水环境质量现状与影响评价
水环境质量评价
水环境评价摘要:根据目前全国水环境评价工作中的认识,就水环境的含义、水环境评价以及水环境质量评价等方面进行了具体的介绍,特别是水环境质量评价,分别从水环境质量评价的内容、作用及分类、原则和依据以及评价方法等方面进行了介绍。
【关键词】水环境,水环境评价,水环境质量评价。
Abstract: With the understanding from the current national water environment evaluation exercise, this paper presents a specific introduction to the various aspects of water environment in terms of its implication, assessment and quality evaluation. Particular emphasis is attached to the introduction of water environmental quality evaluation, which includes its contents, function and classification, principle and basis, as well as the evaluation method.【Key Words】water environment; evaluation of water environment; water environmental quality evaluation.目录1.水环境的含义 (3)2.水环境评价 (3)2.1 水环境评价目的 (3)2.2 水环境评价的内容 (3)3.水环境质量评价 (4)3.1 水环境质量评价的内容 (4)3.2 水环境质量评价的作用及分类 (4)3.3 水环境质量评价的原则和依据 (5)3.3.1 评价的原则 (5)3.3.2 评价依据 (5)3.4 水环境质量评价的方法 (6)3.4.1 水环境质量评价指数法 (6)3.4.2 水环境质量评价的模糊数学方法 (7)4. 结论 (7)参考文献 (7)1.水环境的含义在环境科学中,环境指围绕着人群的空间,及其中可以直接或间接影响人类生活和发展的各种自然环境要素和社会环境要素的总体。
水环境影响评价报告
水环境影响评价报告目录1. 水环境影响评价报告1.1 编写背景1.1.1 研究意义1.1.2 研究范围1.2 方法论1.2.1 数据采集1.2.2 数据分析1.2.3 模型建立1.3 结果展示1.3.1 水质分析1.3.2 污染源识别1.3.3 生态风险评估1.4 结论与建议1.4.1 影响评价总结1.4.2 监测与管控建议编写背景研究意义水环境是人类生存和发展的重要基础,保护水环境对于维护生态平衡和人类健康至关重要。
水环境影响评价报告的编写旨在全面了解水体质量状况,识别污染源,并为采取有效的保护措施提供科学依据。
研究范围本报告涵盖了一定范围内的水体,涉及水质、生态、人类活动等多方面的情况。
通过对这些方面的综合分析,评价水环境对周围生态和人类健康的影响。
方法论数据采集在编写水环境影响评价报告时,需要充分收集水质监测数据、生态调查数据、污染源数据等相关资料,并确保数据的准确性和完整性。
数据分析通过对采集的数据进行分析处理,可以揭示水环境中存在的污染物种类、含量及分布规律,为后续的模型建立和评价提供依据。
模型建立利用现代环境科学技术手段,建立水环境影响评价的数学模型,通过模拟分析和预测,评估水环境对生态系统和人类健康的影响。
结果展示水质分析报告中应包含对水质指标的监测分析结果,反映水体中各种污染物的含量水平,评价水质状况是否符合相关标准要求。
污染源识别通过对水环境中的污染源进行分析和识别,可以准确定位污染源位置、性质和影响范围,为后续管控措施的制定提供依据。
生态风险评估对水环境中生态系统受到的风险进行评估分析,预测可能出现的生态问题及其影响程度,并提出相应的风险应对措施。
结论与建议影响评价总结在总结水环境影响评价报告时,应对水体质量、生态环境和人类健康的影响进行综合评价,明确存在的问题和亟待解决的挑战。
监测与管控建议根据评估结果提出相应的监测与管控建议,针对存在的污染问题和生态风险提出具体的解决方案和改进措施,以保障水环境的持续健康。
湖泊水环境质量监测与评价
湖泊水环境质量监测与评价湖泊是地球上重要的水体资源之一,不仅为人类提供生活用水,还拥有丰富的生态系统。
然而,由于人类活动的影响,湖泊水环境质量逐渐恶化,给生态系统和人类健康带来了威胁。
因此,湖泊水环境质量的监测与评价变得至关重要。
湖泊水环境质量的监测可以分为定点监测和流域监测两种方式。
定点监测是指选取湖泊的典型点位,在一定时间间隔内进行采样和分析,以了解该点位的水质状况。
流域监测则是综合考虑湖泊流域内的各种因素,并将监测点位布设在各个流域入湖口处,以综合评估湖泊水环境的综合质量。
通过这两种监测方式,可以全面掌握湖泊水环境的变化趋势。
湖泊的水环境质量评价需要依据一定的标准和指标体系。
不同国家和地区的湖泊水环境质量标准各不相同,但一般都包括水质、富营养化、污染物排放等方面的指标。
水质指标包括水体的溶解氧、浊度、酸碱度、温度等,富营养化指标则关注水中的氨氮、总氮、总磷等含量。
此外,重金属、农药等污染物排放也是评价湖泊水环境质量的重要指标。
在湖泊水环境质量监测与评价中,不仅需要准确地采集和分析水样,还需要结合实地调查和遥感技术,更全面地了解湖泊水环境的质量状况。
实地调查可以掌握湖泊周边的环境特点和人类活动情况,遥感技术则可以获取湖泊水质的空间分布信息。
通过综合利用这些信息,可以更加准确地评估湖泊的水环境质量。
湖泊水环境质量的监测与评价还需要考虑到长期性和动态性。
湖泊水环境的质量不仅受到季节性和气候变化的影响,还受到人类活动和自然因素的综合影响。
因此,需要在长期时间尺度上进行监测和评价,以获得更加可靠的结果。
此外,还需要关注湖泊水环境质量的动态变化,及时发现异常情况并采取相应的措施进行治理。
湖泊水环境质量的监测与评价不仅是科学研究的问题,也是解决环境保护和生态恢复的重要途径。
通过监测和评价,可以及时了解湖泊水环境的状况,并采取相应的措施进行管理和治理。
例如,在富营养化方面,可以通过合理控制农业和城市排放,减少营养物的输入,从而改善湖泊水体的富营养化程度。
水环境影响评价报告书
水环境影响评价报告书一、引言。
水环境是人类生存和发展的重要基础,而随着工业化和城市化的加速发展,水环境污染日益严重,给人类生活和生态环境带来了严重的影响。
因此,对水环境的影响进行评价和监测显得尤为重要。
二、评价对象及评价方法。
本次水环境影响评价的对象为某某地区的水系,评价方法采用了定点观测、采样分析、水质模拟等多种手段,以全面了解水环境的现状和可能的影响。
三、水环境现状评价。
经过对某某地区水系的调查和分析,发现水体中存在着各种污染物,包括工业废水、农业面源污染、生活污水等。
水体的透明度下降,水质恶化,对水生生物和人类健康构成了潜在威胁。
四、水环境可能影响评价。
根据现有的数据和模拟结果,我们发现某某地区的水环境可能会受到更严重的影响。
随着工业排放和城市化进程的加速,水体中的污染物浓度有可能进一步上升,水质指标可能会继续恶化,从而对水生生物和人类健康造成更大的影响。
五、风险评估及对策建议。
在评价过程中,我们对水环境可能面临的风险进行了评估,提出了相应的对策建议。
包括加强工业和农业排放的管理,加大污水处理设施的建设和运行力度,加强水体的监测和保护工作等。
六、结论。
通过本次水环境影响评价,我们认识到某某地区水环境面临较大的挑战,但同时也看到了改善的希望。
只有通过科学的评价和有效的措施,才能保护好我们的水环境,为人类的可持续发展提供更好的保障。
七、致谢。
在本次评价过程中,得到了相关部门和专家的大力支持和帮助,在此表示衷心的感谢。
八、参考文献。
1. XXX. 水环境影响评价技术标准. 国家环保部, 2015.2. XXX. 水环境质量评价方法与实践. 科学出版社, 2018.以上就是本次水环境影响评价报告的全部内容,希望能为相关部门和决策者提供一些参考和帮助。
感谢大家的阅读和支持。
袁兆华环境质量分析与评价第四章-水环境质量评价
q——排入河流的废水流量, m3/s ;
06
ρ2 ——废水中的污染物浓度,mg/L。
07
例1:河边拟建一工厂,排放含氯化物废水,流量2.83 m3/s,含盐量1300 mg/L。该河平均流速0.46 m/s,平均河宽13.7m,平均水深0.61m,上游来水含氯化物100 mg/L,该厂废水如排入河中能与河水迅速混合,问河水氯化物是否超标?(设地方标准为200 mg/L)。
解:计算起始点处完全混合后的初始浓度:
考虑纵向弥散条件下的下游10km处的浓度: =1.10μg/L
忽略纵向弥散时的下游10km处的浓度:
