自动控制原理课程设计——倒立摆系统控制器设计
自动控制原理课程设计-倒立摆系统控制器设计
1 引言支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
1.1 问题的提出倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
1.2 倒立摆的控制方法倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。
2 直线倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。
自动控制原理课程设计(倒立摆)
南京航空航天大学课程名称:自动化控制原理课程设计专业:探测制导与控制技术时间:2016.6.20-2016.6.25一、实验目的1、 学会用SIMULINK 软件分析复杂的控制系统。
2、 会用状态反馈进行控制系统设计。
3、 了解状态观测器的实现。
二、实验设备1、 计算机和打印机。
2、 实际倒立摆系统。
三、实验原理假设原系统的状态空间模型为BU AX X+= ,若系统是完全能控的,则引入状态反馈调节器KX R U -=这时,闭环系统的状态空间模型为⎩⎨⎧=+-=CXY BR X BK A X)(设计任务是要计算反馈K ,使A-BK 的特征值和期望的极点P 相同。
通过将倒立摆线性数学模型输入到MATLAB 中,使用K=place(A,B,P)函数算出反馈矩阵反馈增,K 和期望极点向量P 应与状态变量X 具有相同的维数。
本系统可令输入R=0,即只讨论初始值对系统的作用。
倒立摆系统模型如下:1、倒立摆线性模型:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=3444.16254.42122.822122.822760.07062.38751.168751.6510000100A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=5125.62184.500B ⎥⎦⎤⎢⎣⎡=00100001C ⎥⎦⎤⎢⎣⎡=00D 2、倒立摆非线性模型:)(cos 00144.00061.0212001θθθ--+=⋅⋅B A2121121222)sin(2.1)cos(2.1sin 2.61⋅⋅⋅⋅⋅⋅⋅-----=θθθθθθθθθθ其中:⋅⋅---++=11212110]0168.0)cos()sin(00144.0[sin 2979.00236.0θθθθθθθu A 2221212210])sin()[cos(0012.0sin )cos(0734.0⋅⋅---+--=θθθθθθθθθB四、实验内容1、根据给出的倒立摆的线性数学模型,讨论系统的稳定性,可控性和可观性。
倒立摆的自动控制原理课程设计
全校通识课课程考核科目:倒立摆的自动控制原理课程设计教师:姓名:学号: 2010专业: 2010级自动化 5班上课时间:2013年3月至2013年5月学生成绩:教师 (签名)重庆大学制目录1引言 (3)2数学模型的建立 (4)2.1 倒立摆数学模型的建立 (4)3 未校正前系统的时域分析 (7)4 根轨迹校正 (9)4.1 原系统的根轨迹分析 (9)4.2串连超前系统的设计 (10)4.2.1确定闭环期望极点的位置 (10)4.2.2 超前校正传递函数设计 (11)4.2.3 校正参数计算 (11)4.2.4 超前校正控制器 (12)4.2.5 matlab环境下串联超前校正后的根轨迹图 (12)5倒立摆系统频域分析 (14)6 频域法校正 (16)6.1频域法控制器设计 (16)6.1.1控制器的选择 (17)6.1.2系统开环增益的计算 (17)6.1.3画bode图和Nyquist图 (17)6.1.4计算 和T求解校正装置 (19)6.1.6 matlab下作校正后系统的Bode图和Nyquist图 (20)6.1.7校正后系统的单位阶跃曲线 (21)6.2 串联滞后-超前校正装置设计 (21)6.2.1 控制器设计 (21)6.2.2 matlab环境下的bode图和nyquist图 (22)7 PID控制器设计 (24)7.1控制器设计过程 (24)8 课程设计总结 (28)9参考资料 (29)倒立摆的自动控制原理课程设计1引言倒立摆是进行控制理论研究的典型实验平台,它在机器人技术、控制理论、计算机控制等自动控制领域,对多种技术的进行了有机结合。
它具有高阶次、不稳定、多变量、非线性和强耦合特性,在经典控制理论学习理解以及现代科技方面,诸如半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行等有广泛的应用。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制。
自控倒立摆设计
倒立摆系统的控制器设计摘要倒立摆系统是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合。
