八年级数学 一次函数中的行程问题 同步练习

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

人教版八年级数学下册第19章一次函数的实际应用—行程问题专题培优练习(含答案)(1)

人教版八年级数学下册第19章一次函数的实际应用—行程问题专题培优练习(含答案)(1)

一次函数的实际应用—行程问题专题培优练习1.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如右图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数关系式;(2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.解:(1)160y x = (0≤10x ≤)2100600y x =-+ (0≤6x ≤)····························· (2分) (2)∴16060016060060x S x x -+⎧⎪⎪⎪=-⎨⎪⎪⎪⎩ 15(0)415(6)4(610)x x x ≤≤<≤<≤(3)由题意得:200S =①当1504x ≤≤时,160600200x -+= ∴52x = ∴160150y x ==(km )②当1564x <≤时,160600200x -= ∴5x = ∴160300y x ==(km )③当610x <≤时,60360x >(舍) ························ (3分)2.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.,,,表示小时后两车相遇,此时距离x=x=x=所以,当或≤3.快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.请结合图象信息解答下列问题:(1)快、慢两车的速度各是多少?(2)出发多少小时,快、慢两车距各自出发地的路程相等?(3)直接写出在慢车到达甲地前,快、慢两车相距的路程为150千米的次数.解;(1)如图所示:快车一共行驶了7小时,中间停留了1小时,慢车一共行驶了6小时,∵由图可得出两地相距360km,∴快车速度为:360×2÷6=120(km/h),慢车速度为:360÷6=60(km/h);(2)∵快车速度为:120km/h,∴360÷120=3(h),∴A点坐标为;(3,360)∴B点坐标为(4,360),可得E点坐标为:(6,36 0),D点坐标为:(7,0),∴设BD解析式为:y=kx+b,,解得:,∴BD解析式为:y=﹣120x+840,设OE解析式为:y=ax,∴360=6a,解得:a=60,∴OE解析式为:y=60x,当快、慢两车距各自出发地的路程相等时:60x=﹣120x+840,解得:x=,答:出发小时,快、慢两车距各自出发地的路程相等;(3)根据两车第一次相遇前可以相距150km,第一次相遇后两车再次相距150km,当快车到达乙地后返回时两车可以相距150km,综上所述:在慢车到达甲地前,快、慢两车相距的路程为150千米的次数是3次.4、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?解:(1)900;(2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. (3)由图象可知,慢车12h 行驶的路程为900km , 所以慢车的速度为90075(km /h)12=; 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),. 设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得 044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.自变量x 的取值范围是46x ≤≤.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.(第28题)y此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出÷=,即第二列快车比第一列快车晚出发0.75h.··· 10分发的间隔时间是112.51500.75(h)5、某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图像;(3)乙车出发多长时间,两车相距150千米。

一次函数的应用行程问题-解析及答案(北师大版八年级数学)

一次函数的应用行程问题-解析及答案(北师大版八年级数学)

