2018-2019学年高一上学期期末调研测试数学试题
2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)(解析版)
2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.12.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.686.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°7.若均α,β为锐角,=()A.B.C.D.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.49.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣212.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,a n﹣a n+1=2a n a n+1,且n∈N*,则a8=.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于.15.设实数x,y满足,则的取值范围是.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.21.(2分)已知函数f(x)=ax+lnx(a∈R)(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间和极值;(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.1【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:iz=1+2i,∴﹣i•iz=﹣i(1+2i),z=﹣i+2则z的共轭复数=2+i的虚部为1.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.2.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④【分析】利用命题的否定判断①的正误;命题的否定判断②的正误;充要条件判断③的正误;幂函数的形状判断④的正误;【解答】解:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;满足命题的否定形式,正确;②若p∧q是真命题,p是真命题,则¬p是假命题;所以②不正确;③“a>5且b>﹣5”可得“a+b>0”成立,“a+b>0”得不到“a>5且b>﹣5”所以③不正确;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减,正确,反例:y=,可知:x∈(﹣∞,0)时,函数是增函数,在(0,+∞)上单调递减,所以④正确;故选:A.【点评】本题考查命题的真假的判断与应用,涉及命题的否定,复合命题的真假,充要条件的应用,是基本知识的考查.3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)【分析】当B=∅时,m+1>2m﹣1,当B≠∅时,,由此能求出实数m的取值范围.【解答】解:∵集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},B⊆A,∴当B=∅时,m+1>2m﹣1,解得m<2,成立;当B≠∅时,,解得2≤m≤3.综上,实数m的取值范围是(﹣∞,3].故选:C.【点评】本题考查实数的取值范围的求法,考查子集、不等式的性质等基础知识,考查运算求解能力,是基础题.4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π【分析】由题意利用正弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.【解答】解:对于函数,令2x+=kπ+,求得x=+,k∈Z,故它的图象的对称轴为x=+,k∈Z,故A不正确.令2x+=kπ,求得x=﹣,k∈Z,故它的图象的对称中心为(﹣,0 ),k∈Z,故B正确.令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ﹣,k∈Z,故它增区间[kπ﹣,kπ﹣],k∈Z,故C不正确.该函数的最小正周期为=π,故D错误,故选:B.【点评】本题主要考查正弦函数的图象和性质,属于基础题.5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.68【分析】首先运用a n=求出通项a n,判断正负情况,再运用S10﹣2S2即可得到答案.【解答】解:当n=1时,S1=a1=﹣2,当n≥2时,a n=S n﹣S n﹣1=(n2﹣4n+1)﹣[(n﹣1)2﹣4(n﹣1)+1]=2n﹣5,故a n=,据通项公式得a1<a2<0<a3<a4<…<a10∴|a1|+|a2|+…+|a10|=﹣(a1+a2)+(a3+a4+…+a10)=S10﹣2S2=102﹣4×10+1﹣2(﹣2﹣1)=67.故选:C.【点评】本题主要考查数列的通项与前n项和之间的关系式,注意n=1的情况,是一道基础题.6.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°【分析】利用正弦定理把已知等式转化成角的关系,根据三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可求cosA的值,结合A的范围即可得解A的值.【解答】解:∵b=acosC+c.∴由正弦定理可得:sinB=sinAcosC+sinC,可得:sinAcosC+sinCcosA=sinAcosC+sinC,可得:sinCcosA=sinC,∵sinC≠0,∴cosA=,∵A∈(0°,180°),∴A=60°.故选:A.【点评】本题主要考查了正弦定理的应用,三角函数恒等变换的应用.注重了对学生基础知识综合考查,属于基础题.7.若均α,β为锐角,=()A.B.C.D.【分析】由题意求出cosα,cos(α+β),利用β=α+β﹣α,通过两角差的余弦函数求出cosβ,即可.【解答】解:α,β为锐角,则cosα===;<sinα,∴,则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.故选:B.【点评】本题考查两角和与差的三角函数的化简求值,注意角的范围与三角函数值的关系,考查计算能力.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.4【分析】由“等差数列{a n}前9项的和等于前4项的和”可求得公差,再由a k+a4=0可求得结果.【解答】解:∵等差数列{a n}前9项的和等于前4项的和,∴9+36d=4+6d,其中d为等差数列的公差,∴d=﹣,又∵a k+a4=0,∴1+(k﹣1)d+1+3d=0,代入可解得k=10,故选:C.【点评】本题考查等差数列的前n项和公式及其应用,涉及方程思想,属基础题.9.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]【分析】求函数的导数,利用导数的几何意义以及直线垂直的等价条件,转化为e x﹣2m=﹣3有解,即可得到结论.【解答】解:函数的f(x)的导数f′(x)=e x﹣2m,若曲线C存在与直线y=x垂直的切线,则切线斜率k=e x﹣2m,满足(e x﹣2m)=﹣1,即e x﹣2m=﹣3有解,即2m=e x+3有解,∵e x+3>3,∴m>,故选:A.【点评】本题主要考查导数的几何意义的应用,以及直线垂直的关系,结合指数函数的性质是解决本题的关键.10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的最大值,再根据最值给出λ的求值范围.【解答】解:由题意得x,y的约束条件.画出不等式组表示的可行域如图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有最大值z=3+7=10.x﹣y<λ+恒成立,即:λ+≥10,即:.解得:λ∈(0,1]∪[9,+∞)故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣2【分析】利用基本不等式的性质即可得出.【解答】解:∵a,b,c>0且(a+b)(a+c)=4﹣2,则2a+b+c=(a+b)+(a+c)≥=2=2,当且仅当a+b=a+c=﹣1时取等号.故选:D.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.12.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.【分析】根据题意可得函数g(x)=xf(x)=e x﹣ax2在x∈(0,+∞)时是单调增函数,求导,分离参数,构造函数,求出最值即可【解答】解:∵x∈(0,+∞),∴x1f(x1)<x2f(x2).即函数g (x )=xf (x )=e x ﹣ax 2在x ∈(0,+∞)时是单调增函数. 则g′(x )=e x ﹣2ax ≥0恒成立. ∴2a ≤,令,则,x ∈(0,1)时m'(x )<0,m (x )单调递减, x ∈(1,+∞)时m'(x )>0,m (x )单调递增, ∴2a ≤m (x )min =m (1)=e , ∴.故选:D .【点评】本题考查了函数的单调性问题,考查函数恒成立问题,考查转化思想,考查导数的应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,且n ∈N*,则a 8=.【分析】直接利用递推关系式求出数列的通项公式,进一步根据通项公式求出结果. 【解答】解:数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,则:(常数),数列{}是以为首项,2为公差的等差数列.则:,所以:,当n=1时,首项a 1=1, 故:.所以:.故答案为:【点评】本题考查的知识要点:数列的通项公式的求法及应用.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于﹣3.【分析】由已知中向量的模为1,且,满足|﹣|=4,|+|=2,我们易求出•的值,进而根据在方向上的投影等于得到答案.【解答】解:∵||=1,|﹣|=4,|+|=2,∴|+|2﹣|﹣|2=4•=﹣12∴•=﹣3=||||cosθ∴||cosθ=﹣3故答案为:﹣3【点评】本题考查的知识点是平面向量数量积的含义与物理意义,其中根据已知条件求出•的值,是解答本题的关键.15.设实数x,y满足,则的取值范围是[﹣,] .【分析】首先画出可行域,利用目标函数的几何意义求z的最值.【解答】解:由实数x,y满足,得到可行域如图:由图象得到的范围为[k OB,k OA],A(1,1),B(,)即∈[,1],∈[1,7],﹣ [﹣1,].所以则的最小值为﹣;m最大值为:;所以的取值范围是:[﹣,]故答案为:[﹣,].【点评】本题考查了简单线性规划问题;关键是正确画出可行域,利用目标函数的几何意义求出其最值,然后根据对勾函数的性质求m的范围.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比P是边长为a的正△ABC内的一点,本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=a,BO=AO=,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故答案为:a.【点评】本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.【分析】(1)用向量数量积公式计算后再化成辅助角形式,最后用正弦函数的周期公式和对称轴的结论可求得;(2)将方程有解转化为求函数的值域,然后用正弦函数的性质解决.【解答】解:(1)∵f(x)=•=2sin(+x)•sin(+x)﹣cos2x=2sin2(+x)﹣cos2x=1﹣cos[2(+x)]﹣cos2x=sin2x﹣cos2x+1=2sin(2x﹣)+1,∴最小正周期T=π,由2x﹣=+kπ,得x=+,k∈Z,所以f(x)的对称轴为:x=+,k∈Z,(2)因为f(x)﹣m=2可化为m=2sin(2x﹣)﹣1在x∈[,]上有解,等价于求函数y=2sin(2x﹣)﹣1的值域,∵x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1]∴y∈[0,1]故实数m的取值范围是[0,1]【点评】本题考查了平面向量数量积的性质及其运算.属基础题.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【分析】(Ⅰ)由已知及正弦定理,三角形内角和定理,三角函数恒等变换的应用可得,结合sinB≠0,可得,结合A为三角形内角,可求A 的值.(Ⅱ)由余弦定理,基本不等式可得,根据三角形面积公式即可计算得解.【解答】解:(Ⅰ)由正弦定理可得:,从而可得:,即,又B为三角形内角,所以sinB≠0,于是,又A为三角形内角,所以.(Ⅱ)由余弦定理:a2=b2+c2﹣2bccosA,得:,所以,所以≤2+,即△ABC面积的最大值为2+.【点评】本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.【分析】(1)根据等差数列的通项公式和等比数列的性质列出关于公差d的方程,利用方程求得d,然后写出通项公式;(2)根据单调数列的定义推知a n=2n﹣1,然后利用已知条件求得b n的通项公式,再由错位相减法求得答案.【解答】解:(1)∵a8是a5,a13的等比中项,{a n}是等差数列,∴(1+7d)2=(1+4d)(1+12d)解得d=0或d=2,∴a n=1或a n=2n﹣1;(2)由(1)及{a n}是单调数列知a n=2n﹣1,(i)当n=1时,T1=b1===.(ii)当n>1时,b n==,∴T n=+++…+……①∴T n=+++…++……②①﹣②得T n=+++…+﹣=﹣,∴T n=﹣.综上所述,T n=﹣.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题综上所述,20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【分析】(1)直接利用等差数列的性质求出数列的通项公式.(2)利用裂项相消法求出数列的和.【解答】解:(1)等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.令n=1时,,n=2时,, n=3时,,由于2a 2=a 1+a 3, 所以,解得k=﹣1. 由于=(2n ﹣1)(n +1),且n +1≠0, 则a n =2n ﹣1;(2)由于===,所以S n =+…+=+n==.【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用.21.(2分)已知函数f (x )=ax +lnx (a ∈R ) (1)若a=2,求曲线y=f (x )在x=1处的切线方程; (2)求f (x )的单调区间和极值;(3)设g (x )=x 2﹣2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.【分析】(1)利用导数的几何意义,可求曲线y=f (x )在x=1处切线的斜率,从而求出切线方程即可;(2)求导函数,在区间(0,﹣)上,f'(x )>0;在区间(﹣,+∞)上,f'(x )<0,故可得函数的单调区间;求出函数的极值即可;(3)由已知转化为f (x )max <g (x )max ,可求g (x )max =2,f (x )最大值﹣1﹣ln (﹣a ),由此可建立不等式,从而可求a 的取值范围.【解答】解:(1)由已知f′(x)=2+(x>0),…(2分)∴f'(1)=2+1=3,f(1)=2,故曲线y=f(x)在x=1处切线的斜率为3,故切线方程是:y﹣2=3(x﹣1),即3x﹣y﹣1=0…(4分)(2)求导函数可得f′(x)=a+=(x>0).…当a<0时,由f'(x)=0,得x=﹣.在区间(0,﹣)上,f'(x)>0;在区间(﹣,+∞)上,f'(x)<0,所以,函数f(x)的单调递增区间为(0,﹣),单调递减区间为(﹣,+∞),=﹣1﹣ln(﹣a)…(10分)故f(x)极大值=f(﹣)(3)由已知转化为f(x)max<g(x)max.∵g(x)=x2﹣2x+2=(x﹣1)2+1,x2∈[0,1],∴g(x)max=2…(11分)由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在(0,﹣)上单调递增,在(﹣,+∞)上单调递减,故f(x)的极大值即为最大值,f(﹣)=﹣1+ln(﹣)=﹣1﹣ln(﹣a),所以2>﹣1﹣ln(﹣a),所以ln(﹣a)>﹣3,解得a<﹣.…(14分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查求参数的值,解题的关键是转化为f(x)max<g(x)max.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,根据函数的单调性证明即可.【解答】解:(Ⅰ)∵,∴∴a=1,∴f(x)=e x,f令h(x)=x2e x﹣1,h'(x)=(2x+x2)e x,h(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,所以x∈(﹣∞,0)时,h(x),即x∈(﹣∞,0)时,f'(x)<0,所以函数y=f(x)在x∈(﹣∞,0)上单调递减.(Ⅱ) 由条件可知,g(x)=e x﹣x+m+1,①g'(x)=e x﹣1,∴g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<﹣2.‚②证明:由上可知,x1<0<x2,∴﹣x2<0,∴构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,所以m(x)>m(0)即g(x2)=g(x1)>g(﹣x1)又g(x)在(﹣∞,0)上单调递减,所以x1<﹣x2,即x1+x2<0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,属于中档题.。
北京市朝阳区2018-2019学年高一上期末数学试卷含答案解析