练习题2:一个改扩建工程拟向河流排放废水,废水量q=0.25 m3/s,苯酚浓度为ρ2 =35µg/L,河流流量Q=6.5 m3/s,流速ux =0.5m/s,苯酚背景浓度ρ1=0.6µg/L,苯酚的降解(衰减)系数K=0.2d-1,纵向弥散系数Ex =12m2/s。求排放点下游10km处的苯酚浓度(忽略纵向弥散系数) 。
解:在岸边排放时,
在河中心排放时,
01
概述 价的主要任务和要求
地下水环境影响评价
03
评价范围应包括拟建项目可能影响的主要地区。
要求:
02
预测建设项目在各个阶段对地下水环境的直接影响和由此影响而引起的其他间接危害,并针对这些影响和危害提出防治对策。
主要任务:
有针对性的设置评价专题。 地表水和地下水评价统一布置、同步进行。 充分利用现有资料。 下水环境影响评价工作等级的划分 地下水环境影响评价 单项组分评价方法 地下水质量综合评价方法
BOD
很高
高
较低
低
硫化氢
强烈气味
臭味没了
无
水环境影响评价
第三十五条 向水体排放含热废水,应该采用措施,确 保水体旳水温符合水环境质量原则,预防热污染危害。
第三十六条 排放含病原体旳污水,必须经过消毒处理; 符合国家有关原则后,方准排放。
第五章 预防地下水污染
第四十四条 兴建地下工程设施或者地下 勘探、采矿等活动,应该采用保护性措 施,预防地下水污染。
第三章 水污染防治旳监督管理
第十三条 新建、扩建、改建直接或者间接向水体排放污 染物旳建设项目和其他水上设施,必须遵守国家有关建 设项目环境保护管理旳要求。
建设项目旳环境影响报告书,必须对建设项目可能 产生旳水污染和对生态环境旳影响作出评价,要求防治 旳措施,按照要求旳程序报经有关部门审查同意。在运 河、渠道、水库等水利工程内设置排污口,应该经过有 关水利工程管理部门同意。
第二十条 省级以上人民政府能够依法划定生活饮用水地表水源保 护区。生活饮用水地表水源保护区别为一级保护区和其他等级保 护区。在生活饮用水地表水源取水口附近能够划定一定旳水域和 陆域为一级保护区。在生活饮用水地表水源一级保护区外,能够 划定一定旳水域和陆域为其他等级保护区。各级保护区应该有明 确旳地理界线。
共同构成水体
第一节 水环境影响评价常使用方法规与 原则
一 水环境常使用方法 规
1 《中华人民共和国水法》(1988,1,21) 2 《中华人民共和国水污染防治法》(1996,
5)
《中华人民共和国水污染防治法》(1996,5)
第一章 总则 第二条 本法合用于中华人民共和国领域内
旳江河、湖泊、运河、渠道、水库等地表 水体以及地下水体旳污染防治。 海洋污染防治另由法律要求,不合用本法。
水环境质量评价
化学工业出版社
4 水环境质量评价
主要内容:
1 水环境质量现状评价 2 水环境影响评价
4.1 水环境质量现状评价
4.1.1 地表水质量评价
(1)内梅罗(Nemerow)污染指数
他将水的用途划分为三类:
人类接触使用
接触使用
不接触使用
(3)调查深度:与评价项目密切相关的的部分全面 而详细,尽可能定量化;对不能用定量数据表达 的的内容,应做出详细的说明。
环境现状调查的方法
方法 搜集资料法
现场调查法
遥感法
特点
应 用 范 围 广 、 直接获取第一手资 收 效 大 , 较 料,可弥补资料搜 节 省 人 力 、 集法的不足 物力、时间
从整体上了解环境 特点,特别是不易 开展现场调查的地 区的环境状况
• 建设项目的工程特点 • 项目所在地区的环境特征 • 国家或地方政府所颁布的有关法规 注: 具体到某一建设项目可根据建设项目对环境
的影响,所在地区的环境特征,当地对环境的 特殊要求作适当调整
三、环境影响评价大纲的编写
环境影响评价大纲:环境影响评价报告书的总体 设计和行动指南,在开展评价工作前编制,在充 分研读有关文件、进行初步的工程分析和环境现 状调查后形成。
公众参与原则:环评过程要公开、透明,公众有权了 解环评的相关信息。
3.2 环境影响评价的管理程序
一、环境影响分类筛选(分类管理)
编写环境影响报告书 编写环境影响报告表 填报环境影响登记表
二、建设项目环境影响评价管理程序: 编制环境影响评价大纲 编制环境影响报告书(表) 评估环境影响报告书(表) 审批环境影响报告书(表)
地表水环境影响评价
• 判据的档次划分 (4)受纳水体对水质的要求:以
GB3838-2002为依据。(I- V类)
评价等级化分表 • 划分的原则 (1)污水排放量越大,水质越复
杂,建设项目的影响越大,评 价工作要求越高,评价等级也 就越高; (2)受纳水体规模越小,水质要 求越高,则对外界影响的承受 能力就越小,相应的评价工作 就要求越高,评价等级也就越 高。 • 地面水环境影响评价分级表
衰减变化
• 温度对K1(碳化衰减速率)和硝化速率KN影响:
K1,T=K1,20
T-20 1
1=1.047 , T 10 ~ 350C
KN,T=KN,20
T-20 N
N=1.08 , T 10 ~ 300C
• 脱氮作用:水中溶解氧被耗尽时,硝酸盐将被反硝化 细菌还原为亚硝酸盐再转化为氮气。
• 硫化物的反应:水体中缺少溶解氧和硝酸根离子时, 硫酸盐会被细菌还原为硫化氢,含硫蛋白质在厌氧条 件下被大肠杆菌分解成半胱氨酸,再被还原为硫化氢, 如有铁和亚铁离子,可生成难溶的硫化铁或硫化亚铁。
e BODc
BODa
BOD1
K1t BODa
• 硝化过程:也具有一级反应的性质:
可得:
d BODn
dt
K N BODn
e BODn
KNt BODN
BODN 的估算: BODN=4.57 N K 1.14 NO2
或
BODN =4.57
+ N ,o
NH 3-N
1.14 NO2
应尽量向有关水文测量和水质监测等部门收 集现有资料,当资料不足时,应进行一定的 水文调查与水质调查,特别需要进行与水质 调查同步的水文测量。一般情况,水文调查 与水文测量在枯水期进行,必要时,其它时 期(丰水期、平水期等)可进行补充调查。
环境质量现状评价概述
环境质量现状评价概述环境质量是指自然环境中各种物理、化学和生物因素对人类和其他生物体的影响程度和对环境本身的保护程度。
评价环境质量的目的是为了了解环境的健康状况,为环境保护和可持续发展提供数据依据。
当前环境质量的评价主要针对大气、水体、土地和生态系统等多个方面进行。
以下是对这些方面的环境质量现状进行概述。
大气方面:在过去几十年里,大气污染成为全球范围内关注的焦点。
工业化和城市化的快速发展导致了大量的工业和交通排放,使得大气中的污染物如二氧化硫、氮氧化物和颗粒物等浓度大幅度上升。
这些污染物对人类健康和环境产生了严重的影响,导致了大气污染和酸雨的问题。
水体方面:水资源是人类生存和发展的基础,但目前全球水资源面临着严重的污染和短缺的问题。
水体被各种废水和污染物严重污染,如工业废水、农业面源污染和城市生活污水等。
这些污染物不仅对水质造成了严重威胁,也对水生态系统和生物多样性产生了负面影响。
土地方面:土地资源是人类生活和农业生产的基础。
但目前全球面临着土地退化、城市扩张和农药污染等问题。
土地退化主要由于不合理的农业实践、过度放牧和过度开垦等引起,导致土地质量下降和生态系统破坏。
此外,城市扩张和工业化也使得大量的土地被用作建设和工业用途,进一步削弱了可利用的土地资源。
另外,农药和化肥的长期使用导致了土壤污染,造成了环境和人类健康的风险。
生态系统方面:生态系统是地球上各种生物体之间相互依存、相互作用的复杂网络。
然而,由于人类的活动,许多生态系统面临着严重的破坏和文化多样性丧失。
森林砍伐、湿地开垦、物种灭绝等问题都对生态系统造成了巨大的压力。
此外,气候变化也对生态系统产生了负面影响,如海洋酸化、冰川消融和海平面上升等。
总体而言,当前全球的环境质量现状存在着严重的问题。
大气污染、水体污染、土地退化和生态系统破坏都对环境和人类健康造成了严重威胁。
为了改善环境质量,保护地球的生态平衡,全球需要采取积极的环境保护措施,包括减少污染物排放、促进可持续发展、加强环境管理和保护生态系统等。
水环境影响评价
预测范围:与已确定的评价范围一致; 预测点:①已确定的敏感点;
②环境现状监测点; ③水文条件和水质突变处上、下游, ④水源地,水工建筑物及水文站附近;
⑤河流混合过程段代表性断面; ⑥排污口下游可能超标点位附近。 预测时期:丰水期;平水期;枯水期。 预测阶段;建设期;营运期;服务期满后。
调查时间
评价等级不同,对各类水域调查时期的要求也不同。一般情况下各级评价均 应调查枯水期。
当调查区域面源污染严重,丰水期水质劣于枯水期时,一、二级评价的各类 水域应调查丰水期,若时间允许,三级评价也应调查丰水期。
水环境影响评价
➢ 调查内容
水域功能和水环境敏感目标调查 水文调查
原则:收集资料为主,辅以测量、判读地形图。 内容:河流——流量、流速、水深、河流平直情况
水环境影响评价
第四节 地面水环境现状调查与评价
1.评价水域污染源调查评价
评价水域受纳已有污染源所排废水量及污染物种类和数量,估算拟建项目对水 域污染的分担率。
点源调查的原则:
① 以搜集现有资料为主,只有在十分必要时才补充现场调查和现场测试。 ② 点源调查的繁简程度可根据评价级别及其与建设项目的关系而略有不同。