一次函数的应用——行程问题1.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C. D.2.星期天,小明参加南沙自行车协会组织的“南沙横琴骑行游”活动,早上8:00出发骑车从南沙前往珠海横琴.2小时后,爸爸骑摩托车沿同一线路也从南沙前往横琴,他们的行驶路程y(千米)与小明的行驶时间x(小时)之间的函数关系如图所示,下列说法不正确...的是()A.南沙与横琴两地相距60千米B.11:00时,爸爸和小明在途中相遇C.爸爸骑摩托车的平均速度是60千米/小时D.爸爸比小明早到横琴1小时3.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示.下列关于此次赛跑说法正确的是().A.乙比甲跑的路程多 B.这是一次100米赛跑C.甲乙同时到达终点 D.甲的速度为8m/s4.已知A,B两地相距400千米,章老师驾车以80千米/小时的速度从A地到B地.汽车出发前油箱中有油25升,途中加油若干升,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如下图所示.假设汽车每小时耗油量保持不变,以下说法错误的是().A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25 B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达B地时油箱中还余油6升5.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同 B.甲先到达终点C.乙用的时间短 D.乙比甲跑的路程多6.如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1个 B.2个 C.3个 D.4个7.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x (分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB 所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.8.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为1y (km ),快车离乙地的距离为2y (km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),1y ,2y 与x 的函数关系图象如图(1)所示,S 与x 的函数关系图象如图(2)所示:(1)图中的a= ,b= ;(2)求S 关于x 的函数关系式;(3)甲、乙两地间依次有E 、F 两个加油站,相距200km ,若慢车进入E 站加油时,快车恰好进入F 站加油.求E 加油站到甲地的距离.9.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米; ③图中点B 的坐标为(334,75); ④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是 .10.如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y (千米)与行驶时间x (小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.11.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发去乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了小时;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.12.如图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图.观察图中所提供的信息,解答下列问题(1)汽车在前9分钟内的平均速度是 km/分;(2)汽车在中途停了多长时间? ;(3)当16≤t≤30时,求S与t的函数关系式.13.(12分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方需要多长时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?14.甲、乙两车从A地前往B地,甲车行至AB的中点C处后,以原来速度的1.5倍继续行驶,在整个行程中,汽车离开A地的距离y与时刻t的对应关系如图所示,求:(1)甲车何时到达C地;(2)甲车离开A地的距离y与时刻t的函数解析式;(3)乙车出发后何时与甲车相距20km.15.一队学生从学校出发去劳动基地军训,行进的路程与时间的图象如图所示,队伍走了0.9小时后,队伍中的通讯员按原路加快速度返回学校拿材料,通讯员经过0.5小时后回到学校,然后随即按原来加快的速度追赶队伍,恰好在劳动基地追上学生队伍.设学生队伍与学校的距离为d1,通讯员与学校的距离为d2,试根据图象解决下列问题:(1)填空:学生队伍的行进速度v= 千米/小时;(2)当0.9≤t≤3.15时,求d2与t的函数关系式;(3)已知学生队伍与通讯员的距离不超过3千米时,能用无线对讲机保持联系,试求在上述过程中通讯员离开队伍后他们能用无线对讲机保持联系时t的取值范围.16.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是 m,他途中休息了 min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?17.(8分)(2015•牡丹江)甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.18.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数表达式;(2)求E点的坐标,并解释E点的实际意义;(3)若已知轿车比货车晚出发2分钟,且到达乙地后在原地等待货车,则当x= 小时,货车和轿车相距30千米.参考答案1.C.【解析】试题分析:由题意,得:以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选C.考点:函数的图象.2.C.【解析】试题分析:观察图象可得,小明和他爸爸都行驶了60千米,所以南沙与横琴两地相距60千米;小明出发3小时后爸爸追上了小明,所以11:00时,爸爸和小明在途中相遇;爸爸比小明早到横琴1小时;爸爸1.5个小时行驶了60千米,所以爸爸骑摩托车的平均速度是40千米/小时,故答案选C.考点:一次函数的应用.3.B.【解析】试题分析:利用图象可得出,甲,乙的速度,以及所行路程等,利用所给数据结合图形逐个分析.∵如图所示,甲、乙的终点坐标纵坐标为100m,∴这是一次100m赛跑,故B正确;∵如图所示,甲、乙的终点坐标纵坐标为100m,∴乙和甲跑的路程一样多,故A错误;∵如图所示,甲到达终点所用的时间是12s,乙到达终点所用的时间是12.5s,∴甲、乙两人中先到达终点的是甲,故C错误;∵如图所示,甲到达终点所用的时间是12s,乙到达终点所用的时间是12.5s,∴甲的速度为:10018123=,故D错误.故选:B.考点:函数的图象.4.C.【解析】试题分析:A、设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系式为y=kt+b.将(0,25),(2,9)代入,得2529bk b=⎧⎨+=⎩,解得825kb=-⎧⎨=⎩.所以y=﹣8t+25,故A选项正确;B、由图象可知,途中加油:30﹣9=21(升),故B选项正确;C、由图可知汽车每小时用油(25﹣9)÷2=8(升),所以汽车加油后还可行驶:30÷8=3<4(小时),故C选项错误;D、∵汽车从甲地到达乙地,所需时间为:400÷80=5(小时),∴5小时耗油量为:8×5=40(升),又∵汽车出发前油箱有油25升,途中加油21升,∴汽车到达乙地时油箱中还余油:25+21﹣40=6(升),故D选项正确.故选:C.考点:一次函数的应用.5.B.【解析】试题分析:结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.考点:函数的图象.6.C.【解析】试题分析:根据图象得:起跑后1小时内,甲在乙的前面;故①正确;在跑了1小时时,乙追上甲,此时都跑了10千米,故②正确;乙比甲先到达终点,故③错误;设乙跑的直线解析式为:y=kx,将点(1,10)代入得:k=10,∴解析式为:y=10x,∴当x=2时,y=20,∴两人都跑了20千米,故④正确.所以①②④三项正确.故选C.考点:函数的图象.7.(1)200米.(2) y=200x-1000;(3) 小文离家600米.【解析】试题分析:从图象可以知道,2分钟时小文返回家,在家一段时间后,5分钟又开始回学校,10分钟到达学校.试题解析:(1)200米(2)设直线AB的解析式为:y=kx+b由图可知:A(5,0),B(10,1000)∴50 101000 k bk b+=⎧⎨+=⎩解得2001000 kb=⎧⎨=-⎩∴直线AB的解析式为:y=200x-1000;(3)当x=8时,y=200×8-1000=600(米)即x=8分钟时,小文离家600米.考点:一次函数的应用.8.(1)a=6,b=154;(2)15160600(0)415160600(6)460(610)x xS x xx x⎧-+≤≤⎪⎪⎪=-<≤⎨⎪<≤⎪⎪⎩;(3)450km或300km.【解析】试题分析:(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b 的值;(2)根据函数的图象可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.(3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.试题解析:解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=6,∴快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,∴b=600÷(100+60)=154;(2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(154,0)、(6,360)、(10,600),∴设线段AB 所在直线解析式为:S=kx+b ,∴6001504b k b =⎧⎪⎨+=⎪⎩,解得:k=﹣160,b=600,∴160600S x =-+;设线段BC 所在的直线的解析式为:S=kx+b ,∴63601504k b k b +=⎧⎪⎨+=⎪⎩,解得:k=160,b=﹣600,∴160600S x =-;设直线CD 的解析式为:S=kx+b ,∴636010600k b k b +=⎧⎨+=⎩,解得:k=60,b=0,∴60s x =; ∴15160600(0)415160600(6)460(610)x x S x x x x ⎧-+≤≤⎪⎪⎪=-<≤⎨⎪<≤⎪⎪⎩; (3)当两车相遇前分别进入两个不同的加油站,此时:S=﹣160x+600=200,解得:x=52,当两车相遇后分别进入两个不同的加油站,此时:S=160x ﹣600=200,解得:x=5,∴当x=52或5时,此时E 加油站到甲地的距离为450km 或300km .考点:1.一次函数的应用;2.综合题;3.分类讨论;4.分段函数.9.①③④.【解析】试题分析:①设快递车从甲地到乙地的速度为x 千米/时,则3(x ﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B 的横坐标为3+34=334,纵坐标为120﹣60×34=75,(故③正确); ④设快递车从乙地返回时的速度为y 千米/时,则(y+60)(134344-)=75,y=90,(故④正确).故答案为:①③④.考点:一次函数的应用.10.(1)1050;(2)y=300900(03)300900(3)3.5x x x x -+≤≤≥⎧⎨-⎩<.【解析】试题分析:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为:y=kx+b ,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A 的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为:y=k 1x+b 1,把(3,0),(3.5,150)代入得到方程组,即可解答.试题解析:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),(2)当0≤x≤3时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为:y=kx+b , 把(0,900),(3,0)代入得:90030b k b =⎧⎨+=⎩,解得:900300b k =⎧⎨=-⎩, ∴y=-300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A 的坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为:y=k 1x+b 1, 把(3,0),(3.5,150)代入得:1111303.5150k b k b +=⎧⎨+=⎩,解得:11300900k b =⎧⎨=-⎩, ∴y=300x-900,∴y=300900(03)300900(3)3.5x x x x -+≤≤≥⎧⎨-⎩<.考点:一次函数的应用.11.(1)0.5.(2)y=110x -195(2.5≤x ≤4.5)(3)3.9小时【解析】试题分析:(1)2.5-2=0.5 (2)设线段DE 对应的函数解析式为y=kx+b (2.5≤x ≤4.5), 代入D 点坐标为(2.5,80),E 点坐标为(4.5,300),解方程组即可求出解析式.(3)求出OA 的函数解析式后与线段DE 的解析式组成方程,解方程即可求出x 的取值. 试题解析:解:(1)0.5.(2)设线段DE 对应的函数解析式为y=kx+b (2.5≤x ≤4.5),∵D 点坐标为(2.5,80),E 点坐标为(4.5,300),∴代入y=kx+b ,得: 80 2.5k b 300 4.5k b =+⎧⎨=+⎩,,解得:k 110 b 195=⎧⎨=-⎩. ∴线段DE 对应的函数解析式为:y=110x -195(2.5≤x ≤4.5).(3)设线段OA 对应的函数解析式为y=mx (0≤x ≤5),∵A 点坐标为(5,300),∴代入解析式y=mx 得,300=5m ,解得:m=60.∴线段OA 对应的函数解析式为y=60x (0≤x ≤5)由60x=110x -195,解得:x=3.9.∴货车从甲地出发经过3.9小时与轿车相遇,即轿车从甲地出发后经过2.9小时追上货车. 考点:一次函数的应用12.(1)34 (2)7分钟 (3)202-=x y 【解析】试题分析:(1)本题可根据图中的信息,用速度=路程÷时间来求出;(2)汽车在中途停留时,走的路程应是0,也就是水平的那一段线段,由图可知那段时间是7分钟;(3)设这直线的解析式是)0(≠+=k b kt s ,∵点(16,12)、(30,40)在直线上 代入函数解析式的方程组,解方程组即可求出函数解析式.试题解析:(1)34 (2)7分钟(3)设这直线的解析式是)0(≠+=k b kt s ,∵点(16,12)、(30,40)在直线上 ∴⎩⎨⎧=+=+40301216b k b k ,解得220k b =⎧⎨=-⎩ ∴这条直线的解析式为202-=x y考点:函数的图象,待定系数法求函数解析式13.3小时、30千米;10点休息、半小时;返回途中、15千米/小时;10千米/小时.【解析】试题分析:本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.图中的点的横坐标表示时间,所以点E 点距离家最远,横坐标表示距家最远的时间,纵坐标表示离家的距离;休息是路程不在随时间的增加而增加;往返全程中回来时候速度最快,用距离除以所用时间即可;用玲玲全程所行的路程除以所用的时间即可.试题解析:观察图象可知:(1)玲玲到离家最远的地方需要3小时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲在返回的途中最快,速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/小时.考点:函数的图象14.(1) 甲车10:00到达C 地;(2) 60420()907207(101)012t t t y t ≤≤≤-⎧=⎨-⎩甲<;(3) 第一次在8:00,第二次在10:00.【解析】试题分析:(1)设甲车t 时到达C 地,根据甲车行至AB 的中点C 处后,以原来速度的1.5倍继续行驶,结合图象列出方程1801801.5712t t⨯=--,解方程即可; (2)分两种情况:①7≤t≤10;②10<t≤12;利用待定系数法即可求出;(3)先利用待定系数法求出乙车离开A 地的距离y 与时刻t 的函数解析式,再分甲车在乙车的前面与乙车在甲车的前面两种情况列出方程,解方程即可.试题解析:(1)设甲车t 时到达C 地,由题意得,1801801.5712t t⨯=--, 解得t=10,经检验,t=10是原方程的根,故甲车10:00到达C 地;(2)当7≤t≤10时,由图象过点(7,0)和(10,180),可得y=60t-420;当10<t≤12时,由图象过点(10,180)和(12,360),可得y=90t-720;故甲车离开A 地的距离y 与时刻t 的函数解析式为:60420()907207(101)012t t t y t ≤≤≤-⎧=⎨-⎩甲<; (3)当7.5≤t≤12时,由图象过点(7.5,0)和(12,360),可得y=80t-600, 所以乙车离开A 地的距离y 与时刻t 的函数解析式为:y 乙=80t-600(7.5≤t≤12). 若y 甲≥y 乙,则(60t-420)-(80t-600)=20,解得t=8;若y 甲<y 乙,则(80t-600)-(60t-420)=20,解得t=10;或(80t-600)-(90t-720)=20,解得t=10.故乙车出发后共有两次与甲车相距20km ,第一次在8:00,第二次在10:00.考点:一次函数的应用.15.(1)5,(2)2912.69120.9 1.41.43..156t t t d t ≤≤≤≤-+⎧=⎨-⎩()().(3)390.935t ≤<或2.4≤t≤3.15. 【解析】试题分析:(1)根据函数图象可得:当t=0.9h 时,学生队伍走的路程s=4.5km ,即可解答;(2)通讯员经过0.5小时后回到学校,0.9+0.5=1.4,所以B 点的坐标为(1.4,0),当0.9≤t≤3.15时,分别求线段AB 和线段BC 的解析式,即可解答;(3)求出线段OC 的解析式,分两种情况进行讨论即可解答.试题解析:(1)根据函数图象可得:当t=0.9h 时,学生队伍走的路程s=4.5km , ∴学生队伍行进的速度为:4.5÷0.9=5(km/h ),(2)∵通讯员经过0.5小时后回到学校,0.9+0.5=1.4,∴B 点的坐标为(1.4,0) 设线段AB 的解析式为:d 2=kt+b (k≠0),(0.9≤t≤1.4),又过点A (0.9,4.5)、B (1.4,0),∴0.9 4.51.40k b k b +=⎧⎨+=⎩,解得912.6k b =-⎧⎨=⎩,∴线段AB 的解析式为:d 2=-9t+12.6,(0.9≤t≤1.4).∵通讯员按原来的速度随即追赶队伍,∴速度为4.5÷0.5=9千米/小时.设线段BC 的解析式为:d 2=9t+m ,(1.4≤t≤3.15),又过点B (1.4,0),∴0=9×1.4+m ,解得:m=-12.6,∴线段BC 的解析式为:d 2=9t-12.6,(1.4≤t≤3.15),∴2912.69120.9 1.41.43..156t t t d t ≤≤≤≤-+⎧=⎨-⎩()(). (3)设线段OC 的解析式为:d 1=nt (n≠0),又过点A (0.9,4.5),∴4.5N=0.9,∴n=5.∴线段OC 的解析式为:d 1=5t ,设时间为t 小时,学生队伍与通讯员相距不超过3千米,下面分两种情况讨论: ①当0.9≤t≤1.4时,d 1-d 2≤3,即5t-(-9t+12.6)≤3, 解得:3935t ≤, ∴390.935t ≤<. ②当1.4≤t≤3.15时,d 1-d 2≤3即5t-(9t-12.6)≤3,解得:t≥2.4,∴2.4≤t≤3.15.故通讯员离开队伍后他们能用无线对讲机保持联系时t 的取值范围为390.935t ≤<或2.4≤t≤3.15.考点:一次函数的应用.16.(1)3600,20;(2)①当50≤x ≤80时,y=55x ﹣800.②当小颖到达缆车终点时,小亮离缆车终点的路程是1100米.【解析】试题分析:(1)纵坐标为小亮行走的路程,其休息的时间为纵坐标不随x 的值的增加而增加;(2)根据当50≤x ≤80时函数图象经过的两点的坐标,利用待定系数法求得函数的解析式即可.试题解析:(1)3600,20;(2)①当50≤x ≤80时,设y 与x 的函数关系式为y=kx+b ,根据题意,当x=50时,y=1950;当x=80时,y=3600,∴⎩⎨⎧+=+=b k b k 803600501950,解得:⎩⎨⎧-==80055b k ,∴函数关系式为:y=55x ﹣800.②缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500.∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.考点:一次函数的应用.17.(1)a=4.5,60(千米/小时);(2)y=40x+180(4.5≤x≤7);(3)乙车出发56小时或11 6小时或254小时,乙与甲车相距15千米.【解析】试题分析:(1)根据图像,由乙在途中的货站装货耗时半小时易得a=4+0.5=4.5,甲车先出发40分钟后,乙车出发,∴甲从A到B共用了(23+7)小时,行驶了460千米,然后利用速度公式计算甲的速度;(2)求出D,E点的纵坐标是解题的关键,可设乙开始的速度为v 千米/小时,则乙4.5小时后的速度是(v-50)千米/小时,利用乙两段时间内的路程和为460列方程解出v,再乘以4就是D,E点的纵坐标,然后用待定系数法利用E,F两点坐标求线段EF所表示的y与x的函数关系式,由图像直接可以写出自变量x的取值范围;(3)甲车前40分钟的路程为60×23=40千米,∴C(0,40),然后利用待定系数法求出直线CF的解析式和直线OD的解析式,根据乙车的不同位置,利用函数值相差15列方程讨论求解.试题解析:(1)∵乙在途中的货站装货耗时半小时,∴a=4+0.5=4.5小时,a值为4.5;由题意可知:甲从A到B共用了(23+7)小时,行驶了460千米,∴甲车的速度是:460÷(23+7)=60(千米/小时);(2)设乙开始的速度为v千米/小时,则乙4.5小时后的速度是(v-50)千米/小时,根据题意列方程:4v+(7﹣4.5)(v﹣50)=460,解得v=90(千米/小时),∴4v=360,∴D(4,360),E(4.5,360),设直线EF的解析式为y=kx+b,把E(4.5,360),F(7,460)代入得:4.53607460k bk b+=⎧⎨+=⎩,解得:40180kb=⎧⎨=⎩,所以线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)甲车前40分钟的路程为60×23=40千米,∴C(0,40),设直线CF的解析式为y=mx+n,把C(0,40),F(7,460)代入得:40 7460 nm n=⎧⎨+=⎩,解得:6040mn=⎧⎨=⎩,所以直线CF的解析式为y=60x+40,用点(4,360)易求出直线OD的解析式为y=90x(0≤x≤4),设甲乙两车中途相遇点为G,由60x+40=90x,解得x=43小时,即乙车出发43小时后,甲乙两车相遇根据乙车的不同位置,利用函数值相差15列方程讨论:①当乙车在OG段时,甲车在乙车前15千米,得60x+40﹣90x=15,解得x=56,介于0~43小时之间,符合题意;②当乙车在GD段时,乙车在甲车前15千米,得90x﹣(60x+40)=15,解得x=116,介于43~4小时之间,符合题意;③当乙车在DE段时,由图像知,乙车在甲车前,所以360﹣(60x+40)=15,解得x=6112,不介于4~4.5之间,不符合题意;④当乙车在EF段时,由图像知乙车在甲车前,所以40x+180﹣(60x+40)=15,解得x=254,介于4.5~7之间,符合题意.综上所述:乙车出发56小时或116小时或254小时,乙与甲车相距15千米.考点:一次函数的实际应用.18.(1)y=120x-140(2≤x≤4.5);(2)E点的坐标为(3.5,280),即表示当货车出发3.5小时时货车和轿车相遇;(3)12、114、174、378.【解析】试题分析:(1)设线段CD对应的函数解析式为y=kx+b,由待定系数法求出其解即可;(2)根据两图象相交的交点指的是两车相遇解答即可.(3)先由货车和轿车相距30千米列出方程解答即可.试题解析:(1)设线段CD对应的函数解析式为y=kx+b,可得:1002400 4.5k bk b=+=+⎧⎨⎩,解得:120140 kb==-⎧⎨⎩.所以线段CD对应的函数表达式为:y=120x-140(2≤x≤4.5);(2)由图象可得:直线OA的解析式为:y=80x,根据两图象相交的交点指的是两车相遇,可得:80x=120x-140,解得:x=3.5,把x=3.5代入y=80x,得:y=280;所以E点的坐标为(3.5,280),即表示当货车出发3.5小时时货车和轿车相遇;(3)设货车出发xh后,可得:120x-140-30=80x,解得:x=4.25.故答案为:4.25.(3)由题意知,B(13,0),∴BC段解析式为y=60x-20(13≤x≤2),货车与轿车相距30km有四种情况:1)当13≤x≤2时,80x-(60x-20)=30,解得x=12;2)当2<x≤72时,80x-(120x-140)=30,解得x=114;3)当72<x≤92时,120x-140-80x=30,解得x=174;4)当92<x≤5时,400-80x=30,解得x=378;∴x=12、114、174、378.考点:一次函数的应用.。