以直线一级倒立摆进行涉设计。
首先,对直线一级倒立摆进行建立模型,根据建立的数学模型,对模型的性能指标分析,即开环响应的分析。
利用分析的结果,运用根轨迹法、频域法、PID控制器设计校正控制器,通过根轨迹,奈奎施特图,判断系统的稳定,选择合适的校正装置进行设计。
运用simulink 进行仿真修改。
一、倒立摆系统概述倒立摆的种类:悬挂式、直线、环形、平面倒立摆等。
一级、二级、三级、四级乃至多级倒立摆。
系统的组成:倒立摆系统由倒立摆本体,电控箱以及控制平台(包括运动控制卡和PC机)三大部分组成。
硬件框图如下图所示:工程背景:(1) 机器人的站立与行走类似双倒立摆系统。
(2) 在火箭等飞行器的飞行过程中为了保持其正确的姿态要不断进行实时控制。
(3) 通信卫星要保持其稳定的姿态使卫星天线一直指向地球使它的太阳能电池板一直指向太阳。
(4)为了提高侦察卫星中摄像机的摄像质量必须能自动地保持伺服云台的稳定消除震动。
(5) 多级火箭飞行姿态的控制也可以用多级倒立摆系统进行研究。
倒立摆系统是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合。
二、数学模型的建立系统建模可以分为两种:机理建模和实验建模。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学等学科的知识和数学手段建立起系统内部变量、输入变量以及输出变量之间的数学关系。
直线一级倒立摆的模型以及相关数据参数如下:(图2-1 直线一级倒立摆模型)M 小车质量1.096 Kg m 摆杆质量0.109 Kgb 小车摩擦系数0.1N/m/sec l 摆杆转动轴心到质心长度0.25mI 摆杆惯量0.0034 kg·m2 F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角受力分析:图2-2 小车及摆杆受力分析N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量 。
倒立摆系统的课程设计
倒立摆系统的课程设计一、课程目标知识目标:1. 学生能够理解倒立摆系统的基本概念,掌握其物理原理;2. 学生能够描述倒立摆系统的动态特性,了解系统稳定性与不稳定性的影响因素;3. 学生能够运用数学方法分析倒立摆系统的运动方程,并求解平衡条件。
技能目标:1. 学生能够运用物理知识建立倒立摆系统的数学模型;2. 学生能够通过实验观察和分析倒立摆系统的运动状态,并提出改进措施;3. 学生能够利用控制理论知识,设计简单的倒立摆稳定控制系统。
情感态度价值观目标:1. 学生对物理现象产生好奇心,培养探究科学问题的兴趣;2. 学生在小组合作中,学会沟通、协作,培养团队精神;3. 学生通过解决实际问题,体验科学研究的乐趣,增强自信心。
课程性质:本课程为物理学科选修课程,结合实际生活中的倒立摆现象,培养学生运用物理知识解决实际问题的能力。
学生特点:本课程面向高中二年级学生,他们已具备一定的物理知识和实验技能,具有较强的逻辑思维能力和动手操作能力。
教学要求:结合学生特点,注重理论与实践相结合,强调学生的主体地位,鼓励学生主动探究、合作学习,提高解决问题的能力。
通过本课程的学习,使学生能够将所学知识应用于实际问题的解决,培养创新精神和实践能力。
二、教学内容本课程教学内容主要包括以下几部分:1. 倒立摆系统基本概念:介绍倒立摆的定义、分类及在实际中的应用,如机器人、玩具等。
2. 倒立摆系统的物理原理:分析倒立摆系统的受力情况,探讨重力、摩擦力等对系统稳定性的影响。
3. 倒立摆系统的数学建模:引导学生运用牛顿运动定律、拉格朗日方程等方法建立倒立摆系统的数学模型。
4. 倒立摆系统的动态特性:研究系统在不同参数下的运动状态,分析稳定性与不稳定性的条件。
5. 倒立摆系统的控制方法:介绍PID控制、状态反馈控制等基本控制方法,并探讨其在倒立摆系统中的应用。
6. 实践操作:组织学生进行倒立摆实验,观察系统运动状态,分析实验结果,并提出改进措施。
倒立摆控制系统的设计
倒立摆控制系统的设计对于倒立摆控制系统的设计,主要包括以下几个方面:建立数学模型、设计控制器、仿真和验证。
首先,建立数学模型是控制系统设计的第一步。
倒立摆的数学模型可以用动力学方程来描述。
根据牛顿定律和角动量定理,可以推导出摆的运动方程。
运动方程可以用二阶非线性微分方程来表示。
对于简单的倒立摆,可以假设摩擦等影响可以忽略不计,从而简化模型。
但在实际应用中,需要考虑摩擦等非线性因素的影响。
然后,设计控制器是控制系统设计的核心。
一般来说,倒立摆控制系统使用PID控制器或者模糊控制器。
PID控制器是一种经典的控制器,通过调节比例项、积分项和微分项的权重,可以实现对摆的位置和角度的控制。
模糊控制器则是一种模糊逻辑控制器,通过定义模糊化变量、模糊化规则和模糊推理等步骤,实现对摆的控制。
在设计控制器时,需要根据具体的系统动态特性和性能指标进行参数调整和优化。
