高中数学必修三 第一章 统计 相关性教案 [北师大版]

合集下载

高中数学 第一章 统计 1.3 统计图表教案 北师大版必修3

高中数学 第一章 统计 1.3 统计图表教案 北师大版必修3

1.3统计图表本节教材分析一、三维目标1、知识与技能(1)掌握常用四种统计图表(条形统计图、扇形统计图、折线统计图、茎叶图)的功能及其特点;(2)能针对实际问题和收集到的数据的特点,选择科学的统计图表;(3)能从统计图表中获取有价值的信息.2、过程与方法通过“复习—巩固—加深—引入新知”的过程中掌握条形统计图、折线统计图、扇形统计图、茎叶图,能科学选择合适的图表示数据,并能从图中得到数据.3、情感态度与价值观在探究活动中,通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.二、教学重点:用统计图表表示数据.三、教学难点:统计图表的制作.四、教学建议在义务教育阶段,学生已经通过实例,学习了象统计图、条形图、折线统计图、扇形统计图等,并能解决简单的实际问题.在这个基础上,高中阶段还将进一步学习茎叶图,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性的选择一些合适的图表.新课导入设计导入一一图胜千字,看懂图是21世纪所有人必须具备的能力.如图所示,大家能从这图中的得到什么样的信息?这就是我们这一节要解决的问题.导入二初中我们学习了条形统计图、折线统计图、扇形统计图这一节我们继续更深入地学习这些知识.看看这些知识除了我们初中学习过的,还有没有更深的知识.是不是还有其它的方法表示数据.【教学过程】:✧名人指引华罗庚教授:数无形,少直观;形无数,难入微。

图形和数据若能恰当、准确的结合起来,必然是最具有说服力的。

扇形图、频数分布直方图都是常见的统计图,在网上、书籍、杂志、报纸上我们还会看到许多其他形式的统计图或统计表,它们使数据变得一目了然,让读者很快就能了解作者想要表达的信息.那么,哪种统计图表可以较为准确而迅速地反映出要表达的信息呢?✧世界人口下面是权威机构公布的一组反映世界人口的数据:1957年世界人口30亿,17年后(即1974年)增加了10亿,即达40亿;又过13年达到50亿;到1999年全世界总人口达到60亿。

最新北师大版高中数学必修三全册精品教案

最新北师大版高中数学必修三全册精品教案

北师大版高中数学必修3第一章《统计》全部教案第一课时§1.1随机选取数字一、教学目标1、知识与技能:(1)使学生认识统计活动所要研究的问题,如何分析数据资料;(2)明确为什么要随机选取数字,随机选取数字的困难性,精心设计调查方案的重要性.2、情感、态度与价值观:让学生体会学习统计,参与统计活动的使用价值,提高学生参与意识以及理论与实际相结合的能力.二、教学重点、难点与关键1、重点、难点:随机选取数字把握的困难性及其原因;2、关键:通过对具体是;事例的分析来说明对随机选取数字的困难性.三、教学方法:讨论探究法四、教学过程(一)创设情景,引入新课在日常生活中常遇到如下一些问题(1)学校国庆节期间要举行一次大型的文艺汇演,限于演出场所的原因,每个班只有3张票,如何进行分配呢?(2)某工厂要检验一批产品质量,决定从这批产品中任意抽取10个进行检验,以判断产品的质量如何?(3)为了评选本年度先进学生代表,学校对候选人进行量化,让全体学生去评选你是如何看待和参与呢?你认为人为因素的干扰大吗?真正作到公平、公正难度大吗?上面一些生活中的事例看似简单,但要真正作到“随机”,“任意”都困难很大,为什么呢,本节课将通过具体事例认真地研究这个问题.(二)统计活动及其对选取数据的分析例:北京市某中学通过对343名学生做了下面一项统计活动,调查的过程如下(1)调查者事先做好问卷;(2)给每个被调查者发放问卷,并进行回收;(3)对所有的调查数据进行汇总.数据 1 2 3 4 5 6 7 8 9 10统计结果:正正正正▔正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正ˉ 正正正人数 21 24 29 25 45 45 54 35 46 19根据上面的数据回答下面问题:(1)计算出选择各个数的百分比(用四舍五入方法保留到百分数的整数位).(2)用下面的统计图表示上面的数据时,你觉得哪种统计图最合适?说明理由.(3)请你分析这些数据的集中趋势与离散程度.(4)从上面的数据能否看出,选哪些数的人少些,由此你能得到什么结论?解:(1)计算出选择各个数的百分比(要求学生用计数器算出后汇总)数字 1 2 3 4 5 6 7 8 9 10人数/人 21 24 29 25 45 45 54 35 46 19百分比/% 6 7 8 7 13 13 16 10 14 6(2)数据汇总后呈现往往用统计图.统计图有三种形式:条形统计图,折线统计图,扇形统计图,它们各有特点(让学生交流后汇总)本题所所关心的问题是选择各个数的人占总人数的百分比情况,因此选择扇形统计图比较合适,它能够比较清楚地表示百分比的情况.(3)分析数据的集中趋势,离散程度往往以平均数,众数,方差,中位数等方面进行分析(请大家回顾一下平均数,众数,方差,中位数有关概念,并用计数器计算)平均数 .众数为.方差为(4)从扇形统计图上可以看出,选1,2,3,4,10的人比较少,选其它数字的人较多.而随机选取这些数的理想状态,应当是选择到每个数的人数基本相当,且方差很小.由此,我们可以看出,由于个人偏好,人很难达到随机地选择数.(三)如何做到随机性从上面的分析可以看出,对随机性把握困难较大,主要原因是在选择处理时往往受到各种各样的主观因素的干扰,如何避免出现干扰,做到随机性就成为统计活动中必须注意解决的问题. (1)对统计方案进行仔细地设计,避免一些外界因素干扰,要确定调查对象,调查方案与策略,精心设计调查问卷.做好统计的前期工作,收集数据方法.(2)对采集到的数据要进行分析(汇总与呈现)做出统计判断.(四)、课堂小结1、统计活动中,要做到随机性,困难很大.主要原因是主观因素的干扰.2、要做到随机性必须仔细地设计调查方案及做好统计的前期工作.3、采集到的数据要进行汇总、呈现与分析.往往用条形统计图,折线统计图,扇形统计图呈现;分析数据往往用平均数,众数,方差,中位数分析,方差越小,统计准确性越高.(五)、练习:P6练习题(六)、作业: P7 2五、教后反思:第二课时§1.2从普查到抽样一、教学目标:1.了解普查的意义.2.结合具体的实际问题情境,理解随机抽样的必要性和重要性.二、重难点:结合具体的实际问题情境,理解随机抽样的必要性和重要性.三、教学方法:阅读材料、思考与交流四、教学过程(一)、普查1、【问题提出】 P7通过我国第五次人口普查的有关数据,让学生体会到统计对政府决策的重要作用――统计数据可以提供大量的信息,为国家的宏观决策提供有关的支持.教科书通过对人口普查的有关新闻报道,让学生体会人口普查的规模是何等的宏大与艰辛.教科书提出了三个有代表性的问题.第一个问题主要是针对人口普查的作用,人口普查可以了解一个国家人口全面情况,比如,人口总数、男女性别比、受教育状况、增长趋势等.人口普查是对国家的政府决策实行情况的一个检验,比如,国家计划生育政策,经济发展战略,国家“普及九年义务教育”政策,人民群众的生活水平等.第二个问题是针对普查本身存在的问题提出的,以加深学生对于普查的理解.学生可能有一个误解,普查就是100%的准确,其实不然,即使是最周全的调查方案,在实际执行时都会产生一个误差.教科书通过这个问题,目的是让学生理解在人口普查中出现漏登是正常情况,调查方案的设计是尽可能让这个误差降低到最小.同时,也要让学生理解人口普查的工作,即使出现漏登现象,人口普查的数据对国家的宏观决策依然具有重要的作用.第三个问题是针对人口普查工作的艰辛而提出的,让学生体会人口普查数据得来不易,要尊重人口普查人员的劳动,对人口普查工作要大力支持.2、【阅读材料】 P4“阅读材料”是课堂阅读,目的是让学生了解普查工作的特点和重要性,以及我国目前主要的一些普查工作.进而,总结出普查的主要不足之处,这是从一个方面说明了抽样调查的必要性.普查是指一个国家或一个地区专门组织的一次性大规模的全面调查,目的是为了详细地了解某项重要的国情、国力.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.(二)、抽样调查【例1和其后的“思考交流”】 P8~9紧接着,教科书通过例1和“思考交流”的两个问题,让学生了解普查有时候难以实现.这主要有两个方面的原因,其一,被调查对象的量大;其二,普查对被调查对象本身具有一定的破坏性.这从另一个方面说明了抽样调查的必要性.然后,教科书通过抽象概括总结出抽样调查的两个主要优点.【例2和其后的“思考交流”】 P9~10主要是讨论在抽样调查时,什么样的样本才具有代表性.在抽样时,如果抽样不当,那么调查的结果可能会出现与实际情况不符,甚至是错误的结果,导致对决策的误导.在抽样调查时,一定要保证随机性原则,尽可能地避免人为因素的干扰;并且要保证每个个体以一定的概率被抽取到;同时,还要注意到要尽可能地控制抽样调查中的误差.由于检验对象的量很大,或检验对检验对象具有破坏性时,通常情况下,所以采用普查的方法有时是行不通的.通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.例1为了考察某地10 000名高一学生的体重情况,从中抽出了200名学生做调查.这里统计的总体、个体、样本、总体容量、样本容量各指什么?为什么我们一般要从总体中抽取一个样本,通过样本来研究总体?解:统计的总体是指该地10 000名学生的体重;个体是指这10 000名学生中每一名学生的体重;样本指这10 000名学生中抽出的200名学生的体重;总体容量为10 000;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.例2为了制定某市高一、高二、高三三个年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学,两所初级中学,在这六所学校有关年级的小班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?解:选C方案.理由:方案C采取了随机抽样的方法,随机样本比较具有代表性、普遍性,可以被用来估计总体.例3中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面三名同学为电视台设计的调查方案.甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计收视率了.乙同学:我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?解:综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.(三)、课堂小结:1、普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.2、通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.(四)、作业:P10练习题;P10【习题1―2】五、教后反思:第三课时§1.3抽样方法(一)——简单随机抽样一、教学目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.二、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本.三、教学方法:观察、思考、交流、讨论、概括.四、教学过程(一)创设情景,揭示课题假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.(为什么?)那么,应当怎样获取样本呢?(二)、探究新知1、简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本.【小结】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的.(2)简单随机样本数n小于等于样本总体的个数N.(3)简单随机样本是从总体中逐个抽取的.(4)简单随机抽样是一种不放回的抽样.(5)简单随机抽样的每个个体入样的可能性均为n/N.思考?下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.2、、抽签法和随机数法(1)、抽签法的定义:一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n 的样本.【小结】抽签法的一般步骤:(1)将总体的个体编号.(2)连续抽签获取样本号码.思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?(2)、随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法.怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 7884 42 17 53 31 57 24 55 06 88 77 04 74 47 6763 01 63 78 59 16 95 55 67 19 98 10 50 71 7533 21 12 34 29 78 64 56 07 82 52 42 07 44 3857 60 86 32 44 09 47 27 96 54 49 17 46 09 6287 35 20 96 43 84 26 34 91 6421 76 33 50 25 83 92 12 06 7612 86 73 58 07 44 39 52 38 7915 51 00 13 42 99 66 02 79 5490 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本.【小结】随机数表法的步骤:(1)将总体的个体编号.(2)在随机数表中选择开始数字.(3)读数获取样本号码.(三)、例题精析例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?[分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.例2:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[分析] 简单随机抽样一般采用两种方法:抽签法和随机数表法.解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径.解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.(四)、课堂练习P13练习题(五)、课堂小结 1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3、简单随机抽样每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开业,避免在解题中出现错误.(六)、作业布置:1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240 B、个体是每一个学生C、样本是40名学生D、样本容量是402、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A、总体B、个体是每一个学生C、总体的一个样本D、样本容量3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是 .4、从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能性是 .五、教后反思:第四课时§1.3抽样方法(二)——系统抽样一、教学目标1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系.二、重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题.三、教学方法:观察、思考、交流、讨论、概括.四、教学过程(一)、创设情境某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(二)、探究新知1、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.【小结】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N 较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[n N].(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.思考?(1)你能举几个系统抽样的例子吗?(2)下列抽样中不是系统抽样的是 ( )A 、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B 工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C 、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D 、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈 点拨:(2)c 不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样.2、系统抽样的一般步骤:(1)采用随机抽样的方法将总体中的N 个个编号.(2)将整体按编号进行分段,确定分段间隔k(k ∈N,L ≤k).(3)在第一段用简单随机抽样确定起始个体的编号L (L ∈N,L ≤k ).(4)按照一定的规则抽取样本,通常是将起始编号L 加上间隔k 得到第2个个体编号L+K ,再加上K 得到第3个个体编号L+2K ,这样继续下去,直到获取整个样本.【小结】从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(三)、例题精析例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.[分析]按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号.解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,59组是编号为291~295的5名学生.采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k ≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293.例2、从忆编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A .5,10,15,20,25B 、3,13,23,33,43C .1,2,3,4,5D 、2,4,6,16,32[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k 是1到10中用简单随机抽样方法得到的数,因此只有选项B 满足要求,故选B. (四)、课堂练习P49 练习1. 2. 3(五)、课堂小结:1、在抽样过程中,当总体中个体较多时,可采用系统抽样的方法进行抽样,系统抽样的步骤为:(1)采用随机的方法将总体中个体编号;(2)将整体编号进行分段,确定分段间隔k(k ∈N);(3)在第一段内采用简单随机抽样的方法确定起始个体编号L ;(4)按照事先预定的规则抽取样本.2、在确定分段间隔k 时应注意:分段间隔k 为整数,当n N不是整数时,应采用等可能剔除的方剔除部分个体,以获得整数间隔k. (六)、作业:1、从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为 ( )A .99B 、99,5C .100D 、100,52、从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是 ( )A .1,2,3,4,5B 、5,16,27,38,49C .2, 4, 6, 8, 10D 、4,13,22,31,403、采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体人样的可能性为 ( )A .8 B.8,3 C .8.5 D.94、某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是 抽样方法.。

