八年级下册数学测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下期末数学试卷 班级 姓名 成绩
一、选择题(本大题10个小题,每小题4分,共40分)
1.下列式子是最简二次根式的是( )
A.21
B.8
C.4.0
D.
22- 2.下列计算正确的是( )
A .()332-=-
B .632=⋅
C .2332=-
D .725=+
3. 下列各组数中,以它们为边长的线段不能构成直角三角形的是( )
A . 2,2,3
B . 3,4,5
C . 5,12,13
D .
1,2,3 4.若为实数,且,则y x -的值为( )
A .1
B .
C .-4
D .4 5.菱形的两条对角线长分别为9与4,则此菱形的面积为( )
A .12
B .18
C .20
D .36
6. 下列说法中错误的是( )
A .两条对角线互相平分的四边形是平行四边形;
B .两条对角线相等的四边形是矩形;
C .两条对角线互相垂直的矩形是正方形;
D .两条对角线相等的菱形是正方形
7.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴于点M ,则点M 表示的数为( )
A .2
B .1-5
C .1-10
D .5
8.已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小,
则一次函数y=x+k 的图象大致是( )
A .
B .
C .
D .
9.如图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )
A 、体育场离张强家3.5千米
B 、张强在体育场锻炼了15分钟
C 、体育场离早餐店1.5千米
D 、张强从早餐店回家的平均速度是3千米/小时
10.如图.矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3.则AB 的长为( )
A . 3
B . 4
C . 5
D . 6
16题 17题 19题
二、填空题(本大题10个小题,每小题4分,共40分)
11.已知▱ABCD 中,∠A+∠C=200°,则∠B= 12.命题“对顶角相等”的逆命题是 命题(填“真”或“假”) 13.函数23+-=x x y 的自变量x 的取值范围是
. 14.已知点(-2,y 1),(-1,y 2)都在直线y=-3x +b 上,则y 1 y 2 (填> < =)
15.已知a 、b 、c 是△ABC 的三边长,且满足关系式+|a ﹣b|=0,则△ABC 的形状为 .
16.如图,在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,请添加一个条件 ,使四边形AECF 是平行四边形(只填一个即可).
17.在Rt △ABC 中,∠C=90°,AC=6,BC=8,则点C 到AB 的距离是
18.如图,△ABC 中,AB=AC=13,BC=10,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为
19. 如图,函数y=ax 和y=bx+c 的图象相交于点A (1,2),则不等式ax >bx+c 的解集为 .
20.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2017的直角顶点的坐标为 .
三、解答题(本题共9题,共90分)
21.(10分)计算:()()
3-535-3316-34+÷⎪⎪⎭⎫ ⎝⎛
9题 10题
22.(12分)如图,在△ABC中,E点为AC的中点,其中BD=1,DC=3,BC=,AD=,求DE的长.
23.(12分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.
(1)将图补充完整;
(2)本次共抽取员工人,每人所创年利润的众数是,平均数是;
(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?
24.(12分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;
(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.
25.(12分)阜宁火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往南京,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是0.5万元,用一节B 型货厢的运费是0.8万元.
(1)设运输这批货物的总运费为y (万元),用A 型货厢的节数为x (节),试写出y 与x 之间的函数关系式;
(2)已知甲种货物35吨和乙种货物15吨,可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,有哪几种运输方案?请你设计出来;
(3)在这些方案中,哪种方案总运费最少?最少运费是多少万元?
26.(12分)如图,在平面直角坐标系中,直线621:1+-
=x y l 分别与x 轴、y 轴交于点B 、C ,且与直线x y l 2
1:2=交于点A . (1)分别求出点A 、B 、C 的坐标;
(2)若D 是线段OA 上的点,且△COD 的面积为12,求直线CD 的函数表达式;
(3)在(2)的条件下,设P 是射线CD 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.