2018-2019学年北京市朝阳区高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组中的两个集合M和N,表示同一集合的是()A.M={π},N={3.14159} B.M={2,3},N={(2,3)}C.M={x|﹣1<x≤1,x∈N},N={1} D.,2.若a>b,则下列命题成立的是()A.ac>bc B.C.D.ac2≥bc23.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数A.1.2 B.1.3 C.1.4 D.1.54.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?5.给定函数①,②,③y=|x2﹣2x|,④,其中在区间(0,1)上单调递减的函数序号是()A.①④B.②④C.②③D.①③6.已知a=,b=20.3,c=0.30.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a7.函数的图象的大致形状是( )A .B .C .D .8.某苗圃基地为了解基地内甲、乙两块地种植同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组树苗高度的数据,对两块地抽取树苗的高度的平均数甲,乙和方差进行比较,下面结论正确的是( )A .甲>乙,乙地树苗高度比甲地树苗高度更稳定B .甲<乙,甲地树苗高度比乙地树苗高度更稳定C .甲<乙,乙地树苗高度比甲地树苗高度更稳定D .甲>乙,甲地树苗高度比乙地树苗高度更稳定9.如图是王老师锻炼时所走的离家距离(S )与行走时间(t )之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( )A .B .C .D .10.已知函数f(x)=a(x﹣a)(x+a+3),g(x)=2x﹣2,若对任意x∈R,总有f(x)<0或g(x)<0成立,则实数a的取值范围是()A.(﹣∞,﹣4)B.[﹣4,0)C.(﹣4,0)D.(﹣4,+∞)二、填空题:本大题共6小题,每小题5分,共30分.11.已知函数则的值是.12.从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.13.已知0<x<1.5,则函数y=4x(3﹣2x)的最大值为.14.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为360颗,以此实验数据1000为依据可以估计出该不规则图形的面积为平方米.(用分数作答)15.若函数的图象关于y轴对称,则a=.16.关于函数有以下四个命题:①对于任意的x∈R,都有f(f(x))=1;②函数f(x)是偶函数;③若T为一个非零有理数,则f(x+T)=f(x)对任意x∈R恒成立;④在f(x)图象上存在三个点A,B,C,使得△ABC为等边三角形.其中正确命题的序号是.三、解答题:本大题共4小题,共40分.17.已知函数的定义域为集合A,函数g(x)=lg(﹣x2+2x+m)的定义域为集合B.(Ⅰ)当m=3时,求A∩∁R B;(Ⅱ)若A∩B={x|﹣1<x<4},求实数m的值.18.空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个理得到如图条形图:(1)估计该城市一个月内空气质量类别为良的概率;(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.19.已知定义域为R的单调减函数f(x)是奇函数,当x>0时,.(Ⅰ)求f(0)的值;(Ⅱ)求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围.20.定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),都有f(kx)=kf(x)(k≥2,k∈N*)成立,则称f(x)为k阶伸缩函数.(Ⅰ)若函数f(x)为二阶伸缩函数,且当x∈(1,2]时,,求的值;(Ⅱ)若函数f(x)为三阶伸缩函数,且当x∈(1,3]时,,求证:函数在(1,+∞)上无零点;(Ⅲ)若函数f(x)为k阶伸缩函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,k n+1](n∈N*)上的取值范围.2018-2019学年北京市朝阳区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组中的两个集合M和N,表示同一集合的是()A.M={π},N={3.14159} B.M={2,3},N={(2,3)}C.M={x|﹣1<x≤1,x∈N},N={1} D.,【考点】集合的相等.【分析】根据两个集合相等,元素相同,排除A;根据两个集合相等,元素相同,排除B先解集合M,然后判断元素是否相同,排除C先化简集合N,然后根据集合元素的无序性,选择D【解答】解:A:M={π},N={3.14159},因为π≠3.14159,故元素不同,集合也不同,故排除B:M={2,3},N={(2,3)},因为M的元素为2和3,而N的元素为一个点(2,3),故元素不同,集合不同,故排除C:M={x|﹣1<x≤1,x∈N},N={1},由M={x|﹣1<x≤1,x∈N}得,M={0,1},故两个集合不同,故排除D:∵∴=,根据集合元素的无序性可以判断M=N,故选择D故答案为D【点评】本题考查两个集合相等的条件,涉及到元素相同以及集合元素的三个性质:无序性,互异性,确定性,为基础题2.若a>b,则下列命题成立的是()A.ac>bc B.C.D.ac2≥bc2【考点】不等式的基本性质.【专题】计算题.【分析】通过给变量取特殊值,举反例可得A、B、C都不正确,对于a>b,由于c2≥0,故有ac2≥bc2,故D成立.【解答】解:∵a>b,故当c=0时,ac=bc=0,故A不成立.当b=0 时,显然B、C不成立.对于a>b,由于c2≥0,故有ac2≥bc2,故D成立.故选D.【点评】本题主要考查不等式与不等关系,不等式性质的应用,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题.3.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数A.1.2 B.1.3 C.1.4 D.1.5【考点】二分法求方程的近似解.【专题】应用题.【分析】由二分法的定义进行判断,根据其原理﹣﹣零点存在的区间逐步缩小,区间端点与零点的值越越接近的特征选择正确选项【解答】解:由表中数据中结合二分法的定义得零点应该存在于区间(1.4065,1.438)中,观察四个选项,与其最接近的是C,故应选C【点评】本题考查二分法求方程的近似解,求解关键是正确理解掌握二分法的原理与求解步骤,根据其原理得出零点存在的区间,找出其近似解.属于基本概念的运用题4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.给定函数①,②,③y=|x 2﹣2x|,④,其中在区间(0,1)上单调递减的函数序号是( )A .①④B .②④C .②③D .①③【考点】函数单调性的判断与证明.【专题】函数思想;综合法;函数的性质及应用.【分析】根据增函数、减函数的定义,对数函数的单调性,二次函数的单调性,以及指数函数的单调性即可判断每个函数在(0,1)上的单调性,从而找出正确选项.【解答】解:①y=,x 增大时,增大,即y 增大;∴该函数在(0,1)上单调递增;②,x 增大时,x+1增大,减小;∴该函数在(0,1)上单调递减;③;∴x ∈(0,1)时,y=﹣x 2+2x ,对称轴为x=1;∴该函数在(0,1)上单调递增;④,∴指数函数在(0,1)上单调递减;∴在区间(0,1)上单调递减的函数序号是②④.故选:B .【点评】考查增函数、减函数的定义,根据单调性定义判断函数单调性的方法,对数函数的单调性,含绝对值函数的处理方法:去绝对值号,二次函数的单调性,以及指数函数的单调性.6.已知a=,b=20.3,c=0.30.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a【考点】不等关系与不等式.【专题】不等式的解法及应用.【分析】利用指数函数的单调性即可判断出.【解答】解:∵,∴b >c >a .故选A .【点评】熟练掌握指数函数的单调性是解题的关键.7.函数的图象的大致形状是( )A .B .C .D .【考点】函数的图象.【专题】数形结合.【分析】先利用绝对值的概念去掉绝对值符号,将原函数化成分段函数的形式,再结合分段函数分析位于y 轴左右两侧所表示的图象即可选出正确答案.【解答】解:∵y==当x >0时,其图象是指数函数y=a x 在y 轴右侧的部分,因为a >1,所以是增函数的形状,当x <0时,其图象是函数y=﹣a x 在y 轴左侧的部分,因为a >1,所以是减函数的形状, 比较各选项中的图象知,C 符合题意故选C .【点评】本题考查了绝对值、分段函数、函数的图象与图象的变换,培养学生画图的能力,属于基础题.8.某苗圃基地为了解基地内甲、乙两块地种植同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组树苗高度的数据,对两块地抽取树苗的高度的平均数甲,乙和方差进行比较,下面结论正确的是( )A .甲>乙,乙地树苗高度比甲地树苗高度更稳定B .甲<乙,甲地树苗高度比乙地树苗高度更稳定C .甲<乙,乙地树苗高度比甲地树苗高度更稳定D .甲>乙,甲地树苗高度比乙地树苗高度更稳定【考点】茎叶图.【专题】对应思想;定义法;概率与统计.【分析】根据茎叶图,计算甲、乙的平均数,再根据数据的分布情况与方差的概念,比较可得答案.【解答】解:根据茎叶图有:①甲地树苗高度的平均数为=28cm,乙地树苗高度的平均数为=35cm,∴甲地树苗高度的平均数小于乙地树苗的高度的平均数;②甲地树苗高度分布在19~41之间,且成单峰分布,且比较集中在平均数左右,乙地树苗高度分布在10~47之间,不是明显的单峰分布,相对分散些;∴甲地树苗高度与乙地树苗高度比较,方差相对小些,更稳定些;故选:B.【点评】本题考查了利用茎叶图估计平均数与方差的应用问题,关键是正确读出茎叶图,并分析数据,是基础题.9.如图是王老师锻炼时所走的离家距离(S)与行走时间(t)之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是()A.B.C.D.【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得在中间一段时间里,他到家的距离为定值,故他所走的路程是一段以家为圆心的圆弧,结合所给的选项得出结论.【解答】解:根据王老师锻炼时所走的离家距离(S)与行走时间(t)之间的函数关系图,可得在中间一段时间里,他到家的距离为定值,故他所走的路程是一段以家为圆心的圆弧,结合所给的选项,故选:C.【点评】本题主要函数的解析式表示的意义,函数的图象特征,属于中档题.10.已知函数f(x)=a(x﹣a)(x+a+3),g(x)=2x﹣2,若对任意x∈R,总有f(x)<0或g(x)<0成立,则实数a的取值范围是()A.(﹣∞,﹣4)B.[﹣4,0)C.(﹣4,0)D.(﹣4,+∞)【考点】函数的值.【专题】函数的性质及应用.【分析】由题意可知x<1时,g(x)<0成立,进而得到a(x+a)(x﹣2a+1)<0对x≥1均成立,得到a满足的条件,求解不等式组可得答案.【解答】解:由g(x)=2x﹣2<0,得x<1,故对x≥1时,g(x)<0不成立,从而对任意x≥1,f(x)<0恒成立,由于a(x﹣a)(x+a+3)<0对任意x≥1恒成立,如图所示,则必满足,解得﹣4<a<0.则实数a的取值范围是(﹣4,0).故选:C.【点评】本题考查了函数的值,考查了不等式的解法,体现了恒成立思想的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.11.已知函数则的值是﹣2.【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】将x=代入函数的表达式,求出函数值即可.【解答】解:f()==﹣2,故答案为:﹣2.【点评】本题考查了求函数值问题,考查分段函数以及对数函数的性质,是一道基础题.12.从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=0.03.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为3.【考点】频率分布直方图.【专题】概率与统计.【分析】欲求a,可根据直方图中各个矩形的面积之和为1,列得一元一次方程,解出a,欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在[140,150]内的学生人数,再根据分层抽样的特点,代入其公式求解.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为×10=3人.故答案为:0.03,3.【点评】本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的,都等于.13.已知0<x<1.5,则函数y=4x(3﹣2x)的最大值为.【考点】二次函数的性质.【专题】函数的性质及应用.【分析】将二次函数进行配方,根据二次函数的图象和性质进行求值即可.【解答】解:∵y=4x(3﹣2x)=﹣8x2+12x=﹣8(x﹣)2+,∴当x=时,函数取得最大值,故答案为:.【点评】本题主要考查二次函数的图象和性质,利用配方得到函数的对称轴是解决二次函数的关键.14.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为360颗,以此实验数据1000为依据可以估计出该不规则图形的面积为平方米.(用分数作答)【考点】模拟方法估计概率.【专题】计算题;方程思想;综合法;概率与统计.【分析】根据几何概型的意义进行模拟试验计算不规则图形的面积,利用面积比可得结论.【解答】解:∵向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为360颗,记“黄豆落在正方形区域内”为事件A,∴P(A)==,=平方米,∴S不规则图形故答案为:.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.15.若函数的图象关于y轴对称,则a=.【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得函数f(x)为偶函数,函数f(x)的定义域关于原点对称,从而求得a 的值.【解答】解:由于函数的图象关于y轴对称,故该函数为偶函数,故函数f(x)的定义域关于原点对称,故a=﹣,故答案为:﹣.【点评】本题主要考查偶函数的图象特征,偶函数的定义域关于原点对称,属于基础题.16.关于函数有以下四个命题:①对于任意的x∈R,都有f(f(x))=1;②函数f(x)是偶函数;③若T为一个非零有理数,则f(x+T)=f(x)对任意x∈R恒成立;④在f(x)图象上存在三个点A,B,C,使得△ABC为等边三角形.其中正确命题的序号是①②③④.【考点】命题的真假判断与应用;分段函数的应用.【专题】函数思想;函数的性质及应用;简易逻辑.【分析】①根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1;②根据函数奇偶性的定义,可得f(x)是偶函数;③根据函数的表达式,结合有理数和无理数的性质;④取x1=﹣,x2=0,x3=,可得A(,0),B(0,1),C(﹣,0),三点恰好构成等边三角形.【解答】解:对于①,若x是有理数,则f(x)=1,则f(1)=1,若x是无理数,则f(x)=0,则f(0)=1,即对于任意的x∈R,都有f(f(x))=1;故①正确,对于②,∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=﹣f(x),则函数f(x)是偶函数,故②正确;对于③,若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数,∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;对于④,取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0,∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故答案为:①②③④.【点评】本题主要考查命题的真假判断,给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.三、解答题:本大题共4小题,共40分.17.已知函数的定义域为集合A,函数g(x)=lg(﹣x2+2x+m)的定义域为集合B.(Ⅰ)当m=3时,求A∩∁R B;(Ⅱ)若A∩B={x|﹣1<x<4},求实数m的值.【考点】对数函数的定义域;交集及其运算;交、并、补集的混合运算.【专题】计算题;集合思想;定义法;集合.【分析】(Ⅰ)先化简集合A,B,再根据补集和交集的定义即可求出;(Ⅱ)根据交集的定义即可求出m的范围.【解答】解:(Ⅰ)由的定义域得A={x|﹣1<x≤5}.当m=3时,B={x|﹣1<x<3},则∁R B={x|x≤﹣1或x≥3}.所以A∩∁R B={x|3≤x≤5}.(Ⅱ)因为A={x|﹣1<x≤5},A∩B={x|﹣1<x<4},所以有﹣42+2×4+m=0.解得m=8.此时B={x|﹣2<x<4},符合题意.所以m=8.【点评】本题考查了函数的定义域的求法和集合的基本运算,属于基础题.18.空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个某市年月日﹣月日(天)对空气质量指数进行检测,获得数据后整理得到如图条形图:(1)估计该城市一个月内空气质量类别为良的概率;(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.【考点】列举法计算基本事件数及事件发生的概率;分布的意义和作用.【专题】图表型;概率与统计.【分析】(1)由条形统计图可知,空气质量类别为良的天数为16天,从而可求此次监测结果中空气质量类别为良的概率;(2)样本中空气质量级别为三级的有4天,设其编号为a,b,c,d.样本中空气质量级别为四级的有2天,设其编号为e,f.列举出基本事件及符合条件的事件,根据概率公式求出相应的概率即可.【解答】解:(1)由条形统计图可知,空气质量类别为良的天数为16天,所以此次监测结果中空气质量类别为良的概率为.…(2)样本中空气质量级别为三级的有4天,设其编号为a,b,c,d.样本中空气质量级别为四级的有2天,设其编号为e,f.则基本事件有:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15个.其中至少有一天空气质量类别为中度污染的有9个,∴至少有一天空气质量类别为中度污染的概率为.【点评】本题考查条形图,考查学生的阅读能力,考查列举法计算基本事件数及事件发生的概率,属于基础题.19.已知定义域为R的单调减函数f(x)是奇函数,当x>0时,.(Ⅰ)求f(0)的值;(Ⅱ)求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围.【考点】奇偶性与单调性的综合.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)利用定义域为R的函数f(x)是奇函数,求f(0)的值;(Ⅱ)求出x<0的解析式,即可求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,f(x)在R上是减函数,所以t2﹣2t>k﹣2t2.即3t2﹣2t﹣k>0对任意t∈R恒成立,即可求实数k的取值范围.【解答】解:(Ⅰ)因为定义域为R的函数f(x)是奇函数,所以f(0)=0.(Ⅱ)因为当x<0时,﹣x>0,所以.又因为函数f(x)是奇函数,所以f(﹣x)=﹣f(x).所以.综上,(Ⅲ)由f(t2﹣2t)+f(2t2﹣k)<0得f(t2﹣2t)<﹣f(2t2﹣k).因为f(x)是奇函数,所以f(t2﹣2t)<f(k﹣2t2).又f(x)在R上是减函数,所以t2﹣2t>k﹣2t2.即3t2﹣2t﹣k>0对任意t∈R恒成立.方法一令3t2﹣2t﹣k=0,则△=4+12k<0.由△<0,解得.方法二即k<3t2﹣2t对任意t∈R恒成立.令g(t)=3t2﹣2t,t∈R则∴故实数k的取值范围为.【点评】本题考查函数的解析式,考查不等式恒成立问题的解法,注意运用单调性和参数分离,以及函数的最值的求法,属于中档题.20.定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),都有f(kx)=kf(x)(k≥2,k∈N*)成立,则称f(x)为k阶伸缩函数.(Ⅰ)若函数f(x)为二阶伸缩函数,且当x∈(1,2]时,,求的值;(Ⅱ)若函数f(x)为三阶伸缩函数,且当x∈(1,3]时,,求证:函数在(1,+∞)上无零点;(Ⅲ)若函数f(x)为k阶伸缩函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,k n+1](n∈N*)上的取值范围.【考点】函数的值.【专题】证明题;转化思想;综合法;函数的性质及应用.【分析】(Ⅰ)当x∈(1,2]时,,从而f()=,由此能求出函数f(x)为二阶伸缩函数,由此能求出的值.(Ⅱ)当x∈(1,3]时,,由此推导出函数在(1,+∞)上无零点.(Ⅲ)当x∈(k n,k n+1]时,,由此得到,当x∈(k n,k n+1]时,f(x)∈[0,k n),由此能求出f(x)在(0,k n+1](n∈N*)上的取值范围是[0,k n).【解答】解:(Ⅰ)由题设,当x∈(1,2]时,,∴.∵函数f(x)为二阶伸缩函数,∴对任意x∈(0,+∞),都有f(2x)=2f(x).∴.(Ⅱ)当x∈(3m,3m+1](m∈N*)时,.由f(x)为三阶伸缩函数,有f(3x)=3f(x).∵x∈(1,3]时,.∴.令,解得x=0或x=3m,它们均不在(3m,3m+1]内.∴函数在(1,+∞)上无零点.(Ⅲ)由题设,若函数f(x)为k阶伸缩函数,有f(kx)=kf(x),且当x∈(1,k]时,f(x)的取值范围是[0,1).∴当x∈(k n,k n+1]时,.∵,所以.∴当x ∈(k n ,k n+1]时,f (x )∈[0,k n ). 当x ∈(0,1]时,即0<x ≤1,则∃k (k ≥2,k ∈N *)使,∴1<kx ≤k ,即kx ∈(1,k ],∴f (kx )∈[0,1).又,∴,即.∵k ≥2,∴f (x )在(0,k n+1](n ∈N *)上的取值范围是[0,k n ). 【点评】本题考查函数值的求法,考查函数值无零点的证明,是中档题,解题时要认真审题,注意函数性质的合理运用.2019年3月12日。
【全国省级联考】河北省2018-2019学年高一第一次模拟选科调研考试数学试题
