人教版2020--2021学年度上学期高一年级数学期末测试题及答案(含两套题)
2020-2021学年湖北省高一(上)期末数学试卷 (1)人教新课标A版
2020-2021学年湖北省高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算cos(−330∘)=()A. B. C. D.2. 已知A={x|y=},B={y|y=sin x, x∈R},则A∩B=()A.[−1, 1]B.[0, 1]C.[0, +∞)D.[1, +∞)3. 若a=20210.2,b=log0.22021,c=(0.2)2021,则()A.a>b>cB.b>a>cC.a>c>bD.c>a>b4. 已知函数f(x)=tan x−k sin x+2(k∈R),若,则=()A.0B.1C.3D.55. 现将函数的图象向右平移个单位,再将所得的图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)的图象,则函数g(x)的解析式为()A. B.g(x)=sin xC. D.6. 达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,数百年来让无数观赏者入迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角A,C处作圆弧的切线,两条切线交于B 点,测得如下数据:AB=6cm,BC=6cm,AC=10.392cm (其中√32≈0.866).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于()A.π3B.π4C.π2D.2π37. 已知函数f(x)=|sin x|+|cos x|,则下列说法正确的是( )A.f(x)的最小值为0B.f(x)的最大值为2C.f(π2−x)=f(x) D.f(x)=12在[0,π2]上有解8. 已知函数f(x)=,则方程f(f(x))−1=0的根的个数是()A.4B.5C.6D.7二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.设a,b,c∈R,a<b,则下列不等式一定成立的是()A.a+c<b+cB.e−a>e−bC.ac2<bc2D.给出下面四个结论,其中正确的是()A.角是的必要不充分条件B.命题“∀x∈R,x2−2x+1≥0”的否定是“∃x∈R,x2−2x+1<0”C.方程log3x+x−3=0在区间(2, 3)上有唯一一个零点D.若奇函数f(x)满足f(2+x)=−f(x),且当−1≤x≤0时,f(x)=−x,则f(2021)=1已知0<α<β<π2,且tanα,tanβ是方程x2−mx+2=0的两个实根,则下列结论正确的是( )A.tanα+tanβ=−mB.m>2√2C.m+tanα≥4D.tan(α+β)=−m函数f(x)=A sin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,下列结论正确的是()A.f(0)=1B.在区间上单调递增C.D.若f(a)=f(b)=1,则|a−b|的最小值为三、填空题(本大题共4小题,每小题5分,共20分)已知,则=________.若函数f(x)=ax+b,x∈[a−4, a]的图象关于原点对称,则a=________;若m=bx+,则x∈[1, 2]时,m的取值范围为________.写出一个最小正周期为2的偶函数f(x)=________.电影《流浪地球》中反复出现这样的人工语音:“道路千万条,安全第一条,行车不规范,亲人两行泪”成为网络热句.讲的是“开车不喝酒,喝酒不开车”.2019年,公安部交通管理局下发《关于治理酒驾醉驾违法犯罪行为的指导意见》,对治理酒驾醉驾违法犯罪行为提出了新规定,根据国家质量监督检验检疫总局下发的标准,车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见如表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图.车辆驾驶人员血液酒精含量阈值且如图表所示的函数模型.假设该人喝一瓶啤酒后至少经过n(n∈N∗)小时才可以驾车,则n的值为________.(参考数据:ln15≈2.71,ln30≈3.40)四、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)若幂函数f(x)=(2m2+m−2)x2m+1在其定义域上是增函数.(1)求f(x)的解析式;(2)若f(2−a)<f(a2−4),求a的取值范围.已知x0,x0+是函数的两个相邻的零点.(1)求的值;(2)求f(x)在[0, π]上的单调递增区间.在平面直角坐标系中,已知角α的终边与单位圆交于点P(m, n)(n>0),将角α的终边按逆时针方向旋转后得到角β的终边,记角β的终边与单位圆的交点为Q.(1)若m=,求Q点的坐标;(2)若sinβ+cosβ=-,求tanα的值.已知函数f(x)=sin2x+cos x−a.(1)当a=0时,求f(x)在上的值域;(2)当a>0时,已知g(x)=a log2(x+3)−2,若∈[1, 5]有f(x1)=g(x2),求a的取值范围.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐,在通常情况下,船在涨潮时驶进航道,靠近码头,卸货后,在落潮时返回海洋. 下面是某港口在某季节每天的时间与水深关系表:(1)这个港口的水深与时间的关系可用函数y=A sin(ωx+φ)+b(A>0, ω>0)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能连续待多久?若函数f(x)对于定义域内的某个区间I内的任意一个x,满足f(−x)=−f(x),则称函数f(x)为I上的“局部奇函数”;满足f(−x)=f(x),则称函数f(x)为I上的“局部偶函数”.已知函数f(x)=2x+k×2−x,其中k为常数.