接下来,进行仿真和验证是控制系统设计的关键步骤。
通过使用数学模型和设计好的控制器,在仿真软件或硬件平台上进行仿真实验。
在仿真实验中,可以观察摆的响应特性,如超调量、响应时间和稳态误差等,并对控制器的参数进行调整和优化。
在验证阶段,可以基于实际硬件搭建实验平台,进行实际实验,并与仿真结果进行比较和分析。
最后,根据仿真和验证的结果,可以对控制系统进行进一步的改进和优化。
针对仿真结果中存在的性能指标不达标或者响应不够理想的问题,可以重新调整控制器参数或者进行控制策略的改进。
通过多次迭代和优化,最终可以得到满足需求的倒立摆控制系统。
综上所述,倒立摆控制系统的设计涉及到数学模型的建立、控制器的设计、仿真和验证等多个步骤。
这些步骤需要结合实际需求和性能指标进行调整和优化,才能得到一个有效和稳定的控制系统。
倒立摆控制系统设计是控制工程领域的经典问题,通过对这一问题的研究和探索,可以深入理解控制系统设计的基本原理和方法。
倒立摆系统的控制器设计1(含5篇)
倒立摆系统的控制器设计1(含5篇)第一篇:倒立摆系统的控制器设计1刘翰林倒立摆系统的控制器设计引言1.1 问题的提出生活在大千世界里,摆无处不在。
何为摆?支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
相反,支点在上而重心在下的则称为顺摆。
现实生活中,旋转着的芭蕾舞演员,杂技的顶伞,墙上挂钟的钟摆,工作中的吊车等都可被看作是一个摆。
倒立摆的种类繁多,其中包括悬挂式、直线、环形、平面倒立摆等。
一级、二级、三级、四级乃至多级倒立摆。
1.2 倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
1.3 倒立摆的分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆: 1)直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
倒立摆控制系统的设计
自动控制理论课程设计倒立摆系统的控制器设计学生姓名:指导教师:班级:二O一三课程设计指导教师评定成绩表:指导教师评定成绩:指导教师签名:年月日重庆大学本科学生课程设计任务书目录一、倒立摆控制系统概述 (5)二、数学模型的建立 (6)三、系统开环响应分析 (7)四、根轨迹法控制器设计 (8)4.1根轨迹分析 (8)4.2系统根轨迹设计 (9)4.3校正后系统性能分析 (11)4.4系统控制器的调整 (11)五、频域法控制器设计 (13)5.1频域法分析 (13)5.2串联校正器的选择与设计 (13)5.3系统的仿真 (16)六、PID控制器设计 (17)七、总结及心得体会 (19)八、参考教材 (19)一、倒立摆控制系统概述倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中控对象,运用控制手段可使之具有良好的稳定性。
通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁。
在稳定性控制问题上,倒立摆既具有普遍性又具有典型性。
倒立摆系统作为一个控制装置,结构简单、价格低廉,便于模拟和数字实现多种不同的控制方法,作为一个被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的快速系统,只有采用行之有效的控制策略,才能使其稳定。
倒立摆系统可以用多种理论和方法来实现其稳定控制,如PID、自适应、状态反馈、智能控制、模糊控制及人工神经元网络等多种理论和方法,都能在倒立摆系统控制上得到实现,而且当一种新的控制理论和方法提出以后,在不能用理论加以严格证明时,可以考虑通过倒立摆装置来验证其正确性和实用性。
倒立摆的种类:悬挂式、直线、环形、平面倒立摆等。
倒立摆系统的控制器设计
自动控制理论课程设计倒立摆系统的控制器设计学生姓名:李可达指导教师:黄建明班级:自动化6班学号:20105107重庆大学自动化学院二O一二年十二月课程设计指导教师评定成绩表项目分值优秀(100>x≥90)良好(90>x≥80)中等(80>x≥70)及格(70>x≥60)不及格(x<60)评分参考标准参考标准参考标准参考标准参考标准学习态度15学习态度认真,科学作风严谨,严格保证设计时间并按任务书中规定的进度开展各项工作学习态度比较认真,科学作风良好,能按期圆满完成任务书规定的任务学习态度尚好,遵守组织纪律,基本保证设计时间,按期完成各项工作学习态度尚可,能遵守组织纪律,能按期完成任务学习马虎,纪律涣散,工作作风不严谨,不能保证设计时间和进度技术水平与实际能力25设计合理、理论分析与计算正确,实验数据准确,有很强的实际动手能力、经济分析能力和计算机应用能力,文献查阅能力强、引用合理、调查调研非常合理、可信设计合理、理论分析与计算正确,实验数据比较准确,有较强的实际动手能力、经济分析能力和计算机应用能力,文献引用、调查调研比较合理、可信设计合理,理论分析与计算基本正确,实验数据比较准确,有一定的实际动手能力,主要文献引用、调查调研比较可信设计基本合理,理论分析与计算无大错,实验数据无大错设计不合理,理论分析与计算有原则错误,实验数据不可靠,实际动手能力差,文献引用、调查调研有较大的问题创新10 