2018年河北省新高考第一次模拟选科调研高一数学考试(考试时间:120分钟 试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知角α的终边上有一点()3,P m -,且3cos 5α=-,则m =( )A.4B.5C.-4D.4±2.已知集合{}|132A x x =-<-≤,{}|34B x x =≤<,则A C B =( )A.()()2,34,5B.(](]2,34,5C.()[]2,34,5D.(][]2,34,53.已知函数()21x f x a -+=+,若()19f -=,则a =( )A .2 B.-2 C.8 D.-84.已知点()sin ,tan P αα在第二象限,则α为( )A.第一象限B.第二象限C.第三象限D.第四象限5.函数()32sin 412f x x π⎛⎫=++ ⎪⎝⎭是( )A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数6.设函数()2log f x x =,若()12f a +<,则a 的取值范围为( )A.()1,3-B.(),3-∞C.(),1-∞D.()1,1-7.已知函数()()tan sin 2,f x m x k x m k R =-+∈,若13f π⎛⎫= ⎪⎝⎭,则3f π⎛⎫-= ⎪⎝⎭()A.1B.-1C.3D.-38.设函数()32log ,022,x x f x x x x >⎧=⎨+-≤⎩,若()1f a =,则a =( ) A.3 B.3± C.-3或1 D.3±或19.已知函数()()2log 13f x x x m =+++的零点在区间(]0,1上,则m 的取值范围为( )A.()4,0-B.()(),40,-∞-+∞C.(](),40,-∞-+∞D.[)4,0-10.函数()221xx f x x ∙=-的部分图像大致为( )A. B. C. D.11.已知函数()3cos 23f x x π⎛⎫=--⎪⎝⎭,则( ) A.()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 B.()f x 的图象关于5,012π⎛⎫ ⎪⎝⎭对称 C.()f x 在0,2π⎛⎤ ⎥⎝⎦上的最大值为3 D.()f x 的图象的一条对称轴为512x π= 12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭,4x π=-是函数的一个零点,且4x π=是其图象的一条对称轴.若,96ππ⎛⎫⎪⎝⎭是()f x 的一个单调区间,则ω的最大值为( ) A.18 B.17 C.15 D.13二、填空题:本题共4小题,每小题5分,共20分.13.函数()()4log 5f x x =-+________. 14.定义在[]5,5-上的奇函数()f x ,当(]0,5x ∈时,()6xf x =,则()()01f f +-=________. 15.函数()2sin sin 3f x x x =+-的最小值为________.。
2018-2019学年湖北省黄冈市株林镇中学高一化学期末试题含解析
2018-2019学年湖北省黄冈市株林镇中学高一化学期末试题含解析一、单选题(本大题共15个小题,每小题4分。
在每小题给出的四个选项中,只有一项符合题目要求,共60分。
)1. 对3NO2+H2O===2HNO3+NO反应的下列说法正确的是()A.氧化剂与还原剂的质量比为1﹕2B.氧化产物与还原产物的物质的量之比为1﹕2C.NO2是氧化剂,H2O是还原剂D.在反应中若有6 mol NO2参与反应时,有3 mol电子发生转移参考答案:A2. 下列说法正确的是:A.实验室配制240mL2.0mol/L的NaOH溶液,应称NaOH晶体19.2gB.为防止药品污染,用剩的金属钠放入垃圾桶中C.用25 mL量筒量取22.6 mL盐酸D.用托盘天平称取8.75 g食盐参考答案:C略3. 有X、Y、Z三种金属,把它们放在稀硫酸中,只有Y溶解放出气体。
将Z放入X的盐溶液中,有X金属析出。
已知X、Y、Z在化合物中均显+2价,则下列结论正确的是()A.金属性:Z>Y>XB.还原性:X>Y>ZC.氧化性:X2+>Z2+>Y2+D.氧化性:X2+>Y2+>Z2+参考答案:C解析Y能与稀硫酸反应,而X、Z不能与稀硫酸反应,则Y比X、Z的金属性强,Z能置换出X,则Z比X的金属性强,金属性或还原性:Y>Z>X,其阳离子的氧化性:X2+>Z2+>Y2+,故C项正确。
4. 关于原电池说法不正确的是:( )A. 右图所示原电池中,Cu为正极B. 右图所示原电池中,开关闭合时,化学能主要转变为电能;断开时,化学能主要转变为热能C. 在原电池中,负极上发生氧化反应,正极上发生还原反应D. 在原电池中,电子从负极经过电解质溶液流向正极参考答案:D略5. 对于反应中的能量变化,下列表述中正确的是()A. 放热反应中,反应物的总能量大于生成物的总能量B. 断开化学键的过程会放出能量C. 加热才能发生的反应一定是吸热反应D. 氧化还原反应均为吸热反应参考答案:A当反应物的总能量大于生成物的总能量时,该反应是放热反应,A正确;断开化学键的过程会吸收能量,B错误;吸热反应不一定需要加热才发生,如氯化铵和八水合氢氧化钡的反应就是吸热反应;加热才能发生的反应不一定是吸热反应,如铝热反应,C错误;食物的腐败变质是氧化反应,该过程是放热的,D错误;正确选项A。
陕西省宝鸡中学2018-2019学年高一上数学期中考试卷
高一第一学期期中考试试题(满分120分 时间100分钟)一.选择题(每小题5分,共50分)1. 已知{}0162=-=x x A ,{}0643=+=x x B ,则B A =( )A. {}4-B.{}4C.{}44-,D.空集 2. 函数235-+-=x x y 的定义域为( ) A. ()()+∞⋃∞-,33, B.[)()∞+⋃,,332 C.[)∞+,2 C.[)∞+,3 3. 要得到函()733032++=x x x f 的图像,只需将函数23x y =的图像( ) A. 向左平移5个单位,再向下平移2个单位 B.向左平移5个单位,再向上平移2个单位C. 向右平移5个单位,再向下平移2个单位D.向左平移5个单位,再向上平移2个单位4.函数()x x x f 2log +=的零点所在区间为( )A.()10,B.()21,C.()32,D.()43, 5.若10<<a ,1-<b ,则函数()b a x f x+=的图像不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.设9.04=a ,0.488=b ,5.1log 2=c ,则a,b,c 的大小关系为( )A.a >c >bB.c >a >bC.b >c >aD.a >b >c7.下列函数中,在()0,∞-上单调递减的是( )A.x y -=1B.1+=x x y C.x x y +=2 D.21x y -= 8.一种专门侵占计算机内存的病毒开机时占据2KB 内存,然后每3min 自身复制一次,复制后所占内存是原来2倍,那么开机经过多少分钟,该病毒占据64MB 内存(1MB=102KB )( )9.2018年大家在宝鸡中学“集合”,经过半学期的学习,今天终于学有所成,那么满足{}{}2018201720162018,,⊂⊆A 的集合A 的个数为( )A.1B.2C.3D.410. 设()x f 是R 上的奇函数,且()()x f x f -=+2,当10≤≤x 时,()x x f =,则()5.2f =( )A.1.5B.-1.5C.0.5D.-0.5二.填空题(每小题4分,共20分)11. 幂函数()x f 的图像经过点(4,2),则()32f 的值为____________12. 已知函数()⎩⎨⎧≤>=0,20,ln x x x x f x ,则⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛21e f f =_________ 13. 已知函数522++=ax x y 在[)∞+,1上是递增的,那么a 的取值范围是__________________14. 求值:94255log 3log 2log ∙∙=_______________15. 定义在R 上的偶函数()x f 满足:对任意的(]()22110,,x x x x ≠∞-∈,有()()()[]01221<--x f x f x x ,且()02=f ,则不等式()()053<-+xx f x f 的解集是________________三.解答题(本大题共5小题,共计50分) 16. (本小题满分8分)已知集合{}11+<<-=a x a x A ,{}0lg <=x x B ,若φ=B A ,求实数a 的取值范围。
象山县高中2018-2019学年上学期高三数学10月月考试题
象山县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .982. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .63. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OP Q ∆的面积等于( )A .B .C .2 D .44. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .324355. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .15B .C .15D .15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.6. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.7. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化8. 若变量x ,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t<﹣ B .﹣2<t ≤﹣ C .﹣2≤t ≤﹣ D .﹣2≤t<﹣9. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .510.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .240 11.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个12.若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( )A .10B .11 C.12 D .13二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示). 15.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .16.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.三、解答题(本大共6小题,共70分。
2018-2019学年第二学期期末考试高一年级数学试卷(含答案)
2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
北京市101中学2018-2019学年高一(上)期中考试数学试题(解析版)
2018-2019学年北京市101中学高一(上)期中数学试卷一、选择题(本大题共8小题,共40.0分)1.设集合M={x|x<1},N={x|0<x≤1},则M∪N=( )A. B. C. D.【答案】C【解析】【分析】对集合M和N取并集即可得到答案.【详解】∵M={x|x<1},N={x|0<x≤1};∴M∪N={x|x≤1}.故选:C.【点睛】本题考查集合的并集运算.2.下列函数中,在(-1,+∞)上为减函数的是( )A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的单调性,即可得答案.【详解】根据题意,依次分析选项:对于A,y=3x,为指数函数,在R上为增函数,不符合题意;对于B,y=x2-2x+3=(x-1)2+2,在(1,+∞)上为增函数,不符合题意;对于C,y=x,为正比例函数,在R上为增函数,不符合题意;对于D,y=-x2-4x+3=-(x+2)2+7,在(-2,+∞)上为减函数,符合题意;故选:D.【点睛】本题考查指数函数和二次函数的单调性,关键是掌握常见函数的单调性,属于基础题.3.计算log416+等于( )A. B. 5 C. D. 7【答案】B【解析】【分析】利用指数与对数运算性质即可得出.【详解】log416+=2+3=5.【点睛】本题考查指数与对数运算性质,属于基础题.4.函数=+的定义域为().A.B.C.D.【答案】A【解析】试题分析:由题,故选考点:函数的定义域。
5.函数y=的单调增区间是( )A. B. C. D.【答案】D【解析】【分析】利用复合函数的单调性进行求解即可.【详解】令t=-x2+4x+5,其对称轴方程为x=2,内层二次函数在[2,+∞)上为减函数,而外层函数y=为减函数,∴函数y=的单调增区是[2,+∞).故选:D.【点睛】本题考查指数型复合函数的单调性,复合函数的单调性满足同增异减,是基础题.6.已知偶函数f(x)在区间[0,+∞)上是减函数,则满足f(2x-1)>f()的x的取值范围是( )A. B.C. D.【答案】C【解析】【分析】由函数为偶函数得f(|2x-1|)>f(),由函数的单调性可得|2x-1|<,解不等式即可得答案.【详解】根据题意,偶函数f(x)在区间[0,+∞)上是减函数,则f(2x-1)>f()⇒f(|2x-1|)>f()⇒|2x-1|<,解可得:<x<,即x的取值范围为;故选:C.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于基础题.7.若函数f(x)=a|x+1|(a>0.a≠1)的值域为[1,+∞),则f(-4)与f(0)的关系是( )A. B. C. D. 不能确定【答案】A【解析】【分析】由函数f(x)的值域可得a>1,然后利用单调性即可得到答案.【详解】∵|x+1|≥0,且f(x)的值域为[1,+∞);∴a>1;又f(-4)=a3,f(0)=a;∴f(-4)>f(0).故选:A.【点睛】本题考查指数函数的单调性,并且会根据单调性比较函数值的大小.8.对于实数a和b定义运算“*”:a•b=,设f(x)=(2x-1)•(x-2),如果关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则m的取值范是( )【答案】C【解析】【分析】画出函数f(x)的图象,由题知y=f(x)与y=m恰有3个交点,观察图像即可得到答案.【详解】由已知a•b=得f(x)=(2x-1)•(x-2)= ,其图象如下:因为f(x)=m恰有三个互不相等实根,则y=m与y=f(x)图像恰有三个不同的交点,所以0<m<,故选:C.【点睛】本题考查函数与方程的综合运用,属中档题.二、填空题(本大题共6小题,共30.0分)9.已知全集U=R,集合A={x|x2-4x+3>0},则∁U A=___.【答案】{x|1≤x≤3}【解析】【分析】求出集合A,然后取补集即可得到答案.【详解】A={x|x<1或x>3};∴∁U A={x|1≤x≤3}.故答案为:{x|1≤x≤3}.【点睛】本题考查集合的补集的运算,属基础题.10.若0<a<1,b<-1,则函数f(x)=a x+b的图象不经过第___象限.【答案】一【解析】利用指数函数的单调性和恒过定点,再结合图像的平移变换即可得到答案.【详解】函数y=a x(0<a<1)是减函数,图象过定点(0,1),在x轴上方,过一、二象限,函数f(x)=a x+b的图象由函数y=a x的图象向下平移|b|个单位得到,∵b<-1,∴|b|>1,∴函数f(x)=a x+b的图象与y轴交于负半轴,如图,函数f(x)=a x+b的图象过二、三、四象限.故答案为:一.【点睛】本题考查指数函数的图象和性质,考查图象的平移变换.11.已知log25=a,log56=b,则用a,b表示1g6=______.【答案】【解析】【分析】先由lg2+lg5=1结合log25=a,解出lg5,然后利用换底公式log56=进行计算整理即可得到答案.【详解】∵log25=a=,解得lg5=.log56=b=,∴lg6=blg5=.故答案为:.【点睛】本题考查了对数运算性质,重点考查对数换底公式的应用,考查推理能力与计算能力,属于基础题.12.函数y=(x≤0)的值域是______.【答案】(-∞,2]∪(3,+∞)【解析】【分析】先对函数进行分离常数,然后利用函数单调性即可求出值域.【详解】y=∴该函数在(-2,0],(-∞,-2)上单调递增;∴x∈(-2,0]时,y≤2;x∈(-∞,-2)时,y>3;∴原函数的值域为(-∞,2]∪(3,+∞).故答案为:(-∞,2]∪(3,+∞).【点睛】考查函数值域的概念及求法,分离常数法的运用,反比例函数值域的求法,属基础题.13.已知a>0且a≠1,函数f(x)=满足对任意不相等的实数x1,x2,都有(x1-x2)[f(x1)-f(x2)]>0,成立,则实数a的取值范围______.【答案】(2,3]【解析】【分析】根据已知条件(x1-x2)[f(x1)-f(x2)]>0得到函数f(x)的单调性,然后利用分段函数的单调性列不等式组即可得到答案.【详解】对任意实数x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,可得f(x)在R上为单调递增,则即解得a的取值范围为:2<a≤3.故答案为:(2,3].【点睛】已知函数的单调性确定参数的值或范围要注意以下几点:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围. 14.设函数f(x)=a x+b x-c x,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是______(写出所有正确结论的序号)①对任意的x∈(-∞,1),都有f(x)>0;②存在x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC是顶角为120°的等腰三角形,则存在x∈(1,2),使f(x)=0.【答案】①②③【解析】【分析】在①中,利用不等式的性质分析即可,在②中,举例a=2,b=3,c=4进行说明,在③中,利用零点存在性定理分析即可.【详解】在①中,∵a,b,c是△ABC的三条边长,∴a+b>c,∵c>a>0,c>b>0,∴0<<1,0<<1,当x∈(-∞,1)时,f(x)=a x+b x-c x=c x[()x+()x-1]>c x(+-1)=c x•>0,故①正确;在②中,令a=2,b=3,c=4,则a,b,c可以构成三角形,但a2=4,b2=9,c2=16不能构成三角形,故②正确;在③中,∵c>a>0,c>b>0,若△ABC顶角为120°的等腰三角形,∴a2+b2-c2<0,∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,根据函数零点存在性定理可知在区间(1,2)上存在零点,即∃x∈(1,2),使f(x)=0,故③正确.故答案为:①②③.【点睛】本题考查命题真假的判断,考查指数函数单调性、零点存在性定理和不等式性质的运用.三、解答题(本大题共5小题,共50.0分)15.已知函数f(x)=a x-1(x≥0).其中a>0,a≠1.(1)若f(x)的图象经过点(,2),求a的值;(2)求函数y=f(x)(x≥0)的值域.【答案】(1)4 ;(2)见解析.【解析】【分析】(1)将点(,2)代入函数解析式,即可得到a值;(2)按指数函数的单调性分a>1和0<a<1两种情况,分类讨论,求得f(x)的值域.【详解】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(,2),∴=2,∴a=4.(2)对于函数y=f(x)=a x-1,当a>1时,单调递增,∵x≥0,x-1≥-1,∴f(x)≥a-1=,故函数的值域为[,+∞).对于函数y=f(x)=a x-1,当0<a<1时,单调递减,∵x≥0,x-1≥-1,∴f(x)≤a-1=,又f(x)>0,故函数的值域为.综上:当a>1时,值域为[,+∞).当0<a<1时,值域为.【点睛】本题考查指数函数图像和性质的应用,主要考查函数的单调性和函数值域问题.16.设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】(1)a=-3或a=1;(2){a|a≤-3或a>或a=-2或a=-}.【解析】【分析】(1)根据A∩B={2},可知B中有元素2,带入求解a即可;(2)根据A∪B=A得B⊆A,然后分B=∅和B≠∅两种情况进行分析可得实数a的取值范围.【详解】(1)集合A={x|x2-3x+2=0}={x|x=1或x=2}={1,2},若A∩B={2},则x=2是方程x2+(a-1)x+a2-5=0的实数根,可得:a2+2a-3=0,解得a=-3或a=1;(2)∵A∪B=A,∴B⊆A,当B=∅时,方程x2+(a-1)x+a2-5=0无实数根,即(a-1)2-4(a2-5)<0解得:a<-3或a>;当B≠∅时,方程x2+(a-1)x+a2-5=0有实数根,若只有一个实数根,x=1或x=2,则△=(a-1)2-4(a2-5)=0解得:a=-3或a=,∴a=-3.若只有两个实数根,x=1、x=2,△>0,则-3<a<;则(a-1)=-3,可得a=-2,a2-5=2,可得a=综上可得实数a的取值范围是{a|a≤-3或a>或a=-2或a=-}【点睛】本题考查并,交集及其运算,考查数学分类讨论思想.17.函数f(x)=是定义在R上的奇函数,且f(1)=1.