(1)若f(x)为[−3, 3]上的“局部奇函数”,当x∈[−3, 3]时,求不等式的解集;(2)已知函数f(x)在区间[−1, 1]上是“局部奇函数”,在区间[−3, −1)∪(1, 3]上是“局部偶函数”,.(ⅰ)求函数F(x)的值域;(ⅱ)对于[−3, 3]上的任意实数x1,x2,x3,不等式F(x1)+F(x2)+5>mF(x3)恒成立,求实数m的取值范围.参考答案与试题解析2020-2021学年湖北省高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】运用诱导公式化简求值【解析】直接利用诱导公式以及特殊角的三角函数求值即可.【解答】cos(−330∘)=cos(−360∘+30∘)=cos30∘=.2.【答案】B【考点】交集及其运算【解析】可求出集合A,B,然后进行交集的运算即可.【解答】∵A={x|x≥0},B={y|−1≤y≤1},∴A∩B=[0, 1].3.【答案】C【考点】对数值大小的比较【解析】利用指数函数、对数函数的单调性直接求解.【解答】∵a20210.2>a0=1,b=log0.22021<log0.21=0,0<c=(0.2)2021<0.20=1,∴a>c>b.4.【答案】D【考点】函数的求值函数奇偶性的性质与判断求函数的值【解析】根据题意,求出f(−x)的表达式,则有f(x)+f(−x)=4,据此分析可得答案.【解答】根据题意,函数f(x)=tan x−k sin x+2,则f(−x)=tan(−x)−k sin(−x)+2=−tan x+k sin x+2,则f(x)+f(−x)=4,若,则=4−(−1)=5,5.【答案】D【考点】函数y=Asin(ωx+φ)的图象变换【解析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】现将函数的图象向右平移个单位,可得y=sin(2x−)的图象;再将所得的图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)=sin(x−)的图象,6.【答案】A【考点】弧长公式【解析】设∠ABC=2θ.可得sinθ=10.39226=0.866≈√32,可求θ的值,进而得出结论.【解答】∵AB=6cm,BC=6cm,AC=10.392cm(其中√32≈0.866).设∠ABC=2θ.∴则sinθ=10.39226=0.866≈√32,∵由题意θ必为锐角,可得θ≈π3,设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为α.则α+2θ=π,∴α=π−2π3=π3.7.【答案】C【考点】正弦函数的定义域和值域【解析】把函数化为f(x)=√1+|sin2x|的形式,再求函数的周期和最值,从而判断命题的真假性.【解答】解:A,∀x∈R,f(x)=|sin x|+|cos x|=√1+|sin2x|≥1,所以f(x)的最小值是1,故选项A错误;B,∀x∈R,f(x)=|sin x|+|cos x|=√1+|sin2x|≤√2,所以f(x)的最大值是√2,故选项B错误;C,函数f(π2−x)=|sin(π2−x)|+|cos(π2−x)|=|cos x|+|sin x|=f(x),故选项C正确;D,当x∈[0, π2]时,sin x>0,cos x>0,所以函数f(x)=|sin x|+|cos x|=sin x+cos x =√2sin(x+π4),可知x+π4∈[π4, 3π4],所以sin(x+π4)∈[√22, 1],所以√2sin(x+π4)∈[1, √2],所以f(x)=12在x∈[0, π2]上无解,故选项D错误.故选C.8.【答案】A【考点】函数的零点与方程根的关系【解析】画出函数的大致图像,令f(x)=t,结合图像即可求解结论.【解答】函数f(x)=的图像如图:令f(x)=t,则方程f(f(x))−1=0即为f(t)=1对应的t值,则t=10或t=−3或t=−1,t=10时对应的x有2个,t=−3时对应的x有1个,t=−1时对应的x有1个,故方程f(f(x))−1=0的根的个数是4个,二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.【答案】A,B【考点】不等式的基本性质【解析】利用不等式的基本性质、函数的单调性即可得出.【解答】∵a<b,∴a+c<b+c,e−a>e−b,ac2≤bc2(c=0时取等号),与的大小关系不确定.【答案】B,C【考点】命题的真假判断与应用【解析】根据求出α的范围,然后根据充分条件、必要条件的定义可判断选项A;直接根据含量词命题的否定的定义可判断选项B;令f(x)=log3x+x−3,判定f(2)、f(3)的符号,根据零点的存在性定理可判定选项C;先求出函数的周期,然后根据奇偶性可求出所求.【解答】命题“∀x∈R,x2−2x+1≥0”的否定是“∃x∈R,x2−2x+1<0”,故选项B正确(1)令f(x)=log3x+x−3,f(2)=log32−1<0,f(3)=1>0,所以f(x)的零点在(2, 3)上,而f(x)在定义域内单调递增,所以方程log3x+x−3=0在区间(2, 3)上有唯一一个零点,故选项C正确(2)因为f(2+x)=−f(x),所以f(4+x)=−f(x+2)=f(x),即y=f(x)的周期为4,所以f(2021)=f(4×505+1)=f(1),又因函数f(x)为奇函数,所以f(−x)=−f(x),即f(1)=−f(−1)=−1,故选项D不正确.故选:BC.【答案】B,C,D【考点】两角和与差的正切公式基本不等式在最值问题中的应用【解析】由题意利用韦达定理,两角和的正切公式和基本不等式,得出结论.【解答】解:因为tanα,tanβ是方程x2−mx+2=0的两不等实根,所以tanα+tanβ=m,故A错误;tanα⋅tanβ=2,tan(α+β)=tanα+tanβ1−tanαtanβ=m1−2=−m,故D正确;因为0<a<β<π2,所以tanα>0,tanβ>0,所以m=tanα+tanβ≥2√tanα⋅tanβ=2√2,当且仅当tanα=tanβ时,等号成立,故B正确;m+tanα=2tanα+tanβ≥2√2tanα⋅tanβ=4,当且仅当2tanα=tanβ时,等号成立,故C正确.