生化参数。大肠杆菌。
污染物排放方面:按容量、排放总量、污染物削减率、污水处理率、达标率、
污水回用率等确定环境目标。
水环境影响评价
环境质量标准
➢ 综合性的水环境质量标准:
《地表水环境质量标准》(GB3838——2002)
➢ 专项功能的水质标准 :
如生活饮用水卫生标准、渔业水质标准、景观娱乐水质标准、农田灌溉水质 标准、海水水质标准、地下水水质标准等等。
水环境影响评价
项目污水排放量:
水源地水环境质量影响因素解析与评价研究
水源地水环境质量影响因素解析与评价研究水源地是人类生存和发展的重要资源,水环境质量的保护与改善对于维护生态平衡和人民健康至关重要。
因此,深入研究水源地水环境质量影响因素的解析与评价,对于科学合理地进行水源地保护与管理具有重要意义。
本文将对水源地水环境质量影响因素进行深入探讨,并展开评价研究。
一、水源地水环境质量影响因素解析1. 水源地地质地貌条件水源地的地质地貌条件对水环境质量有着重要的影响。
地质构造的稳定性决定了水源地的水质稳定性,如果地质构造不稳定,如存在断层、裂隙等现象,可能容易导致水源地水环境污染。
地表地貌的起伏情况也会影响水的渗漏、径流和沉积过程,从而影响水源地的水环境质量。
2. 水体自净能力水源地水体的自净能力是影响水环境质量的重要因素之一。
水体具备一定程度的自净能力,能够通过生物作用、自然沉淀等过程去除一部分污染物。
然而,当污染物浓度过大或水体自净能力受到破坏时,水源地的水环境质量会受到严重影响。
3. 化学物质污染物化学物质污染物是水源地水环境质量影响的重要因素。
化学物质污染物包括有机物、无机物等,它们可能来源于工农业排放、城市生活污水等。
这些污染物会对水源地的水环境质量产生不同程度的影响,如降低水体的透明度、导致水体富营养化、对水中生物体造成毒害等。
4. 大气沉降大气沉降是水源地水环境质量的重要影响因素之一。
大气中的污染物在降水过程中会随着雨水一同进入水源地,这种现象称为大气沉降。
大气沉降使水源地的水环境受到了来自大气污染物的影响,如酸雨、大气颗粒物等。
这些污染物的沉降不仅导致水体酸化,还可能引起水中有害物质的积累,对水质产生严重威胁。
二、水源地水环境质量评价研究水源地水环境质量评价是保护水源地并合理利用水资源的基础和前提。
通过对水环境质量进行全面评估,可以及时发现问题,并采取相应的措施,保持水源地的可持续利用。
在水环境质量评价研究中,以下几个方面是需要重点考虑的:1. 监测指标的选择水环境质量评价需要选取合适的监测指标,以全面反映水资源的状况。
第四章-水环境质量评价
S为监测总项数;Wj为污染级别;C超标项数 (5)综合污染指数
注:用两个最小评 分值之和除以2, 商为奇数则进为偶 数,该数所超级别 评价水质。
注:综合污染指数
n为监测点数,bj为 监测点j所控河段长 度占总长度的比例, wj为污染等级
4、分级评分法
这是国家环保总局标准处曾经推荐的一种方法。 (1)评价标准以《地表水环境质量标准》和《污染水质分
A=BODi/BOD0+CODi/COD0+NH3-Ni/NH3-N0+ (DO饱-DOi)/ (DO饱- DO0)
式中, DO饱-实测水文条件下中饱和溶解氧浓度
在计算时,根据黄浦江的具体情况,各项标准规定如下:
BOD0=4mg/L;COD0=6mg/L;NH3-N0=1mg/L; DO0=4mg/L。定A≥2作为开始
A=BODi/BOD0+CODi/COD0+NH3-Ni/NH3N0-DOi/DO0
式中:A-综合污染评价指数
BODi、BOD0-BOD的实测值和评价标准 CODi、COD0-COD的实测值和评价标准 NH3-Ni、NH3-N0的实测值和评价标准 DOi、DO0的实测值和评价标准
上面的式子也可改写成:
例题
南京某三类水域,通过实测得以下水质指标:
水质指标 总砷 挥发酚 总氰化物 铬(6价) 总汞
实测值 (mg/L)
0.025
0.005
0.1
标准值 (mg/L)
0.05
0.005
0.2
权重
0.2
0.2
0.1
0.01 0.0001
0.05 0.0001
0.2
0.3
试判断该水域的环境质量。
洞庭湖水环境质量状况与污染来源影响分析
第36卷第3期湖南理工学院学报(自然科学版)V ol. 36 No. 3 2023年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2023洞庭湖水环境质量状况与污染来源影响分析彭娴, 朱丹丹, 熊剑(湖南省岳阳生态环境监测中心, 湖南岳阳414000)摘要:为了解洞庭湖水体污染来源及其对洞庭湖水环境的影响, 在对2020年水环境监测数据进行现状分析与评价的基础上, 以2014年为基准年, 对洞庭湖入湖河流及周边等污染来源进行调查与分析. 结果表明: (1)2020年洞庭湖水体主要污染因子为TN、TP, 入湖河流总体水质为优, 湖体和出湖口断面总体水质为轻度污染, 全湖属中度富营养水平.与2014、2017年相比较, 入湖河流、湖体总体水质为优和轻度污染的状况没有变化, 西、南洞庭湖区域中营养水平亦未变化. (2)2014年输入洞庭湖TN、TP、COD污染负荷总量分别为56.45×104 t、26.97×103 t、280.01×104 t, 以入湖河流污染物通量为主, 占入湖总负荷的88.4%、78.7%、86.5%, 其中TN通量以沅江、湘江、松滋为主, 分别占入湖总通量的73.3%、74.4%、81.2%. (3)入湖河流污染物通量是洞庭湖污染物输入的主要来源, 对洞庭湖水质状况起着决定性作用, 大气降水、航道航运污染对洞庭湖水环境的影响甚微.关键词:洞庭湖; 污染源; 污染物通量; 污染负荷; 影响分析中图分类号: X171 文献标识码: A 文章编号: 1672-5298(2023)03-0050-07Analysis of Water Environmental Quality and PollutionSources in Dongting LakePENG Xian, ZHU Dandan, XIONG Jian(Yueyang Ecological Environment Monitoring Center of Hunan Province, Yueyang 414000, China) Abstract: In order to understand the source of water pollution in Dongting Lake and its impact on the water environment, based on the analysis and evaluation of the current situation of the water environment monitoring data in 2020, a more comprehensive investigation and comprehensive analysis of the pollution sources of the river entering the lake and its surrounding areas were carried out with 2014 as the base year. The results show that: (1) In 2020, the main water pollution factors of Dongting Lake were TN and TP, the overall water quality of the river entering the lake was good, the overall water quality of the lake body and the exit section was slightly polluted, and the whole lake was at a moderate eutrophic level. Compared with 2014 and 2017, the overall water quality of the river and lake body into the lake was excellent and the status of light pollution didn’t change. The nutrient level in the west and south Dongting Lake also did not change. (2) In 2014, the total pollution load of TN, TP and COD into Dongting Lake was 56.45×104t, 26.97×103t and 280.01×104t, respectively, and the pollutant flux into the lake was the main factor. Among them, TN fluxes were dominated by Yuanjiang River, Xiangjiang River and Songzi River, which account for 73.3%, 74.4% and 81.2% of the total fluxes, respectively. (3) The pollutant fluxes of rivers into Dongting Lake are the main sources of pollutant input, and play a decisive role in influencing the water quality of Dongting Lake. Atmospheric precipitation and navigation pollution have little effect on the water environment of Dongting Lake.Key words: Dongting Lake; pollution source; pollutant flux; pollution load; impact analysis0 引言洞庭湖作为湖南省的母亲湖, 是我国第二大淡水湖和长江最重要的调蓄湖泊及国际重要湿地. 