方波-三角-正弦波函数发生器电路图
3、电路的仿真调试
3.1 利用Multisim软件画出电路图,模拟电路结果,观察各波形的输出。

3.1.1 方波、三角波产生电路的仿真波形如图7所示
图7 方波、三角波仿真图形3.1.2方波—三角波转换电路的仿真如图 8 所示
图 8 方波—三角波仿真图形3.1.3三角波—正弦波转换电路仿真
图三角波—正弦波仿真图形3.1.4方波—三角波—正弦波转换电路仿真
图方波—三角波—正弦波仿真图形
3.1.4结果分析
输出电压
方波信号接入示波器仿真,调节C1,得方波峰峰Vpp=14 V;撤除方波信号并接入三角波信号,调节C2,测得三角波峰峰值Upp=5 V;将正弦波信号接入示波器,调节R10,测得正弦波峰峰值Upp=3V。

如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档