故选BCD.【答案】B,C,D【考点】命题的真假判断与应用【解析】先根据图象求出函数解析式,然后将0代入可判定选项A;利用正弦函数得单调性可判定选项B;将代入解析式化简可判定选项C;令f(x)=2sin(2x+)=1,求出所有满足条件的x,从而可判定选项D.【解答】当x∈时,2x+∈[−,],函数y=2sin x在[-,]上单调递增,所以f(x)在区间上单调递增,故选项B正确(1)=−2sin[2()+]=2sin(2x+)=f(x),故选项C正确(2)令f(x)=2sin(2x+)=1,即sin(2x+)=,所以2x+=或(k∈Z),即x=或(k∈Z),若f(a)=f(b)=1,则|a−b|的最小值为=,故选项D正确.故选:BCD.三、填空题(本大题共4小题,每小题5分,共20分)【答案】【考点】二倍角的三角函数两角和与差的三角函数【解析】利用诱导公式,二倍角的余弦公式化简所求即可得解.【解答】因为,则=cos2()1−2sin2()=1−2×()2=.【答案】2,[1, 2]【考点】函数与方程的综合运用【解析】利用奇函数的性质得到a−4+a=0且f(0)=0,从而求出a和b的值,再利用反比例函数的单调性求解m的范围即可.【解答】因为函数f(x)=ax+b,x∈[a−4, a]的图象关于原点对称,所以f(x)为奇函数,且a−4+a=0,所以a=2,且f(0)=b=0,此时m=在x∈[1, 2]上单调递减,故m∈[1, 2].【答案】cos(πx)(答案不唯一)【考点】函数奇偶性的性质与判断【解析】根据题意,联想余弦函数的性质,分析可得答案.【解答】根据题意,要求函数是最小正周期为2的偶函数,可以联想余弦函数,则f(x)=cos(πx),【答案】6【考点】分段函数的应用【解析】根据题中给出的散点图得到该人喝一瓶啤酒后的2个小时内,其酒精含量阈值大于20,由此列出不等关系,利用指数不等式的解法求解即可.【解答】由散点图可知,该人喝一瓶啤酒后的2个小时内,其酒精含量阈值大于20,所以,解得,解得n>2ln15≈2×2.71=5.42,因为n∈N∗,所以n的值为6.四、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)【答案】由函数f(x)=(2m2+m−2)x2m+1是幂函数,所以2m2+m−2=1,解得m=1或m=-;当m=1时,f(x)=x3,在定义域R上是增函数,满足题意;当m=-时,f(x)=x−2,在定义域(−∞, 0)∪(0, +∞)上不是增函数,不满足题意;所以m=1,f(x)=x3.由f(x)=x3,在定义域R上是增函数,所以不等式f(2−a)<f(a2−4)等价于2−a<a2−4,化简得a2+a−6>0,解得a<−3或a>2,所以a的取值范围是(−∞, −3)∪(2, +∞).【考点】幂函数的性质【解析】(1)根据幂函数的定义列方程求出m的值,再判断m的值是否满足题意;(2)由f(x)在定义域R上是增函数,把不等式f(2−a)<f(a2−4)化为2−a<a2−4,求出解集即可.【解答】由函数f(x)=(2m2+m−2)x2m+1是幂函数,所以2m2+m−2=1,解得m=1或m=-;当m=1时,f(x)=x3,在定义域R上是增函数,满足题意;当m=-时,f(x)=x−2,在定义域(−∞, 0)∪(0, +∞)上不是增函数,不满足题意;所以m=1,f(x)=x3.由f(x)=x3,在定义域R上是增函数,所以不等式f(2−a)<f(a2−4)等价于2−a<a2−4,化简得a2+a−6>0,解得a<−3或a>2,所以a的取值范围是(−∞, −3)∪(2, +∞).【答案】f(x)=(1+cos2ωx)−[1−cos(2ωx−)]=cos2ωx+(cos2ωx+ sin2ωx)=cos2ωx+sin2ωx=(cos2ωx+sin2ωx)=sin(2ωx+),∵x0,x0+是函数的两个相邻的零点.∴=x0+−x0=,即=,得ω=1,即f(x)=sin(2x+),则=sin(2×+)=sin =.由2kπ−≤2x+≤2kπ+,k∈Z,即2kπ−≤2x≤2kπ+,k∈Z,即kπ−≤x≤kπ+,k∈Z∵0≤x≤π时,∴当k=0时,-≤x≤,此时0≤x≤,当k=1时,≤x≤,此时≤x≤π,综上函数的递增区间为[0,],[,π].【考点】正弦函数的单调性两角和与差的三角函数【解析】(1)利用辅助角公式进行化简,结合零点关系求出函数的周期即可.(2)根据函数的单调性进行求解即可.【解答】f(x)=(1+cos2ωx)−[1−cos(2ωx−)]=cos2ωx+(cos2ωx+ sin2ωx)=cos2ωx+sin2ωx=(cos2ωx+sin2ωx)=sin(2ωx+),∵x0,x0+是函数的两个相邻的零点.∴=x0+−x0=,即=,得ω=1,即f(x)=sin(2x+),则=sin(2×+)=sin=.由2kπ−≤2x+≤2kπ+,k∈Z,即2kπ−≤2x≤2kπ+,k∈Z,即kπ−≤x≤kπ+,k∈Z∵0≤x≤π时,∴当k=0时,-≤x≤,此时0≤x≤,当k=1时,≤x≤,此时≤x≤π,综上函数的递增区间为[0,],[,π].【答案】∵β=α+,若m=,则cosα=m=,sinα=,设Q(x, y),则x=cosβ=−sinα=,y=sinβ=cosα=,即Q(,).∵sinβ+cosβ=-,∴sin(α+)+cos(α+)=-,即cosα−sinα=-,①,平方得1−2sinαcosα=,即2sinαcosα=>0,∵sinα=n>0,∴cosα>0,则sinα+cosα====②,由①②得cosα=,sinα=,则tanα=.【考点】任意角的三角函数两角和与差的三角函数【解析】(1)根据三角函数的定义以及诱导公式进行求解即可.(2)根据同角关系式以及sinα+cosα,sinα−cosα以及sinαcosα之间的关系进行转化求解即可.