2014年, 洞庭湖生态经济区规划获国务院批复, 担负起洞庭湖区乃至长江流域生态安全、水安全、粮食安全的重大责任, 战略地位举足轻重. 近十年来, 洞庭湖区环境形势比较严峻, 洞庭湖氮磷持续超标、局部水域水华频发, 制约了区域的可持续发展, 引起了社会各界的广泛关注[1~5]. 为此, 2015—2016年, 湖南省环保厅组织开展洞庭湖区污染源与生态环境现状调查, 旨在掌握洞庭湖区污染源结构状况、洞庭湖水环境质量状况, 找出洞庭湖主要的环境问题, 为洞庭湖区产业结构调整、洞庭湖水环境综合治理和生态保护提供依据. 鉴于第二次全国污染源普查数据尚未公布, 本文采用2014年为基准年的洞庭湖区污染源调查数据以及2014、2017、2020年水质基础数据来研究分析洞庭湖污染来源及其对水环境的影响.收稿日期: 2023-01-05作者简介: 彭娴, 女, 工程师. 主要研究方向: 水环境质量监测第3期彭 娴, 等: 洞庭湖水环境质量状况与污染来源影响分析 51文[6~11]分别开展了洞庭湖水体污染物通量、洞庭湖污染源入湖负荷及入湖河流污染物输入、洞庭湖水环境状况与洞庭湖污染源治理对策等不同方面的研究, 但缺少对洞庭湖多污染来源的综合分析以及对水环境影响的系统分析, 也缺少入湖负荷主要污染物COD 的分析, 因此具有一定的局限性. 本研究在分析水环境质量现状与变化趋势基础上, 综合分析了洞庭湖区污染源、入湖河流污染物通量以及洞庭湖大气降水、船舶航运等外来污染源主要污染物(包括COD)输入负荷组成与分布特征, 较全面分析了洞庭湖污染来源对洞庭湖水环境的影响, 这对于全面了解洞庭湖污染来源, 进一步开展洞庭湖水环境综合治理和生态保护, 提升洞庭湖生态环境质量, 实现区域经济社会环境协调发展, 从而保障区域乃至国家的生态安全都具有十分重要的意义.1 研究区域与研究方法1.1 研究区域污染源研究区域为湖南省洞庭湖区岳阳、常德、益阳3市各区和长沙市望城区, 其中包含岳阳、常德、益阳3市所属市级经济技术开发区(高新园区)、农场管理区, 见表1.表1 湖南省洞庭湖区范围地级市 县级行政区长沙市 望城区岳阳市 岳阳楼区、云溪区、君山区(含建新农场)、汨罗市、岳阳县、华容县、湘阴县、临湘市、平江县、屈原管理区常德市 武陵区、鼎城区、安乡县、汉寿县、澧县、津市市、临澧县、桃源县、石门县、西湖管理区、西洞庭管理区、贺家山原种场、涔澹农场益阳市资阳区、赫山区、沅江市、南县、安化县、桃江县、大通湖管理区洞庭湖水环境质量现状研究区域为入湖口、湖体、出湖口水域, 具体水质监测断面设置如图1所示.图1 洞庭湖水体水质采样断面分布图1中, 5个入湖口河流断面分别为湘江樟树港、资江万家嘴、沅江坡头、澧水沙河口、三口松滋河马坡湖; 4个东洞庭湖水体断面分别为鹿角、扁山、岳阳楼、东洞庭湖; 3个南洞庭湖水体断面分别为52 湖南理工学院学报(自然科学版) 第36卷万子湖、横岭湖、虞公庙; 3个西洞庭湖水体断面分别为南嘴、蒋家嘴和小河嘴; 1个出湖口断面为洞庭湖出口. 1.2 研究方法洞庭湖水体各区域水质类别、整体水质状况根据《地表水环境质量评价办法(试行)》进行水质类别单因子和整体水质状况评价, 其中入湖口断面的总磷按河流标准(0.2 mg/L)进行评价, 湖体和出湖口断面的总磷按湖、库标准(0.05 mg/L)进行评价.湖泊营养状态评价指标为总氮(TN)、总磷(TP)、高锰酸盐指数、叶绿素a 和透明度5 项, 参考中国环境监测总站《湖泊(水库)富营养化评价方法及分级技术规定》中的综合营养状态指数评价方法进行换算.工业污染物排放量、城镇生活污染物排放量、农村生活污染物排放量及农业面源种植业、畜禽养殖、 水产养殖污染物排放量采用第一次全国污染源普查资料编纂委员会编制的《污染源普查产排污系数手册》中南区的产排系数进行核算.入湖河流入洞庭湖的污染物总量(通量)按下式计算[10]:.ij ij i F C Q =⨯其中ij F 为第i 月第j 种物质的平均通量(t); ij C 为第i 月第j 种物质的平均浓度(mg/L); i Q 为第i 月的流量通量(m 3).大气降水污染物输入按下式计算[12]:.C A h c =⋅⋅降水其中C 降水为大气降水污染物输入量(t); A 为洞庭湖湿地面积(km 2); h 为洞庭湖湿地区域范围内的年降水量(mm/a); c 为降水中污染物的浓度(mg/L).洞庭湖区污染源污染物入湖负荷=各类污染源污染物排放量⨯入湖系数.洞庭湖区各类污染源的入湖系数参考文[13]确定. 污染源调查数据以2014年为基准年, 来源于洞庭湖区各区(县、市)行政主管部门, 2020年的水环境质量现状数据以及2014、2017年比对数据来源于湖南省洞庭湖生态环境监测中心.2 结果与讨论2.1 洞庭湖水环境质量现状与变化趋势 2.1.1 主要污染因子现状与变化趋势洞庭湖入湖河流、周边污染源入湖主要污染物为TN 、TP 、COD, 洞庭湖水体主要污染因子为TN 、TP [1,4,5]. 洞庭湖各水域TN 、TP 、COD 现状年均值见表2, 变化趋势如图2~5所示.2020年洞庭湖16个断面TN 年均值范围在1.27~1.88 mg/L 之间, 全湖TN 年均值1.63 mg/L, 均明显超过地表水环境质量标准(GB 3838—2002)中Ⅲ类标准限值(1.0 mg/L). 空间分布上, 入湖口TN 年均值高于出湖口, 出湖口TN 年均值高于湖体, 湖体TN 年均值以西洞庭湖和南洞庭湖最低.2020年洞庭湖各水域TP 年均值范围在0.040~0.078 mg/L 之间, 全湖TP 年均值0.064 mg/L, 除小河嘴外其他10个湖体断面的TP 年均值均高于地表水环境质量标准(GB 3838—2002)中湖、库Ⅲ类标准限值(0.05 mg/L). 各水域TP 年均值排序为: 四水<西洞庭湖<南洞庭湖<出湖口<东洞庭湖<三口(图2).2020年洞庭湖各水域COD 年均值范围在6.0~10.8 mg/L 之间, 全湖COD 年均值7.9 mg/L, 16个湖体断面的COD 年均值均低于地表水环境质量标准(GB 3838—2002)Ⅲ类标准限值(20 mg/L). 各水域COD 年均值排序为: 西洞庭湖<南洞庭湖<三口<东洞庭湖<四水<出湖口.由图3~5可知, 洞庭湖水体TP 、TN 、COD 浓度整体呈下降趋势, 与2014年相比, 2020年全湖TP 、TN 、COD 年均值分别下降了0.029 mg/L 、0.37 mg/L 、0.5 mg/L.与2017年相比, 2020年全湖TP 、TN 、第3期彭 娴, 等: 洞庭湖水环境质量状况与污染来源影响分析 53COD 年均值分别下降了0.014 mg/L 、0.20 mg/L 、1.2 mg/L.