高中数学必修3北师大版1.7相关性教案

高中数学必修3北师大版1.7相关性教案

第一章 统计 7 相关性一 相关性1.变量之间的关系(1)现实生活中,有些量与量之间存在着明确的函数关系,例如: 正方形的边长a 和面积S ,有着2a S =的关系;真空中的自由落体运动其下落的距离h 和下落的时间t 有着221gt h =的关系; 一辆行驶在公路上的汽车,每个时刻t 都有一个确定的速度v ,它们之间也是函数关系,尽管我们无法知道这个函数的解析表达式式,也画不出它的图像。

(2)现实生活中,有些量与量之间不满足函数关系,但从总的变化趋势来看变量之间存在着某种关系即有相关关系,例如:人的身高与体重。

一般说来,人的身高超高,体重越重,二者确实有关系。

但是身高相同的人,体重却不一定相同,也就是说,给定身高h 不可能有唯一的体重m 与之对应。

像这样例子还有很多,如人的年龄与血压、农作物的施肥量与产量、商品销售收入与广告支出经费等。

2.散点图散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形。

特点是能直观表现出影响因素和预测对象之间的总体关系趋势。

优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系。

散点图不仅可传递变量间关系类型的信息,也能反映变量间关系的明确程度。

3.散点图与两个变量的相关性两个变量之间除了函数关系之外,还有相关关系,但这种关系又不能用函数关系精确表达出来。

为了对变量之间的关系有一个大致的了解,人们通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。

图1—7—1从上散点图可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致均势,这种趋势通常可以用一条光滑的曲线来近似,这样挖的过程称为曲线拟合。

若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的。

此时我们可以用一条直线来近似,如图1—7—1(a)。

高中数学 第一章 统计 1.7 相关性教案 北师大版必修3

高中数学 第一章 统计 1.7 相关性教案 北师大版必修3

§7相关性整体设计教学分析变量之间的关系是人们感兴趣的问题.教科书通过身高与体重的关系,引导学生考察变量之间的关系,在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.三维目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.重点难点教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关.课时安排1课时教学过程导入新课思路 1.在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?物理也好;数学差的,物理也差,但又不全对.).物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的,但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路 2.某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?教师点出课题.推进新课新知探究提出问题1.粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?2.两个变量间的相关关系是什么?有几种?3.如何判断两个变量间的相关关系?讨论结果:1.粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的;能举出,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为“经验当中有规律”.但是,不管你的经验多么丰富,如果只凭经验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.2.相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫作相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(商品销售收入还与商品质量、居民收入、生活环境等有关)3.两个变量间的相关关系的判断:①作出散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.例如:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:散点图来进一步分析.散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫作散点图,如图1.图1通过散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)应用示例思路1例1 下列关系中,带有相关关系的是________(填序号).①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系分析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系.因此填②④.答案:②④例 2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?有些人说:“健康问题不一定是由吸烟引起的,所以可以吸烟”,这种说法对吗?解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发健康问题的患病者,所以吸烟不一定引起健康问题,但吸烟引起健康问题的可能性较大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”这种说法是不对的.点评:在探究问题的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路2例 1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家(1)(2)关于两个变量之间的关系,你能得出什么结论?解:(1)作出的散点图如图2.图2(2)这两个变量之间基本成正相关关系,即食品所含热量越高,口味越好.例2 一般说来,一个人的身高越高,他的手就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的右手一拃大概有多长吗?解:根据上表中的数据,制成的散点图如图3.图3从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线.同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如图4.再取这两条直线的“中间位置”作一条直线.图4同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如图5,再画出近似的直线,使得在直线两侧的点数尽可能一样多.图5同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm以上的;然后,每部分的点求一个“平均点”——身高的平均数作为平均身高,右手一拃长的平均数作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线.同学7:先将所有的点按横坐标从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).如图 6.求出这三个点的“平均点”为(170.3,19.9).再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.图6同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,(2)关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)画出的散点图如图7.图7(2)加工零件的个数与所花费的时间呈正线性相关关系.拓展提升(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如图8所示.图8(2)因为散点图中的点分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关关系.课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.作业习题1—7 1,2.设计感想本节课学习了变量之间的相关关系和两个变量的线性相关的部分内容,通过身边的具体实例说明了两个变量的相关关系,并学会了利用散点图及其分布来说明两个变量的相关关系的种类,为下一节课作了铺垫,思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,促使学生养成良好的学习态度和学习方法.备课资料数学家关肇直关肇直(1919.2.13—1982.11.12),中国科学院院士,中国数学家,生于北京.原籍广东省南海县.父亲关葆麟早年留学德国,回国后任铁道工程师多年,于1932年去世;母亲陆绍馨,是北平女子师范大学的毕业生,曾从教于北京师范大学.关葆麟去世后,母亲以微薄的收入艰难地抚育关肇直及其弟妹多人.全国解放后,关肇直尽心亲侍慈母,直至其母亲1967年去世.关肇直于1959年1月与刘翠娥结婚,他们有两个女儿.刘翠娥系中国科学院工程物理研究所研究人员.关肇直于1927年进入北京培华中学附属小学学习.1931年进入英国人办的崇德中学学习.学校对英文要求十分严格,加上关肇直自小就由父母习以英文、德文,为日后掌握英文、德文、法文、西班牙文和俄文奠定了良好基础.1936年高中毕业后考入清华大学土木工程系,后于1938年转入燕京大学数学系学习.毕业后在燕京大学(后迁成都)任教.参加成都教授联谊会,担任学生进步组织的导师,积极支持抗日救国学生运动.1946年春,从成都返回北平(北京),不久从燕京大学转到北京大学数学系任教.1947年通过考试成为国民政府派遣的中法交换生赴法国留学.名义上去瑞士学哲学,实际上去了巴黎大学庞加莱研究所研究数学,导师是著名数学家、一般拓朴与泛函分析的创始人弗雷歇(M.R.Frechetl),1948年参加革命团体“中国科学工作者协会”,是该会旅法分会的创办人之一.1949年10月,新中国诞生,他毅然决定放弃获得博士学位的机会.于12月回到祖国,满腔热情地参加了新中国的建设.他立即参加了组建中国科学院的工作.他和其他同志一起,协助郭沫若院长筹划建院事宜,确定科学院的方向、任务、体制等,组建科学院图书馆,担任图书管理处处长,编译局处长.1952年参加筹建中国科学院数学研究所的工作,并在数学研究所从事数学研究,历任副研究员、研究员、研究室主任、副所长、学术委员会副主任.他还是中国科学院声学研究所学术委员会委员及原子能研究所学术委员会委员.从1952年起,兼任北京师范大学、北京大学、中国人民大学和中国科技大学等校教授以及华南工学院名誉教授;并兼任过中国科学院成都分院学术顾问、该院数理科学研究室主任、中国科学院武汉数学物理研究所顾问、研究员.他还是国家科委数学学科组副组长、自动化学科组成员;曾担任北京数学会理事长,中国数学会秘书长,国际自动控制联合会理论委员会成员及《中国科学》《科学通报》《数学学报》和《系统科学与数学》等杂志的编委或主编等职.1980年,他与其他科学家一起创建中国科学院系统科学研究所,担任研究所所长.他还担任中国自动化学会副理事长、中国系统工程学会理事长.1980年当选为中国科学院数理学部委员.关肇直长期从事泛函分析、数学物理、现代控制理论等领域的研究,成绩卓著,为我国的社会主义现代化建设作出了重大贡献,1978年获全国科学大会奖,1980年获国防科委、国工办科研奖十几项,1982年获国家自然科学二等奖;关肇直参与主持的项目“‘尖兵一号’返回型卫星和‘东方红一号’”获1985年国家科技进步特等奖,他本人获“科技进步”奖章.(设计者:安天林)。