(1)求a,b的值;(2)判断并用定义证明f(x)在(+∞)的单调性.【答案】(1)a=5,b=0;(2)见解析.【解析】【分析】(1)根据函数为奇函数,可利用f(1)=1和f(-1)=-1,解方程组可得a、b值,然后进行验证即可;(2)根据函数单调性定义利用作差法进行证明.【详解】(1)根据题意,f(x)=是定义在R上的奇函数,且f(1)=1,则f(-1)=-f(1)=-1,则有,解可得a=5,b=0;经检验,满足题意.(2)由(1)的结论,f(x)=,设<x1<x2,f(x1)-f(x2)=-=,又由<x1<x2,则(1-4x1x2)<0,(x1-x2)<0,则f(x1)-f(x2)>0,则函数f(x)在(,+∞)上单调递减.【点睛】本题考查函数的奇偶性与单调性的综合应用,属于基础题.18.已知二次函数满足,.求函数的解析式;若关于x的不等式在上恒成立,求实数t的取值范围;若函数在区间内至少有一个零点,求实数m的取值范围【答案】(1)f(x)=2x2-6x+2;(2)t>10;(3)m<-10或m≥-2.【解析】【分析】(1)用待定系数法设二次函数表达式,再代入已知函数方程化简即可得答案;(2)分离参数后求f(x)的最大值即可;(3)先求无零点时m的范围,再求补集.【详解】(1)设二次函数f(x)=ax2+bx+2,(a≠0)∴a(x+1)2+b(x+1)+2-ax2-bx-2=4x-4∴2ax+a+b=4x-4,∴a=2,b=-6∴f(x)=2x2-6x+2;(2)依题意t>f(x)=2x2-6x+2在x∈[-1,2]上恒成立,而2x2-6x+2的对称轴为x=∈[-1,2],所以x=-1时,取最大值10,t>10;(3)∵g(x)=f(x)-mx=2x2-6x+2-mx=2x2-(6+m)x+2在区间(-1,2)内至少有一个零点,当g(x)在(-1,2)内无零点时,△=(6+m)2-16<0或或,解得:-10≤m<-2,因此g(x)在(-1,2)内至少有一个零点时,m<-10或m≥-2.【点睛】本题考查利用待定系数法求函数解析式,考查恒成立问题的解法以及二次函数的零点问题,属于基础题.19.设a为实数,函数f(x)=+a+a.(1)设t=,求t的取值范图;(2)把f(x)表示为t的函数h(t);(3)设f (x)的最大值为M(a),最小值为m(a),记g(a)=M(a)-m(a)求g(a)的表达式.【答案】(1)[,2];(2)h(t)=at+,≤t≤2;(3)g(a)=..【解析】【分析】(1)将t=两边平方,结合二次函数的性质可得t的范围;(2)由(1)可得=,可得h(t)的解析式;(3)求得h(t)=(t+a)2-1-a2,对称轴为t=-a,讨论对称轴与区间[,2]的关系,结合单调性可得h(t)的最值,即可得到所求g(a)的解析式.【详解】(1)t=,可得t2=2+2,由0≤1-x2≤1,可得2≤t2≤4,又t≥0可得≤t≤2,即t的取值范围是[,2];(2)由(1)可得=,即有h(t)=at+,≤t≤2;(3)由h(t)=(t+a)2-1-a2,对称轴为t=-a,当-a≥2即a≤-2时,h(t)在[,2]递减,可得最大值M(a)=h()=a;最小值m(a)=h(2)=1+2a,则g(a)=(-2)a-1;当-a≤即a≥-时,h(t)在[,2]递增,可得最大值M(a)=h(2)=1+2a;最小值m(a)=h()=a,则g(a)=(2-)a+1;当<-a<2即-2<a<-时,h(t)的最小值为m(a)=h(-a)=-1-a2,若-1-≤a<-,则h(2)≥h(),可得h(t)的最大值为M(a)=h(2)=1+2a,可得g(a)=2+2a+a2;若-2<a<-1-,则h(2)<h(),可得h(t)的最大值为M(a)=h()=a,可得g(a)=a+1+a2;综上可得g(a)=.【点睛】本题考查函数的最值求法,注意运用换元法和二次函数在闭区间上的最值求法,考查分类讨论思想方法和化简整理运算能力,属于中档题.。
山东省菏泽市2019届高三上学期期末考试数学(理)试题(B)(解析版)
2018-2019学年山东省菏泽市高三(上)期末数学试卷(理科)(B卷)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)设集合A={x∈N|﹣2<x<2}的真子集的个数是()A.8B.7C.4D.32.(5分)sin15°+cos165°的值为()A.B.C.D.3.(5分)已知,,且,则向量与向量的夹角为()A.B.C.D.或4.(5分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是()A.6B.7C.8D.95.(5分)已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A.0<a<b B.a<b<0C.o<b<a D.a=b6.(5分)一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于()A.B.C.2D.47.(5分)已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是()A.2B.2C.4D.28.(5分)为了得到函数y=sin2x的图象,可以将函数的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位9.(5分)设双曲线﹣=1(a>0,b>0)的右焦点与对称轴垂直的直线与渐近线交于A,B两点,若△OAB的面积为,则双曲线的离心率为()A.B.C.D.10.(5分)已知等差数列{a n}的公差d≠0,S n为其前n项和,若a2,a3,a6成等比数列,且a4=﹣5,则的最小值是()A.B.C.D.11.(5分)如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥C′﹣MENF的体积V=h(x)为常函数;以上命题中假命题的序号为()A.①④B.②C.③D.③④12.(5分)非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,由两个和一个排列而成,若所有可能值中的最小值为4,则λ=()A.1B.3C.D.二、填空题(每题5分,共20分,将答案填在答题卡上)13.(5分)曲线y=2ln(x+2)在点(﹣1,0)处的切线方程为.14.(5分)在三棱锥A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC、△ACD、△ABD的面积分别为、、,则三棱锥A﹣BCD的外接球的体积为.15.(5分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,若b2=a(a+c),则的取值范围是.16.(5分)中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是.三、解答题:本大题共6小题,共70分.解答应写岀文字说明,证明过程或演算步骤.17.(10分)解关于的不等式:ax2+(1﹣a)x﹣1>0(a<0).18.(12分)设函数f(x)=A sin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.(1)求A,ω,φ的值;(2)设θ为锐角,且f(θ)=﹣,求f(θ﹣)的值.19.(12分)已知数列{a n}的首项为a1=1,且.(Ⅰ)证明:数列{a n+2}是等比数列,并求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n+2)﹣log23,求数列的前n项和T a.20.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点点N在线段AD上.(1)点N为线段AD的中点时,求证:直线PA∥面BMN;(2)若直线MN与平面PBC所成角的正弦值为,求二面角C﹣BM﹣N所成角θ的余弦值.21.(12分)已知以椭圆C:=1(a>b>0)的两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,直线x+y+1=0与以椭圆C的右焦点为圆心,椭圆的长半轴长为半径的圆相切.(1)求椭圆C的方程;(2)矩形ABCD的两顶点C、D在直线y=x+2上,A、B在椭圆C上,若矩形ABCD的周长为,求直线AB的方程.22.(12分)已知函数f(x)=lnx+﹣1,a∈R.(1)当a>0时,若函数f(x)在区间[1,3]上的最小值为,求a的值;(2)讨论函数g(x)=f′(x)﹣零点的个数.2018-2019学年山东省菏泽市高三(上)期末数学试卷(理科)(B卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)设集合A={x∈N|﹣2<x<2}的真子集的个数是()A.8B.7C.4D.3【分析】先求出集合A={0,1},由此能求出集合A的真子集的个数.【解答】解:∵集合A={x∈N|﹣2<x<2}={0,1},∴集合A的真子集的个数是:22﹣1=3.故选:D.【点评】本题考查集合的真子集的个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.2.(5分)sin15°+cos165°的值为()A.B.C.D.【分析】利用诱导公式,把要求的式子化为sin15°﹣cos15°=sin(45°﹣30°)﹣cos(45°﹣30°),再利用两角差的正弦、余弦公式,进一步展开运算求得结果.【解答】解:sin15°+cos165°=sin15°﹣cos15°=sin(45°﹣30°)﹣cos(45°﹣30°)=sin45°cos30°﹣cos45°sin30°﹣cos45°cos30°﹣sin45°sin30°=﹣﹣﹣=,故选:B.【点评】本题主要考查两角和差的正弦、余弦公式的应用,以及诱导公式的应用,属于中档题.3.(5分)已知,,且,则向量与向量的夹角为()A.B.C.D.或【分析】根据便可得出,结合条件进行数量积的运算即可求出的值,进而得出向量的夹角.【解答】解:;∴=0;∴;又;∴的夹角为.故选:C.【点评】考查向量垂直的充要条件,向量数量积的运算及计算公式,向量夹角的范围.4.(5分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是()A.6B.7C.8D.9【分析】求出抛物线的准线方程,利用抛物线的定义转化求解即可.【解答】解:抛物线y2=4x的准线方程为:x=﹣1,抛物线y2=4x上的点M到焦点的距离为10,可得x M=9,则M到y轴的距离是:9.故选:D.【点评】本题考查抛物线的简单性质的应用,考查计算能力.5.(5分)已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A.0<a<b B.a<b<0C.o<b<a D.a=b【分析】分别画出y=2017x,y=2018x,根据实数a,b满足等式2017a=2018b,即可得出.【解答】解:分别画出y=2017x,y=2018x,实数a,b满足等式2017a=2018b,可得:a>b>0,a<b<0,a=b=1.而0<a<b成立.故选:A.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.6.(5分)一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等A.B.C.2D.4【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为b:b=R=2,长轴为:2a,则2a cos60°=2R=4,∴a=4∵a2=b2+c2,∴c==2,∴椭圆的焦距为4;故选:D.【点评】本题考查椭圆焦距的求法,注意椭圆的几何量关系的正确应用,考查计算能力.7.(5分)已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是()A.2B.2C.4D.2【分析】利用对数的运算法则和基本不等式的性质即可得出.【解答】解:∵lg2x+lg8y=lg2,∴lg(2x•8y)=lg2,∴2x+3y=2,∴x+3y=1.∵x>0,y>0,∴==2+=4,当且仅当x=3y=时取等号.故选:C.【点评】熟练掌握对数的运算法则和基本不等式的性质是解题的关键.8.(5分)为了得到函数y=sin2x的图象,可以将函数的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用逆推方法求出函数y=sin2x的图象,变换为函数的图象的方法,即可得到正确选项.【解答】解:函数y=sin2x的图象,变换为函数=的图象,只需向右平移个单位,所以为了得到函数y=sin2x的图象,可以将函数的图象,向左平移个单位.【点评】本题是基础题,考查三角函数图象的平移变换,注意图象变换的逆应用.注意自变量的系数与方向.9.(5分)设双曲线﹣=1(a>0,b>0)的右焦点与对称轴垂直的直线与渐近线交于A,B两点,若△OAB的面积为,则双曲线的离心率为()A.B.C.D.【分析】令x=c,则代入y=±x可得y=±,根据△OAB的面积为,求出双曲线的离心率即可.【解答】解:F为右焦点,设其坐标为(c,0),令x=c,则代入y=±x可得y=±,∵△OAB的面积为,∴=,∴=,∴e=故选:D.【点评】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.10.(5分)已知等差数列{a n}的公差d≠0,S n为其前n项和,若a2,a3,a6成等比数列,且a4=﹣5,则的最小值是()A.B.C.D.【分析】据题意,由等差数列的通项公式可得(a1+2d)2=(a1+d)(a1+5d),解可得a1、d的值,进而讨论可得a1、d的值,即可得=,令≥且≥,求出n即可求出最小值.【解答】解:∵等差数列{a n}的公差d≠0,a2,a3,a6成等比数列,且a4=﹣5,∴(a1+2d)2=(a1+d)(a1+5d),a4=a1+3d=﹣5解得d=﹣2,a1=1,当d=﹣2时,S n=n+=﹣n2+2n,则=,令≥且≥,解可得2+≤n≤3+,即n=4时,取得最小值,且=﹣;故选:A.【点评】本题考查等差数列的第n项与前n项和的积的最小值的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.11.(5分)如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥C′﹣MENF的体积V=h(x)为常函数;以上命题中假命题的序号为()A.①④B.②C.③D.③④【分析】①利用面面垂直的判定定理去证明EF⊥平面BDD'B'.②四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可.③判断周长的变化情况.④求出四棱锥的体积,进行判断.【解答】解:①连结BD,B'D',则由正方体的性质可知,EF⊥平面BDD'B',所以平面MENF⊥平面BDD'B',所以①正确.②连结MN,因为EF⊥平面BDD'B',所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C'E,C'M,C'N,则四棱锥则分割为两个小三棱锥,它们以C'EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C'EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V =h(x)为常函数,所以④正确.所以四个命题中③假命题.所以选C.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.12.(5分)非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,由两个和一个排列而成,若所有可能值中的最小值为4,则λ=()A.1B.3C.D.【分析】列出向量组的所有排列,计算所有可能的值,根据最小值列出不等式组解出.【解答】解:•=||×λ||×cos=2,2=λ22向量组,,共有3种情况,即(,,),(,,),(,,)向量组,,共有3种情况,即(,,),(,,),(,,)∴•+•+•所有可能值中的最小值为42,∴或,解得λ=,故选:C.【点评】本题考查了平面向量数量积的性质及其运算,属中档题.二、填空题(每题5分,共20分,将答案填在答题卡上)13.(5分)曲线y=2ln(x+2)在点(﹣1,0)处的切线方程为2x﹣y+2=0.【分析】求得函数y的导数,可得切线的斜率,由点斜式方程可得所求切线方程.【解答】解:y=2ln(x+2)的导数为y′=,可得切线的斜率为k=2,即有曲线在(﹣1,0)处的切线方程为y=2(x+1),即2x﹣y+2=0.故答案为:2x﹣y+2=0.【点评】本题考查导数的运用:求切线方程,考查直线方程的运用,属于基础题.14.(5分)在三棱锥A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC、△ACD、△ABD的面积分别为、、,则三棱锥A﹣BCD的外接球的体积为8π.【分析】利用三棱锥侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,从而求出对角线长,即可求解外接球的体积.【解答】解:三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,设长方体的三边为a,b,c,则由题意得:ab=4,ac=4,bc=4,解得:a=2,b=2,c=2,所以球的直径为:=2所以球的半径为,所以三棱锥A﹣BCD的外接球的体积为=8π故答案为:8π.【点评】本题考查几何体的外接球的体积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.15.(5分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,若b2=a(a+c),则的取值范围是(,).【分析】由b2=a(a+c)利用余弦定理,可得c﹣a=2a cos B,正弦定理边化角,在消去C,可得sin(B﹣A)=sin A,利用三角形ABC是锐角三角形,结合三角函数的有界限,可得的取值范围.【解答】解:由b2=a(a+c)余弦定理,可得c﹣a=2a cos B正弦定理边化角,得sin C﹣sin A=2sin A cos B∵A+B+C=π∴sin(B+a)﹣sin A=2sin A cos B∴sin(B﹣A)=sin A∵ABC是锐角三角形,∴B﹣A=A,即B=2A.∵,,那么:则=sin A∈(,)故答案为:(,)【点评】本题考查三角形的正余弦定理和内角和定理的运用,考查运算能力,属于基础题.16.(5分)中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是①③④.【分析】根据优美函数”,定义依次判断各命题即可得出答案;【解答】解:①对于任意一个圆O,其过圆心的对称轴由无数条,所以其“优美函数”有无数个;②函数f(x)=ln(x2)的定义域为R,值域为(0,∞)不可以是某个圆的“优美函数”;③函数y=1+sin x,根据y=sin x的图象可知可以将圆分成优美函数,图象可以延伸,所以可以同时是无数个圆的“优美函数”;④函数y=2x+1只要过圆心,即可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形,不对,有些中心对称图形不一定是“优美函数”,比如“双曲线”;故答案为:①③④.【点评】本题考查的知识点是函数图象的对称性,正确理解新定义是解答的关键.三、解答题:本大题共6小题,共70分.解答应写岀文字说明,证明过程或演算步骤.17.(10分)解关于的不等式:ax2+(1﹣a)x﹣1>0(a<0).【分析】把二次项的系数变为大于0,进而分类讨论可求出不等式的解集.【解答】解:ax2+(1﹣a)x﹣1>0可得(ax+1)(x﹣1)>0,即(x+)(x﹣1)<0,当﹣<1时,即a<﹣1时,不等式的解为﹣<x<1,当﹣>1时,即﹣1<a<0,不等式的解为1<x<﹣,当﹣=1时,即a=﹣1时,不等式的解集为空集,故当a<﹣1时,不等式的解集为(﹣,1),当﹣1<a<﹣1时,不等式的解为(1,﹣),当a=﹣1时,不等式的解集为空集.【点评】对a正确分类讨论和熟练掌握一元二次不等式的解法是解题的关键.18.(12分)设函数f(x)=A sin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.(1)求A,ω,φ的值;(2)设θ为锐角,且f(θ)=﹣,求f(θ﹣)的值.【分析】(1)由图象可得A,最小正周期T,利用周期公式可求ω,由,得,k∈Z,结合范围0<φ<π,可求φ的值(2)由已知可求,由,结合,可得范围,利用同角三角函数基本关系式可求cos(2θ+)的值,利用两角差的正弦函数公式即可计算得解.【解答】(本题满分为14分)解:(1)由图象,得,…(2分)∵最小正周期,∴,…(4分)∴,由,得,k∈Z,∴,k∈Z,∵0<φ<π,∴.…(7分)(2)由,得,∵,∴,又∵,∴,∴,…(10分)∴==.