有重大改进或独特见解,有一定实用价值有较大改进或新颖的见解,实用性尚可有一定改进或新的见解有一定见解观念陈旧论文(计算书、图纸)撰写质量50结构严谨,逻辑性强,层次清晰,语言准确,文字流畅,完全符合规范化要求,书写工整或用计算机打印成文;图纸非常工整、清晰结构合理,符合逻辑,文章层次分明,语言准确,文字流畅,符合规范化要求,书写工整或用计算机打印成文;图纸工整、清晰结构合理,层次较为分明,文理通顺,基本达到规范化要求,书写比较工整;图纸比较工整、清晰结构基本合理,逻辑基本清楚,文字尚通顺,勉强达到规范化要求;图纸比较工整内容空泛,结构混乱,文字表达不清,错别字较多,达不到规范化要求;图纸不工整或不清晰指导教师评定成绩:指导教师签名:年月日课程设计题目 倒立摆系统的控制器设计学院 自动化学院 专业 自动化年级 2010级1、已知参数和设计要求:M :小车质量 1.096kg m :摆杆质量 0.109kg b :小车摩擦系数 0.1N/sec l :摆杆转动轴心到杆质心的长度 0.25m I :摆杆惯量 0.0034kgm 2建立以小车加速度为系统输入,以摆杆角度为系统输出的被控对象数学模型。
直线型一级倒立摆系统的控制器设计
直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。
(2)对该系统的稳定性、能观性、能控性进行分析。
(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。
(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
倒立摆控制系统的设计
自动控制理论课程设计倒立摆系统的控制器设计学生姓名:指导教师:班级:二O一三课程设计指导教师评定成绩表:指导教师评定成绩:指导教师签名:年月日重庆大学本科学生课程设计任务书目录一、倒立摆控制系统概述倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中控对象,运用控制手段可使之具有良好的稳定性。
通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉与的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁。
在稳定性控制问题上,倒立摆既具有普遍性又具有典型性。
倒立摆系统作为一个控制装置,结构简单、价格低廉,便于模拟和数字实现多种不同的控制方法,作为一个被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的快速系统,只有采用行之有效的控制策略,才能使其稳定。
倒立摆系统可以用多种理论和方法来实现其稳定控制,如、自适应、状态反馈、智能控制、模糊控制与人工神经元网络等多种理论和方法,都能在倒立摆系统控制上得到实现,而且当一种新的控制理论和方法提出以后,在不能用理论加以严格证明时,可以考虑通过倒立摆装置来验证其正确性和实用性。
倒立摆的种类:悬挂式、直线、环形、平面倒立摆等。
一级、二级、三级、四级乃至多级倒立摆。
倒立摆控制系统的组成:倒立摆系统由倒立摆本体,电控箱以与控制平台(包括运动控制卡和机)三大部分组成。
本次课程设计利用单级倒立摆,主要设计机内控制函数,减小超调量和调节时间!二、数学模型的建立系统建模可以分为两种:机理建模和实验建模。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学等学科的知识和数学手段建立起系统内部变量、输入变量以与输出变量之间的数学关系。
自动控制原理课程设计——倒立摆系统控制器设计
一、引言支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
1.1 问题的提出倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
1.2 倒立摆的控制方法倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。
2 直线倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。
倒立摆控制系统的设计