高中数学 第一章 统计教案 北师大版必修3

高中数学 第一章 统计教案 北师大版必修3

第一章统计§1从普查到抽样(教师用书独具)●三维目标1.知识与技能(1)了解并掌握:普查、抽样调查、总体、样本、个体这些基本概念.(2)在调查中,会选择合理的调查方式.2.过程与方法(1)初步经历数据的收集、处理过程,发展学生初步的统计意识和数据处理能力.(2)通过数据收集的学习,培养学生应用、分析、判断能力.3.情感、态度与价值观(1)通过小组合作调查研究,培养学生的合作意识和处理问题的能力.(2)通过解决身边的实际问题,让学生认识数学与人类生活的密切联系及对人类历史发展的作用.●重点难点(1)掌握普查与抽样调查的区别与联系.(2)掌握总体、样本及个体间关系.(3)获取数据时,选择哪种调查方式较好,何时用普查,何时用抽样调查,并能说明理由 .(4)应用意识的培养,设计方案教学时要注意初高中知识的链接,抓住知识的切入点,从学生原有的认知水平入手,逐步引入、渗透、将重、难点逐一化解.(教师用书独具)●教学建议高中统计的学习,是在初中统计的基础上的深化与延伸.在教学中,引导学生复习初中统计学习的内容,在此基础上对高中统计学习的主要内容和重点给出学生做分析,以此从整体上把握本章的内容.充分分析和利用教材的实例,指导学生认识到抽样调查的必要性.围绕问题,让学生讨论如何进行抽样才能使得样本具有代表性.●教学流程设置情境,提出如人口普查,收视调查等问题,引发学生的兴趣和问题意识⇒引导学生明确普查与抽样的必要性,掌握普查与抽样调查的区别与联系⇒通过例1及变式训练,使学生理解总体、样本等概念,突出了重点⇒通过例2及变式训练,使学生掌握调查方式的选取,选择普查还是抽样调查的关键是什么,从而强化了重点⇒通过例3及变式训练,使学生学会调查方案的设计,获得运用数学方法探索问题和解决问题的途径,突破难点⇒课堂小结,总结升华,让学生对知识有一个系统的认识,突出重点,抓住关键⇒完成当堂双基达标检测落实各个知识点,突出重点,强化难点课标解读1.了解普查的意义和抽样调查的概念,理解抽样调查的必要性和重要性(重点).2.体会普查和抽样调查的各自的优点和区别,会对一些实际问题进行合理的抽样调查.(难点).普查【问题导思】1.我国常进行的普查有哪些?(举例)【提示】人口普查、农业普查、工业普查等.2.普查还被称作什么调查?【提示】整体调查或全面调查.普查是为了了解总体的一般情况,对所有的对象都无一例外地进行调查,也称整体调查或全面调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.当普查的对象很多时,普查的工作量就很大,要耗费大量的人力、物力与财力,并且组织工作繁重、时间长.更值得注意的是,在很多情况下,普查工作难以实现.抽样调查继“三聚氰胺”、“瘦肉精”、“染色馒头”等国内食品安全事件的不断曝光,食品安全问题越业越受到人们的关注,也得到各级政府部门的重视.食品质量检测人员对某品牌牛奶的抽检合格率是99.9%,你知道这一数据是怎么得到的吗?【提示】检测人员是不可能逐个检查的,是抽取少量的牛奶来检查得到的.通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查,其中,调查对象的全体称为总体,被抽取的一部分称为样本.普查与抽样调查的比较调查方法特点普查抽样调查优点①所取得的资料更加全面、系统;②调查特定时段的总体的信息①迅速、及时;②节约人力、物力、财力,对个体信息的了解更详细缺点耗费大量的人力、物力、财力获取的信息不够全面、系统适用范围总体容量不大,要获取详实、系统、全面的信息①大批量检验;②破坏性检验;③不必要普查等总体、样本等概念辨析题2013年某部门从某校高三1 256名学生中抽取300名学生进行身高的统计分析.下列说法正确的是( )A.1 256名学生是总体B.每个被抽取的学生是个体C.抽取的300名学生的身高是一个样本D.抽取的300名学生的身高是样本的容量【思路探究】对照总体、个体、样本及样本的容量的概念加以判断.【自主解答】研究的对象是学生的身高情况,故总体为1 256名学生的身高,样本容量为300,个体为每个被抽取的学生的身高,综上,C正确.【答案】 C解决此类问题的关键是分清有关概念:总体是研究对象的全体,总体中的所有个体数目为总体容量,组成总体的每个对象称为个体,从总体中抽取若干个个体称为样本,样本中个体的个数称为样本容量,要弄清概念的实质.现从80件产品中随机抽出20件进行质量检验.下列说法正确的是( ) A.80件产品是总体B.20件产品是样本C.样本容量是80 D.样本容量是20【解析】总体是80件产品的质量,样本是抽取的20件产品的质量,总体容量是80,样本容量为20.【答案】 D调查方式的选取标检验,应当选用何种调查方式?为什么?【思路探究】从调查所需时间和费用,以及是否具有破坏性考虑选择何种调查方式.【自主解答】应该用抽样调查的方法对该批小包装饼干进行卫生达标检验.采用普查的方法来检验食品是否卫生达标是不合适的,因为这里检查的目的是决定是否让这批小包装饼干出售,而普查的结果却使得这批小包装饼干完全不能出售,与检查的目的相违背.一般地,如果检验具有破坏性,则需要通过抽样调查来推断总体的特征.1.对总体进行调查,选择普查还是抽样调查关键是看调查的目的和两种调查方式的各自特点.2.一般地,总体数较多或调查中对产品具有破坏性时,多采用抽样调查.3.很多情况下,普查难以实现,在通常情况下,总是通过抽样调查来代替普查.假如你是某印刷厂的一名质检人员,负责对《新坐标》的印刷质量进行检查.你应该采用“普查”还是“抽样调查”,试说明理由.【解】如果对每一份《新坐标》都进行检查在理论上是可行的,但是实际上是不可行的.《新坐标》单科的发行量都在100万册以上,若普查要浪费大量的人力和物力,得不偿失,故应采取抽样调查的方式检查图书的印刷质量.调查方案的设计下面是三位同学为电视台设计的调查方案:同学A:我把这张《春节联欢晚会收视率调查表》放至互联网的某网站上,只要上网登录该网站的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中,这样我就可以很快地统计出收视率了.同学B:给我们居民小区的每一个住户发一个是否在除夕晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选取一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三位同学设计的调查方案是否能获得比较准确的收视率?为什么?【思路探究】判断A,B,C三位同学的设计调查方案是否能获得较准确的收视率,关键是看他们的样本是否具有代表性,即看每个个体被抽到的机会是否相同.【自主解答】调查的总体是所有可能看电视的人群.同学A的设计方案考虑的人群是上网且登录某网站的人群,那些不能上网或不登录该网站的人就排除在外,故用此方法抽取的样本代表性差.同学B的设计方案考虑的人群是小区居民,有一定的片面性,故抽取的样本代表性差.同学C的设计方案考虑的人群是那些有电话的人群,有一定的片面性,因此抽取的样本代表性差.总之,这三种调查方案都有一定的片面性,不能得到比较准确的收视率,他们获得的样本代表性差.1.在统计活动中,需要对统计方案进行仔细的设计,以避免一些外界因素的干扰或人为因素的影响.2.根据调查问题的特点设计抽样调查的不同方案,应遵循的原则是:抽取的部分个体具有广泛的代表性,能很好的代表总体,否则调查结果与实际情况不相符.2013年春季,某知名的全国性服装连锁店进行了一项关于当年秋季服装流行色的民意调查,调查者通过向顾客发放饮料,并让顾客通过挑选饮料瓶的颜色来对自己喜欢的服装颜色“投票”,根据这次调查结果,在某大城市A,服装颜色的众数(大多数人的选择)为红色,而当年全国服装协会发布的是咖啡色,这个结果是否意味着A城市的人比其他城市的人较少倾向于选择咖啡色?你认为这两种调查的差异是由什么引起的?【解】这个结果意味着A城市中,光顾这家服装连锁店的人比其他城市的人较少倾向于选择咖啡色.由于光顾服装连锁店的人是一种比较容易得到的样本,不一定能代表A城市其他人群的想法,而A城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点,从而带来了调查结果的差异.概念模糊致误(2013·合肥检测)从某年级的1 000名学生中抽取125名学生进行体重的统计分析.下列说法正确的是( )A.1 000名学生是总体B.每个被抽查的学生是个体C.抽查的125名学生的体重是一个样本D.抽取的125名学生的体重是样本容量【错解】 B【错因分析】不清楚抽样调查的是学生的体重而不是学生.【防范措施】 1.正确理解总体、样本、样本容量、个体的定义.2.仔细审题,分析好各个选项.【正解】 C选择普查还是抽样调查的依据是调查的目的以及两种调查方式优缺点的比较,一般来说对于必须全部检验的问题一定要用普查的方法;若调查具有一定的破坏性或难度相当大,可以用抽样调查的方法.1.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是( )A.40 B.50C.120 D.150【解析】每班3人,共40个班.故样本中的个体数为3×40=120.即样本容量为120.【答案】 C2.下列调查时,必须采用“抽样调查”的是( )A.调查某城市今年7月份的温度变化情况B.调查某一品牌5万包袋装鲜奶是否符合卫生标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班50名学生100米短跑的成绩【解析】检查袋装鲜奶的质量,具有破坏性,不宜用普查方式.【答案】 B3.为了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是( )A.总体 B.总体容量C.总体的一个样本 D.样本容量【解析】200个零件的长度为总体的一个样本.【答案】 C4.有人说“如果抽样方法设计得好,对样本进行视力调查与对24 300名学生进行视力普查的结果会差不多,而且对于教育部门掌握学生视力状况来说,因为节省了人力、物力和财力,抽样调查更可取”,你认为这种说法有道理吗?为什么?【解】这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查的结果接近于普查的结果,因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.