一次函数图像与行程问题练习题

一次函数图像与行程问题练习题

一次函数图像与行程问题练习题4、甲、乙两城市之间开通了动车组高速列车.已知每隔1 h有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的距离s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象.请根据图中的信息,解答下列问题:(1)点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发车时间 _____ 1 h(填”早”或”晚”),点B的纵坐标300的意义是 _______ ;(2)请你在图中直接画出第二列动车组列车离开甲城的路程s(km)与时间t (h)的函数图象;(3)若普通快车的速度为100 km/h,①求BC的解析式,并写出自变量t的取值范围;②第二列动车组列车出发多长时间后与普通快车相遇?③请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔时间。

5、甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时)。

图6中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像(线段AB表示甲出发不足2小时因故停车检修)。

根据图像回答(1)求乙车所行路程y与时间啊x的函数解析式。

(2)求两车在途中第二次相遇时,它们距出发地的路程。

(3)乙车出发多长时间,两车在途中第一次相遇?6、下图表示甲、乙两名选手在一次自行车越野赛中路程y(km)随时间x(min)变化的图象(全程)。

根据图象回答下列问题:(1)比赛开始多少分钟时,两人第一次相遇?(2)这次比赛全程是多少千米?(3)比赛开始多少分钟时,两人第二次相遇?7、设甲,乙两车在同一直线公路上匀速行驶,开始时甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是_________米秒.8、如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距420 千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?9、从甲地到乙地,先是一段平路,然后是一段上坡路。

河北省滦县第三中学八年级数学下册一次函数中的行程问题同步练习新人教版

河北省滦县第三中学八年级数学下册一次函数中的行程问题同步练习新人教版

1.A , B 两城相距 800 千米,甲、乙两车同时从 A 城出发驶向 B 城,甲车抵达 B 城后立刻返回.如图是它们离 A 城的距离y(千米)与行驶时间x (小时)之间的函数图象.(1)求甲车返回过程中y 与 x 之间的函数分析式,并写出自变量x 的取值范围;(2)当它们行驶10 小不时,两车相遇,求乙车速度.【答案】(1)当 8<≤ 16时,设,∵图象过( 8, 800),( 16,0)两点,代入获得方程组∴解得 k=-100 ,b=1600∴y=-100x+1600 .(2)当 x=10 时, y=600y=-100 × 10+1600=600(千米 / 小时).2.某物流企业的快递车和货车每日来回于A、 B 两地,快递车比货车多来回一趟.以下图表示快递车距离 A 地的行程(单位:千米)与所用时间(单位:时)的函数图象.已知货车比快递车早 2 小时出发,抵达 B 地后用 2 小时装卸货物,而后按原路、原速返回,结果比快递车最后一次返回A地晚 2 小时.(1) 请在以下图中画出货车距离A地的行程(千米)与所用时间( 时) 的函数图象;(2)求两车在途中相遇的次数(直接写出答案);(3)求两车最后一次相遇时,距离A 地的行程和货车从 A 地出发了几小时.(1) 图像如图(2)4次(3)如图,设直线的分析式为,∵图象过 (10,0) ,,解得y=-40x+400.①设直线的分析式为,∵图象过,,.②解由①,②构成的方程组得x=20/3 , y=400/3最后一次相遇时距离地的路程为 400/3km,货车从地出发26/3小时.3. 一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶. 设行驶的时间为x( 时 ) ,两车之间的距离为y( 千米 ) ,图中的折线表示从两车出发至快车抵达乙地过程中 y 与 x 之间的函数关系.(1)依据图中信息,求线段AB所在直线的函数分析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40 千米,若快车从甲地抵达乙地所需时间为t 时,求 t 的值;(1.5 , 70)、( 2,0),而后利用待定系数法,确立直线分析式即可.【答案】( 1)线段 AB 所在直线的函数分析式为: y= kx + b,将( 1.5 , 80)、( 2, 0)代入得:,解得:,因此线段AB所在直线的函数分析式为:y=- 160x+ 320 ,当 x= 0 时,y= 320,因此甲乙两地之间的距离320 千米.(2)设快车的速度为m千米 / 时,慢车的速度为n 千米 / 时,由题意得:,解得:,因此快车的速度为80 千米 / 时,因此.4.已知西宁机场和玉树机场相距800 千米,甲、乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB、 CD分别表示甲、乙两机离玉树机场的距离S(百千米)和所用去的时间t (小时)之间的函数关系的图象(注:为了方便计算,将平面直角坐标系中距离S 的单位定为(百千米)).察看图象回答以下问题:(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞翔速度每小时各为多少千米?(2)求甲、乙两机各自的 S 与 t 的函数关系式;【答案】解:(1)由图像可知乙机在甲机出发后 1 小时才从玉树机场出发;甲机的速度== 160 千米 / 每小时,乙机的速度=千米/每小时;(2)设甲机的函数关系式为S甲=k1t+b1,因图像过点A(0, 8)和点 B(5, 0)将两点坐标代入可得解得,得甲机的函数关系为S 甲 =t+8 ;设乙机的函数关系式为S 乙 =k2t+b2 ,因图像过点C( 2, 0)和点D( 5, 8)将两点坐标代入可得解得得乙机的函数关系式为S 乙 =8/3t - 16/3 ;(3)由解得因此两机相遇时,乙飞机飞翔了小时;乙飞机离西宁机场为8- 3=5 千米。

(word完整版)八年级数学一次函数图象题(行程问题)

(word完整版)八年级数学一次函数图象题(行程问题)

八年级数学一次函数图象题(行程问题)1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③ B、仅有①② C.仅有①③ D.仅有②③2、甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.上图2是两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)请将图中的()内填上正确的值,并直接写出甲车从A到B的行驶速度;(2)求从甲车返回到与乙车相遇过程中y与x之间的函数关系式,并写出自变量x的取值范围.(3)求出甲车返回时行驶速度及A、B两地的距离.3.甲船从A 港出发顺流匀速驶向B 港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B 港.乙船从B 港出发逆流匀速驶向A 港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A 港的距离y 1、y 2(km )与行驶时间x (h )之间的函数图象如图所示. (1)写出乙船在逆流中行驶的速度. (2)求甲船在逆流中行驶的路程. (3)求甲船到A 港的距离y 1与行驶时间x 之间的函数关系式. (4)求救生圈落入水中时,甲船到A 港的距离.4、某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y 甲(千米)、y 乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题: (1)由于汽车发生故障,甲组在途中停留了 小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如右图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数关系式; (2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.6、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图10中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.)距离为y 1(km ),出租车离甲地的距离为y 2(km ),客车行驶时间为x (h ),y 1,y 2与x 的函数关系图象如图12所示:(1)根据图象,直接写出....y 1,y 2关于x 的函数关系式。

【初中数学】一次函数--行程问题(题目+答案)

【初中数学】一次函数--行程问题(题目+答案)