【解答】∵β=α+,若m=,则cosα=m=,sinα=,设Q(x, y),则x=cosβ=−sinα=,y=sinβ=cosα=,即Q(,).∵sinβ+cosβ=-,∴sin(α+)+cos(α+)=-,即cosα−sinα=-,①,平方得1−2sinαcosα=,即2sinαcosα=>0,∵sinα=n>0,∴cosα>0,则sinα+cosα====②,由①②得cosα=,sinα=,则tanα=.【答案】函数f(x)=sin2x+cos x−a=1−cos2x+cos x−a=−cos2x+cos x+1−a,当a=0时,f(x)=−cos2x+cos x+1,当x∈时,−1≤cos x≤0,令t=cos x,则t∈[−1, 0],所以y=−t2+t+1,对称轴为t=,开口向下,所以y在[−1, 0]上单调递增,则−1≤y≤1,所以函数f(x)在上的值域为[−1, 1];当时,−1≤cos x1≤0,所以−1−a≤f(x)≤1−a,故f(x1)的值域为[−1−a, 1−a],当x2∈[1, 5]时,a>0,g(x2)=a log2(x2+3)−2在[1, 5]上单调递增,所以g(1)≤g(x2)≤g(5),即2a−2≤g(x2)≤3a−2,故g(x2)的值域为[2a−2, 3a−2],因为∈[1, 5]有f(x1)=g(x2),所以[2a−2, 3a−2]⊆[−1−a, 1−a],则,解得,所以a的取值范围为.【考点】函数与方程的综合运用三角函数的最值【解析】(1)求出a=0时的f(x),然后利用换元法t=cos x,得到y=−t2+t+1,由二次函数的性质求解值域即可;(2)求出当时,f(x1)的值域,x2∈[1, 5]时,g(x2)的值域,将问题转化为[2a−2, 3a−2]⊆[−1−a, 1−a],利用集合子集的定义列出不等式组,求解即可.【解答】函数f(x)=sin2x+cos x−a=1−cos2x+cos x−a=−cos2x+cos x+1−a,当a=0时,f(x)=−cos2x+cos x+1,当x∈时,−1≤cos x≤0,令t=cos x,则t∈[−1, 0],所以y=−t2+t+1,对称轴为t=,开口向下,所以y在[−1, 0]上单调递增,则−1≤y≤1,所以函数f(x)在上的值域为[−1, 1];当时,−1≤cos x1≤0,所以−1−a≤f(x)≤1−a,故f(x1)的值域为[−1−a, 1−a],当x2∈[1, 5]时,a>0,g(x2)=a log2(x2+3)−2在[1, 5]上单调递增,所以g(1)≤g(x2)≤g(5),即2a−2≤g(x2)≤3a−2,故g(x2)的值域为[2a−2, 3a−2],因为∈[1, 5]有f(x1)=g(x2),所以[2a−2, 3a−2]⊆[−1−a, 1−a],则,解得,所以a的取值范围为.【答案】解:(1)由表中的数据可得:A=2.5,b=5,观察可知3:00和15:00时刻水深相同,故T=12.因为ω>0,所以ω=2πT =π6.因为x=3时y取到最大值,所以3×π6+φ=π2+2kπ,k∈Z,解得φ=2kπ,k∈Z,所以函数的解析式为y=2.5sinπ6x+5.(2)因为货船的吃水深度为5米,安全间隙至少要有1.25米,所以2.5sinπ6x+5≥6.25,即sinπ6x≥12,所以π6+2mπ≤π6x≤5π6+2mπ ,m∈N,解得1+12m≤x≤5+12m ,m∈N,取m=0或1,得1≤x≤5或13≤x≤17.故该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能连续待4个小时.【考点】在实际问题中建立三角函数模型由y=Asin(ωx+φ)的部分图象确定其解析式三角函数模型的应用【解析】根据表中的数据求出A,b,再求出周期T,由此求出ω的值,再利用最大值即可求出φ,进而可以求解;令5sinπ6x+5≥6.25,,解出x的范围,进而可以求解.【解答】解:(1)由表中的数据可得:A=2.5,b=5,观察可知3:00和15:00时刻水深相同,故T=12.因为ω>0,所以ω=2πT=π6.因为x=3时y取到最大值,所以3×π6+φ=π2+2kπ,k∈Z,解得φ=2kπ,k∈Z,所以函数的解析式为y=2.5sinπ6x+5.(2)因为货船的吃水深度为5米,安全间隙至少要有1.25米,所以2.5sinπ6x+5≥6.25,即sinπ6x≥12,所以π6+2mπ≤π6x≤5π6+2mπ ,m∈N,解得1+12m≤x≤5+12m ,m∈N,取m=0或1,得1≤x≤5或13≤x≤17.故该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能连续待4个小时.【答案】若f(x)为[−3, 3]上的“局部奇函数”,则f(−x)=−f(x),即2−x+k⋅2x=−(2x+k⋅2−x),整理可得(k+1)(2x+2−x)=0,解得k=−1,即f(x)=2x−2−x,当x∈[−3, 3]时,不等式,即为2(2x)2−3⋅2x−2>0,可得2x>2,即x>1,则原不等式的解集为(1, 3];(ⅰ)F(x)=,令t=2x,则y=t−在[,2]递增,当x∈[−1, 1]时,F(x)∈[−,];因为y=t+在(2, 4]递增,所以x∈(1, 3]时,F(x)∈(,];又因为f(x)在[−3, −1)∪(1, 3]为“局部偶函数”,可得x∈[−3, −1)∪(1, 3]时,F(x)∈(,];综上可得,F(x)的值域为[-,]∪(,];(ⅱ)对于[−3, 3]上的任意实数x1,x2,x3,不等式F(x1)+F(x2)+5>mF(x3)恒成立,可得2F(x)min+5>mF(x)max,即有2×(−)+5>m,解得m<,即m的取值范围是(−∞,).【考点】函数恒成立问题【解析】(1)由“局部奇函数”的定义,结合指数不等式的解法,可得解集;(2)(ⅰ)由分段函数的形式写出F(x)的解析式,再由换元法和函数的单调性、基本不等式,可得所求值域;(ⅱ)由题意可得可得2F(x)min+5>mF(x)max,结合F(x)的值域,可得所求范围.