一、选择题1.为了了解某地参加计算机水平测试的5 000名学生的成绩,从中抽取了200名学生的成绩进行统计分析,在这个问题中5 000名学生成绩的全体是( )A.总体B.个体C.从总体中抽取的一个样本D.样本的容量【解析】依据抽样调查的要求可知选A.【答案】 A2.抽样调查在抽取调查对象时( )A.按一定的方法抽取B.随便抽取C.全部抽取D.根据个人的爱好抽取【解析】根据抽样调查的要求,可知选A.【答案】 A3.下列调查方式合适的是( )A.要了解一批电视机的使用寿命,采用普查方式B.要了解收看中央电视台的“法制报道”栏目的情况,采用普查方式C.要保证“神舟十号”载人飞船发射成功,对重要零件采取抽查方式D.要了解外国人对“上海世博会”的关注度,可采取抽样调查方式【解析】检测电视机的寿命,具有破坏性,不宜用普查方式,故A不正确;由于收视观众较多,分布广,所以B不正确;对于“神舟十号”重要零件,数量不大,且至关重要,所以适合普查,因此C不正确;故选D.【答案】 D4.(2013·南昌检测)下列调查中属于抽样调查的是( )①每隔5年进行一次人口普查;②某商品的质量优劣;③某报社对某个事件进行舆论调查;④高考考生的身体检查.A.②③B.①④C.③④ D.①②【解析】①④为普查,②③为抽样调查.【答案】 A5.下面问题可以用普查的方式进行调查的是( )A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.检验10件产品的质量D.检验一批汽车的使用寿命【解析】A不能用普查的方式调查,因为这种试验具有破坏性;B用普查的方式无法完成;C可以用普查的方式进行调查;D该试验具有破坏性,且需要耗费大量的时间,在实际生产中无法应用.【答案】 C二、填空题6.为了准确调查我国某一时期的人口总量、人口分布、民族人口、城乡人口、受教育的程度、迁徒流动、就业状况等多方面的情况,需要用________的方法进行调查.【解析】要获得系统、全面、准确的信息,在对总体没有破坏的前提下,普查无疑是一个非常好的方法,要求全面、准确调查人口的状况,应当用普查的方法进行调查.【答案】普查7.检验员为了检查牛奶中是否含有黄曲霉素MI,应采用________的方法检验.【解析】这是大批量的破坏性检验,不可能进行普查,应当采取抽样调查的方法检验.【答案】抽样调查8.为了了解某班学生的会考合格率,要从该班70人中选30人进行考察分析.在这个问题中,70人的会考成绩的全体是________,样本是________,样本容量是________.【解析】由总体、样本、样本容量的定义知:70人的会考成绩的全体是总体,样本是30人的会考成绩.样本容量是30.【答案】总体30人的会考成绩30三、解答题9.某市有7万名学生参加学业水平测试,要想了解这7万名学生的数学成绩,从中抽取了1 000名学生的数学成绩.(1)在此项调查中总体是什么?(2)在此项调查中个体是什么?(3)在此项调查中样本是什么?(4)在此项调查中样本容量是什么?【解】(1)总体是7万名学生的数学成绩.(2)个体是7万名学生中每一名学生的数学成绩.(3)样本是从7万名学生的数学成绩中抽取1 000名学生的数学成绩.(4)样本容量是1 000.10.某县有在校高中生6 400人,初中生30 200人,小学生30 300人.该县电教站为了了解本县对计算机的推广及学生掌握的熟练程度,该部门应如何抽取样本?【解】因为影响学生计算机知识的掌握及使用情况的因素是多方面的,不同的乡镇,不同的学校,办学条件也不同,因此在进行抽样时,宜将学生按城、乡及高中、初中、小学分别抽样.另外,三类学生人数相差较大.因此,为了提高样本的代表性,还应考虑他们在样本中所占的比例大小.11.你的班主任想全面了解你班学生的学习和思想状况.请你帮助班主任设计一个调查方案.【解】因为一个班的人数不是太多,为了帮助班主任全面了解班里学生的学习和思想状况,可以采取普查的方法进行调查.可以先设计一个问卷,包括同学们对学习的各种看法,同学们的爱好、心理和思想状况等,然后发放给每一个学生,并全部收回,然后进行统计,这样就可以全面了解每个学生的学习和思想状况了.(教师用书独具)指出下列调查分别适于进行普查,还是适于进行抽样调查.(1)调查除夕之夜我国有多少人观看中央电视台的春节联欢晚会;(2)调查某工厂生产的一万件胶卷中有无不合格产品;(3)调查一万张面值为100元的人民币中有无假币;(4)调查当今中学生中,喜欢听年轻教师讲课的多,还是喜欢听老教师讲课的多.【解】(1)我国人口众多,地域辽阔,要用普查的方式调查有多少人在除夕之夜看了“春节联欢晚会”,需投入大量的人力、财力,实属得不偿失.(2)把未曾使用的胶卷逐个仔细检查,实际是把全部产品报废,显然是愚蠢的设想.(3)一万张人民币,数量虽大,但不应允许有一张假币给人民群众造成经济损失,也不应允许任何制造假币者逃脱法网,况且,用目前的技术手段检查一万张人民币中是否有假币混入,并非难事,也不需太多时间.(4)当今中学生的数量实在太庞大了,又很分散.这四项调查工作,只有第(3)项应以普查的方式进行,其余三项均以抽样调查的方式进行为妥.“三聚氰胺奶粉事件”举国震惊,质检也变得尤为重要,由于总体中的个体数是很大的,检验人员只能从一大批罐装奶粉中进行抽样调查.你能从这个例子出发说明一下抽样调查的必要性吗?【解】如果普查,会很费时费力,等检查完了,奶粉可能变质了,况且检查奶粉具有破坏性,每罐奶粉检查时必须拆开,这样检查就会得不偿失,没有什么意义了.而此时抽样调查就比较理想了.§2抽样方法2.1 简单随机抽样(教师用书独具)●三维目标1.知识与技能理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概论,掌握简单随机抽样的两种方法.2.过程与方法通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力.3.情感、态度与价值观通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质.●重点难点重点:掌握简单随机抽样常见的两种方法(抽签法、随机数法)难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性学生已有的认知基础是,初中学习过统计的基础知识,并对总体、样本、个体等知识有了初步的了解,对为什么要进行抽样已有了感性认识,但对如何实施抽样缺乏系统的了解.对简单随机抽样的概念的认识上,学生对抽签法有感性认识,但对抽样过程的科学、合理、使每个个体被抽到的可能性相等的理解存在差异,因而对概念的本质理解也可能有所差异.在利用抽签法进行简单随机抽样时,学生对此方法比较熟悉,但对程序化或流程图式的解决问题模式接触不多,因而可能出现解题过程的不完善.在利用随机数法进行简单随机抽样时,学生在对物件进行标号时由于位数的不一致而可能产生抽样过程的错误,同时在选号的规则上可能带来一些误差.(教师用书独具)●教学建议考虑到学生的知识水平和理解能力以及课堂教学的信息量,教师可从信息技术和数学知识的有效整合入手,从实际生活中提炼数学素材,从激励学生探究知识入手,通过直观演示,优化教学,使学生在熟悉的知识背景下探求新知.通过视频片断,实例图片,Excel表格的综合应用,丰富学生的体验,给学生多一点空间和时间,把任务角色还给学生,使学生亲历数学发现、创造的过程,获得对数学价值的认识,通过分层激励,让不同层次的学生获得最大进步.●教学流程设置情境,提出问题一锅水饺的味道如何品尝?⇒引导学生结合现实生活中的实际问题,思考讨论得出随机抽样的概念⇒引导学生明确抽样的必要性,掌握抽样的特点及方法突出“等可能性”特征⇒通过例1及变式训练使学生进一步明确随机抽样的特征,明确什么是简单随机抽样⇒通过例2及变式训练使学生掌握抽签法的应用,体会抽签法的“公平性”,突破难点,突出重点⇒通过例3及变式训练使学生掌握随机数法的应用,体会该种方法的科学性与优越性⇒课堂小结,总结升华,让学生对知识有一个系统的认识,突出重点,抓住关键⇒完成当堂双基达标,落实各个知识点,突出重点,强化难点课标解读1.理解简单随机抽样的概念及其两种方法(重点).2.会用简单随机抽样方法解决实际问题(难点).3.抽签法和随机数法的异同(易混点).简单随机抽样的概念【问题导思】1.某月某种商品的销售量、电视剧的收视率等这些数据是如何得到的?【提示】一般是从总体中收集部分个体数据得出结论.2.要判断一锅汤的味道需要把整锅汤都喝完吗?应如何判断?【提示】不需要,只要将锅里的汤“搅拌均匀”品尝一小勺就知道汤的味道.在抽取样本的过程中,要保证每个个体被抽取到的概率相同.这样的抽样方法叫作简单随机抽样.这是抽样中一个最基本的方法.简单随机抽样的方法简单随机抽样{抽签法随机数法简单随机抽样的概念(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.【思路探究】要判断所给的抽样方式是否是简单随机抽样,关键是看它们是否符合简单随机抽样的特点.【自主解答】(1)不是简单随机抽样.因为被抽取样本的总体的个体数是无限的而不是有限的.(2)不是简单随机抽样.因为它是放回抽样,简单随机抽样,可分为不放回抽样和放回抽样,而本章定义中规定的是不放回抽样,所以它不是简单随机抽样.(3)不是简单随机抽样.因为它是一次性抽取,而不是“逐个”抽取.简单随机抽样具备以下四个特点:①总体的个体数较少,②逐个抽取,③不放回抽样,④等可能抽样.判断抽样方法是否是简单随机抽样,只需看是否符合上述四个特点,若有一条不符合就不是简单随机抽样.下列问题中,最适合用简单随机抽样方法的是( )A.某电影院有32排座位,每排40个,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽取3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡镇有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,要抽取田地480亩估计全乡田地平均产量【解析】根据简单随机抽样的特点进行判断:A的总体容量较大,用简单随机抽样的方法比较麻烦;B的总体容量较小,用简单随机抽样的方法比较简单、方便;C中由于学校各类人员对这一问题的看法的差异可能很大,不宜采用简单随机抽样;D总体容量较大,且各类田地的产量差别很大,也不易采用简单随机抽样.【答案】 B。