一次函数——行程问题(经典)1.A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.2.甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙3.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.(1)小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时.(2)小张出发几小时与小李相距15千米?(3)若小李想在小张休息期间与他相遇,则他出发的时间x 应在什么范围?(直接写出答案)x/小时y /千米600146OFEC D4.周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米)与x (小时)之间的函致图象如图所示,(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时;(2)求线段CD 所表示的函敛关系式;(3)问小明能否在12:00前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程,5.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系.(1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像.(温馨提示:请画在答题卷相对应的图上)6.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h)后,与.B .港的距离....分别为1y 、2y (km),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为km, a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.y/km 90甲乙7.某物流公司的甲、乙两辆货车分别从A、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离(千米)与乙车出发(时)的函数的部分图像(1)A、B 两地的距离是千米,甲车出发小时到达C 地;(2)求乙车出发2小时后直至到达A地的过程中,与的函数关系式及的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米8.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。

苏科版八年级上册数学 用一次函数解决问题同步练习(含解析)

苏科版八年级上册数学 用一次函数解决问题同步练习(含解析)

6.4用一次函数解决问题同步练习一.选择题1.如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x <5)()A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+10 2.某公司市场营销部的个人收入y(元)与其每月的销售量x(万件)成一次函数关系,其图象如图所示,营销人员没有销售量时最低收入是()A.1000 B.2000 C.3000 D.40003.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.下列说法错误的是()A.乙晚出发1小时B.乙出发3小时后追上甲C.甲的速度是4千米/小时D.乙先到达B地4.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A.10米/秒B.11米/秒C.12米/秒D.13米/秒5.小明用刻度不超过100℃的温度计来估计某食用油的沸点温度:将该食用油倒入锅中,均匀加热,每隔10s测量一次锅中的油温,得到如下数据:时间t(单位:S)0 10 20 30 40油温y(单位:℃)10 30 50 70 90当加热100s时,油沸腾了,则小明估计这种油的沸点温度是()A.150℃B.170℃C.190℃D.210℃6.小红从家出发去晨跑,她离家的距离y(米)与时间x(分)的关系图象如图所示.下列结论错误的是()A.出发10分钟时,小红距离家1000米B.整个晨跑过程一共走了3600米C.返回时速度为60米/分D.去时的平均速度小于返回速度7.如图,甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离为S(km)和行驶时间t(h)之间的函数关系的图象如图所示,则下列结论错误的是()A.A、B两地相距18kmB.甲在途中停留了0.5小时C.全程行驶时间乙比甲少用了1小时D.乙出发后0.5小时追上甲8.A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1.l2表示两人离A地的距离s(km)与时间t(h)的关系,结合图象,下列结论错误的是()A.l1是表示甲离A地的距离与时间关系的图象B.乙的速度是30km/hC.两人相遇时间在t=1.2hD.当甲到达终点时乙距离终点还有45km9.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同10.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10﹣3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示.如果每毫升血液中含药量为5微克或5微克以上,对于治疗疾病是有效的,那么该药治疗的有效时间长是()小时.A.6 B.3 C.D.二.填空题11.某高速列车公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,已知行李质量为30kg时,需付行李费4元;行李质量为40kg时,需付行李费12元,则旅客最多可免费携带kg行李.12.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为L.13.甲、乙两地之间相距960千米,小新开车从甲地出发前往乙地,小白骑车从乙地出发前往甲地,已知小新比小白先出发1小时,两者均匀速行驶,当小新到达乙地后立即原路原速返回,在返回途中再次与小白相遇后两者都停止,如图是小新、小白两人之间的距离y(千米)与小新出发的时间x(小时)之间的图象,则当小新与小白第二次相遇时,小白离乙地的距离千米.14.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,下列结论:①甲、乙两地相距1800千米;②点B的实际意义是两车出发后4小时相遇;③动车的速度是280千米/小时;④m=6,n=900.其中正确的是.(写出所有正确结论的序号)15.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离S(千米)与时间t(时)之间的函数关系可以用图中的折线表示.现有如下信息:(1)小李到达离家最远的地方的时间是14时;(2)小李第一次休息时间是10时;(3)11时到12时,小李骑了5千米;(4)返回时,小李的平均车速是10千米/时.其中,正确的信息有(填序号).三.解答题16.一辆汽车在公路上匀速行驶,下表记录的是汽车在加满油后油箱内剩余油量y(升)与行驶时间x(时)之间的关系:行驶时间x(时)0 1 2剩余油量y(升)100 80 60(1)小明分析上表中所给的数据发现x,y成一次函数关系,试求出它们之间的函数表达式(不要求写出自变量的取值范围);(2)求汽车行驶4.2小时后,油箱内剩余油多少升?17.某社区的游泳馆按照顾客游泳的次数收取费用,每次的全票价为40元.在盛夏即将来临时,为吸引更多的顾客再次光顾,推出了以下两种收费方式.方式一:先交250元会员费,每次游泳按照全票价的7.5折收取费用;方式二:第一次收全票价,以后每次按照全票价的9.5折收取费用.(1)按照方式一的总费用为y1,按照方式二的总费用为y2,请直接写出y1,y2与游泳次数x的函数关系式;(2)去该游泳馆的次数等于次时,两种方式收取总费用一样.18.在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售80只A 型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式,并求出自变量x的取值范围;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?参考答案一.选择题1.解:由题意可得:y=2(5﹣x)=10﹣2x.故选:D.2.解:设y与x的函数关系为y=kx+b,由题意得:,解得:,∴y=5000x+2000,当x=0时,y=5000×0+2000=2000,∴营销人员没有销售量时最低收入是2000元,故选:B.3.解:由图象可得,乙晚出发1小时,故选项A正确;乙出发3﹣1=2小时追上甲,故选项B错误;甲的速度是12÷3=4(千米/小时),故选项C正确;乙先到达B地,故选项D正确;故选:B.4.解:设甲车的速度为v1m/s,乙车的速度为v2m/s,由图象可知:开始时,乙车与甲车相距300米,乙车用100秒追上了甲车,∴100v1+300=100v2,装完货物后,甲乙两车行驶了20秒后,两车相距500米,∴20v1+20v2=500,∴,解得:,故选:B.5.解:设y=kt+b,根据题意,得:,解得,∴y=2t+10,当t=100时,y=2×100+10=210,即当加热100s时,油沸腾了,小明估计这种油的沸点温度是210℃,故选:D.6.解:由图象可得:x=10时y=1000,即出发10分钟时,小红距离家1000米,故本选项不合题意;B.整个晨跑过程一共走了1800×2=3600(米),故本选项不合题意;C.返回时速度为:1800÷(30﹣20)=180(米/分),故本选项符合题意;D.去时的平均速度为:1800÷20=90(米/分),即去时的平均速度小于返回速度,故本选项不合题意.故选:C.7.解:A.由图可得,s为18千米,即A、B两地的距离是18千米,故A选项不合题意;B.甲在0.5小时至1小时之间,S没有变化,说明甲在途中停留了0.5小时,故B选项不合题意;C.由图可得,甲行驶的时间为2小时,乙行驶的时间为1.5小时,所以全程乙比甲少用了0.5小时,故C选项符合题意;D.图中P点的实际意义是:甲,乙相遇,此时乙出发了0.5小时,故D选项不合题意.故选:C.8.解:∵甲先出发,∴表示甲离A地的距离与时间关系的图象是l,1故选项A不合题意;乙的速度是:90÷(3.5﹣0.5)=90÷3=30(km/h),故选项B不合题意;设甲对应的函数解析式为y=ax+b,,解得,∴甲对应的函数解析式为y=﹣45x+90,设乙对应的函数解析式为y=cx+d,,解得,即乙对应的函数解析式为y=30x﹣15,,解得,即甲出发1.4小时后两人相遇.故选项C符合题意;90﹣30×(2﹣0.5)=45(km),即当甲到达终点时乙距离终点还有45km.故选项D不符合题意.故选:C.9.解:由图象可得,甲园的门票为60元,故选项A正确;乙园草莓优惠前的销售价格是:200÷5=40(元/千克),故选项B正确;=0.5,即乙园超过5kg后,超过的部分价格优惠是打5折,故选项C正确;若顾客采摘12kg草莓,甲园花费为:60+12×40×0.6=344(元),乙园的花费为:40×5+(12﹣5)×40×0.5=340(元),∵344>340,∴若顾客采摘12kg草莓,那么到甲园比到乙园的总费用高,故选项D错误;故选:D.10.解:当x≤2时,设y=k1x,把(2,6)代入上式,得k1=3,∴x≤2时,y=3x;当x>2时,设y=k2x+b,把(2,6),(10,3)代入上式,,解得,∴y=;把y=5代入y=3x,得x1=;把y=5代入y=,得x2=,则x2﹣x1=3小时.即该药治疗的有效时间长是3小时.故选:B.二.填空题11.解:设行李费y(元)与行李质量x(kg)的函数关系式为y=kx+b,∵行李质量为30kg时,需付行李费4元;行李质量为40kg时,需付行李费12元,∴,解得,即行李费y(元)与行李质量x(kg)的函数关系式为y=0.8x﹣20,当y=0时,0=0.8x﹣20,解得x=25,故答案为:25.12.解:由图象可得,每分钟的进水量为:20÷4=5(L),每分钟的出水量为:5﹣(30﹣20)÷(12﹣4)=5﹣10÷8=5﹣1.25=3.75(L),故答案为:3.75.13.解:设小新的速度为akm/h,小白的速度为bkm/h,根据题意得:,解得,,设第二次小新追上小白的时间为m小时,120m﹣20(m﹣1)=960,解得,m=9.4,∴当小新与小白第二次相遇时,小白离乙地地的距离为:20×(9.4﹣1)=168(千米).故答案为:168.14.解:由图象可知,甲、乙两地相距1800千米,故①说法正确;点B的实际意义是两车出发后4小时相遇,故②说法正确;动车的速度为:1800÷4﹣150=300(km/h),故③说法错误;150×4÷300+4=6,∴m=6,n=150×6=900,故④说法正确;∴正确的是①②④.故答案为:①②④.15.解:由图象可得,小李到达离家最远的地方的时间是14时,故(1)正确;小李第一次休息时间是10时,故(2)正确;11时到12时,小李骑了25﹣20=5(千米),故(3)正确;返回时,小李的平均车速是30÷(16﹣14)=15(千米/小时),故(4)错误;故答案为:(1)(2)(3).三.解答题16.解:(1)由x,y成一次函数关系可设y=kx+b,将(0,100),(1,80)代入上式得:,解得,则它们之间的函数表达式为:y=﹣20x+100;(2)当x=4.2时,由y=﹣20×4.2+100=16,即汽车行驶4.2小时后,油箱内余油16升.17.解:(1)根据题意,可得:y1=250+40×0.75x=30x+250;y2=40+40×0.95(x﹣1)=38x+2.(2)令y1=y2,可得:30x+250=38x+2,解方程,得x=31,故答案为31.18.解:(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)①根据题意得,y=0.15x+0.2(2000﹣x),即y=﹣0.05x+400;根据题意得,,解得500≤x≤1000,∴y=﹣0.05x+400(500≤x≤1000);②∵y=﹣0.05x+400,k=﹣0.05<0;∴y随x的增大而减小,∵x为正整数,∴当x=500时,y取最大值,则2000﹣x=1500,即药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大.。