自动控制理论课程设计倒立摆系统的控制器设计学生姓名:指导教师:班级:二O一三课程设计指导教师评定成绩表:指导教师评定成绩:指导教师签名:年月日重庆大学本科学生课程设计任务书目录一、倒立摆控制系统概述 (5)二、数学模型的建立 (6)三、系统开环响应分析 (7)四、根轨迹法控制器设计 (8)4.1根轨迹分析 (8)4.2系统根轨迹设计 (9)4.3校正后系统性能分析 (11)4.4系统控制器的调整 (11)五、频域法控制器设计 (13)5.1频域法分析 (13)5.2串联校正器的选择与设计 (13)5.3系统的仿真 (16)六、PID控制器设计 (17)七、总结及心得体会 (19)八、参考教材 (19)一、倒立摆控制系统概述倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中控对象,运用控制手段可使之具有良好的稳定性。
通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁。
在稳定性控制问题上,倒立摆既具有普遍性又具有典型性。
倒立摆系统作为一个控制装置,结构简单、价格低廉,便于模拟和数字实现多种不同的控制方法,作为一个被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的快速系统,只有采用行之有效的控制策略,才能使其稳定。
倒立摆系统可以用多种理论和方法来实现其稳定控制,如PID、自适应、状态反馈、智能控制、模糊控制及人工神经元网络等多种理论和方法,都能在倒立摆系统控制上得到实现,而且当一种新的控制理论和方法提出以后,在不能用理论加以严格证明时,可以考虑通过倒立摆装置来验证其正确性和实用性。
倒立摆的种类:悬挂式、直线、环形、平面倒立摆等。
倒立摆控制系统的设计
自动控制理论课程设计倒立摆系统的控制器设计学生:指导教师:班级:二O一三课程设计指导教师评定成绩表:指导教师评定成绩:指导教师签名:年月日重庆大学本科学生课程设计任务书目录一、倒立摆控制系统概述 (5)二、数学模型的建立 (6)三、系统开环响应分析 (7)四、根轨迹法控制器设计 (8)4.1根轨迹分析 (8)4.2系统根轨迹设计 (9)4.3校正后系统性能分析 (11)4.4系统控制器的调整 (11)五、频域法控制器设计 (13)5.1频域法分析 (13)5.2串联校正器的选择与设计 (13)5.3系统的仿真 (16)六、PID控制器设计 (17)七、总结及心得体会 (19)八、参考教材 (19)一、倒立摆控制系统概述倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中控对象,运用控制手段可使之具有良好的稳定性。
通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个根底学科:力学、数学和电学〔含计算机〕有机的结合起来,在倒立摆系统中进行综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁。
在稳定性控制问题上,倒立摆既具有普遍性又具有典型性。
倒立摆系统作为一个控制装置,结构简单、价格低廉,便于模拟和数字实现多种不同的控制方法,作为一个被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的快速系统,只有采用行之有效的控制策略,才能使其稳定。
倒立摆系统可以用多种理论和方法来实现其稳定控制,如PID、自适应、状态反响、智能控制、模糊控制及人工神经元网络等多种理论和方法,都能在倒立摆系统控制上得到实现,而且当一种新的控制理论和方法提出以后,在不能用理论加以严格证明时,可以考虑通过倒立摆装置来验证其正确性和实用性。
倒立摆的种类:悬挂式、直线、环形、平面倒立摆等。
倒立摆系统的控制器设计
14
& ( I + ml 2 )φ& − mglφ = ml&& x & ( M + m) && + bx − mlφ& = u x &
如果令 v = && ,进行拉普拉斯变换,得到 x 进行拉普拉斯变换, 摆杆角度和小车位移的传递函数: 摆杆角度和小车位移的传递函数:
Impulse Response 60 50 40 30 20
q = (M+m)*(I+m*l^2)-(m*l)^2; (M+m)*(I+m*l^2)-
10
0
0
0.2
0.4
0.6
0.8
1
num = [m*l/q 0 0] den = [1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q 0]
图 直线一级倒立摆控制系统
8
系统的组成:倒立摆系统由倒立摆本体, 系统的组成:倒立摆系统由倒立摆本体,电 控箱以及控制平台(包括运动控制卡和PC机 控箱以及控制平台(包括运动控制卡和 机)三 大部分组成。 大部分组成。
9
工程背景: 工程背景: (1) 机器人的站立与行走类似双倒立摆系统。 机器人的站立与行走类似双倒立摆系统。 (2) 在火箭等飞行器的飞行过程中为了保持其 正确的姿态要不断进行实时控制。 正确的姿态要不断进行实时控制。 (3) 通信卫星要保持其稳定的姿态使卫星天线 一直指向地球使它的太阳能电池板一直指向太阳。 一直指向地球使它的太阳能电池板一直指向太阳。 (4)为了提高侦察卫星中摄像机的摄像质量必须 (4)为了提高侦察卫星中摄像机的摄像质量必须 能自动地保持伺服云台的稳定消除震动。 能自动地保持伺服云台的稳定消除震动。 (5) 多级火箭飞行姿态的控制也可以用多级倒 立摆系统进行研究。 立摆系统进行研究。 倒立摆系统是机器人技术、控制理论、 倒立摆系统是机器人技术、控制理论、计算机 控制等多个领域、多种技术的有机结合。 控制等多个领域、多种技术的有机结合。