高中数学 第一章 统计 1.7 相关性教案 北师大版必修3-北师大版高一必修3数学教案

高中数学 第一章 统计 1.7 相关性教案 北师大版必修3-北师大版高一必修3数学教案

1.7相关性本节教材分析一、三维目标1、知识与技能(1) 通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.(2) 明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.(3) 经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.2、过程与方法引出问题——提出问题互助讨论——得出结果.二、教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.三、教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关.四、教学建议《相关性》的主要内容为采用定性和定量相结合的方法研究变量之间的相关关系,主要研究线性相关关系.主要概念有“相关关系”、“散点图”、“回归直线和回归直线方程”、“相关系数”等.研究方法为先绘制散点图,直观表示观测数据,定性描述变量间相关关系的类型、方向、相关程度.然后应用最小二乘法确定变量间相关关系的具体表达形式,描述变量间的数量规律,并由一个变量的取值去推测另一个变量的取值.这部分内容涉及到一些重要的统计思想和方法,对学生的学习和教师的教学都有一定的难度.本文就研究对象、核心概念、研究方法、统计思想及相关应用进行简单的解读,提出一些教学建议,希望对教学能提供一些帮助.相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.新课导入设计导入一在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?请同学们如实填写下表(在空格中打“√” ):某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?通过本节的学习,我们就可以对这种说法做出自己的判断.教学过程:案例分析:一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。

数学北师大版必修3教案: 第一章统计1.5.1 含解析 精

数学北师大版必修3教案: 第一章统计1.5.1 含解析 精

§5 用样本估计总体5.1 估计总体的分布整体设计教学分析教科书通过问题的探究,使学生学会列频率分布表、画频率分布直方图、频率分布折线图.教科书在这里主要介绍有关频率分布的列表和画图的方法,而关于频率分布的随机性和规律性方面则给教师留下了较大的发挥空间.教师可以通过初中有关随机事件的知识,也可以利用计算机多媒体技术,引导学生进一步体会由样本确定的频率分布表和频率分布直方图的随机性;通过初中有关频率与概率之间的关系,了解频率分布直方图的规律性,即频率分布与总体分布之间的关系,进一步体会用样本估计总体的思想.由于可以用样本频率分布直方图估计总体分布,因此可以用样本频率分布特征来估计相应的总体分布特征,这就提供了估计总体特征的另一种途径,其意义在于:在没有原始数据而仅有频率分布的情况下,此方法可以估计总体的分布特征.三维目标1.通过实例体会分布的意义和作用,通过对现实生活的探究,感知应用数学知识解决问题的方法.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图,理解数形结合的数学思想和逻辑推理的数学方法.3.通过对样本分析和总体估计的过程,感受数学对实际生活的需要,通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地作出总体估计,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系. 重点难点教学重点:会列频率分布表,画频率分布直方图和频率折线图.教学难点:能通过样本的频率分布估计总体的分布.课时安排1课时教学过程导入新课思路1.在NBA的2006赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49,50;乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29,33.请问从上面的数据中你能否看出甲、乙两名运动员,在2006赛季中,哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布(板书课题).思路2.如下样本是随机抽取近年来北京地区7月25日至8月24日的日最高气温.7月25日至8月10日41.9 37.5 35.7 35.4 37.2 38.1 34.7 33.7 33.3 32.5 34.6 33.0 30.8 31.0 28.6 31.5 28.8 32.58月8日至8月24日28.6 31.5 28.8 33.2 32.5 30.3 30.2 29.8 33.1 32.8 29.8 25.6 24.7 30.0 30.1 29.5 30.3 32.8怎样通过上表中的数据,分析比较两时间段内的高温(≥33 ℃)状况?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.思路3.讨论:我们要了解我校学生每月零花钱的情况, 应该怎样进行抽样?提问:学习了哪些抽样方法?一般在什么时候选取什么样的抽样方法呢?讨论:通过抽样方法收集数据的目的是什么?(从中寻找所包含的信息,用样本去估计总体)指出两种估计手段:一是用样本的频率分布估计总体的分布,二是用样本的数字特征(平均数、标准差等)估计总体的数字特征.这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.推进新课新知探究提出问题(1)我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)(2)什么是频率分布?(3)频率分布直方图的特征是什么?(4)什么是频率分布折线图?讨论结果:(1)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格来改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚地看到整个样本数据的频率分布情况. (2)频率分布是指一个样本数据在各个小范围内所占比例的大小;一般用频率分布直方图来反映样本的频率分布.(3)频率分布直方图的特征:①从频率分布直方图可以清楚地看出数据分布的总体趋势.②从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断.(4)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.应用示例思路1例1 1895年,在伦敦有106块男性头盖骨被挖掘出土.经考证,头盖骨的主人死于1665—1666年之间的大瘟疫.人类学家分别测量了这些头盖骨的宽度,数据如下所示(单位:mm):146 141 139 140 145 141 142 131 142 140 144 140138 139 147 139 141 137 141 132 140 140 141 143134 146 134 142 133 149 140 140 143 143 149 136141 143 143 141 138 136 138 144 136 145 143 137142 146 140 148 140 140 139 139 144 138 146 153148 152 143 140 141 145 148 139 136 141 140 139158 135 132 148 142 145 145 121 129 143 148 138149 146 141 142 144 137 153 148 144 138 150 148138 145 145 142 143 143 148 141 145 141请你估计在1665—1666年之间,英国男性头盖骨宽度的分布情况.解:这里,如果把总体看作是1665—1666年之间的英国男性头盖骨的宽度,那么我们就是要通过上面挖掘出土得到的样本信息,来估计总体的分布情况.但从上面的数据很难直接估计出总体的分布情况,为此,我们可以先将以上数据按每个数据出现的频数和频率汇成下表: 宽度/mm 频数 频率 宽度/mm 频数 频率 121 1 0.009 142 7 0.066129 1 0.009 143 10 0.094131 1 0.009 144 5 0.047132 2 0.019 145 8 0.075133 1 0.009 146 5 0.047134 2 0.019 147 1 0.009135 1 0.009 148 8 0.075136 4 0.038 149 3 0.028137 3 0.028 150 1 0.009138 7 0.066 152 2 0.019139 7 0.066 153 1 0.009140 12 0.113 158 1 0.009141 12 0.113从表格中,我们就能估计出总体大致的分布情况了,如在1665—1666年之间,英国男性头盖骨宽度主要在140—150 mm 之间,130 mm 以下以及150 mm 以上所占的比率相对较小等.但是,这些关于分布情况的描述仍不够形象,为了得到更为直观的信息,我们可以再将表中的数据按照下面的方式分组:宽度分组(Δx i )频数(n i ) 频率(f i ) i i x f ∆ 120—125 mm1 0.009 0.001 8 125—130 mm1 0.009 0.001 8 130—135 mm6 0.057 0.011 4 135—140 mm22 0.208 0.041 6 140—145 mm46 0.434 0.086 8 145—150 mm25 0.236 0.047 2 150—155 mm4 0.038 0.007 6 155—160 mm 1 0.009 0.001 8先画频数分布直方图(图1).进一步,我们还可以将图1中纵坐标的频数换成ii x f ∆,便可以得到图2.图1图2点评:当样本量较大时,样本中落在每个区间内的样本数的频率会稳定于总体在相应区间内取值的概率.因此,我们就可以用样本的频率分布直方图来估计总体在任意区间内取值的频率,也即总体的分布情况.变式训练1.有100名学生,每人只能参加一个运动队,其中参加足球队的有30人,参加篮球队的有27人,参加排球队的有23人,参加乒乓球队的有20人.(1)列出学生参加运动队的频率分布表.(2)画出频率分布条形图.解:(1)参加足球队记为1,参加篮球队记为2,参加排球队记为3,参加乒乓球队记为4,得频率分布表如下:试验结果频数频率参加足球队(记为1)30 0.30参加篮球队(记为2)27 0.27参加排球队(记为3)23 0.23参加乒乓球队(记为4)20 0.20合计100 1.00(2)由上表可知频率分布条形图如图3:图32.为了了解中学生的身体发育情况,对某中学17岁的60名女生的身高进行了测量,结果如下(单位cm):154 159 166 169 159 156 166 162 158156 166 160 164 160 157 151 157 161158 153 158 164 158 163 158 153 157162 159 154 165 166 157 151 146 151160 165 158 163 163 162 161 154 165162 159 157 159 149 164 168 159 153列出样本的频率分布表;绘出频率分布直方图.解:列频率分布表如下:宽度分组(Δx i) 个数累计频数(n i) 频率(f i)145.5—148.5 1 0.017148.5—151.5 3 0.050151.5—154.5 6 0.100154.5—157.58 0.133160.5—163.5 11 0.183163.5—166.510 0.167合计60 1.000 根据上述数据绘制频率分布直方图如图4:图4以上两种情况的不同之处在于,前者的频率分布表列出的是几个不同数值的频率,相应的条形图是用其高度表示取各个值的频率;后者的频率分布表列出的是在不同区间内取值的频率,相应的直方图是用图表面积的大小来表示在各个区间内取值的频率.我们在处理一个数理问题时可以采用样本的频率分布估计总体分布的方法,这是因为,频率分布随着样本容量的增大更加接近于总体分布,当样本容量无限增大且分组的组距无限缩小时,频率分布的直方图就演变成一条光滑的曲线——总体密度曲线.这条曲线是客观存在的,但是我们却很难将它准确地画出,我们只能用样本的频率分布去对它进行估计.基于频率分布与相应的总体分布有这种关系,再加上我们通常并不知道一个总体的分布,我们往往是从一个总体中抽取一个样本,用样本的频率去估计相应的总体分布.一般说来,样本的容量越大,这种估计就越精确.思路2例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).区间界限/cm 122—126 126—130 130—134 134—138 138—142人数 5 8 10 22 33区间界限/cm 142—146 146—150 150—154 154—158 人数20 11 6 5(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:宽度分组(Δx i) 频数(n i) 频率(f i) 122—126 5 0.04126—130 8 0.07130—134 10 0.08134—138 22 0.18138—142 33 0.28142—146 20 0.17146—150 11 0.09150—154 6 0.05154—158 5 0.04合计120 1(2)其频率分布直方图如图5:图5(3)由样本频率分布表可知身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.变式训练从某校高一年级的1 002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).168 165 171 167 170 165 170 152 175 174 165 170 168 169 171 166 164 155 164 158 170 155 166 158 155 160 160 164 156 162 160 170 168 164 174 170 165 179 163 172 180 174 173 159 163 172 167 160 164 169 151 168 158 168 176 155 165 165 169 162 177 158 175 165 169 151 163 166 163 167 178 165 158 170 169 159 155 163 153 155167 163 164 158 168 167 161 162 167 168 161 165 174 156 167 166 162 161 164 166 作出该样本的频率分布表,并估计身高不小于170(cm)的同学所占的百分率. 解:频率分布表如下:宽度分组(Δx i ) 频数累计 频数(n i ) 频率(f i ) 150.5—153.5 4 4 0.04153.5—156.5 12 8 0.08156.5—159.5 20 8 0.08159.5—162.5 31 11 0.11162.5—165.5 53 22 0.22165.5—168.5 72 19 0.19168.5—171.5 86 14 0.14171.5—174.5 93 7 0.07174.5—177.5 97 4 0.04177.5—180.5 100 3 0.03合计100 1 根据频率分布表可以估计,估计身高不小于170(cm)的同学所占的百分率为(0.14×5.1685.1711705.171--+0.07+0.04+0.03)×100%=21%. 例 2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图6),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.图6分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为391517424+++++=0.08; 又因为频率=样本容量第二小组频数,所以样本容量=08.012=第二小组频率第二小组频数=150.(2)由图可估计该学校高一学生的达标率约为39151742391517++++++++×100%=88%. (3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组.知能训练1.有一个容量为45的样本数据,分组后各组的频数如下:(12.5,15.5],3;(15.5,18.5],8;(18.5,21.5], 9;(21.5,24.5],11;(24.5,27.5],10;(27.5,30.5],4.由此估计,不大于27.5的数据约为总体的( )A.91%B.92%C.95%D.30%答案:A2.一个容量为20的样本数据,数据的分组及各组的频数如下:(10,20),2;(20,30),3;(30,40),4;(40,50),5;(50,60),4;(60,70),2.则样本在区间(-∞,50)上的频率为( )A.0.5B.0.7C.0.25D.0.05答案:B3.一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图7),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭___________万盒.快餐公司个数情况图 快餐公司盒饭年销售量的平均数情况图图7答案:85拓展提升为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm ).135 98 102 110 99 121 110 96 100 103 125 97 117 113 110 92 102 109 104 112 109 124 87 131 97 102 123 104 104 128 105 123 111 103 105 92 114 108 104 102 129 126 97 100 115 111 106 117 104 109 111 89 110 121 80 120 121 104 108 118 129 99 90 99 121 123 107 111 91 100 99 101 116 97 102 108 101 95 107 101 102 108 117 99 118 106 119 97 126 108 123 119 98 121 101 113 102 103 104 108(1)编制频率分布表;(2)绘制频率分布直方图;(3)估计该片经济林中底部周长小于100 cm 的树木约占多少?周长不小于120 cm 的树木约占多少?解:(1)这组数据的最大值为135,最小值为80, 极差为55,可将其分为11组,组距为5. 频率分布表如下:宽度分组(Δx i ) 频数(n i )频率(f i ) i i x f 80—85 10.01 0.002 85—90 20.02 0.004 90—95 40.04 0.008 95—100 140.14 0.028 100—105 240.24 0.048 105—110 150.15 0.030 110—115 120.12 0.024 115—120 90.09 0.018 120—125 110.11 0.022 125—130 60.06 0.012 130—135 20.02 0.004 合计100 1 0.2 (2)频率分布直方图如图8:图8(3)从频率分布表得,样本中小于100的频率为0.01+0.02+0.04+0.14=0.21,样本中不小于120的频率为0.11+0.06+0.02=0.19,估计该片经济林中底部周长小于100 cm 的树木约占21%,周长不小于120 cm 的树木约占19%.课堂小结总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.作业习题1—5 1、2.设计感想本节课是高一新课程必修三第二章《统计》中的第二节《用样本估计总体》的第一节课,尽管用样本估计总体是一种实用性很强,操作烦琐、麻烦的工作,但却是统计学中常用的方法,在生产、生活中应用非常广泛.用样本估计总体,其实就是一种“以偏概全”,“以部分代替全部”的思想.虽然有贬义的成分,但我们还是要认真去教好学好,而且,这也是平时考试和高考中的重点内容之一.本节要解决的问题就是:为何要用样本估计总体——社会生产、生活的实际需要(必要性),如比赛、竞技中预测结果,评判质量谁好谁差,水平谁高谁低经常要用到.如何去用样本估计总体——用样本的频率分布去估计总体的频率分布;怎样用样本估计总体——作出样本频率分布表或频率分布直方图,懂得用 “数据”语言说话.另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育并增强学生的自信心,使学生养成良好的学习态度.。