八年级数学(下)第十九章《一次函数》同步练习(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是A.B.C.D.【答案】A【解析】A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.2.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是A.B.C.D.【答案】A【解析】纵坐标表示的是速度、横坐标表示的是时间,由题意知:小明走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项,故选A.3.如图所示的是水滴入一个玻璃容器的示意图(滴水速度保持不变),下列图象能正确反映容器中水的高度(h)与时间(t)之间的关系的是A.B.C.D.【答案】C【解析】由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选C.4.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小【答案】D【解析】A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不超过4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是A.小明中途休息用了20分钟B.小明休息前爬山的速度为每分钟60米C.小明在上述过程中所走路程为7200米D.小明休息前后爬山的平均速度相等【答案】C【解析】A、小明中途休息的时间是:60-40=20分钟,故本选项正确;B、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确;C、小明在上述过程中所走路程为4800米,故本选项错误;D、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确,故选C.6.小明从家里出发到超市进行购物后返回,小明离开家的路程y(米)与所用时间x(分)之间的关系如图,则下列说法不正确的是A.小明家到超市的距离是1000米B.小明在超市的购物时间为30分钟C.小明离开家的时间共55分钟D.小明返回的速度比去时的速度快【答案】D【解析】A.观察图象发现:小明家距离超市1000米,故正确;B.小明在超市逗留了40−10=30分钟,故正确;C.小明离开家的时间共55分钟,故正确;D.小明去时用了10分钟,回时用了15分钟,所以小明从超市返回的速度慢,故错误,故选D.二、填空题:请将答案填在题中横线上.7.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升__________元.【答案】5.22【解析】单价=522÷100=5.22元,故答案为:5.22.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是__________.【答案】-1<x<1或x>2【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2,故答案为:-1<x<1或x>2.9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A 地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为__________.【答案】8点40【解析】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40,故答案为:8点40.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【解析】如图,11.如图所示是某港口从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?【解析】(1)根据函数图象可得:13时港口的水最深,深度约是7.5 m.(2)根据函数图象可得:8时港口的水最浅,深度约是2 m.(3)根据函数图象可得:8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.12.一游泳池长90 m,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?【解析】(1)观察图形甲游了三个来回,乙游了两个来回.(2)观察图形可得甲游了180 s,游泳的速度是90×6÷180=3米/秒.(3)在整个游泳过程中,两个图象共有5个交点,所以甲、乙两人相遇了5次.13.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距__________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为__________小时;(3)乙从出发起,经过__________小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【解析】(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为:10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为:1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为:3.(4)乙骑自行车出故障前的速度与修车后的速度不一样,理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.。

人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)

人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)

参考答案
2.(1)100 ; 80 (2) y 40t 20 ,教官们领取装备所用的时间 0.5h ; (3)客车第二次出发时的速度至少是 60km/h .
3 即按原路返回,结果比货车早一个小时到达甲地.如图是两车距各自出发地的距离 y( km ) 与货车行驶时间 x(h)之间的函数图象,结合图象回答下列问题:
(1)图中 a 的值是______;
(2)求轿车到达乙地再返回甲地所花费的时间; (3)轿车在返回甲地的过程中与货车相距 30km ,直接写出货车已经从乙地出发了多长时间? 15.小聪和小慧沿图 1 中的风景区游览,约好在飞瀑见面.小聪驾驶电动汽车从宾馆出发, 小慧也于同一时间骑电动自行车从塔林出发:图 2 中的图象分别表示两人离宾馆的路程 y(km) 与时间 x(h) 的函数关系,试结合图中信息回答:
8.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用 时 30 分钟,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度
为 60km / h .两车之间的距离 y km 与慢车行驶的时间 x h 的函数图象如图所示.
(1)求出图中线段 AB 所表示的函数表达式; (2)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.
(1) a ________, b __________; (2)求出姐姐从家出发直到返回家的过程中,姐姐离家的距离 y1 与时间 t 之间的关系式; (3)在姐姐去体育场的过程中,直接写出 t 为何值时,两人相距 400m .
4.港口 A 、 B 、 C 依次在同一条直线上,甲、乙两艘船同时分别从 A 、 B 两港出发,匀速 驶向 C 港,甲、乙两船与 B 港的距离 y (海里)与行驶时间 x (时)之间的关系如图所 示.

专题2.13一次函数的应用:行程问题大题专练(培优强化30题)-2022-2023学年八年级数学上学

专题2.13一次函数的应用:行程问题大题专练(培优强化30题)-2022-2023学年八年级数学上学

2022-2023学年八年级数学上学期复习备考高分秘籍【浙教版】专题2.13一次函数的应用:行程问题大题专练(培优强化30题)一、解答题1.(2022·浙江金华·八年级期末)小刚与小慧两人相约末登东舰峰,人距地面的高y(米)与登山时间x(分)之间函数图象如图所示,根据图象所提信息解答下列问题:(1)小刚登山上升的速度是每分钟米,小慧在A地距地面的高度b为米;(2)若小慧提速后,登山上升速度是小刚登山上升速度的3倍,请求出小慧登山全程中,距地面高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间后,两人距地面的高度差为70米?2.(2019·浙江湖州·八年级期末)下图是某汽车行驶的路程s(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9min内的平均速度是_____________km/min;(2)汽车在中途停留了_____________min;(3)当16≤t≤30时,求S与t的函数关系式.3.(2022·浙江丽水·八年级期末)小聪和小慧去某风景区游览,约好在飞瀑见面.上午7:00,小聪乘电动车从古刹出发,沿景区公路(图1)去飞瀑,车速为30km/h.小慧也于上午7:00从塔林出发,骑电动自行车沿景区公路去飞瀑,车速为20km/h.小聪离古刹的路程s1(km)与时间t(h)的函数关系如图2所示.试结合图中信息回答:(1)写出小慧离古刹的路程s2(km)与时间t(h)的函数关系并画出其函数图象.(2)当小聪到达飞瀑时,小慧离飞瀑还有多少千米?(3)出发多少时间时,两人相距5km?4.(2021·浙江衢州·八年级期末)近日开化县某学校组织部分学生到衢州市中小学素质教育实践基地开展研学旅行活动.一部分师生乘坐大客车先从学校出发.余下的三人12分钟后乘坐小汽车沿同一路线出发,行继续行驶.两车距离学校的路程驶过程中发现某处风景优美,停下来欣赏拍照12分钟,再以出发时速度的87S(km)与行驶时间t(h)之间的函数关系如图.请结合图象解决下列问题:(1)大客车的速度为千米/时,小汽车前一段路程的行驶速度为千米/时.(2)求大客车出发后经过多少时间被小汽车第二次追上.5.(2022·浙江宁波·八年级期末)甲,乙两同学住在同一小区,是某学校的同班同学,小区和学校在一笔直的大街上,距离为2560米,在该大街上,小区和学校附近各有一个公共自行车取(还)车点,甲从小区步行去学校,乙比甲迟出发,步行到取车点后骑公共自行车去学校,到学校旁还车点后立即步行到学校(步行速度不变,不计取还车的时间).设甲步行的时间为x(分),图1中的线段OM和折线P−Q−R−T分别表示甲、乙同学离小区的距离y(米)与x(分)的函数关系的图象;图2表示甲、乙两人的距离s(米)与x(分)的函数关系的图象(一部分).根据图1、图2的信息,解答下列问题:(1)分别求甲、乙两同学的步行速度与乙骑自行车的速度;(2)求乙同学骑自行车时,y与x的函数关系式和a的值;(3)补画完整图2,并用字母标注所画折线的终点及转折点,写出它们的坐标.6.(2022·浙江舟山·八年级期末)小玲和小东姐弟俩分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30分钟.小东骑自行车以300米/分钟的速度直接回家,两人离家的路程y(米)与各自离开出发地的时间x(分钟)之间的函数图象,如图所示:(1)家与图书馆之间的路程为多少米?小玲步行的速度为多少?(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)当两人相遇时,他们离图书馆多远?7.(2022·浙江衢州·八年级期末)在一条笔直的公路上,依次有A、C、B三地,甲、乙两人同时出发,甲从A地骑自行车匀速去B地,途经C地时因事停留1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行匀速从B地至A地.甲乙两人距A地的距离y(米)与时间x(分)之间的函数关系如图所示,请结合图象回答下列问题:(1)甲的骑行速度为米/分,点M的坐标为.(2)求甲返回时距A地的距离y(米)与时间x(分)之间的函数表达式(不需要写出自变量的取值范围);(3)甲返回A地的过程中,x为多少时甲追上乙?8.(2022·浙江宁波·八年级期末)为了更好地亲近大自然,感受大自然的美好风光,小聪和小慧去某风景区游览,景区入口与观景点之间的路程为3千米,他们约好在观景点见面.小聪步行先从景区入口处出发,中途休息片刻后继续以原速度前行,此时小慧乘观光车从景区入口处出发,他们沿相同路线先后到达观景点,如图,l1,l2分别表示小聪与小慧离景区入口的路程y(千米)与小聪离开的时间x(分)之间的关系.根据图像解决下列问题:(1)小聪步行的速度是______(千米/分),中途休息______分钟;(2)求小慧离景区入口的路程y(千米)关于小聪离开的时间x(分)的函数表达式;(3)小慧比小聪早几分钟到达观景点?请说明理由.9.(2022·浙江·台州市书生中学八年级期中)某暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)关于汽车行驶时间x(h)的函数图象如图所示:(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数表达式;(3)小刚一家出发2.2h时离目的地多远?10.(2022·浙江湖州·八年级期末)在一次机器猫抓机器鼠的展演测试中,鼠先从起点出发,1min后,猫从同一起点出发去追鼠,抓住鼠并稍作停留后,猫抓着鼠沿原路返回.鼠,猫距起点的距离y(m)与时间x(min)之间的关系如图所示.(1)在猫追鼠的过程中,猫的平均速度与鼠的平均速度的差是___________m/min;(2)求直线AB的函数表达式;(3)求猫返回过程中的平均速度.11.(2022·浙江·浦江县实验中学八年级阶段练习)甲、乙两人从同一点出发,沿着跑道训练400米速度跑,甲比乙先出发,并且匀速跑完全程,乙出发一段时间后速度提高为原来的3倍.设甲跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发__________s,乙提速前的160速度是每秒___________米.(2)m=__________,n=_________;(3)求当甲出发几秒时,乙追上了甲?12.(2022·浙江宁波·八年级期末)A、B两地相距480km,甲、乙两人驾车沿同一条公路从A地出发到B地.甲、乙离开A地的路程y(km)与时间x(h)的函数关系如图所示.(1)分别求出甲、乙离开A地的路程y(km)与时间x(h)的函数解析式及相应自变量的取值范围;(2)甲出发多少时间后两人相距20km?13.(2022·浙江衢州·八年级期末)如图1所示,甲,乙两车从A地匀速出发,沿相同路线前往同一目的地,km.设途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距503甲,乙两车与B地之间的距离分别为y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图2所示.(1)求甲车和乙车的速度.(2)求y1,y2与x的函数关系式.(3)当x为何值时,甲、乙两车相距5km?14.(2022·浙江·八年级专题练习)已知A,B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发半小时后,乙车从A地出发沿同一路线匀速追赶甲车,两车相遇后,乙车原路原速返回A 地.两车之间的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,请解答下列问题:(1)甲车的速度是千米/时,乙车的速度是千米/时,m=.(2)求乙车返回过程中,y与x之间的函数关系式.(3)当甲、乙两车相距160千米时,直接写出甲车的行驶时间.15.(2021·浙江宁波·八年级期末)已知甲、乙两物体沿同一条直线同时、同向匀速运动,它们所经过的路程s与所需时间t之间的函数表达式分别为s=v1t+a1和s=v2t+a2,图像如图所示。