…(14分)【点评】本题主要考查了y=A sin(ωx+φ)的部分图象确定其解析式,周期公式,同角三角函数基本关系式,两角差的正弦函数公式的综合应用,考查了计算能力和转化思想,属于中档题.19.(12分)已知数列{a n}的首项为a1=1,且.(Ⅰ)证明:数列{a n+2}是等比数列,并求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n+2)﹣log23,求数列的前n项和T a.【分析】(Ⅰ)a n+1=2(a n+1),变形为:a n+1+2=2(a n+2),利用等比数列的通项公式即可得出.(Ⅱ)由(Ⅰ)知,,.利用错位相减法即可得出.【解答】(Ⅰ)证明:∵a n+1=2(a n+1),∴a n+1+2=2(a n+2),则数列{a n+2}是以3为首项,以2为公比的等比数列,∴,即.(Ⅱ)解:由(Ⅰ)知,,∴.∴,,∴,则.【点评】本题考查了等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.20.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点点N在线段AD上.(1)点N为线段AD的中点时,求证:直线PA∥面BMN;(2)若直线MN与平面PBC所成角的正弦值为,求二面角C﹣BM﹣N所成角θ的余弦值.【分析】(1)连结点AC,BN,交于点E,连结ME,推导出四边形ABCN为正方形,由此能证明直线PA∥平面BMN.(2)分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由此能求出平面PBC与平面BMN所成角θ的余弦值.【解答】证明:(1)连结点AC,BN,交于点E,连结ME,∵点N为线段AD的中点,AD=4,∴AN=2,∵∠ABC=∠BAD=90°,AB=BC=2,∴四边形ABCN为正方形,∴E为AC的中点,∴ME∥PA,∵PA⊄平面BMN,∴直线PA∥平面BMN.解:(Ⅱ)∵PA⊥平面ABCD,且AB,AD⊂平面ABCD,∴PA⊥AB,PA⊥AD,∵∠BAD=90°,∴PA,AB,AD两两互相垂直,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,则由AD=AP=4,AB=BC=2,得:B(2,0,0),C(2,2,0),P(0,0,4),∵M为PC的中点,∴M(1,1,2),设AN=λ,则N(0,λ,0),(0≤λ≤4),则=(﹣1,λ﹣1,﹣2),=(0,2,0),=(2,0,﹣4),设平面PBC的法向量为=(x,y,z),⇒∵直线MN与平面PBC所成角的正弦值为,|cos<>|==.解得λ=1,则N(0,1,0),=(﹣2,1,0),=(﹣1,1,2),设平面BMN的法向量=(x,y,z),=﹣x+y+2z=0,=﹣2x+y=0,令x=2,得=(2,4,﹣1),cos=∴平面PBC与平面BMN所成角θ的余弦值为.【点评】本题考查线面平行的证明,考查面面所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.(12分)已知以椭圆C:=1(a>b>0)的两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,直线x+y+1=0与以椭圆C的右焦点为圆心,椭圆的长半轴长为半径的圆相切.(1)求椭圆C的方程;(2)矩形ABCD的两顶点C、D在直线y=x+2上,A、B在椭圆C上,若矩形ABCD的周长为,求直线AB的方程.【分析】(1)由两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,得出b=c,于是得出,然后利用圆心到直线的距离等于圆的半径列出等式,并代入关系式可得出a、b、c的值,即可得出椭圆C的方程;(2)根据矩形对边互相平行,设直线AB的方程为y=x+m,并设点A(x1,y1)、B(x2,y2),将直线AB的方程与椭圆C的方程联立,由△>0得出m的取值范围,列出韦达定理,利用弦长公式得出|AB|的表达式,利用两平行直线的距离公式得出直线AB和CD的距离,即为|BC|,再由|AB|+|BC|=列出有关m的方程,即可求出m的值,于是可得出直线AB的方程.【解答】解:(1)由题意知,以椭圆C的右焦点为圆心,椭圆长半轴长为半径的圆的方程为(x﹣c)2+y2=a2,圆心到直线x+y+1=0的距离,①∵以椭圆C的两焦点与短轴的一个端点为顶点的三角形为等腰直角三角形,所以,b=c,,代入①式得b=c=1,.因此,所求椭圆的方程为;(2)设直线AB的方程为y=x+m,代入椭圆C的方程,整理得3x2+4mx+2m2﹣2=0,由△>0,得,设点A(x1,y1)、B(x2,y2),则,.,易知,则由知,所以,由已知可得,即,整理得41m2+30m﹣71=0,解得m=1或,所以,直线AB的方程为y=x+1或.【点评】本题考查直线与椭圆的综合,考查椭圆的几何性质,考查了弦长公式与距离公式,考查计算能力,属于中等题.22.(12分)已知函数f(x)=lnx+﹣1,a∈R.(1)当a>0时,若函数f(x)在区间[1,3]上的最小值为,求a的值;(2)讨论函数g(x)=f′(x)﹣零点的个数.【分析】(1)首先求解导函数,然后分类讨论求解实数a的值即可;(2)首先求解导函数,然后进行二次求导,结合二阶导函数的解析式讨论函数的零点个数即可.【解答】解:(1),当0<a≤1时,f’(x)>0在(1,3)上恒成立,这时f(x)在[1,3]上为增函数,∴f(x)min=f(1)=a﹣1,令得(舍去),当1<a<3时,由f’(x)=0得,x=a∈(1,3),若x∈(1,a),有f’(x)<0,f(x)在[1,a]上为减函数,若x∈(a,3)有f’(x)>0,f(x)在[a,3]上为增函数,f’(x)min=f(a)=lna,令,得.当a≥3时,f’(x)<0在(1,3)上恒成立,这时f(x)在[1,3]上为减函数,∴,令得a=4﹣3ln3<2(舍去).综上知,.(2)∵函数,令g(x)=0,得.设,当x∈(0,1)时,φ'(x)>0,此时φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ’(x)<0,此时φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是(x)的最大值点,φ(x)的最大值为.又φ(0)=0,结合φ(x)的图象可知:①当时,函数g(x)无零点;②当时,函数g(x)有且仅有一个零点;③当时,函数g(x)有两个零点;④a≤0时,函数g(x)有且只有一个零点;综上所述,当时,函数g(x)无零点;当或a≤0时,函数g(x)有且仅有一个零点;当时,函数g(x)有两个零点.【点评】点睛:本题主要考查导数研究函数的单调性,导数研究函数的零点个数,分类讨论的数学思想等知识,属于中等题.。
湖北省孝感一中、应城一中等重点高中协作体2018-2019学年高一上学期期中联考试数学题含答案解析
湖北省孝感一中、应城一中等重点高中协作体2018-2019学年高一上学期期中联考数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,B={x|x2﹣2x﹣3<0},则A∩B=()A. {-1,0,1,2,3}B. {-1,0,1,2}C. {1,2}D. {1,2,3}【答案】C【解析】∵集合A={1,2,3},B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴A∩B={1,2}.故选:C.2.下列函数中与f(x)=x是同一函数的有()①y=②y=③y=④y=⑤f(t)=t⑥g(x)=xA. 1 个B. 2 个C. 3个D. 4个【答案】C【解析】f(x)=x的定义域为R;①的定义域为{x|x≥0},定义域不同,不是同一函数;②的定义域为R,定义域和解析式都相同,是同一函数;③,解析式不同,不是同一函数;④的定义域为{x|x≠0},定义域不同,不是同一函数;⑤f(t)=t的定义域为R,解析式和定义域都相同,是同一函数;⑥g(x)=x的定义域为R,解析式和定义域都相同,是同一函数.故选:C.3.已知幂函数f(x)=kxα(k∈R,α∈R)的图象过点(,),则k+α= ()A. B. 1 C. D. 2【答案】A【解析】∵幂函数f(x)=kxα(k∈R,α∈R)的图象过点(,),∴k=1,=,∴α=﹣;∴k+α=1﹣=.故选:A.4.下列函数中,既是奇函数又是增函数的为()A. B. C. D. y=ln【答案】B【解析】由奇函数的性质可知,A:y=x+1为非奇非偶函数,不符合条件;B:y=f(x)=x|x|的定义域R,且f(﹣x)=﹣x|﹣x|=﹣x|x|=f(x),奇函数y=x|x|=在R上单调递增,故正确;C:y=为奇函数,但在(0,+∞),(﹣∞,0)上单调递减,不符合题意;D:y=ln的定义域(﹣1,1),f(x)=ln==﹣f(x),为奇函数,而t===﹣1+在(﹣1,1)上单调递减,根据复合函数的单调性可知,y=ln在(﹣1,1)上单调递增,不符合故选:B.5.已知a=log23.4,b=2.11.2,c=log0.33.8,则a、b、c的大小关系为()A. a<b<cB. c<a<bC. b<c<aD. c<b<a【答案】B【解析】1=log22<a=log23.4<log24=2,b=2.11.2>2.11=2.1,c=log0.33.8<log0.31=0,则a、b、c的大小关系为c<a<b.故选:B.6.若y=f(x)的定义域为(0,2],则函数g(x)=的定义域是()A. (0,1]B. [0,1)C. (0,1)∪(1,4]D. (0,1)【答案】D【解析】由y=f(x)的定义域为(0,2],令,解得0<x<1,∴函数g(x)=的定义域是(0,1).故选:D.7.下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速;(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间.A. (1)(2)(4)B. (4)(2)(1)C. (4)(3)(1)D. (4)(1)(2)【答案】B【解析】(1)我离开家不久,发现自己把作业本放在家里了,于是立刻返回家里取了作业本再上学,中间有回到家的过程,故④成立;(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速,②符合;(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间,①符合.故选:B.8.已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表填写下列f[g(x)]的表格,其中三个数依次为A. 2,1,3B. 1 ,2,3C. 3,2,1D. 1,3,2【答案】A【解析】∵两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如表:∴f[g(1)]=f(1)=2,f[g(2)]=f(3)=1,f[g(3)]=f(2)=3,∴f[g(x)]的表格中三个数依次为2,1,3.故选:A.9.如图的曲线是幂函数y=x n在第一象限内的图象.已知n分别取±2,四个值,与曲线c1、c2、c3、c4相应的n依次为()A. B.C. D.【答案】A【解析】根据幂函数y=x n的性质,在第一象限内的图象,当n>0时,n越大,递增速度越快,故曲线c1的n=2,曲线c2的n=,当n<0时,|n|越大,曲线越陡峭,所以曲线c3的n=,曲线c4的﹣2,故依次填2,,﹣,﹣2.故选:A.10.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是( )(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 1093【答案】D【解析】设,两边取对数,,所以,即最接近,故选D.11.某同学求函数f(x)=ln x+2x﹣6零点时,用计算器算得部分函数值如表所示:则方程ln x+2x﹣6=0的近似解(精确度0.1)可取为()A. 2.52B. 2.625C. 2.66D. 2.75【答案】A【解析】根据题意,由表格可知,方程f(x)=ln x+2x﹣6的近似根在(2.5,3),(2.5,2.75),(2.5,2.625)内;据此分析选项:A中2.52符合,故选:A.12.已知函数(a>0且a≠1)是R上的单调函数,则a的取值范围是()A. (0,]B. [)C. []D. (]【答案】C【解析】由题意,分段函数是在R上单调递减,可得对数的底数需满足0<a<1,根据二次函数开口向上,二次函数在(﹣∞,)单调递减,可得≥0.且[x2+(4a﹣3)x+3a]min≥[log a(x+1)+2]max,故而得:,解得a≤,并且3a≥2,a∈(0,1)解得:1>a≥.∴a的取值范围是[,],故选:C.二、填空题:每小题5分,共20分.13.设全集U={1,2,3,4,5,6,7},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则集合B为__________【答案】{5,6,7}【解析】全集U={1,2,3,4,5,6,7},∁U(A∪B)={1,3},∴A∪B={2,4,5,6,7},又A∩(∁U B)={2,4},∴2∉B,且4∉B,∴集合B={5,6,7}.故答案为:{5,6,7}.14.若2a=5b=20,则= ______【答案】【解析】∵2a=5b=20,∴a=log220,b=log520,则==4log202+2log205=log2016×25=2.故答案为:215.已知函数y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+1,那么不等式2f(x)﹣1<0的解集是_________【答案】【解析】根据题意,函数y=f(x)是定义在R上的奇函数,则f(0)=0,设x>0,则﹣x<0,则f(﹣x)=﹣x+1,又由函数f(x)为奇函数,则f(x)=﹣f(﹣x)=x﹣1,则f(x)=,当x>0时,2f(x)﹣1<0即2(x﹣1)﹣1<0,变形可得:2x﹣3<0,解可得0<x<;当x=0时,2f(x)﹣1<0即﹣1<0,符合题意;当x<0时,2f(x)﹣1<0即2(x+1)﹣1<0,变形可得:2x+1<0,解可得x<﹣,综合可得:x的取值范围为;故答案为:.16.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.【答案】3.75(或)【解析】由题意函数关系p=at2+bt+c(a,b,c是常数),经过点(3,0.7),(4,0.8),(5,0.5),∴,a=﹣0.2,b=1.5,c=﹣2.2,∴p=﹣0.2t2+1.5t﹣2.2=﹣0.2(t﹣3.75)2+0.6125,∴得到最佳加工时间为3.75分钟.故答案为:3.75.三、解答题:本大题共6小题,共70分,其中第17题10分,其余每题12分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=4x2﹣kx﹣8,x∈[5,10].(1)当k=1时,求函数f(x)的值域;(2)若f(x)在定义域上具有单调性,求k的取值范围.解:(1)时,的对称轴为,在[5,10]上单调递增,因为,,所以的值域为[87,382].(2)由题意:对称轴,所以,所以的取值范围为.18.已知全集U=R,集合P={x|x2﹣6x≥0},M={x|a<x<2a+4}.(1)求集合∁U P;(2)若M⊆∁U P,求实数a的取值范围.解:(1)由得,所以P=,=(0,6).(2)当时,,符合题意,当时,且,解得,综上:的取值范围为.19.已知函数f(x)=的定义域为M.(1)求M;(2)当x∈M时,求g(x)=4x﹣2x+1+1的值域.解:(1)∵函数f(x)=的定义域为M.∴M={x|}={x|﹣1<x≤2};(2)当x∈M=(﹣1,2]时,g(x)=4x﹣2x+1+1=(2x)2﹣2×2x+1=(2x﹣1)2,∵x∈(﹣1,2],∴2x∈(],∴g(x)min=g(0)=(20﹣1)2=0,g(x)max=g(2)=(22﹣1)2=9,∴g(x)=4x﹣2x+1+1的值域为[0,9].20.某租赁公司拥有汽车100辆,当每辆车的月租金为3200元时,可全部租出。
高中数学-高一上学期期末调研测试数学试题 Word版含解析72
2018-2019学年高一上学期期末调研测试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合,集合,则()A. B.C. D.【答案】B【解析】【分析】由题意,求得集合,集合,根据集合的交集的运算,即可求解,得到答案.【详解】由题意,集合,集合,根据集合的交集的运算,可得,故选B.【点睛】本题主要考查了集合的交集的运算问题,其中解答中首先求解集合,再利用集合的交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.有一个容量为66的样本,数据的分组及各组的频数如下:,,,,根据样本的频数分布估计,大于或等于的数据约占A. B. C. D.【答案】C【解析】【分析】找到大于或等于的频数,除以总数即可.【详解】由题意知,大于或等于的数据共有:则约占:本题正确选项:【点睛】考查统计中频数与总数的关系,属于基础题.3.秦九韶算法是中国古代求多项式的值的优秀算法,若,当时,用秦九韶算法求A. 1B. 3C. 4D. 5【答案】C【解析】【分析】通过将多项式化成秦九韶算法的形式,代入可得.【详解】由题意得:则:本题正确选项:【点睛】本题考查秦九韶算法的基本形式,属于基础题.4.下列四组函数中,不表示同一函数的是A. 与B. 与C. 与D. 与【答案】D【解析】【分析】根据相同函数对定义域和解析式的要求,依次判断各个选项.【详解】相同函数要求:函数定义域相同,解析式相同三个选项均满足要求,因此是同一函数选项:定义域为;定义域为,因此不是同一函数本题正确选项:【点睛】本题考查相同函数的概念,关键在于明确相同函数要求定义域和解析式相同,从而可以判断结果.5.执行如图所示程序框图,当输入的x为2019时,输出的A. 28B. 10C. 4D. 2【答案】C【解析】【分析】的变化遵循以为公差递减的等差数列的变化规律,到时结束,得到,然后代入解析式,输出结果.【详解】时,每次赋值均为可看作是以为首项,为公差的等差数列当时输出,所以,即即:,本题正确选项:【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.6.函数的单调递增区间为A. B. C. D.【答案】C【解析】【分析】结合对数真数大于零,求出定义域;再求出在定义域内的单调递减区间,得到最终结果.【详解】或在定义域内单调递减根据复合函数单调性可知,只需单调递减即可结合定义域可得单调递增区间为:本题正确选项:【点睛】本题考查求解复合函数的单调区间,复合函数单调性遵循“同增异减”原则,易错点在于忽略了函数自身的定义域要求.7.在一不透明袋子中装着标号为1,2,3,4,5,6的六个质地、大小、颜色无差别小球,现从袋子中有放回地随机摸出两个小球,并记录标号,则两标号之和为9的概率是A. B. C. D.【答案】A【解析】【分析】确定所有可能的基本事件总数,再列出标号和为的所有基本事件,根据古典概型可求得概率. 【详解】有放回的摸出两个小球共有:种情况用表示两次取出的数字编号标号之和为有:,,,四种情况所以,概率本题正确选项:【点睛】本题考查古典概型的相关知识,对于基本事件个数较少的情况,往往采用列举法来求解,属于基础题.8.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是A. 336B. 510C. 1326D. 3603 【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.9.设,,,则a,b,c的大小关系为A. B. C. D.【答案】A【解析】【分析】将化成对数的形式,然后根据真数相同,底数不同的对数的大小关系,得到结果.【详解】由题意得:又本题正确选项:【点睛】本题考查对数大小比较问题,关键在于将对数化为同底或者同真数的对数,然后利用对数函数图像来比较.10.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是()A. 是奇函数B. 是奇函数C. 是偶函数D. 是偶函数【答案】D【解析】试题分析:根据题意,A.错误,令定义域为,由:,所以是非奇非偶函数;B错误,令定义域为,由:即:,所以是偶函数;C.错误.令定义域为,由:,所以为非奇非偶函数;D.正确.令定义域为,由,即,所以为偶函数,正确.综上,答案为D.考点:1.函数的奇偶性;2.奇偶函数的定义域.11.已知函数是定义在R上的偶函数,且在上是增函数,若对任意,都有恒成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】【分析】根据偶函数的性质,可知函数在上是减函数,根据不等式在上恒成立,可得:在上恒成立,可得的范围.【详解】为偶函数且在上是增函数在上是减函数对任意都有恒成立等价于当时,取得两个最值本题正确选项:【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.12.