高中数学 第一章 统计 14 数据的数字特征教案1 北师大版必修3 教案

高中数学 第一章 统计 14 数据的数字特征教案1 北师大版必修3 教案

一、教材分析1、教学内容北师大版普通高中课程标准试验教科书数学必修3第1章《4.数据的数字特征》教学设计.2、内容分析《普通高中数学课程标准》中要求数学学习应倡导教师在学习中起主导作用,而学生是学习的主体,自主探索,动手实践,合作交流,阅读自学等学习数学的方式。

提高学生的数学思维能力是数学教育的基本目标之一,本节课将使学生经历数学知识产生的过程性体验,发展学生的数学思维。

《课标》提倡利用信息技术来呈现以往数学学习中难以呈现的课程内容,在教学评价中要求体现评价的多元化。

《课标》中对本节教学内容的要求是:1通过实例理解样本数据标准差的意义和作用,学会计算数据的标准差。

2、能根据实际问题的需求合理地选取样本,从样本数据中提取基本数字特征(如平均数、标准差),并作出合理的解释。

教材通过3个实例的分析,在初中统计学习的基础上理解平均数、众数、中位数、极差、方差、标准差,对数据的刻画特点,例1目的在于使学生理解不同的人根据需要会选择不同的统计量来说明数据,例2要求学生根据茎叶图的分布特征来估计两组数据数字特征的大小、例3是对标准差计算的复习.动手实践部分意义在于使学生体会一次完整收集数据、整理数据、分析数据、得到统计结论的完整统计活动。