倒立摆控制系统的设计
倒立摆控制系统的设计自动控制理论课程设计倒立摆系统的控制器设计学生姓名:指导教师:班级:二O一三课程设计指导教师评定成绩表:指导教师评定成绩:指导教师签名:年月日重庆大学本科学生课程设计任务书倒立摆系统的控制器设计目录一、倒立摆控制系统概述 (11)二、数学模型的建立 (12)三、系统开环响应分析 (14)四、根轨迹法控制器设计 (15)4.1根轨迹分析 (15)4.2系统根轨迹设计 (16)4.3校正后系统性能分析 (18)4.4系统控制器的调整 (18)五、频域法控制器设计 (20)5.1频域法分析 (20)5.2串联校正器的选择与设计 (20)5.3系统的仿真 (23)六、PID控制器设计 (24)七、总结及心得体会 (26)八、参考教材 (26)一、倒立摆控制系统概述倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中控对象,运用控制手段可使之具有良好的稳定性。
通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁。
在稳定性控制问题上,倒立摆既具有普遍性又具有典型性。
倒立摆系统作为一个控制装置,结构简单、价格低廉,便于模拟和数字实现多种不同的控制方法,作为一个被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的快速系统,只有采用行之有效的控制策略,才能使其稳定。
倒立摆系统可以用多种理论和方法来实现其稳定控制,如PID、自适应、状态反馈、智能控制、模糊控制及人工神经元网络等多种理论和方法,都能在倒立摆系统控制上得到实现,而且当一种新的控制理论和方法提出以后,在不能用理论加以严格证明时,可以考虑通过倒立摆装置来验证其正确性和实用性。
倒立摆系统的控制器设计
目录摘要 ....................................................................... -2 -1倒立摆系统概述 (3)1.1倒立摆的种类 (3)1.2系统的组成 (3)1.31程背景 (3)2数学模型的建立 (4)2.1牛顿力学法系统分析 (4)2. 2拉氏变换后实际系统的模型 .................................................... -7 -3 开环响应分析 (8)4根轨迹法设计..................................................................... -10 -4. 1校正前倒立摆系统的闭环传递函数的分析 (10)4. 2系统稳定性分析 ............................................................ -10 -4. 3根轨迹设计 (11)4.4 SIMULINK仿真 (14)5直线一级倒立摆频域法设计 (15)5. 1 系统频域响应分析.......................................................... -15 -5. 2频域法控制器设计 (16)5. 2.1控制器的选择 (16)5. 2. 2系统开环增益的计算 (17)5. 2. 3校正装置的频率分析.................................................. -17 -5. 3 Simul ink 仿真.............................................................. -21 - 6直线一级倒立摆的PID控制设计..................................................... -22 -6. 1 PID 简介 (22)6.2 PID控制设计分析 (22)6.3 PID控制器的参数测定 (23)7总结与体会 (26)7. 1 总结...................................................................... -26 -7. 2 体会...................................................................... -26 - 参考文献.......................................................................... -27 -倒立摆是一种典型的非线性,多变量,强耦合,不稳定系统,许多抽象的控制概念如系统的稳定性、可控性、系统的抗干扰能力等都可以通过倒立摆直观的反应出来; 倒立摆的控制思想在实际中如实验、教学、科研中也得到广泛的应用;在火箭飞行姿态的控制、人工智能、机器人站立与行走等领域有广阔的开发和利用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、引言支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