设,表示不超过实数的最大整数,则函数的值域是A. B. C. D.【答案】B【解析】【分析】根据不同的范围,求解出的值域,从而得到的值域,同理可得的值域,再根据取整运算得到可能的取值.【详解】由题意得:,①当时,则,此时,,,则②当时,,,,.③当时,则,此时,,,则综上所述:的值域为本题正确选项:【点睛】本题考查新定义运算的问题,解题关键在于能够明确新定义运算的本质,易错点在于忽略与的彼此取值影响,单纯的考虑与整体的值域,造成求解错误.二、填空题(本大题共4小题,共20.0分)13.函数的定义域是_______________【答案】【解析】由题要使函数有意义须满足14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于,则去看电影;若豆子到正方形中心的距离大于,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______豆子大小可忽略不计【答案】【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知,小明不在家写作业的概率为:本题正确结果:【点睛】本题考查几何概型中的面积型,属于基础题.15.若函数为偶函数,则______.【答案】1【解析】【分析】为定义域上的偶函数,所以利用特殊值求出的值.【详解】是定义在上的偶函数即解得:本题正确结果:【点睛】本题考查利用函数奇偶性求解参数值,对于定义域明确的函数,常常采用赋值法来进行求解,相较于定义法,计算量要更小.16.已知函数,若存在实数a,b,c,满足,其中,则abc的取值范围是______.【答案】【解析】【分析】根据解析式,画出的图像,可知函数与每段的交点位置,由此可得,再求出的范围后,可确定整体的取值范围.【详解】由解析式可知图像如下图所示:由图像可知:又且时,可知即又本题正确结果:【点睛】本题考查函数图像及方程根的问题,关键在于能够通过函数图像得到的关系.三、解答题(本大题共6小题,共70.0分)17.设集合,不等式的解集为B.当时,求集合A,B;当时,求实数a的取值范围.【答案】(1)A={x|-1<x<0},B={Xx|-2<x<4};(2)a≤2.【解析】【分析】(1)直接代入集合即可得,解不等式得;(2)分别讨论和两种情况,得到关于的不等式组,求得取值范围.【详解】(1)当时,(2)若,则有:①当,即,即时,符合题意,②当,即,即时,有解得:综合①②得:【点睛】本题考查了解二次不等式、集合间的包含关系及空集的定义,属基础题.易错点在于忽略了的情况.18.在平面直角坐标系中,记满足,的点形成区域A,若点的横、纵坐标均在集合2,3,4,中随机选择,求点落在区域A内的概率;若点在区域A中均匀出现,求方程有两个不同实数根的概率;【答案】(1);(2).【解析】【分析】(1)利用列举法确定基本事件,即可求点落在区域内的概率;(2)以面积为测度,求方程有两个实数根的概率.【详解】根据题意,点的横、纵坐标在集合中随机选择,共有个基本事件,并且是等可能的其中落在,的区域内有,,,,,,,,共个基本事件所以点落在区域内的概率为(2),表示如图的正方形区域,易得面积为若方程有两个不同实数根,即,解得为如图所示直线下方的阴影部分,其面积为则方程有两个不同实数根的概率【点睛】本题考查概率的计算,要明确基本事件可数时为古典概型,基本事件个数不可数时为几何概型,属于中档题.19.计算:;若a,b分别是方程的两个实根,求的值.【答案】(1);(2)12.【解析】【分析】(1)利用指数与对数运算性质即可得出;(2)根据题意,是方程的两个实根,由韦达定理得,,利用对数换底公式及其运算性质即可得出.【详解】(1)原式(2)根据题意,是方程的两个实根由韦达定理得,原式【点睛】本题考查了指数与对数运算性质、对数换底公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.20.下面给出了2010年亚洲某些国家的国民平均寿命单位:岁.国家平均寿命国家平均寿命国家平均寿命阿曼阿富汗59 巴基斯坦巴林阿联酋马来西亚朝鲜东帝汶孟加拉国韩国柬埔寨塞浦路斯老挝卡塔尔沙特阿拉伯蒙古科威特哈萨克斯坦缅甸菲律宾印度尼西亚日本黎巴嫩土库曼斯坦65吉尔吉斯斯泰国尼泊尔68坦乌兹别克斯约旦土耳其坦越南75 伊拉克也门中国以色列文莱伊朗74 新加坡叙利亚印度根据这40个国家的样本数据,得到如图所示的频率分布直方图,其中样本数据的分组区间为:,,,,,请根据上述所提供的数据,求出频率分布直方图中的a,b;请根据统计思想,利用中的频率分布直方图估计亚洲人民的平均寿命及国民寿命的中位数保留一位小数.【答案】(1),;(2)平均寿命71.8,中位数71.4.【解析】【分析】(1)根据表中数据,亚洲这个国家中,国民平均寿命在的频数是,频率是,由此能求出,同理可求;(2)由频率分布直方图能估计亚洲人民的平均寿命及国民寿命的中位数.【详解】(1)根据表中数据,亚洲这个国家中国民平均寿命在的频数是,频率是国民平均寿命在的频数是,频率是,计算得,由频率分布直方图可知,各个小矩形的面积各个区间内的频率转换为分数分别是:,,,,,以上所有样本国家的国民平均寿命约为:前三组频率和为中位数为根据统计思想,估计亚洲人民的平均寿命大约为岁,寿命的中位数约为岁【点睛】本题考查实数值、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.21.某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:年份年 1 2 3 4 5维护费万元Ⅰ求y关于t的线性回归方程;Ⅱ若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.参考公式:,【答案】(Ⅰ);(2)甲更有道理.【解析】【分析】(Ⅰ)分别求出相关系数,求出回归方程即可;(Ⅱ)代入的值,比较函数值的大小,判断即可.【详解】(Ⅰ),,,,,所以回归方程为(Ⅱ)若满五年换一次设备,则由(Ⅰ)知每年每台设备的平均费用为:(万元)若满十年换一次设备,则由(Ⅰ)知每年每台设备的平均费用大概为:(万元)所以甲更有道理【点睛】本题考查了求回归方程问题,考查函数求值,是一道常规题.22.已知,.求在上的最小值;若关于x的方程有正实数根,求实数a的取值范围.【答案】(1);(2).【解析】【分析】(1)通过讨论的范围,结合二次函数的性质求出函数的单调区间,求出函数的最小值即可;(2)得到,令,问题转化为在有实根,求出的范围即可.【详解】(1)当时,在上单调递减故最小值当时,是关于的二次函数,对称轴为当时,,此时在上单调递减故最小值当时,对称轴当,即时,在单调递减,在单调递增故最小值当时,即时,在上单调递减故最小值综上所述:(2)由题意化简得令,则方程变形为,根据题意,原方程有正实数根即关于的一元二次方程有大于的实数根而方程在有实根令,在上的值域为故【点睛】本题考查了二次函数的性质,考查函数的单调性,最值问题,考查分类讨论思想,转化思想.关键是通过换元的方式将问题转化为二次函数在区间内有实根的问题,可以用二次函数成像处理,也可以利用分离变量的方式得到结果.。
四川省宜宾市2018-2019学年高一上学期期末考试数学试题(解析版)
四川省宜宾市2018-2019学年高一上学期期末考试数学试题一、选择题。
1.已知集合,,则A. B.C. D.【答案】C【解析】【分析】求解一元一次不等式化简集合B,然后直接利用交集运算得答案.【详解】,.故选:C.【点睛】本题考查了交集及其运算,考查了一元一次不等式的解法,是基础题.2.下列函数中与表示同一函数的是A. B. C. D.【答案】B【解析】【分析】逐一检验各个选项中的函数与已知的函数是否具有相同的定义域、值域、对应关系,只有这三者完全相同时,两个函数才是同一个函数.【详解】A项中的函数与已知函数的值域不同,所以不是同一个函数;B项中的函数与已知函数具有相同的定义域、值域和对应关系,所以是同一个函数;C项中的函数与已知函数的定义域不同,所以不是同一个函数;D项中的函数与已知函数的定义域不同,所以不是同一函数;故选B.【点睛】该题考查的是有关同一函数的判断问题,注意必须保证三要素完全相同才是同一函数,注意对概念的正确理解.3.已知角的顶点在坐标原点,始边与x轴的非负半轴重合,为其终边上一点,则( )A. B. C. D.【答案】A【解析】【分析】首先根据题中所给的角的终边上的一点P的坐标,利用三角函数的定义,求得其余弦值,用诱导公式将式子进行化简,求得最后的结果.【详解】因为在角的终边上,所以,从而求得,所以,而,故选A.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有三角函数的定义,诱导公式,正确使用公式是解题的关键.4.函数的定义域是A. B. C. D.【答案】B【解析】试题分析:由得:,所以函数的定义域为(。
考点:函数的定义域;对数不等式的解法。
点评:求函数的定义域需要从以下几个方面入手:(1)分母不为零;(2)偶次根式的被开方数非负;(3)对数中的真数部分大于0;(4)指数、对数的底数大于0,且不等于1 ;(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等;( 6 )中。
2018-2019学年广东省江门市高一期末调研测试(二)数学试题(解析版)
2018-2019学年广东省江门市高一期末调研测试(二)数学试题一、单选题1.直线20x -=的倾斜角α是( ) A .6π B .3π C .23π D .56π 【答案】D【解析】化直线一般式方程为斜截式,求出直线的斜率,由倾斜角的正切值等于直线的斜率求得倾斜角. 【详解】由20x +-=,得y x =,设直线的倾斜角为θ,则tan 3θ=-, [)50,,6πθπθ∈∴=,故选D. 【点睛】本题主要考查直线的斜截式方程的应用以及直线斜率与直线倾斜角的关系,意在考查灵活应用所学知识解答问题的能力,属于简单题.2.已知直线1:2 10l x y +-=,2: 4 30l a x y +-=,若12l l //,则a =( ) A.8 B.2C.12-D.2-【答案】A【解析】因为直线1:2 10l x y +-=斜率存在,所以由12l l //可得两直线斜率相等,即可求出。
【详解】因为直线1:2 10l x y +-=斜率为-2,所以24a-=-,解得8a =,故选A 。
【点睛】本题主要考查直线平行的判定条件应用。
3.给出三个命题:①若两条直线和第三条直线所成的角相等,则这两条直线互相平行;②若两条直线都与第三条直线垂直,则这两条直线互相平行;③若两条直线都与第三条直线平行,则这两条直线互相平行。
其中真命题个数是( ) A .0 B .1C .2D .3【答案】B【解析】试题分析:对于①,两条直线和第三条直线所成角相等,以正方体ADCD-A 1B 1C 1D 1为例,过点A 的三条棱AA 1、AB 、AD 当中,AB 、AD 与AA 1所成的角相等,都等于90°,但AB 、AD 不平行,故①错误;对于②,两条直线与第三条直线都垂直,以正方体ADCD-A 1B 1C 1D 1为例,过点A 的三条棱AA 1、AB 、AD 当中,两条直线AB 、AD 都与AA 1垂直,但AB 、AD 不平行,故②错误;对于③,若直线a 、b 、c 满足a ∥b 且b ∥c 根据立体几何公理4,可得a ∥c ,说明两条直线都与第三条直线平行,则这两条直线互相平行。
2018-2019学年重庆市第一中学校高一上学期期末数学试题(解析版)
重庆市第一中学校高一上学期期末数学试题一、单选题1.设全集U =R ,M={0,1,2,3},N={-1,0,1},则图中阴影部分所表示的集合是( )A .{1}B .{-1}C .{0}D .{0,1}【答案】B【解析】由图可知阴影部分中的元素属于N ,但不属于M ,故图中阴影部分所表示的集合为()R C M N ⋂,由{}0,1,2,3M =,{}1,0,1N =-,得(){}1R C M N ⋂=-,故选B.2.下列函数中,最小正周期为π的是( ) A .cos y x = B .cos 2x y =C .sin4x y = D .cos4x y = 【答案】A【解析】分别找出四个选项函数的ω值,代入周期公式2T ωπ= 中求出各自的周期,即可得到最小正周期为π的函数. 【详解】A. cos y x =的最小正周期为T π=,本选项正确.B. cos 2xy =的最小正周期为2412T ππ==, 本选项错误.C. sin 4x y =的最小正周期为2814T ππ==,本选项错误.D. cos 4x y =的最小正周期为2814T ππ==,本选项错误.故选:A. 【点睛】本题考查三角函数的最小正周期2T ωπ=,熟记公式运算即可.3.用二分法找函数()237x f x x =+-在区间[]0,4上的零点近似值,取区间中点2,则下一个存在零点的区间为( ). A .(0,1) B .(0,2)C .(2,3)D .(2,4)【答案】B【解析】因为(0)200760f =+-=-<; (4)241270f =+->; 又已知(2)22670f =+->;所以(0)(2)0f f ⨯<; 所以零点在区间(0,2). 故选:B4.已知tan 2α=,则sin cos αα的值为( ) A .25-B .45C .23D .25【答案】D【解析】由条件利用同角三角函数的基本关系求得sin cos αα的值. 【详解】因为 tan 2α=,则222sin cos tan 2sin cos sin cos tan 15αααααααα===++ .故选D. 【点睛】本题主要考查三角函数的化简求值,还运用到齐次式和22sin cos 1αα+=来化解运算.5.已知函数()()()()212log 1,2,?02x x f x x x ⎧+>⎪=⎨⎪≤≤⎩,则()()3f f 等于( )A .2 B.)2log 1CD【答案】C【解析】由题知,先算()32f =,则()()()32f f f =,再求出()2f 即可得出答案.【详解】将3x =代入()()2log 1f x x =+,得()23log 42f ==,则()()()32f f f =,再将2x =代入()12f x x =,得()1222f ==,即()()()32f f f ==故选:C.【点睛】本题主要考查分段函数代数求值,还运用到对数和幂函数的运算. 6.为了得到函数sin 24y x π⎛⎫=+⎪⎝⎭的图像,只需把函数sin 2y x =的图像( ) A .向右平移4π个单位长度 B .向左平移4π个单位长度 C .向右平移8π个单位长度 D .向左平移8π个单位长度 【答案】D【解析】先设把函数sin 2y x =向左平移ϕ个单位,根据函数图像的平移变换法则,构造关于ϕ的方程,解方程可得平移量,进而得到平移的单位长度. 【详解】设由函数sin 2y x =的图像向左平移ϕ个单位得到函数sin 24y x π⎛⎫=+⎪⎝⎭的图像 则()()sin 2sin 22sin 24y x x x πϕϕ⎛⎫=+=+=+⎡⎤ ⎪⎣⎦⎝⎭ 故24πϕ=.解得8πϕ=.故将函数sin 2y x = 的图像向左平移8π个单位长度得函数sin 24y x π⎛⎫=+ ⎪⎝⎭ 的图像.故选:D. 【点睛】本题主要考查三角函数的的平移伸缩,左右平移遵循“左加右减”平移变换法则. 7.函数()()2lg 20f x x x =+-的单调递增区间为( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞⎪⎝⎭ C .14,2⎛⎫- ⎪⎝⎭D .1,52⎛⎫ ⎪⎝⎭【答案】C【解析】由题可知,令2200u x x =+->,求出函数的定义域,根据定义域内的lg y u =和二次函数的增减性相结合,即可得出增区间. 【详解】因为()()2lg 20f x x x=+-,令2200u x x=+->,求得:45x -<<,可得函数的定义域为()4,5-,又因为lg y u =在定义域内为单调递增,而2200u x x =+->在14,2⎛⎫- ⎪⎝⎭上为单调递增,在1,52⎛⎫ ⎪⎝⎭上为单调递减,由于复合函数单调性原则“同增异减”得,()f x 的单调增区间为14,2⎛⎫- ⎪⎝⎭. 故选:C. 【点睛】本题主要考查复合函数的单调性,运用到复合函数单调性原则“同增异减”以及对数函数和二次函数的单调性,这题还需注意真数大于0,很多学生常忽略这一点. 8.函数()21xf x x x =++的值域为( )A .11,3⎡⎤-⎢⎥⎣⎦B .11,3⎛⎫- ⎪⎝⎭C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭U D .()1,1,3⎡⎫-∞-+∞⎪⎢⎣⎭U【答案】A【解析】先对()f x 进行化简得()21111x f x x x x x==++++,再通过基本不等式求出1x x+的范围,即可得出()f x 的值域. 【详解】 当0x ≠时,有()21111x f x x x x x==++++,又因为当0x >时,12x x +≥= ,则11113,131x x x x++≥≤++, 反之当0x <时,12x x+≤-,则1111,111x x x x ++≤-≥-++, 当0x =时,()0f x =有意义,取并集得:111131x x -≤≤++,即()113f x -≤≤,所以()f x 的值域为11,3⎡⎤-⎢⎥⎣⎦.故选:A. 【点睛】本题考查分式函数的值域,运用到基本不等式求得最大最小值和倒数的方法,属于中档题.9.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图像相邻两条对称轴之间的距离为2π,那么函数()y f x =的图像( )A .关于点,012π⎛⎫⎪⎝⎭对称B .关于点,012π⎛⎫- ⎪⎝⎭对称C .关于直线12x π=对称D .关于直线12x π=-对称【答案】A【解析】由已知条件,先求出ω,进而得出()f x 的解析式,最后根据三角函数对称中心的特点,代数验证12f π⎛⎫⎪⎝⎭,即可得出答案. 【详解】因为()f x 的图像相邻两条对称轴之间的距离为2π, 所以最小正周期T π=,则2T ππω==,解得2ω=,所以()sin 26f x x π⎛⎫=-⎪⎝⎭. 而sin 2012126f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,即函数()y f x =的图像关于点,012π⎛⎫ ⎪⎝⎭对称. 故选:A. 【点睛】本题主要考查三角函数的图像和性质,涉及到最小正周期公式和对称中心、对称轴的特点.10.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=()212⨯+弦矢矢,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为23π,半径等于4米的弧田.下列说法不.正确的是( )A .“弦” 43AB =米,“矢”2CD =米B .按照经验公式计算所得弧田面积(432+)平方米C .按照弓形的面积计算实际面积为(16233π-)平方米 D .按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据3 1.73≈, 3.14π≈) 【答案】C【解析】运用解直角三角形可得AD ,DO ,可得弦、矢的值,以及弧田面积,运用扇形的面积公式和三角形的面积公式,可得实际面积,计算可得结论. 【详解】解:如图,由题意可得∠AOB 23π=,OA =4, 在Rt △AOD 中,可得∠AOD 3π=,∠DAO 6π=,OD 12=AO 1422=⨯=,可得矢=4﹣2=2,由AD =AO sin3π=43⨯=23, 可得弦=2AD =43,所以弧田面积12=(弦×矢+矢2)12=(43⨯2+22)=432+平方米. 实际面积2121164432432323ππ=⋅⋅-⋅⋅=-, 168320.9070.93π--=≈. 可得A ,B ,D 正确;C 错误. 故选C .【点睛】本题考查扇形的弧长公式和面积公式的运用,考查三角函数的定义以及运算能力、推理能力,属于基础题.11.已知函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上是增函数,令255sin,cos ,tan ,777a f b f c f πππ⎛⎫⎛⎫⎛⎫=== ⎪⎪⎪⎝⎭⎝⎭⎝⎭则( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<【答案】A【解析】试题分析:注意到,,,从而有;因为函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上是增函数,所以有,而,,所以有b a c <<,故选A.【考点】1.函数的奇偶性与单调性;2.三角函数的大小.12.已知函数()1,01 1sin ,1424x x f x x x π+≤≤⎧⎪=⎨<≤⎪⎩,若不等式()()220f x af x -+<在[]0,4x ∈上恒成立,则实数a 的取值范围是( )A .22a >B .223a <<C .33a <<D .3a >【答案】D【解析】这是一个复合函数的问题,通过换元()t f x = ,可知新元的范围,然后分离参数,转为求函数的最大值问题,进而计算可得结果. 