二、学情分析1、基础知识:学生在初中已经学习了平均数、众数、中位数、极差、方差和标准差这几个数字特征,并且会给出一组数据,计算其这几个统计量。

2、学习能力和态度:在基础知识学习的基础上,本节学生要理解各个数字特征的特点,同时理解标准差对数据刻画的优势,并且更进一步理解各数字特征对数据刻画的意义。

三、教学目标1、知识与技能理解不同数字特征的意义和作用,并能根据问题的需要选择适当的数字特征来表达数据的信息。

2、过程与方法通过实例,能结合具体情境理解数据标准差的意义和作用,培养学生解决问题的能力,提高学生的运算能力。

3、情感、态度与价值观通过探求反映数据波动情况的统计量,培养学生开放性思维,培养学生的动手操作能力和实践能力。

数学北师大版必修3教案: 第一章统计§3 含解析 精品

数学北师大版必修3教案: 第一章统计§3 含解析 精品

§3 统计图表整体设计教学分析在义务教育阶段,学生已经通过实例,学习了象形统计图、条形统计图、折线统计图、扇形统计图、茎叶图,并能解决简单的实际问题.(由于义务教育阶段《大纲》中对统计部分的要求与《标准》的要求相差较大,若是承接现行《大纲》的话,建议先补充《标准》中第三学段相应部分的内容)在这个基础上,高中阶段还将进一步学习茎叶图,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的图表.通过问题1和问题2,一方面让学生通过具体的实例,初步体会总体及其分布的含义,同时为后面理解总体分布的意义、用样本的频率分布估计总体的分布作一个铺垫;另一方面复习义务教育阶段已经学过的一些统计图,并进一步发展学生从统计图表中获取信息的能力.三维目标1.通过实例初步体会分布的意义和作用,在表示样本数据的过程中,掌握条形统计图、折线统计图、扇形统计图,体会它们各自的特点,提高学生的画图能力;2.能根据实际需要选择适当的统计图表来分析数据,进一步发展学生从统计图表中获取信息的能力.重点难点教学重点:条形统计图、折线统计图、扇形统计图、茎叶图及其应用.教学难点:根据实际需要选择适当的统计图表.课时安排1课时教学过程导入新课思路1.下面是权威机构公布的一组反映世界人口的数据:1957年世界人口30亿,17年后(即1974年)增加了10亿,即达40亿;又过13年达到50亿;到1999年全世界总人口达到60亿.以此速度,人口学专家预测到2025年,世界人口将达到80亿;而到2050年人口将超过90亿,其中亚洲人口最高,将达到52.68亿,北美洲3.92亿、欧洲8.28亿、拉丁美洲及加勒比地区8.09亿,非洲17.68亿.那么怎样看出世界人口的总体变化情况呢?教师点出课题:统计图表.思路2.前面我们学习了科学的抽样方法,那么抽出样本后,怎样用图表来分析所得数据呢?教师点出课题:统计图表.推进新课新知探究提出问题1.什么叫条形统计图?有什么特点?2.什么叫折线统计图?有什么特点?3.什么叫扇形统计图?有什么特点?4.什么叫茎叶图?有什么特点?讨论结果:1.用一定的单位长度表示一定的数量,并根据数据的多少画出长短不同的直条,然后把这些直条按照一定的顺序排列起来,这样的统计图叫作条形统计图.条形统计图可以表示同类指标在不同地区、不同时间、不同条件的对比关糺.也可以表示总体的结构及其在时间上的变化.从条形统计图上很容易看出各种数量的多少.2.用一定单位长度表示一定的数量,根据数量多少描出各点,然后把各点用线段顺次连接起来,形成折线,用折线的升降来表示数量之间的关系及变化趋势的图形叫作折线统计图.折线统计图可以表示一种数量的增减变化情况,也可以表示几种数量的相互依存和发展变化的趋势或情况.3.用圆和扇形分别表示关于总体和各个组成部分数据的统计图叫作扇形统计图(或称饼形图),特点是能直观地、生动地反映各部分在总体中所占的比例.4.当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫作茎叶图.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.(3)当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.应用示例思路1例1 我们对50人的智商情况进行了调查,如果按照区间[80,85),[85,90),…,[115,120)进行分组,得到的分布情况如图1所示.图1(1)有多少人的智商在90—105之间?(2)有多少人的智商低于100?(3)有多少人的智商不低于100?你还能从图中获得其他的信息吗?解:(1)38人的智商在90—105之间;(2)29人的智商低于100;(3)21人的智商不低于100.点评:由于已经学习过一些统计图表的知识,学生在回答上面几个问题时可能比较容易,教师还可以鼓励学生从这个统计图中获取更多的信息,并通过该问题初步体会分布的含义.变式训练1.丁文静是集邮爱好者,她每年都要对自己收藏的邮票进行整理.到2006年年底,她收藏的邮票达到了100张;当2007年年底到了的时候,她发现自己收藏的邮票已经有200张了.她用图2来表示自己的收藏成果,这样的描述合适吗?丁文静的邮票收藏情况图2解:从高度看,上图中第二个正方体确实是第一个正方体的2倍;但从体积上看,却是23(即8)倍.这样就会使读者产生错误的印象,以为2007年丁文静收藏的邮票比2006年多得多,所以这样的描述不合适.2.有许多人认为鹌鹑蛋比鸡蛋更有营养,是不是这样呢?检测发现,每100克鹌鹑蛋和鸡蛋的可食部分中各种维生素B的含量分别为:维生素B1约0.18毫克和0.15毫克;维生素B2约0.79毫克和0.31毫克;维生素B6约0.02毫克和0.12毫克.学生甲用以下两幅条形图比较两种蛋的各种维生素B含量,如图3.图3学生乙用一幅条形图比较两种蛋的各种维生素B含量,如图4.图4问:这两位同学谁画得较好?解:甲同学制作的两幅条形图采用的单位长度不一致,很难比较两种蛋的各种维生素B的含量,乙同学的直方图采用了同一单位长度,把三种维生素含量放在一起比较,准确直观容易区分,所以乙同学的条形图较好.例 2 下面是关于某个总体包含的所有学生的身高分布的几种表述,其中哪一种表述反映的总体信息较多?(1)身高在160 cm以下的学生数占50%,不低于160 cm的学生数占50%(如图5(a)).(2)身高在150 cm以下、150—160 cm之间、不低于160 cm的学生数分别占10%、40%、50%(如图5(b)).(3)身高在150 cm 以下、150—160 cm 之间、160—170 cm 之间、不低于170 cm 的学生数分别占10%、40%、40%、10%(如图5(c)).(a) (b)(c)图5解:从该总体包含的所有学生的身高分布的几种表述(包括文字和统计图)来看,不难发现:从(1)—(3),反映的总体信息依次增多.就这个问题而言,说“身高在160 cm 以下的学生数占50%,不低于160 cm 的学生数占50%”,是身高分布一种很粗略的表述;说“身高在150 cm 以下、150—160 cm 之间、不低于160 cm 的学生数分别占10%、40%、50%”,则相对精确一些;而说“身高在150 cm 以下、150—160 cm 之间、160—170 cm 之间、不低于170 cm 的学生数分别占10%、40%、40%、10%”,表述就更精确了.点评:对于同样的数据,可以用不同的方式来表示.变式训练1.某中学在一次健康知识竞赚活动中,抽取了一部分同学测试的成绩为样本,绘制的成绩统计图如图6,请结合统计图回答下列问题:(1)本次测试中,抽样的学生有多少人?(2)分数在90.5—100.5这一组的频率是多少?(3)这次测试成绩的众数落在哪个小组内?(4)若这次测试成绩80分以上(含80分)为优秀,则优秀率约为多少?图6解:(1)2+3+4+41=50(人);(2)频率=504 总数频数=0.08;(3)众数落在80.5—90.5这一小组内;(4)这次测试成绩的优秀率约为90%.2.2003年11月,中国女排以11连胜的战绩夺回了阔别17年的世界冠军,重振了“敢于拼搏,敢于创新,团结起来,在不利的条件下赢得最大的胜利”的中国女排精神.其中11月12日的中美之战是关键的一战,中国女排在1∶2局数落后的不利情况下,顽强拼搏,最后反败为胜,以3∶2击败夺冠道路上的主要竞争对手.项目中国美国发球得分 3 7一攻得分37 35防守反击得分29 25拦网得分13 13 因对方失误得分27 22总得分109 102 上表是中美两国比赛的技术数据统计,如图7,学生甲用两幅条形图比较中美两国比赛的得分情况,学生乙用一幅条形图比较中美两国比赛的得分情况,哪一个效果好?从统计表中你能获取哪些信息?学生甲制作学生乙制作图7解:学生甲的方案由于纵轴单位刻度不同,不容易对两国排球赛的得分情况进行比较;而学生乙将两张图合并成一张图,可以一目了然地看出两国排球赛的得分情况的差异,因此,乙的效果更好.分析表中的数据我们可以大概地了解到,中国队战胜美国队的主要因素是失误较少,防守反击比较成功,而中国队发球的威力不大,这是需要提高的.例3 有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下上午8:00—11:00间各自的销售情况(单位:元):甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.你能用不同的方式分别表示上面的数据吗?解:从上面的数据不易直接看出各自的分布情况,为此,我们可以先将以上的数据按照不同的方式进行表示.上述的数据可以用如图8所示的图形来表示,横线下面的数字表示销售额的十位数,上面的数字分别表示各自销售额的个位数.图8也可以用条形统计图(图9)将上图进行简化:图9点评:根据实际需要选择适当的统计图表来分析数据.变式训练某地农村某户农民年收入如下(单位:元):土地收入打工收入养殖收入其他收入4 320 3 600 2 350 850请用不同的统计图来表示上面数据.分析:题意的要求是将此四个数据用统计图展示出来,在所有的统计图中,可利用条形统计图、折线统计图、扇形统计图来表示.解:用条形统计图表示,如图10所示.图10用折线统计图表示,如图11所示.图11用扇形统计图表示,如图12所示.图12思路2例1 下面是跃进厂各车间男、女工人数统计表:根据表中数据,制成条形统计图.解:步骤是:①根据图纸的大小,画出两条相互垂直的射线.(注意水平射线下面和垂直射线左面必须留有一定空白,注明直条数量和统计的内容)②在横轴上确定直条的位置.③在纵轴上根据数量的多少确定单位长度.④根据数据的多少画出长短不同的直条.画直条的步骤:1°先在纵轴上找到80(一车间的男工有80人),用铅笔过此点作横轴的平行线.2°用三角板的直角边对齐一车间的直条位置画两条与横轴垂直的平行线,画到与水平线相交为止,涂上阴影或涂色均可.(注意:直条的宽窄要一致,长短要准确,条与条之间间隔要均等)3°在直条上方标明数量的多少.4°依次画出其他直条.⑤在图的上方写标题.统计图如图13所示.跃进机床厂各车间男、女数统计图图13点评:条形统计图比统计表更形象、直观、具体,使人看了统计图以后,对事物在数量方面的变化与发展,以及事物总体与部分之间的关系等情况,留下了深刻的印象.变式训练观察如图14所示的条形统计图,你知道了什么?某小学2003年—2006年购买图书统计图2007年1月制图14答案:该小学2006年购买图书最多,比购买图书最少的2003年多300本.例2 某地2007年每月的月平均气温如下表:月份一二三四五六七八九十十一十二平均气温(℃) 2 5 10 16.5 22 28 32 32.5 26 19 11.5 5 根据上表中的数据,制成折线统计图.解:制作步骤:(1)根据图纸的大小,画出两条互相垂直的射线.(2)适当分配各点的位置,确定各点的间隔.(3)在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.(4)按照数据的大小描出各点,再用线段顺次连接起来.折线统计图如图15所示.图15点评:折线统计图不但可以表示数量的多少,还可以反映数量增减的变化趋势.变式训练1.如图16所示的条形统计图,你知道了什么?2001—2004年国产与进口54厘米彩电平均零售价统计图图16答案:从折线统计图中可以看出国产与进口彩电降价的情况.在这场持续的价格大战中,消费者无疑是最大的受惠者.2.如图17是一张某居民区水箱水位统计图,请你根据图中的变化情况编一段这个居民区的故事.图17答案:根据统计图的曲线变化情况,可以编出各种故事,如:8点钟居民们都开始洗菜、洗车等,是个用水高峰期,因此统计图上水位开始下降.9点到10点用水的人越来越少,水箱开始放水进来,因此10点钟水又满了.11点时水箱的水位变成0,可能是水箱破了,水都漏光了.说明:没有标准的答案,只要有道理,就可以算好故事.例3 某学校有50名学生,对出行使用的交通工具,统计数据如下:①步行:20人;②骑自行车:15人;③坐公交:10人;④其他:5人.根据以上数据,制成扇形统计图.解:画图步骤:(1)画一个圆.(2)按各组成部分所占的比例算出各个扇形的圆心角度数.交通工具人数比例圆心角度数步行20人40% 144°骑自行车15人30% 108°坐公交10人20% 72°其他5人10% 36°(3)根据算出的各圆心角的度数画出各个扇形,并注明相应的百分比,各比例的名称可以注在图上,也可用图例表明.扇形统计图如图18所示.图18注意:不用彩色,也可用白色、涂黑、斜线、网状等表示,学会动手画出扇形统计图.点评:扇形统计图是用整个圆面积表示总数(100%),用圆内的扇形面积表示各部分所占总数的百分数.总之,用统计图来表示数量关系更生动形象、具体,使人一目了然.变式训练1.如图19所示的条形统计图,你知道了什么?大王村青年养禽场养的鸡、鸭、鹅数量统计图图19答案:大王村养禽养的鸡最多,其次是鸭,再就是鹅.2.下面两幅统计图(如图20、图21),反映了某市甲、乙两所中学学生参加课外活动的情况.请你通过图中信息回答下面的问题.甲、乙两校参加课外活动的学生2003年甲、乙两校学生参加人数统计图(1997—2003年) 课外活动情况统计图图20 图21(1)通过对图20的分析,写出一条你认为正确的结论;(2)通过对图21的分析,写出一条你认为正确的结论;(3)2003年甲、乙两所中学参加科技活动的学生人数共有多少?解:(1)1997年至2003年甲校学生参加课外活动的人数比乙校增长得快;(2)甲校学生参加文体活动的人数比参加科技活动的人数多;(3)2 000×12%+1 100×10%=350.例4 某赛季甲、乙两名篮球运动员每场得分情况如下:甲12 15 24 25 31 31 36 36 37 39 44 49 50 乙8 13 14 16 23 26 28 33 38 39 51 9 17(1)用茎叶图表示上面的数据.(2)根据你所画的茎叶图,分析甲、乙两名运动员的得分情况.解:(1)如图22所示的茎叶图中,中间的数字表示两位运动员得分的十位数,两边的数字分别表示两个人各场比赛得分的个位数.图22(2)从茎叶图上可以看出:甲运动员的得分比较集中在茎为3的一行,且大致关于这一行对称,中位数是36;乙运动员的得分主要分散在四行,中位数是23.所以甲运动员的发挥比较稳定,总体得分情况比乙运动员好.点评:如果茎叶图中的数据大致集中在一行,说明这些数据比较稳定;如果收集到的是两组不连续的数据,并且是一位或两位数的整数,并且需要对比,那么可以先考虑使用茎叶图来统计.变式训练1.已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图(如图23所示),则甲、乙两人得分的中位数之和是( )图23A.62B.63C.64D.65分析:利用茎叶图可得甲得分的中位数是22628=27,乙得分的中位数是36,所以甲、乙两人得分的中位数之和是63.答案:B2.某篮球学校的甲、乙两名运动员练习罚球,每人练习10组,每组罚球10个.命中个数的茎叶图如图24.则罚球命中率较高的是____________.图24分析:观察茎叶图可知,甲运动员的呼中个数与乙相比位于茎叶图的下方,也就是说甲罚球命中率较高.答案:甲3.下图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图25可知( )图25A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分答案:A知能训练1.下面哪种统计图没有数据信息的损失,所有的原始数据都可以从该图中得到( )A.条形统计图B.茎叶图C.扇形统计图D.折线统计图分析:所有的统计图中,仅有茎叶图完好无损地保存着所有的数据信息.答案:B2.当收集到的数据量很大或有多组数据时,需要比较各种数量的多少,用哪种统计图较合适( )A.茎叶图B.条形统计图C.折线统计图D.扇形统计图分析:由于需要比较各种数量的多少,并且收集到的数据量很大或有多组数据,符合条形统计图的特点.答案:B3.2007年某市居民的支出构成情况如下表所示:食品衣着家庭设备用品及服务医疗保健交通和通讯教育文化娱乐服务居住杂项商品和服务40.4% 4.2% 8.9% 5.0% 8.9% 17.7% 11.5% 3.4% 用下列哪种统计图表示上面的数据较合适( )A.都一样B.茎叶图C.扇形统计图D.折线统计图分析:扇形统计图和条形统计图均可以将统计中的所有数据所占整体百分比直观显示出来,但最佳的统计图表应当是扇形统计图,其显示得更为直观一些.答案:C4.下表给出了2006年A、B两地的降水量.(单位:mm)1月2月3月4月5月6月7月8月9月10月11月12月A 9.2 4.9 5.4 18.6 38.0 106.3 54.4 128.9 62.9 73.6 26.2 10.6B 41.4 53.3 178.8 273.5 384.9 432.4 67.5 228.5 201.4 147.3 28.0 19.1为了直观表示2006年A、B两地的降水量的差异和变化趋势,适当的统计图是__________.答案:条形统计图和折线统计图拓展提升在第28届奥运会上,中国运动员奋力拼搏共夺得32块金牌,其分布如下:射击球类水上项目力量型项目田径体操4 8 8 9 2 1画出扇形统计图,从扇形统计图中看出中国在什么项目上有优势呢?解:扇形统计图如图26:第28届奥运会中国金牌分布统计图图26从扇形统计图中看出中国在力量型项目、水上项目和球类项目上有优势.课堂小结本节课复习巩固了用条形统计图、折线统计图、扇形统计图、茎叶图来分析数据.作业习题1—3 1、2.设计感想本节依据学生的认知特点,首先复习了条形统计图、折线统计图、扇形统计图、茎叶图的定义,再举例说明了其适用范围.实际教学时,可以针对学生的实际,选择使用本节的例题和练习题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关性
一、教学目标:
1.通过收集现实问题中两个变量的数据作出散点图,利用散点图直观认识变量间的相关关
系.
2.经历用不同的估算方法来描述两个变量线性相关的过程.
二、重难点:
利用散点图直观认识两个变量之间的线性相关关系
三、教学方法:
动手操作,师生合作交流
四、教学过程
(一)、创设情境导入新课
1、相关关系的理解
师:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两
者之间是一种确定关系。