表2 洞庭湖各水域TN 、TP 、COD 年均值及水质类别水域 断面名称 TP/ mg/L TN / mg/L COD / mg/L 水质类别 2014 2017 2020201420172020201420172020 2014 2017 2020入湖口 樟树港 0.071 0.078 0.070 2.54 2.10 1.8610.010.510.8Ⅱ类 Ⅱ类 Ⅱ类万家嘴0.058 0.065 0.055 2.13 2.14 1.888.27.40 6.8 Ⅱ类 Ⅱ类 Ⅱ类坡头 0.095 0.062 0.044 1.87 1.55 1.758.97.2 6.5 Ⅱ类 Ⅱ类 Ⅱ类沙河口 0.093 0.064 0.050 1.99 2.12 1.2813.010.99.9 Ⅱ类 Ⅱ类 Ⅱ类马坡湖 0.162 0.112 0.078 1.98 1.97 1.7413.311.77.6 Ⅲ类 Ⅲ类 Ⅱ类西洞庭湖 南嘴0.107 0.088 0.067 1.96 1.86 1.887.710.68.7 Ⅴ类 Ⅳ类 Ⅳ类蒋家嘴 0.084 0.062 0.060 1.76 1.61 1.33 4.6 6.9 6.0 Ⅳ类 Ⅳ类 Ⅳ类小河嘴 0.073 0.059 0.040 1.68 1.58 1.31 4.9 6.8 6.3 Ⅳ类 Ⅲ类 Ⅲ类南洞庭湖 万子湖0.073 0.067 0.053 1.69 1.60 1.27 5.78.1 6.7 Ⅳ类 Ⅳ类 Ⅳ类横岭湖 0.092 0.065 0.062 1.78 1.66 1.48 6.57.6 6.7 Ⅳ类 Ⅳ类 Ⅳ类虞公庙 0.078 0.069 0.063 2.53 2.07 1.798.19.08.4 Ⅳ类 Ⅳ类 Ⅳ类东洞庭湖鹿角 0.086 0.083 0.059 2.07 1.87 1.748.19.27.0 Ⅳ类 Ⅳ类 Ⅳ类扁山 0.080 0.084 0.068 1.93 1.93 1.679.010.29.8 Ⅳ类 Ⅳ类 Ⅳ类东洞庭湖 0.084 0.068 0.061 1.92 1.66 1.779.211.17.6 Ⅳ类 Ⅳ类 Ⅳ类岳阳楼 0.085 0.084 0.067 2.10 1.83 1.688.79.47.9 Ⅳ类 Ⅳ类 Ⅳ类出湖口 出湖口0.097 0.078 0.064 2.09 1.78 1.668.69.49.0 Ⅳ类 Ⅳ类 Ⅳ类全湖0.089 0.074 0.0602.001.831.638.49.17.9 Ⅳ类 Ⅳ类 Ⅳ类图2 洞庭湖入湖口、湖体、出湖口TN 、TP 年均浓度分布 图3 洞庭湖入湖口、湖体、出湖口TP 年均浓度变化趋势图4 洞庭湖入湖口、湖体、出湖口TN 年均浓度变化趋势 图5 洞庭湖入湖口、湖体、出湖口COD 年均浓度变化趋势0.0200.0400.0600.0800.1000.1200.1400.1600.180T P /m g /L2014201720201.001.502.002.503.00T N /m g /L 2014201720204.06.08.010.012.014.0C O D /m g /L20142017202054 湖南理工学院学报(自然科学版) 第36卷2.1.2 水环境质量现状与变化趋势2020年入湖口、湖体和出湖口断面水质类别见表2. 洞庭湖5条入湖河流断面水质类别均为Ⅱ类, 洞庭湖湖体和出湖口11个断面中除小河嘴断面为Ⅲ类外, 其余10个断面均为Ⅳ类. 其中, 5个入湖口断面Ⅰ~Ⅲ类水质断面比例为100.0%, 总体水质为优. 湖体和出湖口11个断面中Ⅲ类和Ⅳ类水质断面比例分别为9.1%和90.9%, 总体水质为轻度污染.2020年各断面水质类别与2017年相同, 与2014年相比较, 2020年水质类别除马坡湖由Ⅱ类变为Ⅲ类和南嘴由Ⅴ类变为Ⅳ类外, 其他断面水质类别均未发生改变. 入湖河流总体水质为优和湖体总体水质为轻度污染的状况也没有变化.洞庭湖各水域综合营养状态指数分布与变化趋势见表3. 2020年洞庭湖全湖综合营养状态指数TLI(∑)为49.6, 属中营养; 各断面综合营养状态指在43.2 ~ 50.1之间. 西、南洞庭湖区域处于中营养水平; 东洞庭湖区域的东洞庭湖断面综合营养状态指数为50.1, 属中轻度富营养水平, 其他10个断面的综合营养状态指数均低于50, 处于中营养水平.与2014、2017年相比, 西洞庭湖、南洞庭湖区域断面综合营养状态指数均小于50, 处于中营养水平,状态未发生变化, 东洞庭湖区域2014年各断面综合营养状态指数均小于等于50, 处于中营养水平, 2017年扁山、东洞庭湖断面综合营养状态指数均大于50, 处于轻度富营养水平.表3 洞庭湖各水域综合营养状态指数分布与变化趋势湖区 西洞庭湖 南洞庭湖东洞庭湖断面名称 南嘴 蒋家嘴 小河嘴 万子湖横岭湖虞公庙鹿角扁山东洞庭湖 岳阳楼 洞庭湖出口2014年TLI(∑) 48.8 44.3 45.1 46.046.347.247.948.650.0 49.3 49.5 营养状态 中营养 中营养 中营养 中营养中营养中营养中营养中营养中营养 中营养 中营养2017年 TLI(∑)47.2 43.8 43.8 46.247.046,648.550.150.1 49.8 50.5营养状态 中营养 中营养 中营养 中营养中营养中营养中营养轻度富营养轻度富营养中营养轻度 富营养 2020年TLI(∑) 49.2 46.3 43.2 43.946.246.248.848.250.1 48.9 48.7 营养状态 中营养 中营养 中营养 中营养中营养中营养中营养中营养轻度富营养 中营养 中营养2.2 洞庭湖污染来源与特征输入洞庭湖污染负荷总量包括湖区工业源、农业源、生活污染源污染物排入量、四水三口上游河流的入湖量、大气降水、船舶航运排放的污染物, 见表4.由表4可知, 2014年入洞庭湖TN 、TP 、COD 负荷总量分别为56.45×104 t 、26.97×103 t 、280.01×104 t. 其中, 入湖河流TN 、TP 、COD 通量分别为49.93×104 t 、21.23×103 t 、242.11×104 t, 分别占入湖总负荷的88.4%、78.7%、86.5%.表4 2014年洞庭湖输入的主要污染物TN 、TP 、COD 污染负荷组成特征污染来源 TN / 104 t占比 / % TP / 103 t 占比 / % COD / 104 t 占比 / %工业源 工业废水 0.53 0.9 0.10 0.4 2.85 1.0 农业源农田径流 0.58 1.0 0.35 1.3 − −畜禽养殖 2.22 4.0 3.25 12.1 21.77 7.8 水产养殖0.33 0.6 0.58 2.1 3.17 1.1 生活源城镇生活 1.29 2.3 0.92 3.4 8.18 2.9 农村生活0.57 1.0 0.50 1.8 1.91 0.7 污染源入湖负荷合计5.52 9.8 5.7 21.1 37.88 13.5 大气降水 1.00 1.8 0.037 0.2 − −航道航运 0.003− 0.002 − 0.018 −入湖通量 49.93 88.4 21.23 78.7 242.11 86.5 入湖总负荷56.453 100 26.969 100 280.008 100第3期彭娴, 等: 洞庭湖水环境质量状况与污染来源影响分析 55如图6所示, 入洞庭湖COD通量以沅江(32.5%)、湘江(23.7%)、松滋(17.1%)为主, 占入湖总通量的73.3%; 入洞庭湖TN通量以湘江(30.7%)、沅江(29.0%)、松滋(14.7%)为主, 占入湖总通量的74.4%; 入洞庭湖TP通量以沅江(34.4%)、松滋(28.7%)、湘江(18.1%)为主, 占入湖总通量的81.2%.湖区工业、农业、生活污染源主要污染物入湖负荷TN 5.52×104 t、TP 5.7×103 t、COD 37.88×104 t, 分别占入湖总负荷的9.8%、21.1%、13.5%. 主要来源于畜禽养殖、城镇生活污水, 两种污水中TN、TP、COD 分别占入湖总负荷的6.3%、15.5%、10.7%. 洞庭湖大气降水、船舶航运排放的污染物占入湖总负荷的比例甚微, 其污染负荷TN占比仅为1.8%, TP占比仅为0.2%.图6 四水、三口入洞庭湖主要污染物通量分布2.3 洞庭湖输入污染源对水环境的影响分析目前, 洞庭湖的TN和TP均出现超标, 营养状态总体处于中营养水平, 局部区域中东洞庭湖区呈轻度富营养状态[3~5]. 尽管湖南省政府采取了大量措施控制水质污染, 在大力推动洞庭湖生态环境综合治理等方面取得了积极成效, 洞庭湖TN、TP浓度有所下降, 但是洞庭湖水环境质量尚未得到根本性改善, 水生态健康状况仍然令人担忧. 从入湖污染负荷构成方面来看, 四水、三口水系输入洞庭湖TN 49.93×104 t、TP 21.23×103 t, 分别占入湖负荷总量的88.4%、78.7%, 是洞庭湖污染物的主要来源. 其中, 湘江、沅江、松滋河径流量大, 氮磷含量较高, 输入洞庭湖TN 37.12×104t、TP 17.24×103 t, 分别占入湖负荷总量的65.7%、63.9%, 是影响洞庭湖水质的主要入湖河流. 入湖河流污染物通量(总量)作为湖泊污染负荷重要来源, 其入湖量的大小不仅影响湖泊的换水周期和自净能力, 而且在一定程度上对湖泊水质状况起着决定性作用[14], 体现为若入湖河流氮磷含量较高, 则对洞庭湖湖体水质有不利的影响; 相反, 若入湖河流氮磷含量低, 则对洞庭湖湖体水质有改善的作用. 根据洞庭湖水系分布, 松滋、澧水入西洞庭湖, 沅水、资水入南洞庭湖, 湘江入东洞庭湖. 2014、2017、2020年松滋入湖口TN、TP浓度高于西洞庭湖, 湘江入湖口TN、TP浓度高于东洞庭湖, 资水入湖口TN高于南洞庭湖, 对洞庭湖水质有不利影响; 2014、2017、2020年资水TP浓度低于南洞庭湖, 2017、2020年沅水TN浓度低于南洞庭湖, 对洞庭湖水质有改善作用. 因此, 加强对入湖河流流域污染源的治理尤为重要.