【详解】由题可知,当[]0,1x ∈ 时,()[]11,2f x x =+∈, 当](1,4x ∈ 时,[]()133,,sin 0,1,sin ,24442422x x f x x πππππ⎛⎤⎛⎫⎛⎫⎡⎤∈∈=+∈ ⎪⎪⎥⎢⎥⎝⎦⎝⎭⎝⎭⎣⎦所以当[]0,4x ∈ 时()[]1,2f x ∈ ,令()t f x =,则[]1,2t ∈ , 从而问题转化为不等式220t at -+< 在[]1,2t ∈上恒成立,即222t a t t t+>=+ 在[]1,2t ∈ 上恒成立,问题转化为求函数2y t t=+在[]1,2 上的最大值,又因为2y t t=+ 在[]1,2上先减后增,即:⎡⎣ 为单调递减,2⎤⎦为单调递增.所以2123y t t=+≤+= ,所以3a >. 故选:D. 【点睛】本题考查含参数的恒成立问题,运用到分离参数法求参数范围,还结合双勾函数的单调性求出最值, 同时考查学生的综合分析能力和数据处理能力.二、填空题13.已知2(1)2f x x x +=+,则()f x =________.【答案】21x -【解析】换元令1t x =+,反解代入2(1)2f x x x +=+即可求解. 【详解】令1t x =+,则1x t =-,故22()(1)2(1)1f t t t t =-+-=-,即()21f x x =-故答案为:21x - 【点睛】本题主要考查函数解析式的求解,属于基础题型. 14.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________.【解析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为: .【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.15.若函数()()2cos f x x k ωϕ=++,对任意实数t 都有66f t f t ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,且16f π⎛⎫=- ⎪⎝⎭,则实数k 的值为________. 【答案】3-或1 【解析】通过有66f t f t ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭成立,判断出函数的对称轴,就是函数取得最值的x 值,结合16f π⎛⎫=- ⎪⎝⎭,即可求出k 的值.【详解】因为 ()()2cos f x x k ωϕ=++由对任意实数t 都有66f t f t ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭成立 可知:6x π=是函数()f x 图像的一条对称轴. 所以 当6x π=时()f x 取得最大值或最小值,即216f k π⎛⎫=±+=-⎪⎝⎭. 解得3k =- 或1k =所以,实数k 的值等于3-或1. 故答案为:3-或1. 【点睛】本题主要考查三角函数的性质,结合对称轴的性质和最值,求参数值.三、解答题16.已知()()()()()3sin cos cos 1125cos 2sin sin 2f ππααπααππααπα⎛⎫-++ ⎪⎝⎭=⎛⎫--+ ⎪⎝⎭(1)化简()fα;(2)若123fθϕ+⎛⎫=⎪⎝⎭,122fθϕ-⎛⎫=⎪⎝⎭,且2θϕ+,2θϕ-均为锐角,求角θ的值.【答案】(1)tanα(2)4π【解析】(1)利用三角函数的诱导公式,化简求值即可;(2)由(1)得()tanfαα=,结合条件,得出tan2θϕ+和tan2θϕ-,再结合凑角得22θϕθϕθ+-=+,算出tanθ即可得出角θ的值.【详解】(1)()()()sin sin costancos cos sinfαααααααα⋅⋅-==⋅⋅-(2)由条件知:1tan23θϕ+=,1tan22θϕ-=11tan tan3222tan tan111221tan tan12232θϕθϕθϕθϕθθϕθϕ+-+++-⎛⎫=+===⎪+-⎝⎭-⋅-⨯因为2θϕ+,2θϕ-均为锐角,所以()0,θπ∈故4πθ=.【点睛】本题主要考查三角函数的诱导公式和两角和与差的正切公式,其中还用结合凑角来运算求解.17.如图所示,A,B是单位圆O上的点,且B点在第二象限,C点是圆与x轴正半轴的交点,A点的坐标为34,55⎛⎫⎪⎝⎭,AOBV为正三角形,记COAα∠=.(1)求sin 2α; (2)求cos COB ∠.【答案】(1)2425(2【解析】(1)根据A 的坐标,由任意角的三角函数的定义,求出43sin ,cos 55αα==,利用二倍角公式sin 22sin cos ααα=,运算求得结果.(2)因为三角形AOB 为正三角形,所以60AOB ∠=o ,由()()cos cos 60cos 60COB COA α∠=∠+=+o o ,再利用两角和差的余弦公式求得结果. 【详解】(1)因为点A 的坐标为34,55⎛⎫⎪⎝⎭,根据三角函数定义可知,43sin ,cos .55αα== 所以4324sin 22sin cos 25525ααα==⨯⨯=. (2)因为三角形AOB 为正三角形,所以60AOB ∠=o ,所以:()cos cos 60COB COA ∠=∠+o =()cos 60α+o= cos cos60sin sin 60αα-o o=314525⨯-【点睛】本题主要考查三角函数的定义的应用和两角和与差的余弦公式,以及二倍角公式,计算求值.18.设函数()()4log 1log 1a a f x x x ⎛⎫=-+-⎪⎝⎭(0a >且1a ≠),又()223log 3f =.(1)求实数a 的值及()f x 的定义域;(2)求()f x 的最大值及取得最大值时相应x 的值. 【答案】(1)2a =,()1,4(2)()max 0f x =,此时2x =【解析】(1)由()223log 3f =代入求解可得出a 的值,对数的真数大于0,便可求解()f x 的定义域;(2)根据对数的运算化简,利用换元法45u x x ⎛⎫=-+ ⎪⎝⎭,通过求复合函数的单调性求出最值. 【详解】(1)因为()223log 3f =,所以()212log 2log log 0,133a a a a +=>≠,所以2a =. 由10410x x->⎧⎪⎨->⎪⎩,得()1,4x ∈,所以函数()f x 的定义域为()1,4.(2)()()()2222444log 1log 1log 11log 5f x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-=--=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦令45u x x ⎛⎫=-+⎪⎝⎭,它在(]1,2单调递增,[)2,4单调递减, 故当2x =时,max 1u =.而2log y u =是增函数 所以当2x =时,()2max log 10f x ==. 【点睛】本题主要考查对数函数的运算,还有对数函数的定义域和最值,还利用换元以及复合函数的单调性结合求解.19.重庆朝天门批发市场某服装店试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的40%.经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且80x =时,40y =;70x =时,50y =. (1)求一次函数y kx b =+的表达式;(2)若该服装店获得利润为W 元,试写出利润与销售单价x 之间的关系式;销售单价定为多少元时,服装店可获得最大利润,最大利润是多少元?【答案】(1)()1206084y x x =-+≤≤(2)()290900W x =--+,()6084x ≤≤,销售价定为每件84元时,可获得利润最大,最大利润是864元.【解析】(1)根据题意得,销售单价60x ≥,销售单价等于()60140%+,获利不得高于成本的40%,则销售单价()60140%x ≤+;再利用待定系数法把80x =时,40y =;70x =时,50y =分别代入一次函数y kx b =+中,求出,k b ,即可得出关系式;(2)根据题目意思,表示出销售额和成本,然后表示出利润=销售额-成本,整理后根据x 的取值范围求出最大利润. 【详解】(1)()6060140%x ≤≤+6084x ∴≤≤由题意得:80407050k b k b +=⎧⎨+=⎩解得:1120k b =-⎧⎨=⎩ 所以一次函数的解析式为:()1206084y x x =-+≤≤ (2)销售额:()120xy x x =-+元, 成本:()6060120y x =-+故()()6012060120W xy y x x x =-=-+--+21807200x x =-+-()290900x =--+()290900W x ∴=--+,()6084x ≤≤当84x =时,W 取得最大值,最大值是:()28490900864--+=(元) 即销售价定为每件84元时,可获得最大利润是864元. 【点睛】本题主要考查一次函数、二次函数的应用以及利用待定系数法求一次函数解析式,关键是理清题目中的等量关系列出函数关系式,平时要将生产实际和数学知识联系起来学习.20.已知函数())211sin cos 1cos cos 222f x x x x x =⋅---.(1)求函数()f x 的单调递增区间;(2)将函数()f x 的图象上每一点的横坐标伸长原来的两倍,纵坐标保持不变,得到函数()g x 的图象,若方程()0g x +=在[]0,x π∈上有两个不相等的实数解1x ,2x ,求实数m 的取值范围,并求12x x +的值.【答案】(1)5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈(2)2m -<≤1253x x π+= 【解析】(1)利用三角恒等变换化简()f x 的解析式,再利用正弦函数的周期性和单调性,求得()f x 的单调增区间;(2)由函数()sin y A ωx φ=+的图像伸缩变换求得()g x 的解析式,再利用正弦函数化简,求出m 的取值范围,再利用对称性求出12x x +的值. 【详解】(1)())21sin cos sin 21cos 22f x x x x x x =⋅-=-+1sin 22sin 222232x x x π⎛⎫=--=--⎪⎝⎭ 因此()f x 的最小正周期为22T ππ==, 由222232k x k πππππ-≤-≤+,k z ∈,解得()f x 的单调递增区间为:5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈.(2)由题意得()sin 32g x x π⎛⎫=-- ⎪⎝⎭,则方程()02m g x ++=可化简为sin sin 032232m mx x ππ⎛⎫⎛⎫--+=-+= ⎪ ⎪⎝⎭⎝⎭即sin 32m x π⎛⎫-=- ⎪⎝⎭由图像可知,方程()0g x +=在[]0,x π∈上要有两个不相等的实数解1x ,2x12m⇔≤-<即2m -<≤1253x x π+= 【点睛】本题主要考查三角函数图像的单调性,还考查三角函数()sin y A ωx φ=+图像的伸缩变换,其中涉及二倍角公式,降幂公式,辅助角公式,以及利用三角函数周期、对称轴求出参数范围.21.已知函数()xf x e =,()()()g x f x f x =--.(1)解不等式:()()21240g x g x -+-<(2)是否存在实数t ,使得不等式()()22221sin 24cos 214cos 2g x t x t θθθ⎡⎤+-+-⎢⎥⎣⎦()()()()8sin 2ln 2142sin 1sin ln 22ln 210g f x t t f x θθθ⎡⎤++-+-+⋅⋅++≤⎡⎤⎣⎦⎣⎦,对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭及任意锐角θ都成立,若存在,求出t 的取值范围:若不存在,请说明理由.【答案】(1)()1,3-(2)存在,12t ≤≤ 【解析】(1)根据题意,先求出()g x 的解析式,并判断()g x 的奇偶性和单调性,结合奇偶性和单调性,即可求解;(2)法一:通过反证法,先假设存在正实数t ,使得该不等式对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭及任意锐角θ都成立,化简原不等式,通过推理论证,与0t ≥和对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭及任意锐角θ,是否矛盾,得出存在t ,且可求出t 的取值范围.法二:先化简原不等式,通过换元,构造新二次函数()h p ,通过新函数()0h p ≥恒成立,转化成二次函数恒成立问题,即可得出存在t ,且可求出t 的取值范围. 【详解】(1)()()()()g x f x f x g x -=--=-Q ,()g x ∴为R 上的奇函数 又()xxg x e e -=-为R 上的增函数于是()()()()221240124g x g x g x g x-+-<⇔-<-2124x x ⇔-<- 2230x x ⇔--< 13x ∴-<<故原不等式的解集为()1,3-(2)假设存在正实数t ,使得该不等式对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭及任意锐角θ都成立原不等式()()22221sin 24cos 214cos 2g x t x t θθθ⎡⎤⇔+-+-⎢⎥⎣⎦()()()()8sin 2ln 2142sin 1sin ln 22ln 210g f x t t f x θθθ⎡⎤++-+-+⋅⋅++≤⎡⎤⎣⎦⎣⎦()()22221sin 24cos 214cos 2g x t x t θθθ⎡⎤⇔+-+-≤⎢⎥⎣⎦()()()()42sin 1sin ln 22ln 218sin 2ln 21g t t f x f x θθθ⎡⎤+++⋅⋅++-+⎡⎤⎣⎦⎣⎦()()2221sin 24cos 214cos 2x t x t θθθ⇔+-+-≤()()()()242sin 1sin 221821sin 2t t x x θθθ+++⋅⋅+-+()()221sin 2821sin 2x x θθ⇔+++≤ ()()()()22242sin 1sin 2214cos 214cos 2t t x t x t θθθθ+++⋅⋅++++)()28sin 2121x θ⇔++≤()()2221sin 2cos 2142sin cos 2t x t θθθθ⎛⎫++++++ ⎪⎝⎭0t ≤不等式不可能成立,故0t >()()()()214sin 2212sin cos 2122sin cos x x t θθθθθ⎫⇔++≤++++++⎪⎭()22128sin cos 12sin cos 21x t x θθθθ++⎫⇔+≤⎪+++⎭8sin cos 12212sin cos 21x t x θθθθ⎫⇔+≤++⎪+++⎭Q 不等式对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭都成立min 8sin cos 12212sin cos 21x t x θθθθ⎫⎛⎫∴+≤++⎪ ⎪+++⎭⎝⎭故8sin cos 12sin cos t θθθθ⎫+≤⎪++⎭而)2sin cos 8sin cos 112sin cos 4sin cos t t θθθθθθθθ++⎫⎫+≤⇔+≤⎪⎪++⎭⎭ 该不等式对任意锐角θ都成立)min2sin cos 14sin cos t θθθθ⎤+++≤⎥⎢⎥⎣⎦令sin cos 4u πθθθ⎛⎫=+=+ ⎪⎝⎭,则))(22sin cos 24sin cos 22u u u θθθθ+++=∈-,设)2222u y u +=-,令2u s +=,(3,2s ∈则628y s s=+-,而628s s +-在(3,2单调递增故60282s s<+-≤-所以1y ≥,即)min2sin cos 14sin cos θθθθ⎤++=⎥⎢⎥⎣⎦11t+≤,又0t >12t ≤≤法二:原不等式)()()221sin 22cos 1214cos x t x t θθθ⇔+-++-()()()()28sin 22142sin 1sin 221x t t x θθθ≤-+++++⋅⋅+ ()())()()2222sin cos 218sin 212142sin cos 0t x x t θθθθθ⇔+++-+++++≥令21x p +=,0p > 原不等式())()2222sin cos 8sin 2142sin cos 0t p p t θθθθθ⇔⋅++-++++≥0t =时,8sin 20p θ-≥不成立,0t <也不可能成立故0t >令()())222sin cos 41sin 22(sin cos 2)h p t pp t θθθθθ=⋅++-++++即()0h p ≥恒成立若方程()0h p =的>0∆,但其两根和与两根积都大于0,开口向上 故()0h p ≥不可能在()0,∞+上恒成立 所以()0h p ≥在()0,∞+上恒成立)()22222161sin 282sin cos 0t θθθ⇔∆=+-++≤对任意锐角θ恒成立)()21sin 22sin cos t θθθ⇔+≤++12sin cos2sin cos t θθθθ++⎫⇔+≤⎪⎭1t ≤≤. 【点睛】本题主要考查函数的奇偶性和单调性,利用单调性解不等式,还涉及存在性问题和恒成立结合的综合,其中还运用反证法推理证明,以及构造函数法化繁为简,同时也考查学生的推理论证能力和数据处理能力.。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年高一上学期期末考试数学试题(答案+解析)(4)
2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5} B.{2,4} C.{2,4,5,6} D.{1,2,3,4,5,7}2.(5分)下列函数中,既是奇函数又是周期函数的是()A.y=sin x B.y=cos x C.y=ln x D.y=x33.(5分)已知平面向量=(1,﹣2),=(2,m),且∥,则m=()A.1 B.﹣1 C.4 D.﹣44.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.5.(5分)下列各组向量中,可以作为基底的是()A., B.,C.,D.,6.(5分)已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)已知cosα+cosβ=,则cos(α﹣β)=()A.B.﹣C.D.18.(5分)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A.B.C.D.9.(5分)函数y=log0.4(﹣x2+3x+4)的值域是()A.(0,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣2] D.[2,+∞)10.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.11.(5分)已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(﹣∞,0)上的最小值为()A.﹣5 B.﹣1 C.﹣3 D.512.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2017)B.(1,2018)C.[2,2018] D.(2,2018)二、填空题13.(5分)已知tanα=3,则的值.14.(5分)已知,则的值为.15.(5分)已知将函数的图象向左平移个单位长度后得到y=g(x)的图象,则g(x)在上的值域为.16.(5分)下列命题中,正确的是.①已知,,是平面内三个非零向量,则()=();②已知=(sin),=(1,),其中,则;③若,则(1﹣tanα)(1﹣tanβ)的值为2;④O是△ABC所在平面上一定点,动点P满足:,λ∈(0,+∞),则直线AP一定通过△ABC的内心.三、解答题17.(10分)已知=(4,3),=(5,﹣12).(Ⅰ)求||的值;(Ⅱ)求与的夹角的余弦值.18.(12分)已知α,β都是锐角,,.(Ⅰ)求sinβ的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x.(1)求f(x)的最小正周期;(2)当时,求f(x)的最小值以及取得最小值时x的集合.20.(12分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0.当x>0时,f(x)=﹣4x+8×2x+1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣3,﹣1]时,求f(x)的最大值和最小值.21.(12分)已知向量=(),=(cos),记f(x)=.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若,求的值;(Ⅲ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k在上有零点,求实数k的取值范围.22.