生活中的任何两个变量之间是不是只有确定关系呢?
让学生举例,教师总结如:
生:不是。

师:能否举出反例?比如,年龄与身高。

生:身高与体重
生:教师水平与学生成绩。

生:网速与下载文件所需时间
师:不妨以教师水平与学生成绩为例,学生成绩与教师水平有关吗?
生:有,一般来说,教师水平越高,学生成绩越好
师:即“名师出高徒”,名师一定出高徒吗?生:不一定。

师:即学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师
水平之间的这种不确定关系,我们称之为相关关系。

这就是我们这节课要共同探讨的内容
变量间的相关关系。

(板书)
生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”
【设计意图:通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相
关关系。

让学生体会研究变量之间相关关系的重要性。

感受数学来源于生活。


(二)、初步探索,直观感知
1、根据样本数据利用电子表格作出散点图,直观感知变量之间的相关关系
师:在研究相关关系前,同学们先回忆一下:函数的表示方法有哪些?
生:列表,画图象,求解析式。

师:下面我们就用这些方法来研究相关关系。

请同学们看这样一组数据:
探究: 在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 根据上述数据,人体的脂肪含量与年龄之间有怎样的关系? 生:随着年龄增长,脂肪含量在增加 师:有没有更直观的方式?生:画图 师生:用x 轴表示年龄,y 轴表示脂肪。

一组样本数据就对应着一个点。

由于数据比较多,我们借用电子表格来作图,请大家注意观察。

教师演示作图方法,学生观察
师:这个图跟我们所学过的函数图象有区别,它叫作散点图。

2、判断正、负相关、线性相关 学生观察,比较,讨论。

师:请同学们观察这4幅图,看有什么特点?
生:图1呈上升趋势,图2呈下降趋势。

师生:这就像函数中的增函数和减函数。

即一个变量从小到大,另一个变量也从小到大,或从大到小。

对于图1中的两个变量的相关关系,我们称它为正相关。

图2中的两个变量的相关关系,称为负相关。

师:我们还可以判断出:年龄与身高是正相关,网速与下载文件所需时间是负相关。

生:后面两个图很乱,前面两个图中点的分布呈条状。

师:从数学的角度来解释:即图1、2中的点的分布从整体上看大致在一条直线附近。

我们称图1、2中的两个变量具有线性相关关系。

这条直线叫做回归直线。

图3、4中的两个变量是非线性相关关系
师:这节课我们重点研究线性相关关系。

(板书) 设计意图 :数形结合,扫清了学生的思维障碍,体现数学的简约美。

(三)、循序渐进、延伸拓展 1、找回归直线
师:下面我们再来看一下年龄与脂肪的散点图,从整体上看,它们是线性相关的。

图1
2
图图
3图4
如果可以求出回归直线的方程,我们就可以清楚地了解年龄与体内脂肪含量的相关性。

这条直线可以作为两个变量具有线性相关关系的代表。

同学们能否画出这条直线?请完成数学实验1、画出回归直线。

(学生在计算机上用电子表格画回归直线) 数学实验1: 画出回归直线
学生方案二
学生方案三
生总结: 第二种方法好,因为所有的点离这条直线最近。

师:即,从整体上看,各点与此直线的距离和最小。

(四)、例题探析
例1: 在下列两个变量的关系中,哪些是相关关系?
①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. 【 答案:②③④】 例2、 以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
(五)、小结与作业
1.对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系.
2.散点图能直观反映两个相关变量之间的大致变化趋势,利用计算机作散点图是简单可行的办法.
3.一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.
作业:略
五、教后反思:。

相关文档
最新文档