(完整版)一次函数图像与行程问题练习题

(完整版)一次函数图像与行程问题练习题

1、小聪和小明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆.图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为________分钟,小聪返回学校的速度为________千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?2、如图已知函数y=-1/2x+b的图像与x轴y轴分别交于点A、B ,与函数y=x 的图像交于点M 点M的横坐标为2 在x轴上有一点P(a,0)(其中a>2)且过点P作x轴垂线分别交函数y=-1/2x+b和y=x的图像于点C、D⑴求点A坐标⑵若OB=CD,求a的值3、如图,一次函数y= -3/4x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(4,0),点B的坐标为(0,3);(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P 的坐标.4、甲、乙两城市之间开通了动车组高速列车.已知每隔1 h有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的距离s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象.请根据图中的信息,解答下列问题:(1)点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发车时间 _____ 1 h(填”早”或”晚”),点B的纵坐标300的意义是 _______ ;(2)请你在图中直接画出第二列动车组列车离开甲城的路程s(km)与时间t (h)的函数图象;(3)若普通快车的速度为100 km/h,①求BC的解析式,并写出自变量t的取值范围;②第二列动车组列车出发多长时间后与普通快车相遇?③请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔时间。

6.4 用一次函数解决问题同步练习 2022-2023学年苏科版数学八年级上册

6.4 用一次函数解决问题同步练习 2022-2023学年苏科版数学八年级上册

2022-2023学年八年级上册数学同步练习6.4用一次函数解决问题一、选择题1.如图所示,一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为()A B C D2.已知等腰三角形的周长为10cm,将底边长y(cm)表示成腰长x(cm)的函数关系式是y =10-2x,则其自变量x的取值范围是()3.甲骑自行车.乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图,从图象可知,当时间x等于()时,甲与乙相遇.A.10分钟B.25分钟C.20分钟D.30分钟4.如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元5.“高高兴兴上学来,开开心心回家去”,小明某天放学后,17时从学校出发,回家途中离家的路程S(百米)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()A.17时15分B.17时14分C.17时12分D.17时11分二、填空题6.某种茶杯每只2元,买这种茶杯x只,共花去y元,则y(元)与x(只)之间的函数关系式是_________.7.某校有125名教职工,在今年教师节庆祝活动中,工会拨款3000元,如果为每位教职工买一件价值x元的纪念品,尚余y元,则y(元)与x(元)之间的函数关系式是___________。

8.鲁老师乘车从学校到省城去参加会议,学校距省城200千米,行驶的平均速度为80千米/时,x 小时后鲁老师距省城y 千米,则y 与x 之间的函数关系式为______.9.为了增强公民的节水意识,某市制定了如下用水收费标准,每户每月的用水不超过10t 时,水价为每吨1.2元;超过10t 时,超过的部分按每吨1.8元收费,该市某户居民五月份用水xt (x >10),应交水费y 元,则y 关于x 的函数关系式为_______。

(含答案解析)一次函数应用题“行程问题”典型例题20题

(含答案解析)一次函数应用题“行程问题”典型例题20题
(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;
(2)求出线段AB所表示的函数表达式.
18.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.它们行驶的路程y(km)与时间x(h)的对应关系如图11所示.
(1)甲、乙两地相距多远?小轿车中途停留了多长时间?
3.在一条笔直的公 路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:
(1)请写出甲的骑行速度为米/分,点M的坐标为;
(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,
∴他离家的路程y=4000﹣300x,
自变量x的范围为0≤x≤ ,
(3)由图象可知,两人相遇是在小玲改变速度之前,
∴4000﹣300x=200x
解得x=8
∴两人相遇时间为第8分钟.
故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤ ;(3)第8分钟.
(1)求第一班车离入口处的路程 (米)与时间 (分)的函数表达式.
(2)求第一班车从人口处到达塔林所需的时间.
(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)
(含答案解析)一次函数应用题“行程问题”典型例题20题
学校:___________姓名:___________班级:___________考号:___________

一次函数的实际应用(行程问题)训练2021-2022学年人教版八年级下册数学

一次函数的实际应用(行程问题)训练2021-2022学年人教版八年级下册数学

人教版八年级下册数学一次函数的实际应用(行程问题)训练1.甲、乙两地的距离40千米,一辆汽车以m千米/分钟的速度从甲地向乙地行驶,行驶了9分钟发生故障停下维修,排除故障后提高速度行驶,刚好按预定时间到达乙地.如图是汽车行驶的路程S(千米)与时间t(分钟)的函数关系图象,观察图中所提供的信息,解答下列问题:(1)汽车在中途停了分钟;(2)当16≤t≤30时,求S与t的函数关系式;(3)假设汽车没有发生故障,以m千米/分钟的速度行驶是否可按预定时间到达乙地?2.甲、乙两车分别从A,B两地同时出发相向而行,6小时相遇.在行驶过程中乙车因故障停止行驶,排除故障后,乙车提高了速度且保持不变,继续行驶.甲车在行驶过程中速度保持不变.甲、乙两车的路程和y(km)与甲车行驶时间x(h)之间的函数关系如图所示(1)A,B两地的路程,甲车的速度是,乙车排除故障后的速度是;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个过程中,甲行驶多长时间时,甲与乙的路程相等?3.某山区的甲乙两地相距240km,一辆货车从甲地出发匀速开往乙地,货车出发2小时后,一辆小汽车从乙地出发匀速开往甲地,两车同时到达各自的目的地.已知两车行驶的路程之和y(km)与货车行驶的时间x(h)之间的函数关系如图所示.(1)货车的速度是 km/h,a的值为,小汽车行驶了小时到达甲地;(2)求小汽车出发后y与x之间的函数关系式,并写出b的值;(3)当两车相距100km时,求货车行驶的时间.4.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD 分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)请直接写出小泽出发多长时间,两人相距3千米.5.一辆货车从A地出发将一批物资运往B地,以80千米/时的速度行驶到中途的服务区C地休息了一段时间,然后提高车速继续向B地行驶,到达B地后用30分钟卸完物资.货车距A地的路程y(千米)与货车离开A地后经过的时间x(小时)的函数关系如图所示,请结合图象信息,解答下列问题:(1)A,B两地的路程为千米,a=.(2)货车在服务区C地休息了小时,b=.(3)求货车离开A地后,经过多少小时距A地300千米?6.在一条直线上的甲、乙两地相距240千米,快、慢两车同时出发,慢车从乙地驶向甲地,中途因故停车1小时后,继续按原速驶向甲地;快车从甲地驶向乙地,在到达乙地后,立即按原路原速返回到甲地.在两车行驶的过程中,两车距甲地的距离y(千米)与两车行驶时间x(小时)之间的函数图象如图所示,请结合图象解答下列问题:(1)求快、慢两车在行驶过程中的速度;(2)求两车第二次相遇时,距甲地的距离是多少千米?(3)求两车出发多长时间后,相距60千米?7.甲、乙两车分别从M、N两地同时出发.甲车匀速前往N地,到达N地立即以另一速度按原路匀速返回到M地;乙车匀速前往M地.设甲乙两车与M地之间的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)M、N两地之间的路程为千米,甲车从M地到达N地的行驶时间为小时.(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围.(3)直接写出当甲车与乙车之间的路程为100千米时甲车所用的时间.8.如图1,A,B两地之间有一条公路相连,公路中途穿过C地,甲、乙两车同时从相距480千米的A地匀速前往B 地,乙车比甲车先出发1小时,甲车到达C地后因有事按原路原速返回A地,乙车从A地直达B地,两车同时分别到达A地和B地.甲、乙两车距A地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题.(1)乙车的速度是千米/时,a的值是,A,C两地的距离是千米;(2)求甲车距A地的路程y与甲车出发时间x之间的函数关系式;(3)直接写出甲车出发后多长时间两车相距60千米.9.笑笑和爸爸同时从自家出发沿相同的路线去外婆家,途中要经过集市.笑笑骑自行车直接去外婆家,爸爸骑摩托车先把自家种的蔬菜拿到集市上卖完再去外婆家.图中的线段OD和折线OABC分别表示笑笑和爸爸从自家到外婆家过程中离自家的路程S(千米)与离自家时间t(分钟)的关系,请你根据图中给出的信息,解决下列问题.(1)笑笑家距离集市千米,笑笑家距离外婆家千米;爸爸骑摩托车从自家到集市的速度是千米/时,笑笑骑自行车的速度是千米/时.(2)笑笑从自家出发到集市用了多少时间?(3)爸爸卖完菜后,以60千米/时的速度赶到外婆家,结果比笑笑晚到了2分钟,请你计算爸爸卖菜用了多少时间?20.如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.①根据图象,写出当x≥3时该图象的函数关系式;②某人乘坐13km,应付多少钱?③若某人付车费30.8元,出租车行驶了多少千米?11.小明家,超市,公园在同一条直线上,且超市位于小明家和公园之间,小明从家骑自行车去公园,骑行一段时间后,想起没有带水,于是又折回到刚经过的超市,买到水后继续去公园,小明每一段的骑行均为匀速,根据小明骑车离家的距离y m与时间x min建立平面直角坐标系,根据图中提供的信息回答下列问题:(1)小明家到公园的距离是 m;(2)求线段CD的函数解析式,并直接写出x的取值范围;(3)当小明距家1200米时,请直接写出对应x的值.12.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)货车的速度是 km/h,B点坐标为;(2)在轿车行驶过程中,轿车行驶多长时间两车相遇?(3)直接写出:在行驶过程中,货车行驶多长时间,两车相距15千米?13.暑假即将来临,小明为自己制定了慢跑锻炼计划,某天小明从家出发沿解放路慢跑,已知他离家的距离s(千米)与时间(t分钟)之间的关系如图所示,请根据图象回答下列问题:(1)小明离开家的最远距离是多少千米?停留的时间是多少分钟?(2)小明在120分钟内共跑了多少千米?(3)小明在返回的过程中,什么时候离家的距离是2千米?14.小林从A地前往B地,到达后立刻返回.他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示.(1)求小林出发1.5小时后距A 地多远?(2)若在A ,B 之间有一C 地,C 与A 之间的距离为140千米,小林从去时途经C 地起,到返回时路过C 地,共用了3小时15分,求:①小林返回时的速度;②DE 的函数关系式及点E 的坐标15.已知小明的家、体育场、青少年活动中心在同一条直线上,下图的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到青少年活动中心去看书画展览然后散步回家.图中x 表示时间(单位是min ),y 表示到小明家的距离(单位是km ).请根据相关信息,解答下列问题:(1)填空:①小明在青少年活动中心停留了______min ;②小明从家到体育场的速度为______km/min ;③小明从青少年活动中心回家的平均速度为______km/min ;④在全过程中,当小明距家的距离为0.6km 时,他离开家的时间为______min ;(2)当045x ≤≤时,请直接写出y 与x 的关系式.16.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)当轿车刚到乙地时,此时货车距离乙地________千米;(2)当轿车与货车相遇时,求此时x的值.17.甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y (千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.(1)分别写出甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系式;(2)什么时间两车相距30km?(3)若两车相距不超过30km千米时可以通过无线电相互通话,直接写出两车都在行驶的过程中可以通过无线电通话时t的取值范围.18.周末,天气晴朗,小明骑自行车从家里出发到野外郊游.小明从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,小明离家后3小时到达乙地.如图是他们离家的路程y(千米)与小明离家时间x(小时)的函数图象.已知妈妈驾车的速度是小明骑自行车速度的3倍.(1)小明骑自行车的速度为________千米/小时,小明在甲地游玩的时间为________小时;(2)乙地距离小明家有________千米;(3)小明从家出发多少小时的时候被妈妈追上?此时离家多远?19.学校与图书馆在同一条笔直道路上,小明从学校去图书馆,小红从图书馆回学校,两人都匀速步行且同时出发,小红先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息填空,当t ______分钟,两人相遇,小明的速度为______米/分钟;(2)求出线段AB所表示的函数表达式.(3)当t为何值时,两人相距1000米?20.小明和小杰从同一地点去青浦郊野公园,小明坐公交车去,小杰因为有事晚出发,乘出租车以1.6千米/分钟的平均速度沿路追赶.图中1l,2l分别表示公交车与出租车在行驶中的路程(千米)与时间(分钟)的关系,根据图像解决下列问题:(1)小明早到了____分钟,公交车的平均速度为______千米/分钟;(2)小杰路上花费的时间是_____分钟,比小明晚出发_____分钟;(3)求出租车行驶过程中s与t的函数关系式,并写出定义域.。