【解答】若f(x)为[−3, 3]上的“局部奇函数”,则f(−x)=−f(x),即2−x+k⋅2x=−(2x+k⋅2−x),整理可得(k+1)(2x+2−x)=0,解得k=−1,即f(x)=2x−2−x,当x∈[−3, 3]时,不等式,即为2(2x)2−3⋅2x−2>0,可得2x>2,即x>1,则原不等式的解集为(1, 3];(ⅰ)F(x)=,令t=2x,则y=t−在[,2]递增,当x∈[−1, 1]时,F(x)∈[−,];因为y=t+在(2, 4]递增,所以x∈(1, 3]时,F(x)∈(,];又因为f(x)在[−3, −1)∪(1, 3]为“局部偶函数”,可得x∈[−3, −1)∪(1, 3]时,F(x)∈(,];综上可得,F(x)的值域为[-,]∪(,];(ⅱ)对于[−3, 3]上的任意实数x1,x2,x3,不等式F(x1)+F(x2)+5>mF(x3)恒成立,可得2F(x)min+5>mF(x)max,即有2×(−)+5>m,解得m<,即m的取值范围是(−∞,).。
人教版2020-2021学年度上学期期末考试数学试卷(Word版 含解析)
人教版2020-2021学年度上学期期末考试数学试卷(全册)一、选择题(本大题共10小题,共30.0分)1.下列关于事件发生可能性的表述,正确的是( )A. 事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B. 体育彩票的中奖率为10%,则买100张彩票必有10张中奖C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D. 掷两枚硬币,朝上的一面是一正面一反面的概率为 132.下列四个银行标志中,既是轴对称图形又是中心对称图形的是( ). A. B. C. D.3.关于 x 的一元二次方程 x 2−5x +2p =0 的一个根为 1 ,则另一根为( ).A. -6B. 2C. 4D. 14.下列关于二次函数 y =2x 2+3 ,下列说法正确的是( ).A. 它的开口方向向下B. 它的顶点坐标是 (2,3)C. 当 x <−1 时, y 随 x 的增大而增大D. 当 x =0 时, y 有最小值是35.如图,AB 为⊙O 的直径,点D 是弧AC 的中点,过点D 作DE ⊥AB 于点E ,延长DE 交⊙OO 于点F ,若AC = 12,AE = 3,则⊙O 的直径长为( )A. 10B. 13C. 15D. 166.某校食堂每天中午为学生提供A 、 B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( )A. 12B. 13C. 14D. 237.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A. 2.5米B. 3米C. 3.5米D. 4米8.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。
而立之年督东吴,早逝英年两位数。
2020-2021高一数学上期末试卷(及答案)
2020-2021高一数学上期末试卷(及答案)一、选择题1.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为() A . B . C . D .2.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称 3.函数y =a |x |(a >1)的图像是( )A .B .C .D .4.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-155.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ). A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-6.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( ) A .2,35⎡⎫⎪⎢⎣⎭ B .2,35⎛⎤ ⎥⎝⎦ C .(),3-∞ D .2,5⎛⎫+∞ ⎪⎝⎭7.若函数()2log ,? 0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1e B .e C .21e D .2e8.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]9.若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 10.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12x f x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫ ⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭ 11.函数y =11x -在[2,3]上的最小值为( ) A .2B .12C .13D .-1212.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞ 二、填空题13.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.14.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.15.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.16.函数22log (56)y x x =--单调递减区间是 .17.已知函数12()log f x x a =+,2()2g x x x =-,对任意的11[,2]4x ∈,总存在2[1,2]x ∈-,使得12()()f x g x =,则实数a 的取值范围是______________.18.