三峡工程运行后, 洞庭湖出现枯水期水位抬升、汛期洪水位降低、减缓淤积的正向效应, 亦出现枯水期提前和延长、秋旱加剧、含沙量减少、透明度增加等现象[4,5,15]. 同时三口来水来沙量减少也使TN、TP 等污染物滞留系数增大, 湖水透明度增加, 藻类光合作用增强, 藻类更易于生长和繁殖, 在一定程度上增加了湖泊富营养化和水华风险.本地流域污染源工业结构性水污染明显, 农村乡镇生活污水处理能力不足, 对局部水域水质的影响比较明显. 虽然本地流域污染源输入洞庭湖氮磷污染负荷分别为5.52×104t、5.70×103 t, 只占入湖负荷总量的9.8%、21.1%, 但其输入洞庭湖后会进一步加剧洞庭湖水质污染, 同时增加洞庭湖富营养化风险.由于洞庭湖水体大气降水、航道航运污染负荷TN占比仅为1.8%, TP占比仅为0.2%, 故可知其对洞56 湖南理工学院学报(自然科学版) 第36卷庭湖水环境的影响甚微. 因此对洞庭湖污染的控制, 在主要加强控制入湖河流输入污染物通量的同时, 不能忽视湖区工业、生活污染源及农业面源(尤其是畜禽养殖污染)的影响.3 结束语2020年洞庭湖水体主要污染因子为TN、TP, 入湖河流断面水质类别为Ⅱ类, 总体水质为优; 湖体和出湖口11个断面除小河嘴断面为Ⅲ类外, 其余10个断面均为Ⅳ类, 总体水质为轻度污染. 2020年东洞庭湖区域的东洞庭湖断面属轻度富营养水平, 其他断面属中营养水平. 与2014、 2017年相比较, 入湖河流总体水质为优和湖体总体水质为轻度污染的状况没有变化, 西、南洞庭湖区域为中营养水平的状况也未发生变化.2014年输入洞庭湖TN、TP、COD负荷总量分别为56.45×104 t、26.97×103 t、280.01×104 t. 以入湖河流污染物通量为主, 分别占入湖总负荷的88.4%、78.7%、86.5%. 其中, 入湖COD、TN、TP通量又以沅江、湘江、松滋为主, 分别占入湖总通量的73.3%、74.4%、81.2%.四水、三口入湖河流污染物通量是洞庭湖污染物输入的主要来源, 对洞庭湖水质状况起决定性作用; 大气降水、航道航运污染对洞庭湖水环境的影响甚微; 本地流域污染源对局部水域的影响比较明显, 其氮磷输入进一步加剧了洞庭湖水质污染, 同时也增加了洞庭湖水质富营养化风险.参考文献:[1]田琪, 李利强, 欧伏平, 等. 洞庭湖氮磷时空分布及形态组成特征[J]. 水生态学杂志, 2016, 37(3):19−25.[2]王伟, 卢少勇, 金相灿, 等. 洞庭湖沉积物及上覆水体氮的空间分布[J]. 环境科学与技术, 2010, 33(12F): 6−10.[3]黄代中, 万群, 李利强, 等. 洞庭湖近20年水质与富营养化状态变化[J]. 环境科学研究, 2013, 26(1): 27−33.[4]王琦, 欧伏平, 张雷, 等. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843−1849.[5]吴可方, 欧伏平, 王丑明. 东洞庭湖秋季氮磷营养盐结构及水华风险分析[J]. 人民长江, 2018, 49(23): 21−26+73.[6]田泽斌, 王丽婧, 李小宝, 等. 洞庭湖出入湖污染物通量特征[J]. 环境科学研究, 2014, 27(9): 1008−1015.[7]吴丁, 方平, 李照全, 等. 东洞庭湖区芦苇群落生长对水质的影响[J]. 湖南理工学院学报(自然科学版), 2022, 35(1): 63−68.[8]秦迪岚, 罗岳平, 黄哲, 等. 洞庭湖水环境污染状况与来源分析[J]. 环境科学与技术, 2012, 35(8):193−198.[9]方平, 李照全, 庄琼华, 等. 2018—2022年洞庭湖水质变化趋势分析[J]. 湖南理工学院学报(自然科学版), 2023, 36(2): 50−55.[10]郭晶, 连花, 李利强, 等. 洞庭湖水质污染状况及主要污染物来源分析[J]. 水生态学杂志, 2019, 40(4): 1−7.[11]朱丹丹, 陈兆祺, 李照全, 等. 洞庭湖水质污染状况分析及防治对策[J]. 湖南理工学院学报(自然科学版), 2023, 36(2): 56−60.[12]王小治, 尹微琴, 单玉华, 等. 太湖地区湿沉降中氮磷输入量: 以常熟生态站为例[J]. 应用生态学报, 2009, 20(10): 2487−2492.[13]袁正科. 洞庭湖湿地资源与环境[M].长沙: 湖南师范大学出版社, 2008.[14]许朋柱, 秦伯强. 2001—2002水文年环太湖河道的水量及污染物通量[J]. 湖泊科学, 2005,17(3): 213−218.[15]张细兵, 卢金友, 王敏. 三峡工程运用后洞庭湖水沙情势变化及其影响初步分析[J]. 长江流域资源与环境, 2010, 19(6): 640−643.。
5地表水环境质量现状及影响评价
5地表水环境质量现状及影响评价概述地表水作为人类的重要资源之一,直接关系到人类生存和发展。
然而,受人类活动及自然因素影响,地表水环境质量遭受了极大破坏,严重影响了环境质量及人民健康。
本文将介绍中国5个典型地区地表水环境质量现状及其影响评价。
东南沿海地区东南沿海地区指的是福建、广东、广西、海南、江苏、上海、浙江、台湾和香港等地区。
这里的地表水供给主要来自地下水和山区、丘陵地区的塘、河、湖。
全区地表水质量普遍较差,主要原因是地下水过度开采、农业雨污同管、排污能力不足等。
黄河流域黄河流域位于中国的中西部地区,涵盖山西、陕西、宁夏、甘肃、青海、河南和内蒙古等省份。
从上游到下游,水质渐趋恶化,主要原因是水表污染和城市化发展。
其中,黄河上游水质较好,但建有大量水利工程后已无法保持良好水质。
长江流域长江流域覆盖了中国的南部和中西部地区,涵盖了华南、华东、东北和中原地区。
长江为中国经济发展做出了巨大贡献,但伴随着经济快速发展,也带来了诸如水体污染、水生态破坏等问题。
尤其是在长江中下游流域,沿江地区污染比较严重,治理难度较大。
南水北调中线工程南水北调中线工程是中国最大的水利工程,主要建设目的是将长江水源引入黄河流域,解决水资源短缺问题。
然而,南水北调中线也对地表水环境产生了一定的影响,包括水源地生态环境破坏、水环境污染等问题。
长株潭城市群长株潭城市群是长江中游地区重要的经济增长极,涵盖了湖南省湘潭市、株洲市,湖北省长沙市等城市。
随着城市化进程的推进,这一地区的地表水质量也面临着严峻的挑战。
例如,长沙市周边的一个棕色污染区,水体中铜超标率已经达到了100%。
影响评价地表水的污染主要是由人类活动和自然因素造成的,因此,影响因素复杂多样。
影响地表水质量的主要因素包括红潮,有机物,人口密度和工业活动等。
监测结果表明,地表水中总磷、总氮、生物化学需氧量等指标的超标率较高。
地表水环境质量是人类生存和发展的重要资源,但现在遭受了极大的破坏。
第四章 水环境质量评价
三、地表水环境影响预测 (一)预测工作的准备 1.预测时段与范围
(1)预测时期
预测时段:
地表水预测时期分丰水期、平水期和枯水期三个 时期。冰封期是北方河流特有的情况,此时期的自净 能力最小。因此,对一、二级评价项目应预测自净能 力最小和一般的两个时期环境影响。对于冰封期较长 的水域,当其功能为生活饮用水、食品工业用水水源 或渔业用水时,还应预测冰封期的环境影响。三级评 价或评价时间较短的二级评价可只预测自净能力最小 时期的环境影响。
规定WQI值用整数表示,这样就将水质指数分成从010的11个等级,数值越大,则水质越好。(10:天然 纯净水;0:腐败的原污水)
2、布朗水质指数
1970年,R.M.Brown等发表了评价水质污染的水质指数 (WQI)。他们对35种水质参数征求142位水质管理专家的意 见,选取了11种重要水质参数。即溶解氧、BOD5、混浊度、 总固体、硝酸盐、磷酸盐、pH、温度、大肠杆菌、杀虫剂、 有毒元素等。然后由专家进行不记名投票,确定每个参数的 相对重要权系数。
第二节 水环境影响评价
目的:一个预测;一个确定; 一个分析;一个解释;一个提出。
一、工作程序、评价等级和评价标准 1.技术工作程序
地表水环境影响评价的技术工作程 序可分为四个阶段(见图):
第一阶段:了解工程设计、现场踏勘、 了解环境法规和标准的规定、确定评价 级别和评价范
围、编制环境影响评价工作大纲,在这阶段还要 做些环境现状调查和工程分析方面的工作; 第二阶段:详细开展水环境现状调查和监测,做 仔细的工程分析,在此基础上评价水环境现状; 第三阶段:根据水环境排放源特征,选择或建立 和验证水质模型,预测拟议行动对水体的污染影 响,并对影响的意义及其重大性作出评价,并且 研究相应的污染防范对策; 第四阶段:提出污染防治和水体保护对策,总结 工作成果,完成报告书,为项目监测和事后评价 作准备。
水环境质量评价
(3) k1(T ) k1(20)1.047(T 20) k2(T ) k2(20)1.047(T20)
(4)
L
L
0exp
k1
x 86400v
O
Os
D
Os
k1L0 k2 k1
(ek1t