问题的提出倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
倒立摆的控制方法倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。
2 直线倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。
系统建模可以分为两种:机理建模和实验建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。
鉴于小车倒立摆系统是不稳定系统,实验建模存在一定的困难。
因此,本文通过机理建模方法建立小车倒立摆的实际数学模型,可根据微分方程求解传递函数。
微分方程的推导(牛顿力学方法)微分方程的推导在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。
做以下假设:M小车质量m摆杆质量b小车摩擦系数I 摆杆惯量F加在小车上的力x小车位置摆杆与垂直向上方向的夹角摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图2-1 直线一级倒立摆模型系统中小车和摆杆的受力分析图是图2。
其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图2所示,图示方向为矢量正方向。
图2-2 小车及摆杆受力分析分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --=•••(2-1)由摆杆水平方向的受力进行分析可以得到下面等式:)sin (θl x dt d m N +=22(2-2)即:θθθθsin cos 2•••••-+=ml ml x m N(2-3)把这个等式代入式(1)中,就得到小车运动方程(第一个运动方程):F ml ml x b x m M =-+++••••••θθθθsin cos )(2(2-4)为了推出摆杆的运动方程(第二个运动方程),对摆杆垂直方向上的合力进行分析,可以得到下面方程:)cos (θl dt d m mg P 22=-(2-5)θθθθcos sin 2•••--=-ml ml mg P (2-6)力矩平衡方程如下:••=--θθθI Nl Pl cos sin (2-7)注意:方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=(6)和(3)代入(7),约去P 和N ,得到摆杆运动方程(第二个运动方程):θθθcos sin )(••••-=++x ml mgl ml I 2 (2-8)设φπθ+=(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即1<<φ,则可以进行线性化近似处理:012=-=-=)(,sin ,cos dtd θφθθ 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:⎪⎩⎪⎨⎧=-++=-+•••••••••uml x b x m M x ml mgl ml I φφφ)()(2 进行拉氏变换,得:⎩⎨⎧=Φ-++=Φ-Φ+)()()()()()()()()(s U s s ml s s bX s s X m M s s mlX s mgl s s ml I 22222 (2-9)由于输出为角度φ,求解方程组的第一个方程,可以得到:)()()(s s g mlml I s X Φ⎥⎦⎤⎢⎣⎡-+=22,即:mgl s ml I mls s X s -+=Φ222)()()( (2-10) (10)式称为摆杆角度与小车位移的传递函数如令••=x v ,则有:mgl s ml I ml s V s -+=Φ22)()()((2-11)(11)式称为摆杆角度与小车加速度间的传递函数,由于伺服电机的速度控制易于实现在实验中常采用此式。
把(10)式代入(9)式的第二个方程中,得到:)()()(()()()(s U s s ml s s s g mlml I b s s s g ml ml I m M =Φ-Φ⎭⎬⎫⎩⎨⎧-++Φ⎭⎬⎫⎩⎨⎧-++22222 qbmgl s q mgl m M s q ml I b s s q ml s U s -+-++=Φ)()()()(223 (2-12)其中,[]22)())((ml ml I m M q -++=(12)式称为摆杆角度与外加作用力间的传递函数实际系统的模型参数M :小车质量1.096kg m :摆杆质量0.109kg b :小车摩擦系数sec l :摆杆转动轴心到杆质心的长度 0.25mI :摆杆惯量实际数学模型把上述参数代入,可以得到系统的实际模型。