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.19.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.20.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____.三、解答题21.已知函数()10()m f x x x x=+-≠. (1)若对任意(1)x ∈+∞,,不等式()2log 0f x >恒成立,求m 的取值范围. (2)讨论()f x 零点的个数.22.已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域;23.已知函数sin ωφf xA xB (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 32,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移22个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围. 24.已知幂函数35()()m f x x m N -+=∈为偶函数,且在区间(0,)+∞上单调递增. (Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围.25.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数)26.已知函数()()20f x ax bx c a =++≠,满足()02f =,()()121f x f x x +-=-. (1)求函数()f x 的解析式;(2)求函数()f x 的单调区间;(3)当[]1,2x ∈-时,求函数的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】函数f (x )=(1212xx -+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx -+)cosx <0,函数的图象在x 轴下方. 排除D .故答案为C 。
2020-2021高一数学上期末试卷带答案(1)
2020-2021高一数学上期末试卷带答案(1)一、选择题1.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)2.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ).A .b a c <<B .c b a <<C .c a b <<D .a b c <<3.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( )A .278-B .18-C .18D .2784.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}6.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B.2C .14,2 D .14,4 7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48)A .1033B .1053C .1073D .10939.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .1110.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭11.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y =x12.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .二、填空题13.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______. 14.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________.15.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________.16.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.17.已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 18.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____. 19.已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________.20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.23.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围; (3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围.24.已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =. (1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由;(2)对于[]2,6x ∈,()()()log 17a mf x x x >--恒成立,求实数m 的取值范围.25.已知幂函数35()()m f x xm N -+=∈为偶函数,且在区间(0,)+∞上单调递增.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围.26.