初二年级一次函数练习题

初二年级一次函数练习题

初二年级一次函数练习题1. 问题描述假设小明花费30分钟骑自行车6公里到达朋友家,骑行速度是一个常数。

现在要求你使用一次函数来表示小明骑自行车的距离和时间关系,并回答以下问题:a) 小明骑行速度是多少?b) 如果他骑行15分钟,能骑多远?c) 如果他骑行的时间和距离比例相同,他需要骑多长时间才能骑行12公里?2. 解题过程为了表示小明骑行的距离和时间关系,我们可以使用一次函数的标准形式:y = kx + b,其中x表示时间,y表示距离。

由于骑行速度是一个常数,所以斜率k就代表小明的骑行速度。

a) 小明骑行速度是多少?根据已知条件,我们可以得到一组坐标点(30, 6),其中30表示时间(分钟),6表示距离(公里)。

将这组坐标点带入一次函数的标准形式:6 = k * 30 + b为了求解k和b的值,我们需要另外一个坐标点。

假设小明骑行15分钟能骑x公里,我们可以得到坐标点(15, x)。

带入一次函数的标准形式,得到:x = k * 15 + b将这两个带有参数的方程组合,并解方程组,可以得到k和b的值。

解方程的过程如下:6 = k * 30 + bx = k * 15 + b为了消去变量b,我们将第二个方程的左边乘以2,并将两个方程相减,得到:6 = k * 30 + b2x - 6 = 2k * 15 + 2b----------------------6 = -k * 30 - b + 2k * 15 + 2b-6 = -k * 30 + 2k * 15 - b + 2b-6 = -k * 30 + 2k * 15 + b化简方程,整理项,得到:-6 = -k * 30 + 2k * 15 + b-6 = k * 15 + b将上述方程和第一个方程相加,可以消去变量b,得到:6 + (-6) = k * 30 - k * 15 + 2k * 15 + b0 = k * 30 - k * 15 + 2k * 15化简方程,整理项,得到:0 = k * 30 + k * 150 = 2k * 15因为等式左边为0,所以k = 0 或者 k = 15。

人教版八年级下册数学一次函数应用题(行程问题)

人教版八年级下册数学一次函数应用题(行程问题)

人教版八年级下册数学一次函数应用题(行程问题)1.某暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y (km)关于汽车行驶时间x(h)的函数图象如图所示:(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数表达式;(3)小刚一家出发2.2h时离目的地多远?2.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往滨海公园.如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:(1)图中自变量是,因变量是;(2)小明家到滨海公园的路程为km,小明在中心书城逗留的时间为h;(3)小明出发小时后爸爸驾车出发;(4)小明从中心书城到滨海公园的平均速度为km/h,小明爸爸驾车的平均速度为km/h;(5)爸爸驾车经过小时追上小明.3.学校组织同学们去郊区实践活动,安排校车送同学们,大多数同学选择在学校乘车,学校还安排了第二个站点接学生,在第二个站点停车的时间为十分钟。