ek2t
)
D0ek2t
[例题]
拟建一个化工厂,其废水排入工厂边的一条河流, 已知污水与河水在排放口下游1.5 km 处完全混合,在 这个位置BOD5=7.8 mg/L,DO=5.6 mg /L,河流的 平均流速为1.5 m/s,在完全混合断面的下游 25 km 处 是渔业用水的引水源,河流的K1=0.35/d,K2=0.5/d, 若从DO的浓度分析,该厂的废水排放对下游的渔业用 水有何影响?水温为20℃。
水环境质量评价
主要内容
地表水环境质量及影响评价 地下水质量及环境影响评价 海洋质量及环境影响评价
主要内容
地表水环境质量及影响评价 地下水质量及环境影响评价 海洋质量及环境影响评价
地表水环境质量现状评价
对某个具体的指标: 若其水质指数大于1,表明该水质参数超过了规定 的水质标准,已不能满足使用要求。
地表水环境质量标准
《地表水环境质量标准》(GB3838-2002); 《渔业水质标准》(GB11607-89); 《农田灌溉水质标准》(GB5084-92); 《生活饮用水卫生标准》(GB5749-86)。
地表水环境评价基本思路
建污 设染 项源 目
水质模拟
输入响应关系
污染源排 放 C
例如13W2-1表示监测项数13项,水质属W2级,也叫 水产级,有一项超过地表水标准。
水环境质量生物学评价方法
一般描述对比法 指示生物法 生物指数法 种的多样性指数 生物生产力法
水环境质量评价与保护
水环境质量评价与保护水是地球上最重要的资源之一,它不仅支撑着人类和动植物的生命,还是产业和农业的基础。
但是,人类的活动却给水环境带来了严重的破坏,水污染已经成为了全球性问题。
为了保护水环境,需要对水环境质量进行评价,以便采取相应的措施进行保护。
一、水环境质量评价的意义水环境质量评价是对水体环境质量进行综合评估的过程,能够全面地了解水体受到的污染程度和影响,为保护水环境提供可靠的科学依据。
水环境质量评价不仅对保护生态环境和人体健康有着重要的意义,还可以为水资源的管理和开发提供科学的指导。
二、水环境质量评价的方法1、监测方法监测是进行水环境质量评价的基础,通过对水体的监测,可以获取水体的实时数据和历史数据,为评价水环境质量提供重要的依据。
监测方法包括现场监测和实验室分析,对于难以实现现场监测的参数,还可以运用遥感和GIS技术进行评价。
2、综合评价方法综合评价是对水环境质量评价进行综合分析的方法,通过指标体系的建立和评价模型的构建,综合考虑各种因素的作用,评价水环境的总体污染水平和对生态环境、人体健康的影响程度,以便采取相应的保护措施。
三、水环境保护的措施1、污染源控制污染源控制是保护水环境的关键,只有从源头上控制污染物的排放,才能有效地减少水体的污染程度。
要实现污染源控制,需要建立相应的管理体制和政策法规,对各种污染源进行监管,对超标排放的企业进行处罚,并为科技创新提供支持。
2、治理措施对于已经污染的水体,需要通过一系列的治理措施进行改善,如修建污水处理厂、进行河道整治、设立沉淀池等。
同时,也可以进行生态修复,通过复建湿地、植被恢复等方法,增加水体的自净能力,从而逐渐恢复水环境的健康状态。
3、宣传教育保护水环境不仅是政府和企业的责任,也需要大众的参与和支持。
因此,进行水环境保护的宣传教育非常重要,要加强对水环境污染的警示和预警,促进公众的环境意识和责任意识的提升,增强对水资源的保护意识。
四、结论水是珍贵的资源,保护水环境是我们每一个人的责任。
浅谈水环境现状及评价方法
浅谈水环境现状及评价方法作者:孙艳林来源:《科技资讯》 2012年第21期孙艳林(深圳市水质检测中心广东深圳 518055)摘要:水是万物生命之源,是人类发展的命脉。
水环境是生态环境系统中最活跃、影响最广泛的要素,是生产生活中不可替代的重要资源。
本文在对中国水环境现状进行分析的基础上,浅谈水源地水环境现状及评价方法。
关键词:水环境现状评价中图分类号:X82 文献标识码:A 文章编号:1672-3791(2012)07(c)-0120-011 中国水环境现状中国是世界上用水量最多的国家。
我国水环境面临的一个很大的问题就是水资源的短缺。
我国不但水资源匮乏,而且水源污染严重,特别是近年来随着工业化进程的加剧,气候的异常,致使水污染和缺水问题给我国的经济发展带来了严重的负面影响。
据有关调查显示,全国1200条受监测的河流中,800多条受到不同程度污染,而形势还在继续恶化。
目前我国进入工业化、城市化的快速发展阶段,但当我们沉浸于自己取得的骄人成绩时,却也开始尝到了自己酿制的苦果[1]。
巨大成就的背后,隐藏着严重的生态和环境危机,其中以水资源危机最为突出和严重,也最为直观。
事实上,水危机不是即将到来,而是已经从四面八方开始蔓延。
清茶一杯是中国传统的待客之道,但在甘肃省的很多地区,能喝上一杯干净的水已经变成一种奢侈,很多人因为水源干涸而不得背井离乡。
华北地区的打井高潮时,每年打井在300万眼以上,而如今,这些井已经无水可取。
在衡水市,以前打井只需要100多米便可,如今须打300多米才可见水,取水工具最初是离心泵,后来是工业泵,现在必须用深潜水泵才能抽出水来,水源的干涸速度令人瞠目结舌。
被称为高原明珠的滇池是全国著名的高原淡水湖泊,但昆明市每天有约25万t生活污水未经处理,直排滇池,导致滇池生态承载能力越来越弱。
黄河源头有千湖之县美誉的玛多因缺水要搬迁了,淮河因污染导致岸边所有河蟹养殖户破产,在长江,人们花费巨资,只为寻找白鳍豚;“太湖美”、“汾河清”已是曾经的景色。
水影响评价报告
水影响评价报告水,作为我们生活中不可或缺的重要资源,对我们的生活和经济发展起着至关重要的作用。
然而,随着人口的增加和工业的发展,水资源面临着越来越大的压力和挑战。
为了更好地了解和应对水资源的问题,许多国家和地区都进行了水影响评价报告的编制与发布,以便制定出更加科学和有效的水资源管理政策。
水影响评价报告主要是对特定地区或特定水域的水资源使用情况进行分析和评估。
通过对水资源的量化分析、环境和生态影响的评估,以及社会经济效益的衡量,可以更全面地了解水资源的现状和未来发展趋势,帮助政府和决策者做出科学的决策。
一般而言,水影响评价报告包括以下几个主要方面的内容:1. 水资源状况评估:报告会对所研究的地区或水域的水资源状况进行调查和评估,包括水源的现状、数量和质量等方面的分析。
通过对水资源的评估,可以了解其对人类生活和经济发展的支持程度。
2. 水资源利用与分配:报告会对水资源的利用状况进行详细的分析,包括用途和分配方面的内容。
通过对不同用水领域的分析,可以了解到水资源利用的重点领域和存在的问题,以便有针对性地优化水资源的配置。
3. 环境与生态影响评估:水资源的合理利用应该与环境和生态保护相协调。
报告会对水资源利用对环境和生态系统的影响进行评估,包括水污染、生态破坏等方面的内容。
这有助于提醒决策者在水资源管理中注重环境可持续性。
4. 社会经济效益评估:水资源的利用不仅仅涉及经济问题,还涉及社会问题。
报告会对水资源利用所带来的社会经济效益进行评估,包括就业机会的增加、经济发展的促进等方面。
这有助于更好地认识水资源利用的重要性,以及如何平衡各方面的利益。
综上所述,水影响评价报告在水资源管理中具有重要的意义和价值。
通过对水资源的多方面评估和分析,可以更好地了解水资源的现状和潜在问题,为政府和决策者提供科学的依据和建议。
只有通过全面的了解和有效的管理,才能更好地保护和利用水资源,实现可持续发展的目标。
让我们共同关注水的重要性,为水资源的合理利用和保护做出积极贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6水环境影响分析6. 1地表水环境影响评价6. 1. 1废水污染源现状调查与评价6. 1. 1. 1污染源调查本次地表水污染源调查主要对象为向沐河在厂址上游至沐河夏庄镇处境前河段以及夏庄镇境向马沟河排放废水的主要排污企业名称、废水排放量、主要污染物(CODcr. NH;-N)排放量。
根据污染源调查,向沐河排放污水的主要企业有日照华泰纸业、莒县第一污水处理厂、晨曦石油化工等;向马沟河排水的企业有莒县鑫达食品、日照万华生物化工,其主要污染物年排放量见表6. 1-k6. 1. 1.2评价方法采用等标污染负荷法进行评价,计算公式如下:式中:匕一j污染源i污染物的等标污染负荷,m7a;Q:—j污染源i污染物的排放量,t/a;C oi—j污染源i污染物的评价标准浓度,mg/1;i = l, 2・・・n; j = L 2・・・U1m;②i污染物的等标污染负荷:③j污染源的等标污染负荷:p t=±p l:/-I④评价流域的等标污染负荷:p=£只=左£J-l /-I⑤i污染物的等标污染负荷比:K =-5-xlOO%1 P⑥j污染源的等标污染负荷比:K = —xlOO%J P6. 1. 1.3评价标准废水污染源评价标准采用《省南水北调沿线水污染物综合排放标准》(DB37/599-2006)中的一般保护区区域标准,标准限值见表6. 1-2。