已知定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,()20201f =,且当1x >时,()0f x >. (1)求()1f ;(2)求证:()f x 在定义域内单调递增; (3)求解不等式12f<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.2.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-.令2()2log 10x x h x =-=,则22log 1x x =,21log 22xx x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤,故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.6.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.7.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 8.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.9.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.10.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a <⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.11.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.12.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.二、填空题13.【解析】当时解得;当时恒成立解得:合并解集为故填:解析:3{|}2x x ≤ 【解析】当20x +≥时,()()()22525x x f x x x +++≤⇔++≤,解得 322x -≤≤;当20x +<时,()()()22525x x f x x x +++≤⇔-+≤,恒成立,解得:2x <-,合并解集为32x x ⎧⎫≤⎨⎬⎩⎭ ,故填:32x x ⎧⎫≤⎨⎬⎩⎭. 14.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2 【解析】 【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值. 【详解】由题意得:()00323f =+=,()23331103f a a =-+=-,所以由()()01032ff a a =-=, 解得2a =.故答案为:2. 【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.15.【解析】【分析】根据题意以及对数的运算性质得出进而可由基本不等式可得出从而可得出函数的值域【详解】由题意即由题意知由基本不等式得(当且仅当时取等号)所以(当且仅当时取等号)即所以的值域为故答案为:【 解析:[)2,+∞【解析】 【分析】根据题意以及对数的运算性质得出()21log 2F x x x ⎛⎫=++ ⎪⎝⎭,进而可由基本不等式可得出124x x ++≥,从而可得出函数()F x 的值域. 【详解】由题意,()()()()22212log 1log F x f x f x x x =+-=+-,即()222211log log 2x x F x x x x ++⎛⎫==++ ⎪⎝⎭,由题意知,0x >,由基本不等式得12x x +≥=(当且仅当1x =时取等号), 所以124x x ++≥(当且仅当1x =时取等号),即221log 2log 42x x ⎛⎫++≥=⎪⎝⎭, 所以()F x 的值域为[)2,+∞. 故答案为:[)2,+∞. 【点睛】本题考查了函数值域的定义及求法,对数的运算性质,基本不等式的运用,考查了计算能力,属于基础题.16.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】 【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】 Q ()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤ 【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.17.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦.故答案为:310,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.18.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么 解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么19.【解析】【分析】根据函数解析式分类讨论即可确定解析式画出函数图像由直线所过定点结合图像即可求得的取值范围【详解】函数定义域为当时当时当时画出函数图像如下图所示:直线过定点由图像可知当时与和两部分图像 解析:(4,1)(1,0)--⋃-【解析】 【分析】根据函数解析式,分类讨论即可确定解析式.画出函数图像,由直线所过定点,结合图像即可求得k 的取值范围. 【详解】 函数()211x x xf -=-定义域为{}1x x ≠当1x ≤-时,()2111x x xf x -==---当11x -<<时,()2111x x x f x -==+-当1x <时,()2111x x xf x -==---画出函数图像如下图所示:直线2y kx =+过定点()0,2由图像可知,当10k -<<时,与1x ≤-和11x -<<两部分图像各有一个交点; 当41-<<-k 时,与11x -<<和1x <两部分图像各有一个交点. 