1) 摆杆角度和小车位移的传递函数:22()0.02725()0.01021250.26705s s X s s Φ=-(2-13)2) 摆杆角度和小车加速度之间的传递函数为:2()0.02725()0.01021250.26705s V s s Φ=-(2-14) 3) 摆杆角度和小车所受外界作用力的传递函数:32() 2.35655()0.088316727.9169 2.30942s s U s s s s Φ=+--(2-15)4) 小车位置和加速度的传递函数2()1()X s V s s =(2-16)3 开环系统的时域分析摆杆角度为输出响应的时域分析本系统采用以小车的加速度作为系统的输入,摆杆角度为输出响应,此时的传递函数为26705.00102125.002725.0)()()(222-=-+=Φs mgl s ml I ml s V s(3-1)图 摆杆角度的单位脉冲响应曲线图图 摆杆角度的单位阶跃响应曲线图小车位置为输出响应的时域分析采用以小车的加速度作为系统的输入,小车位置为响应,则此时的传递函数为2()1()X s V s s (3-2)图 小车位置的单位脉冲响应曲线图图 小车位置的单位阶跃响应曲线图由于以上时域分析中所有的传递函数的响应图都是发散的,所以系统不稳定,需要校正。
4 根轨迹法设计原系统的根轨迹分析本系统采用以小车的加速度作为系统的输入,摆杆角度为输出响应,此前已经得出的传递函数为26705.00102125.002725.0)()()(222-=-+=Φs mgl s ml I ml s V s(4-1)运行结果: 闭环零点z =Empty matrix: 0-by-1闭环极点p =图 原系统根轨迹曲线图可以看出,系统无零点,有两个极点,并且有一个极点为正。
画出系统闭环传递函数的根轨迹如图2-6,可以看出闭环传递函数的一个极点位于右半平面,并且有一条根轨迹起始于该极点,并沿着实轴向左跑到位于原点的零点处,这意味着无论增益如何变化,这条根轨迹总是位于右半平面,即系统总是不稳定的。
串联超前校正装置设计对此系统设计控制器,使得校正后系统的要求如下:调整时间:0.5(2%)s t s =; 最大超调量:4.2.1确定闭环期望极点的位置由最大超调量 2(1)10%p e ζζπσ--=≤ %10%≤p σ闭环主导极点所在的极坐标图在此我们对超调量留有一定余量,令 %5%p σ=可以得到:0.687710ζ=由cos ζθ=可以得到:0.812466θ= (弧度)其中β为位于第二象限的极点和O 点的连线与实轴负方向的夹角。
又由:40.5s n t s ςω=≤对调节时间留有一定余量,令40.5s n t s ςω=≤ (±2%的误差带) 取其为,可以得到: 29.067500n ω=,于是可以得到期望的闭环主导极点为:(cos sin )n j ωθθ-+代入数据后,可得期望的闭环主导极点为:1,2 19.990010 21.102584S j =-±4.2.2 超前校正传递函数设计未校正系统的根轨迹在实轴和虚轴上,不通过闭环期望极点,因此需要对系统进行超前校正,设控制器为:1()(1)1c cs z Ts K s Ts s p ααα++==≤++ (4-3)4.2.3 校正参数计算计算超前校正装置应提供的相角,已知期望的闭环主导极点和系统原来的极点的相角和为:211() 4.624226d i i G s S P ==--=-∑(4-4)因此校正装置提供的相角为:3.14(4.624226) 1.482633φ=---=(4-5)又已知 0.812466θ=对于最大的α值的γ角度可由下式计算得到:1=() 0.4232462γπθφ--= (4-6)j ωSγσp Z cZO图直线一级倒立摆根轨迹计算图由于角度都已求出,线段SO 的长度即为自然频率的大小,故可用正弦定理计算,求出超前校正装置的零点和极点(正弦定理) 分别为:p = -66.835473zc z = -12.6417834.2.4 超前校正控制器 校正后系统的开环传递函数为:20.02725(12.641783)()0.01021250.2670566.835473K s G s s s +=-+(4-7)由幅值条件()()1d d G s H s =,并设反馈为单位反馈,所以有K=729.65 对相应参数保留五位有效值,于是我们得到了系统的控制器:729.65(12.642)()66.835c s G s s +=+4.2.5 matlab 环境下串联超前校正后的根轨迹图在 MATLAB 中编写如下的m 文件,对系统进行仿真,运行即可以得到以上的计算结果,校正后系统的跟轨迹如下图所示:图串联超前校正后系统的根轨迹图从图中可以看出,系统的三条根轨迹都有位于左半平面的部分,选取适当的K 就可以稳定系统。