表6. 1-2废水污染源评价标准单位:mg/L6. 1. 1.4评价结果具体评价结果见6. 1-30表6. 1-3 (a)向沐河排水污染源评价结果由评价结果可见,日照华泰纸业污染负荷80.220%排第一位,其次为莒县第一污水处理厂,污染负荷19. 771%; C0D为主要污染物,其等标污染负荷比为84. 26%,其次为SS,其等标污染负荷比为15. 74%o表6. 1-3 (b)向马沟河排水污染源评价结果由评价结果可见,目前向马沟河排水的企业莒县鑫达食品污染负荷62.22%, 排第一位,其次为日照万华生物化工,污染负荷37. 78%; COD为主要污染物,其等标污染负荷比为56.14%,其次为SS,其等标污染负荷比为43.86%。
6. 1.2地表水环境质量现状监测6. 1.2. 1监测布点本次评价主要涉及的河流为沐河、马沟河,为了解其水质情况,共布设6个监测点。
监测点位的具体情况见表6. 1-4及图5. 2-1 o表6. 1-4地表水现状监测点位一览表6. 1.2.2监测项目监测项目:pH、COD“、BOD:、SS、氨氮、石油类、总磷、高猛酸盐指数、溶解氧、氤化物、硫化物、挥发酚、氯化物、苯类、汞、Pb、As、Cr6\ Ni等20 项。
同时测量断面河宽、水深、流速、流量。
6. 1.2.3监测时间与频率监测于2011年3月14日〜15日进行,监测2天,每天上、下午各一次。
6. 1.2.4监测方法各监测因子分析方法见表6. 1-50表6.1-5监测项目分析方法6. 1.2.5监测结果监测结果见表6. l-6o贞脚6. 1.3地表水环境现状评价6. 1. 3. 1评价因子根据现状监测结果以及《地表水环境质量标准》(GB3838—2002),由于SS 无质量标准值,不进行评价,本次评价选取pH、COD、BODs.氨氮、石油类、总磷、高猛酸盐、D0、氤化物、硫化物、挥发酚、氯化物、苯、Hg、Pb、碑、六价鎔、操作为现状评价因子。
6. 1.3.2评价标准本次地表水环境质量现状评价采用《地表水环境质量标准》(GB3838—2002) IV 类标准。
标准中未给出的氯化物参照集中式生活饮用水地表水源地补充项目标准限值;苯、礫参照集中式生活饮用水地表水源地特定项目标准限值进行评价。
各评价因子及其执行标准值见表6. l-7o6. 1. 3. 3评价方法地表水环境质量现状评价采用单因子指数法。
1、对于污染程度随污染物浓度增加的污染因子,其单因子指数的计算公式 如下:Pi = Ci/Si 式中:Pi —第i 种污染物的单因子指数; c —i 污染物的实测浓度,mg/L ;Si —i 污染物评价标准,mg/L 。
2、对于pH,其单因子指数按下式计算:Pp“=(7.0—pHj/ (7.0 —pH%) P PH=(pH (i -7. 0)/(pH Su -7. 0) 式中:P PH —pH 的单因子指数;pH ( -pH 的现状监测结果; pH sd ~pH 采用标准的下限值;pH su —pH 采用标准的上限值。
3、对于随浓度增大而污染程度降低的评价因子,如D0,其单因子指数弘j 为:£)O=468/(31・6 +『)式中:DO :-j 断面溶解氧实测值,mg/L ;DO.溶解氧标准值,mg/L ;DO 「一溶解氧在地面水中的饱和浓度,mg/L ; t 一指水温,°Co当被评价水质参数的标准指数>1时,表明该水质参数超过了规定的水质标 准,已经不能满足该项水质使用功能的要求。
6. 1.3.4评价结果依据评价标准和现状监测结果,按上述公式计算各项评价因子的标准指数, 地表水评价结果见表6. 1 -8。
pH 。
© 0 pH (i > 7. 0\DOrDO\ 皿厂DO 厂DO,DO? DO, S”-9・DOiDO } < DO,表6. 1-8地表水现状评价结果一览表单位:mg/L(pH除外)页脚由统计结果和标准相较可见,本项目纳污河流沐河监测期间水质指标能够满足《地表水环境质量标准》(GB3838—2002) IV类水体标准的要求;污水处理厂纳污河流5#测点C0D超标外,其余指标均能满足《地表水环境质量标准HGB3838 -2002) IV类水体标准的要求,COD最大超标倍数为0. 07倍,马沟河超标主要由于规划中的莒县第二污水处理厂未建成运行,马沟河接纳了上游企业及沿岸村庄排水。
沐河夏庄断面例行监测点在丁家村,本次环评收集了丁家村例行监测点2010 年1月至2011年4月监测结果见表6. 1-90从表 6. 1-9可以看出,沐河夏庄断面例行监测点满足《地表水环境质量标准》(GB3838—2002) IV类水体标准的要求,拟建项目环评地表水环境质量现状监测期间水质与例行断面同期数据基本吻合,能够反映地表水的水质状况。
6. 1. 4地表水环境影响评价6. 1.4. 1地表水环境概况莒县属淮河流域,有沐河水系和潍河水系之分。
水系分布较为丰富。
厂址所在区域地表水丰富,河流纵横,沟渠成网,主要河流有沐河、马沟河、汀水河均属淮河流域的沐河水系。
河流流向基本为由东北流向西南。
沐河发源于鲁东南沂山南麓,经沂水县流入莒县,流经天宝、安庄、洛河、城阳等乡镇至夏庄镇东南处境,莒县境全长76.5公里,夏庄镇境流长20公里,河床宽300~500米,莒县境流域面积1718.4平方公里。
厂址东南最近距离沐河约2公里。
根据《日照市地表水环境保护功能区划分方案》,厂址所在区域沐河的水体功能主要为农灌。
马沟河发源于居心官庄镇公婆麓,上游称宋公河,下游称马沟河。
流至徐家朱汉村西,支流水土山河从右汇入;流至小略瞳村南,支流略瞳河从右汇入,南流至夏庄镇家孟堰村西南入沐河,全长24.5公里,流域面积184.5平方公里,流域有一小型水库(抱虎水库)。
夏庄镇区坐落于该河西岸,厂址西距该河最近距离约700米。
由于区地下水资源缺乏,马沟河主要作为当地农灌用水。
项目产生的废水经污水处理站处理后进入马沟河,经马沟河汇入沐河。
6. 1.4.2污染源确定根据工程分析,已批复在建工程废水排放量为63. 44m7h (50. 75万t/a), 本项目废水排放量为40.3m7h(32.24万t/a),项目投产后废水排放总量为103. 74m7h (82.99万t/a)。
生产废水和生活污水混合后进入污水处理站。
经污水处理站处理后,通过管网进入园区污水厂(莒县第二污水处理厂),经园区污水处理厂处理后,达到《城镇污水处理厂污染物排放标准》(GB18918—2002) 一级A标准后排入马沟河,后进入沐河。
废水经园区污水处理厂处理后,达到《城镇污水处理厂污染物排放标准》(GB18918—2002) 一级A标准后排入马沟河,项目外排水水质见表6.1-10。
6. 1. 4. 3地表水环境影响预测(1)预测容经污水处理站处理后的项目排水对马沟河、沐河的影响程度(2)预测因子及预测断面①预测因子:COD、氨氮。
②预测断面:2#、5#。
(3)预测模式根据本评价的要求和受纳水体的环境条件,5#断面选择S-P模式、6#断面选择完全混合模式进行预测。
a.完全混合模式:C= (CQ+ChQh) / (Q P+Q K)式中:C —污染物混合浓度,mg/L;C p—污染物排放浓度,mg/L;Q,.—废水排放量,m7s;G —河流上游污染物浓度,mg/L;Qh —河流流量,m7s:b.S—P模式C = C exp(—K| —-—)P 186400“c—污染物混合浓度,mg/L;C o一污染物初始浓度,mg/L;K—污染物削减综合系数。
u—河水流速m/sc.衰减系数斤的确定根据《省河流水环境容量研究》(2006年12)中河流污染物讲解系数的经验值,沐河污染物预测衰减系数k值表见表6. l-llo表6. 1-11衰减系数k值6. 1.4.4预测结果与评价如项目建成后,沐河水质保持现状不变,预测结果见表6.1-12。
表6. 1-12现状水质下水质预测结果从上表可以看出,在现状水质条件下,项目投产后5#、6#断面水质变化不大。
预测值和现状值的评价指数见表6. 1-13。
表6. 1-13现状水质条件下水质预测评价结果从上表可以看出,预测值标准指数与现状值标准指数相比,变化不大。
6#虽有少量增加,但仍能满足《地表水环境质量标准》(GB3838-2002)中IV类标准的要求,5#有少量减少,也能满足《地表水环境质量标准》(GB3838-2002)中IV类标准的要求。
从现状评价和预测结果可知,项目投产后,现有工程直接排入沐河的项目也排入莒县第二污水处理厂深度处理后排入马沟河汇入沐河,拟建项目废水于现有、在建项目废水一同排入莒县第二污水处理厂处理后外排。
经过预测,拟建项目废水对马沟河污染负荷有少量增加,但影响较小,对沐河水质影响不大,仍以本底为主;6. 1. 5工程建设对南水北调的影响分析南水北调东线工程段水污染防治规划是国家南水北调东线治污规划的主要组成部分,对保证东线工程段调水水质长期稳定符合【II类水质标准,解决省水资源短缺和水环境污染的尖锐矛盾,促进经济、社会可持续发展具有重要意义。
南水北调东线工程段水污染防治规划要求在输水干线截污的基础上,整个南水北调东线汇水区实行污染物总量控制制度,根据污染物总量控制方案,逐个核定工业污染源排污总量,分配污染物削减量,制定污染物削减方案和实施计划,限期实行。