(12分)已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0(1)求证:f(x)是奇函数;(2)若,试求f(x)在区间[﹣2,6]上的最值;(3)是否存在m,使f(2()2﹣4)+f(4m﹣2())>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.【参考答案】一、选择题1.B【解析】∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴C U B={2,4,6},又A={2,4,5},则A∩(C U B)={2,4}.故选B.2.A【解析】y=sin x为奇函数,且以2π为最小正周期的函数;y=cos x为偶函数,且以2π为最小正周期的函数;y=ln x的定义域为(0,+∞),不关于原点对称,没有奇偶性;y=x3为奇函数,不为周期函数.故选A.3.D【解析】∵∥,∴m+4=0,解得m=﹣4.故选:D.4.A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ),又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z),∵,∴取k=0,得φ=﹣,故选:A.5.B【解析】对于A,,,是两个共线向量,故不可作为基底.对于B,,是两个不共线向量,故可作为基底.对于C,,,是两个共线向量,故不可作为基底..对于D,,,是两个共线向量,故不可作为基底.故选:B.6.B【解析】a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.7.B【解析】已知两等式平方得:(cosα+cosβ)2=cos2α+cos2β+2cosαcosβ=,(sinα+sinβ)2=sin2α+sin2β+2sinαsinβ=,∴2+2(cosαcosβ+sinαsinβ)=,即cosαcosβ+sinαsinβ=﹣,则cos(α﹣β)=cosαcosβ+sinαsinβ=﹣.故选B.8.C【解析】由已知非零向量,满足||=4||,且⊥(2+),可得•(2+)=2+=0,设与的夹角为θ,则有2+||•4||•cosθ=0,即cosθ=﹣,又因为θ∈[0,π],所以θ=,故选:C.9.B【解析】;∴有;所以根据对数函数log0.4x的图象即可得到:=﹣2;∴原函数的值域为[﹣2,+∞).故选B.10.A【解析】图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.11.B【解析】令F(x)=h(x)﹣2=af(x)+bg(x),则F(x)为奇函数.∵x∈(0,+∞)时,h(x)≤5,∴x∈(0,+∞)时,F(x)=h(x)﹣2≤3.又x∈(﹣∞,0)时,﹣x∈(0,+∞),∴F(﹣x)≤3⇔﹣F(x)≤3⇔F(x)≥﹣3.∴h(x)≥﹣3+2=﹣1,故选B.12.D【解析】作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.二、填空题13.【解析】===,故答案为:.14.﹣1【解析】∵,∴f()==,f()=f()﹣1=cos﹣1=﹣=﹣,∴==﹣1.故答案为:﹣1.15.[﹣1,]【解析】将函数=sin2x+﹣=sin(2x+)的图象,向左平移个单位长度后得到y=g(x)=sin(2x++)=﹣sin2x的图象,在上,2x∈[﹣],sin2x∈[﹣,1],∴﹣sin(2x)∈[﹣1,],故g(x)在上的值域为[﹣1,],故答案为:[﹣1,].16.②③④【解析】①已知,,是平面内三个非零向量,则()•=•()不正确,由于()•与共线,•()与共线,而,不一定共线,故①不正确;②已知=(sin),=(1,),其中,则•=sinθ+=sinθ+|sinθ|=sinθ﹣sinθ=0,则,故②正确;③若,则(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣tan(α+β)(1﹣tanαtanβ)+tanαtanβ=1﹣(﹣1)(1﹣tanαtanβ)+tanαtanβ=2,故③正确;④∵,λ∈(0,+∞),设=,=,=+λ(+),﹣=λ(+),∴=λ(+),由向量加法的平行四边形法则可知,以,为邻边的平行四边形为菱形,而菱形的对角线平分对角∴直线AP即为A的平分线所在的直线,即一定通过△ABC的内心,故④正确.故答案为:②③④.三、解答题17.解:(Ⅰ)根据题意,=(4,3),=(5,﹣12).则+=(9,﹣9),则|+|==9,(Ⅱ)=(4,3),=(5,﹣12).则•=4×5+3×(﹣12)=﹣16,||=5,||=13,则cosθ==﹣.18.解:(Ⅰ)∵α,β都是锐角,且,.∴cos,sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=;(Ⅱ)=cos2β=1﹣2sin2β=1﹣2×.19.解:f(x)=cos2x﹣2sin x cos x﹣sin2x=cos2x﹣sin2x=cos(2x+)(1)T=π(2)∵∴20.解:由f(x)+f(﹣x)=0.当,则函数f(x)是奇函数,且f(0)=0,当x>0时,f(x)=﹣4x+8×2x+1.当x<0时,﹣x>0,则f(﹣x)=﹣4﹣x+8×2﹣x+1.由f(x)=﹣f(﹣x)所以:f(x)=4﹣x﹣8×2﹣x﹣1.故得f(x)的解析式;f(x)=(Ⅱ)x∈[﹣3,﹣1]时,令,t∈[2,8],则y=t2﹣8t﹣1,其对称轴t=4∈[2,8],当t=4,即x=﹣2时,f(x)min=﹣17.当t=8,即x=﹣3时,f(x)max=﹣1.21.解:(Ⅰ)f(x)==sin cos+=sin+=sin(+)+,由2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,所以f(x)的单调递减区间是[4kπ+,4kπ+].(Ⅱ)由已知f(a)=得sin(+)=,则a=4kπ+,k∈Z.∴cos(﹣a)=cos(﹣4kπ﹣)=1.(Ⅲ)将函数y=f(x)的图象向右平移个单位得到g(x)=sin(﹣)+的图象,则函数y=g(x)﹣k=sin(﹣)+﹣k.∵﹣≤﹣≤π,所以﹣sin(﹣)≤1,∴0≤﹣sin(﹣)+≤.若函数y=g(x)﹣k在上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,所以实数k的取值范围为[0,].22.(1)证明:令x=0,y=0,则f(0)=2f(0),∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),∴﹣f(x)=f(﹣x),即f(x)为奇函数;(2)解:任取x1,x2∈R,且x1<x2,∵f(x+y)=f(x)+f(y),∴f(x2)﹣f(x1)=f(x2﹣x1),∵当x>0时,f(x)>0,且x1<x2,∴f(x2﹣x1)>0,即f(x2)>f(x1),∴f(x)为增函数,∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3;(3)解:∵函数f(x)为奇函数,∴不等式可化为,又∵f(x)为增函数,∴,令t=log2x,则0≤t≤1,问题就转化为2t2﹣4>2t﹣4m在t∈[0,1]上恒成立,即4m>﹣2t2+2t+4对任意t∈[0,1]恒成立,令y=﹣2t2+2t+4,只需4m>y max,而(0≤t≤1),∴当时,,则.∴m的取值范围就为.。
江苏省扬州市2018_2019学年高一语文上学期期末调研试题(含解析)
2018—2019学年度第一学期期末调研测试试题高一语文一、现代文阅读论述类文本阅读阅读下面的文字,完成下列小题针对“争”,春秋战国时代的各主要学派都不约而同地提出“不争”的思想。
一方面,在个人层面上,把“不争”看作是一种美德、一种值得推崇的处世哲学;另一方面,从社会制度设计角度,如何息“争”或消除“争”的负面影响也成为当时学者及统治者考虑的问题。
其中,《老子》中关于“不争”的论述最具有代表性。
老子《道德经》的最后一句话提出“圣人之道,为而不争”。
在老子的思想中,“不争”和“无为”是互为表里的,“不争”并不是一味地消极退让,而是不妄为,不强争,只有这样,才能达到“不争而善胜”的目标,“天之道,不争而善胜,不言而善应,不召而自来”,也就是说,“不争”实际上是一种高级形式的“争”,在竞争中立于不败之地乃至于获胜仍旧是最终的目标。
与老子相仿,孔子也始终把“争”视为人们对一己之私利的无度追求,认为它是导致一切冲突、仇恨和社会动乱的祸根。
他在《论语·里仁》中说,“放于利而行,多怨”,为此,他提出以“义”制“利”。
为了平息或消除对一己之私利的争夺,必须要建立起完备而合理的等级制度,以此作为分配社会利益和荣誉的标准,要求人们各安其位,各获其利。
荀子则有着更为系统和完备的思考,一方面他把社会动乱的根源直指无度和无序的私利之“争”,另一方面则开出了以“礼”息“争”的药方,甚至认为“礼”的起源正是为了节制人们的欲望,防止人们的争斗。
荀子所谓的“争则乱,乱则穷”可以说是先秦各派思想家的共识,也对中国后来的治国理念和制度建设产生了深远的影响。
作为法家学派的代表,韩非子敏锐地看到了人类社会中无所不在的“争”,而且,他还认识到不同时代的“争”有着不同的特点:“上古竞于道德,中世逐于智谋,当今争于气力。
”在这里,“竞”“逐”和“争”是同义语。
他还指出,人口的增长、耕地与财货的不足是当今“民争”的主要原因。
为此,法家提出了“耕战”的治国理念,主张用“法”“术”和“势”钳制并消除这些恶性的“争”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共12小题,共60.0分)1.已知集合,集合,则()A. B.C. D.【答案】B【解析】【分析】由题意,求得集合,集合,根据集合的交集的运算,即可求解,得到答案.【详解】由题意,集合,集合,根据集合的交集的运算,可得,故选B.【点睛】本题主要考查了集合的交集的运算问题,其中解答中首先求解集合,再利用集合的交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.有一个容量为66的样本,数据的分组及各组的频数如下:,,,,根据样本的频数分布估计,大于或等于的数据约占A. B. C. D.【答案】C【解析】【分析】找到大于或等于的频数,除以总数即可.【详解】由题意知,大于或等于的数据共有:则约占:本题正确选项:【点睛】考查统计中频数与总数的关系,属于基础题.3.秦九韶算法是中国古代求多项式的值的优秀算法,若,当时,用秦九韶算法求A. 1B. 3C. 4D. 5【答案】C【解析】【分析】通过将多项式化成秦九韶算法的形式,代入可得.【详解】由题意得:则:本题正确选项:【点睛】本题考查秦九韶算法的基本形式,属于基础题.4.下列四组函数中,不表示同一函数的是A. 与B. 与C. 与D. 与【答案】D【解析】【分析】根据相同函数对定义域和解析式的要求,依次判断各个选项.【详解】相同函数要求:函数定义域相同,解析式相同三个选项均满足要求,因此是同一函数选项:定义域为;定义域为,因此不是同一函数本题正确选项:【点睛】本题考查相同函数的概念,关键在于明确相同函数要求定义域和解析式相同,从而可以判断结果.5.执行如图所示程序框图,当输入的x为2019时,输出的A. 28B. 10C. 4D. 2【答案】C【解析】【分析】的变化遵循以为公差递减的等差数列的变化规律,到时结束,得到,然后代入解析式,输出结果.【详解】时,每次赋值均为可看作是以为首项,为公差的等差数列当时输出,所以,即即:,本题正确选项:【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.6.函数的单调递增区间为A. B. C. D.【答案】C【解析】【分析】结合对数真数大于零,求出定义域;再求出在定义域内的单调递减区间,得到最终结果.【详解】或在定义域内单调递减根据复合函数单调性可知,只需单调递减即可结合定义域可得单调递增区间为:本题正确选项:【点睛】本题考查求解复合函数的单调区间,复合函数单调性遵循“同增异减”原则,易错点在于忽略了函数自身的定义域要求.7.在一不透明袋子中装着标号为1,2,3,4,5,6的六个质地、大小、颜色无差别小球,现从袋子中有放回地随机摸出两个小球,并记录标号,则两标号之和为9的概率是A. B. C. D.【答案】A【解析】【分析】确定所有可能的基本事件总数,再列出标号和为的所有基本事件,根据古典概型可求得概率. 【详解】有放回的摸出两个小球共有:种情况用表示两次取出的数字编号标号之和为有:,,,四种情况所以,概率本题正确选项:【点睛】本题考查古典概型的相关知识,对于基本事件个数较少的情况,往往采用列举法来求解,属于基础题.8.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是A. 336B. 510C. 1326D. 3603 【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.9.设,,,则a,b,c的大小关系为A. B. C. D.【答案】A【解析】【分析】将化成对数的形式,然后根据真数相同,底数不同的对数的大小关系,得到结果.【详解】由题意得:又本题正确选项:【点睛】本题考查对数大小比较问题,关键在于将对数化为同底或者同真数的对数,然后利用对数函数图像来比较.10.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是()A. 是奇函数B. 是奇函数C. 是偶函数D. 是偶函数【答案】D【解析】试题分析:根据题意,A.错误,令定义域为,由:,所以是非奇非偶函数;B错误,令定义域为,由:即:,所以是偶函数;C.错误.令定义域为,由:,所以为非奇非偶函数;D.正确.令定义域为,由,即,所以为偶函数,正确.综上,答案为D.考点:1.函数的奇偶性;2.奇偶函数的定义域.11.已知函数是定义在R上的偶函数,且在上是增函数,若对任意,都有恒成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】【分析】根据偶函数的性质,可知函数在上是减函数,根据不等式在上恒成立,可得:在上恒成立,可得的范围.【详解】为偶函数且在上是增函数在上是减函数对任意都有恒成立等价于当时,取得两个最值本题正确选项:【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.12.设,表示不超过实数的最大整数,则函数的值域是A. B. C. D.【答案】B【解析】【分析】根据不同的范围,求解出的值域,从而得到的值域,同理可得的值域,再根据取整运算得到可能的取值.【详解】由题意得:,①当时,则,此时,,,则②当时,,,,.③当时,则,此时,,,则综上所述:的值域为本题正确选项:【点睛】本题考查新定义运算的问题,解题关键在于能够明确新定义运算的本质,易错点在于忽略与的彼此取值影响,单纯的考虑与整体的值域,造成求解错误.二、填空题(本大题共4小题,共20.0分)13.函数的定义域是_______________【答案】【解析】由题要使函数有意义须满足14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于,则去看电影;若豆子到正方形中心的距离大于,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______豆子大小可忽略不计【答案】【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知,小明不在家写作业的概率为:本题正确结果:【点睛】本题考查几何概型中的面积型,属于基础题.15.若函数为偶函数,则______.【答案】1【解析】【分析】为定义域上的偶函数,所以利用特殊值求出的值.【详解】是定义在上的偶函数即解得:本题正确结果:【点睛】本题考查利用函数奇偶性求解参数值,对于定义域明确的函数,常常采用赋值法来进行求解,相较于定义法,计算量要更小.16.已知函数,若存在实数a ,b ,c ,满足,其中,则abc 的取值范围是______.【答案】【解析】 【分析】 根据解析式,画出的图像,可知函数与每段的交点位置,由此可得,再求出的范围后,可确定整体的取值范围. 【详解】由解析式可知图像如下图所示:由图像可知:又且时,可知即又本题正确结果:【点睛】本题考查函数图像及方程根的问题,关键在于能够通过函数图像得到的关系.三、解答题(本大题共6小题,共70.0分)17.设集合,不等式的解集为B.当时,求集合A,B;当时,求实数a的取值范围.【答案】(1)A={x|-1<x<0},B={Xx|-2<x<4};(2)a≤2.【解析】【分析】(1)直接代入集合即可得,解不等式得;(2)分别讨论和两种情况,得到关于的不等式组,求得取值范围.【详解】(1)当时,(2)若,则有:①当,即,即时,符合题意,②当,即,即时,有解得:综合①②得:【点睛】本题考查了解二次不等式、集合间的包含关系及空集的定义,属基础题.易错点在于忽略了的情况.18.在平面直角坐标系中,记满足,的点形成区域A,若点的横、纵坐标均在集合2,3,4,中随机选择,求点落在区域A内的概率;若点在区域A中均匀出现,求方程有两个不同实数根的概率;【答案】(1);(2).【解析】【分析】(1)利用列举法确定基本事件,即可求点落在区域内的概率;(2)以面积为测度,求方程有两个实数根的概率.【详解】根据题意,点的横、纵坐标在集合中随机选择,共有个基本事件,并且是等可能的其中落在,的区域内有,,,,,,,,共个基本事件所以点落在区域内的概率为(2),表示如图的正方形区域,易得面积为若方程有两个不同实数根,即,解得为如图所示直线下方的阴影部分,其面积为则方程有两个不同实数根的概率【点睛】本题考查概率的计算,要明确基本事件可数时为古典概型,基本事件个数不可数时为几何概型,属于中档题.19.计算:;若a,b分别是方程的两个实根,求的值.【答案】(1);(2)12.【解析】【分析】(1)利用指数与对数运算性质即可得出;(2)根据题意,是方程的两个实根,由韦达定理得,,利用对数换底公式及其运算性质即可得出.【详解】(1)原式(2)根据题意,是方程的两个实根由韦达定理得,原式【点睛】本题考查了指数与对数运算性质、对数换底公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.20.下面给出了2010年亚洲某些国家的国民平均寿命单位:岁.根据这40个国家的样本数据,得到如图所示的频率分布直方图,其中样本数据的分组区间为:,,,,,请根据上述所提供的数据,求出频率分布直方图中的a,b;请根据统计思想,利用中的频率分布直方图估计亚洲人民的平均寿命及国民寿命的中位数保留一位小数.【答案】(1),;(2)平均寿命71.8,中位数71.4.【解析】【分析】(1)根据表中数据,亚洲这个国家中,国民平均寿命在的频数是,频率是,由此能求出,同理可求;(2)由频率分布直方图能估计亚洲人民的平均寿命及国民寿命的中位数.【详解】(1)根据表中数据,亚洲这个国家中国民平均寿命在的频数是,频率是国民平均寿命在的频数是,频率是,计算得,由频率分布直方图可知,各个小矩形的面积各个区间内的频率转换为分数分别是:,,,,,以上所有样本国家的国民平均寿命约为:前三组频率和为中位数为根据统计思想,估计亚洲人民的平均寿命大约为岁,寿命的中位数约为岁【点睛】本题考查实数值、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.21.某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:年维护费Ⅰ求y关于t的线性回归方程;Ⅱ若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.参考公式:,【答案】(Ⅰ);(2)甲更有道理.【解析】【分析】(Ⅰ)分别求出相关系数,求出回归方程即可;(Ⅱ)代入的值,比较函数值的大小,判断即可.【详解】(Ⅰ),,,,,所以回归方程为(Ⅱ)若满五年换一次设备,则由(Ⅰ)知每年每台设备的平均费用为:(万元)若满十年换一次设备,则由(Ⅰ)知每年每台设备的平均费用大概为:(万元)所以甲更有道理【点睛】本题考查了求回归方程问题,考查函数求值,是一道常规题.22.已知,.求在上的最小值;若关于x的方程有正实数根,求实数a的取值范围.【答案】(1);(2).【解析】【分析】(1)通过讨论的范围,结合二次函数的性质求出函数的单调区间,求出函数的最小值即可;(2)得到,令,问题转化为在有实根,求出的范围即可.【详解】(1)当时,在上单调递减故最小值当时,是关于的二次函数,对称轴为当时,,此时在上单调递减故最小值当时,对称轴当,即时,在单调递减,在单调递增故最小值当时,即时,在上单调递减故最小值综上所述:(2)由题意化简得令,则方程变形为,根据题意,原方程有正实数根即关于的一元二次方程有大于的实数根而方程在有实根令,在上的值域为故【点睛】本题考查了二次函数的性质,考查函数的单调性,最值问题,考查分类讨论思想,转化思想.关键是通过换元的方式将问题转化为二次函数在区间内有实根的问题,可以用二次函数成像处理,也可以利用分离变量的方式得到结果.。