小明迟到了没有赶上校车,只能让爸爸开私家车从学校出发独自去目的地。

如图是校车和私家车离开学校的路程y千米随时间x分钟的变化图像。

认真分析图中的信息,回答下列问题:(1)小明迟到了分钟,先到目的地;(填小明或校车)(2)校车第二次开动后的速度是km/h;(3)小明出发后用多长时间追上校车?在距离目的地多远的地方追上校车?4.甲乙两人同时登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:(1)甲登山的速度是每分钟______米,乙提速时距地面的高度b为______米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式,并写出相应的定义域.5.甲、乙两人沿同一直道从A地去B地,甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离1y(单位:m)与时间x(单位:min)之间的函数关系如图所示.y(单位:m)与时间x之间的函数图;(1)在图中画出乙离A地的距离2(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.6.李老师每天驾车去离家15km远的学校需要半个小时,如图,线段OB表示李老师驾车离家的距离y1(km)与时间x(h)的函数关系、一天李老师驾车行驶6分钟在M 路口堵车,只好将车停在旁边的停车场,4分钟后改共享单车,比原计划驾车仅晚到10分钟.线段CD表示李老师改共享单车时离家的距离y2(km)与时间x(h)之间的函数关系式,线段DE表示李老师骑共享单车后离家的距离y(km)与时间x(h)之间的函数关系式.(1)求DE所在直线的解析式;(2)李老师发现骑共享单车经过N路口比驾车晚6分钟,N路口离李老师家多远?7.在一次机器猫抓机器鼠的展演测试中,鼠先从起点出发,1min 后,猫从同一起点出发去追鼠,抓住鼠并稍作停留后,猫抓着鼠沿原路返回.鼠,猫距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在猫追鼠的过程中,猫的平均速度与鼠的平均速度的差是___________m /min ;(2)求直线AB 的函数表达式;(3)求猫返回过程中的平均速度.8.甲、地相距300km ,一辆货车和一辆轿车先后从甲地匀速开往乙如图地,轿车晚出发1h .货车和轿车各自与甲地的距离y (单位:km )与货车行驶的时间x (单位:小时)之间的关系如图所示.(1)求出图中的m 和n 的值;(2)求出货车行驶过程中2y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)当轿车到达乙地时,求货车与乙地的距离.9.2021年12月,西安发生疫情,各地纷纷支援.宝鸡迅速组织500名医护人员和抗疫物资星夜出征行驶280km 驰援西安同心抗疫.如图,运输防疫物资的货车和载有医护人员的客车先后从宝鸡出发驶向西安,线段OA 表示货车离出发地宝鸡的距离()km y 与时间()h x 之间的函数关系,折线BCDE 表示客车离出发地宝鸡的距离()km y 与时间()h x 之间的函数关系.(1)载有医护人员的客车中途在高速服务站休息了一段时间,休息时间为______h .(2)求线段DE 对应的函数关系式.(3)客车从宝鸡出发后经过多长时间追上货车.10.“最是一年春好处”,小墩和小融约定好从各自家里出发,自驾去近郊踏青赏花,小墩家、小融家以及他们的目的地在同一条直线上,小墩从家出发1小时之后,小融才从家出发,先到的人在目的地等待.他们二人与小墩家的距离y (千米)与小墩行驶的时间x (小时)之间的关系如图所示,请根据图象回答下列问题:(1)小墩的速度为______千米/小时,小融的速度为______千米/小时;(2)当小融追上小墩时,他们与目的地的距离为多少千米?(3)小融从家里出发后,当两人相距10千米时,一辆花车沿同一路线从后面追上他们其中一人,已知这辆花车的速度为90千米/小时,当花车继续前行追上前方另一人时,11.为响应国家扶贫攻坚的号召,A 市先后向B 市捐赠两批物资,甲车以60km/h 的速度从A 市匀速开往B 市,甲车出发1h 后,乙车以90km/h 的速度从A 市沿同一条道路匀速开往B 市,甲、乙两车距离A 市的路程y (km )与甲车的行驶时间x (h )之间的关系如图所示.(1)m =______,n =______;(2)分别求出甲、乙两车行驶过程中y 关于x 的函数关系式;(3)求乙车出发多长时间,甲、乙两车之间的距离为30km .12.甲、乙两车从A 市去往B 市,甲比乙早出发了2个小时,甲到达B 市后停留一段时间返回,乙到达B 市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A 市的路程s (千米)与行驶时间t (小时)之间的函数图象.请结合图象回答下列问题:(1)A 、B 两市的距离是________千米,甲到B 市后,________小时乙到达B 市;(2)求甲车返回时的路程s (千米)与时间t (小时)之间的函数关系式()1013t ≤≤;(3)甲车从B 市开始往回返后,再经过几小时两车相距15千米?13.甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶S随时间(h)变化甲同学到达山顶休息1h后再沿原路下山,他们离山脚的距离(km)的图象如图所示,根据图象中的有关信息回答下列问题:(1)甲同学上山过程中S与t的函数解析式为__________;点D的坐标为__________.甲(2)若甲同学下山时在点F处与乙同学相遇,此时点F与山顶的距离为0.75km.①求甲同学下山过程中S与t的函数解析式;①相遇后甲、乙各自继续下山和上山,求当乙到达山顶时,甲与乙的距离是多少千米.14.某校因校门口主路修路,导致学生上下学改道往学校后面的小路绕行.小吴和小黄分别从同一个小区出发,沿着相同的路线上学.小吴骑行一段时间后,小黄坐小轿车出发,结果半路上遭遇堵车,当小吴追上小黄后,小黄下车坐小吴的自行车一起去学校.如图是小吴、小黄两人在上学过程中经过的路程y(m)与小吴出发时间x(s)的函数图像.(1)学校和小区相距__________m,小吴骑车的速度为__________m/s;间?(3)小吴和小黄何时相距520m?15.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发开向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系;折线BCD表示轿车离甲地距离y(km)与x(h)之间的函数关系.请根据图象,解答下列问题:(1)求线段CD对应的函数表达式;(2)求货车从甲地出发后多长时间与轿车相遇?16.如图,A、B两地相距100千米,甲骑电动车,乙骑摩托车分别从A、B两地出发,相向而行,假设它们都保持匀速行驶,l1表示甲到A地的距离y/千米和骑车时间x/时之间的函数关系;l2表示乙到A地的距离y/千米和骑车时间x/时之间的函数关系.(1)甲、乙两人的速度分别是多少?(3)若甲上午7时从A地出发,乙会在何时到达A地?17.小王骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离y(千米)与时间x(小时)的关系如图中折线所示,小李开车匀速从乙地到甲地,比小王晚出发一段时间,他距乙地的距离y(千米)与时间x(小时)的关系如图中线段AB所示.(1)甲地到乙地的距离是千米,小王途中休息了小时;(2)求小王骑自行车的速度,小李开车的速度;(3)求小王出发几小时与小李相遇?18.清明节小明上午9时从家里骑共享单车去净月森林公园郊游,途中休息了两次,小明离家的距离y(千米)与时间x(时)之间的函数关系可以利用图中的折线表示.根据图象回答下列问题:(1)小明家到净月森林公园的距离是千米,图中一共休息了时;(3)在小明从家到森林公园的路程中,求出距离小明家20千米处有一个超市,小明路过超市时的时间是几时.19.甲、乙两人从同一点出发,沿着跑道训练400米速度跑,甲比乙先出发,并且匀速跑完全程,乙出发一段时间后速度提高为原来的3倍.设甲跑步的时间为x (s ),甲、乙跑步的路程分别为1y (米)、2y (米),1y 、2y 与x 之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发__________s ,乙提速前的160速度是每秒___________米.(2)m =__________,n =_________;(3)求当甲出发几秒时,乙追上了甲?20.小明和小亮分别从家和图书馆同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达图书馆恰好用了30分钟.小亮骑自行车以300 m/min 的速度直接回家,两人离家的路程()m y 与各自离开出发地的时间()min x 之间的函数图象如图所示,根据图象信息解答下列问题:(2)求出点D 的坐标;(3)两人出发多长时间相遇?(4)求小亮离家的路程()m y 与()min x 的函数关系式;(5)直接写出两人出发多长时间相距1500 m .参考答案:1.(1)4h ;(2)y =120x -40(1≤x ≤3);(3)小刚一家出发2.2h 时离目的地156km2.(1)时间,路程(2)30,1.7(3)2.5(4)12,30 (5)233.(1)30,小明(2)30(3)小明出发后用了403分钟追上校车,在距离目的地253千米的地方追上校车 4.(1)10;30;(2)()3030211y x x =-≤≤5. (2)12min6.(1)y =24x −1(2)7km7.(1)1(2)458y x =-+(3)4m /min8.(1)m 的值是2.5,n 的值是4(2)()26005y x x ≤≤=(3)当轿车到达乙地时,货车与乙地的距离是60km .9.(1)0.5(2)y =100x -170 (3)19222h 10.(1)50,75(2)60千米(3)71.25千米或20千米11.(1)5,6(2)60y x =甲;9090y x =-乙(3)乙车出发1小时或3小时,甲、乙两车之间的距离为30km12.(1)120,5;(2)40520s t =-+;(3)1.25小时或2.75小时.13.(1)12S t =甲,()9,4 (2)①13S t =-+;①3km14.(1)4500,5(2)小黄在距离学校3000米处遭遇堵车,从小黄遇到堵车到小吴追上小黄用了100s(3)小吴出发248s 或352s 或496s 时两人相距520m .15.(1)y =110x -195(2.5≤x ≤4.5);(2)货车从甲地出发3.9小时后与轿车相遇.16.(1)甲的速度为20千米/小时,乙的速度为40千米/小时;(2)l 1的解析式为y =20x ,l 2的解析式为y =﹣40x +180;(3)乙上午9时出发,上午11时半到达A 地.17.(1)120,1(2)15千米/小时, 60千米/小时(3)小王出发335小时与小李相遇 18.(1)25;3(2)15﹣17时骑速最快;最快速度是12.5千米/时(3)小明路过超市时的时间是12.5时和15.4时19.(1)10,2(2)90,100(3)70秒20.(1)跑步的速度是200 m/min ,步行的速度是100 m/min(2)(403,0)(3)8 min(4)3004000y x =-+(5)5 min 和454min。

苏科版八年级数学上册第六章一次函数一次函数行程问题专题练习

苏科版八年级数学上册第六章一次函数一次函数行程问题专题练习

苏科版八年级数学上册第六章一次函数一次函数行程问题专题练习一次函数行程问题1.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y (千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.2.某个周末,小丽从家去园博园参观,同时妈妈参观结束从园博园回家,小丽刚到园博园就发现要下雨,于是立即按原路返回,追上妈妈后,两人一同回家(小丽和妈妈始终在同一条笔直的公路上行走)如图是两人离家的距离y(米)与小丽出发的时间x(分)之间的函数图象,请根据图象信息回答下列问题:(1)求线段BC的解析式;(2)求点F的坐标,并说明其实际意义;(3)与按原速度回家相比,妈妈提前了几分钟到家?并直接写出小丽与妈妈何时相距800米.3.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为________件,图中d值为________.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?4. 如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A 出发,沿A→B→C→D 路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.(1)参照图②,求a、b及图②中的c值;(2)求d的值;(3)设点P离开点A的路程为y1(cm),点Q到点A还需走的路程为y2(cm),请分别写出动点P、Q改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值.(4)当点Q出发秒时,点P、点Q在运动路线上相距的路程为25cm.【课堂练习】1.有一科技小组进行了机器人行走性能试验,在试验场地有A.B. C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A. B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是___米,甲机器人前2分钟的速度为___米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为___米/分;(4)求A. C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数中的行程问题
1.A,B两城相距800千米,甲、乙两车同时从A城出发驶向B城,甲车到达B 城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
(1)求甲车返回过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶10小时时,两车相遇,求乙车速度.
【答案】
(1)当8<≤16时,
设,
∵图象过(8,800),(16,0)两点,代入得到方程组
∴解得k=-100, b=1600
∴y=-100x+1600.
(2)当x=10时,y=600
y=-100×10+1600=600(千米/小时).
2.某物流公司的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟.下图表示快递车距离A地的路程(单位:千米)与所用时间(单位:时)的函数图象.已知货车比快递车早2小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚2小时.
(1) 请在下图中画出货车距离A地的路程(千米)与所用时间(时)的函数图象;
(2) 求两车在途中相遇的次数(直接写出答案);
(3) 求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.
(1)图像如图 (2)4次
(3)如图,设直线的解析式为,
∵图象过(10,0),,
解得 y=-40x+400.①
设直线的解析式为,∵图象过,,
.②
解由①,②组成的方程组得x=20/3,y=400/3
最后一次相遇时距离地的路程为400/3km,货车从地出发26/3小时.3.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
(1.5,70)、(2,0),然后利用待定系数法,确定直线解析式即可.
【答案】(1)线段AB所在直线的函数解析式为:y=kx+b,
将(1.5,80)、(2,0)代入得:,解得:,
所以线段AB所在直线的函数解析式为:y=-160x+320,当x=0时,
y=320,所以甲乙两地之间的距离320千米.
(2)设快车的速度为m千米/时,慢车的速度为n千米/时,由题意得:
,解得:,所以快车的速度为80千米/时,
所以.
4.已知西宁机场和玉树机场相距800千米,甲、乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB、CD分别表示甲、乙两机离玉树机场的距离S(百千米)和所用去的时间t(小时)之间的函数关系的图象(注:为了方便计算,将平面直角坐标系中距离S的单位定为(百千米)).观察图象回答下列问题:
(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米?
(2)求甲、乙两机各自的S与t的函数关系式;
(3)甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?
【答案】解:(1)由图像可知乙机在甲机出发后1小时才从玉树机场出发;甲
机的速度==160千米/每小时,乙机的速度=千米/每小时;
(2)设甲机的函数关系式为S甲=k1t+b1,因图像过点A(0,8)和点B(5,0)
将两点坐标代入可得解得,得甲机的函数关系为S甲=
t+8;设乙机的函数关系式为S乙=k2t+b2,因图像过点C(2,0)和点D(5,8)
将两点坐标代入可得解得得乙机的函数关系式为S乙=8/3t-16/3;
(3)由解得所以两机相遇时,乙飞机飞行了小时;乙飞机离西宁机场为8-3=5千米。

5.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B 港的距离分别为、(km),、与x的函数关系如图所示.
(1)填空:甲乙两船的速度分别为 a=
(2)求、的表达式
(3)求图中点P的坐标,解释该点坐标所表示的实际意义;
【答案】解:(1)60;30,,a=0.5;
(2)由点(3,90)求得,.
当<0.5时,由点(0,30),(0.5,0)求得, =-60x+30
当>0.5时,由点(0.5,0),(2,90)求得,.
(3)当时,,解得,.
此时.所以点P的坐标为(1,30)
该点坐标的意义为:两船出发1 h后,甲船追上乙船,此时两船离B港的距离为30 km.。

相关文档
最新文档