综上可知,当()()4,11,0k ∈--⋃-时与函数有两个交点 故答案为:()()4,11,0--⋃- 【点睛】本题考查了分段函数解析式及图像画法,直线过定点及交点个数的求法,属于中档题.20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】 【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围. 【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递减,可得()22222a f x a a +<<++,()f x 的值域为[)3,+∞,可得223a +≥,解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递增,可得()2225f x a a >++>,则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭. 故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭. 【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题.三、解答题21.(1)g (x )=22x -2x +2,{x |0≤x ≤1}.(2)最小值-4;最大值-3. 【解析】 【分析】 【详解】(1)f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2),因为f(x)的定义域是[0,3],所以,解之得0≤x≤1.于是 g(x)的定义域为{x|0≤x≤1}. (2)设.∵x ∈[0,1],即2x ∈[1,2],∴当2x=2即x=1时,g(x)取得最小值-4;当2x=1即x=0时,g(x)取得最大值-3. 22.(1)23()(2)14f x x =-+;(2)[1,4];(3)[2,)+∞. 【解析】 【分析】(1)由()()22f x f x +=-,得对称轴是2x =,结合最小值可用顶点法设出函数式,再由截距求出解析式;(2)根据二次函数的单调性确定函数的最大值和最小值,然后求解. (3)求出()f x 在[0,3]的最大值4,对函数()2lg 1lg mg x x x=+-换元lg t x =,得()21m g x y t t ==+-,[1,2]t ∈,由421mt t≤+-用分离参数法转化. 【详解】(1)∵()()22f x f x +=-,∴对称轴是2x =,又函数最小值是1,可设2()(2)1f x a x =-+(0a >),∴(0)414f a =+=,34a =. ∴23()(2)14f x x =-+. (2)若2a b ≤≤,则min ()1f x a ==,7(1)24f =<,∴3b ≥且23()(2)14f b b b =-+=,解得4b =.∴1,4a b ==,不变区间是[1,4];若02a b <<≤,则()f x 在[,]a b 上是减函数,∴223()(2)14433()(2)14f a a b a b f b b a⎧=-+=⎪⎪∴==⎨⎪=-+=⎪⎩或4,因为02a b <<≤,所以舍去;若2a b ≤<,则()f x 在[,]a b 上是增函数,∴223()(2)143()(2)14f a a a f b b b⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,∴,a b 是方程()f x x =的两根,由()f x x =得23(2)14x x -+=,124,43x x ==,不合题意. 综上1,4a b ==;(3)23()(2)14f x x =-+,[0,3]x ∈时,max ()(0)4f x f ==, 设2lg 1lg my x x=+-,令lg t x =,当[10,100]x ∈时,[1,2]t ∈. 21my t t=+-, 由题意存在[1,2]t ∈,使421mt t≤+-成立,即225m t t ≥-+, [1,2]t ∈时,22525252()48t t t -+=--+的最小值是222522-⨯+⨯=,所以[2,)m ∈+∞.【点睛】本题考查求二次函数解析式,考查二次函数的创新问题,考查不等式恒成立和能成立问题.二次函数的解析式有三种形式:2()(),f x a x m h =-+12()()(),f x a x x x x =--2()f x ax bx c =++,解题时要根据具体的条件设相应的解析式.二次函数的值域问题要讨论对称轴与区间的关系,以确定函数的单调性,得最值.难点是不等式问题,对于任意的1[0,3]x ∈,说明不等式恒成立,而存在[10,100]x ∈,说明不等式“能”成立.一定要注意是转化为求函数的最大值还是最小值.23.(1)4或1-;(2)()0,1;(3)(]10,11. 【解析】 【分析】(1)当1a =,3b =-时,结合已知可得2()24f x x x x =--=,解方程可求; (2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,结合二次方程的根的存在条件可求;(3)当1a =,5b =时,转化为问题2()64f x x x mx =++=在(0,4]上有两个不同实数解,进行分离m ,结合对勾函数的性质可求. 【详解】解:(1)当1a =,3b =-时,2()24f x x x =--,由题意可得,224x x x --=即2340x x --=, 解可得4x =或1x =-,故()f x 关于参数1的不动点为4或1-;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠, 则210ax bx b ++-=恒有2个不同的实数根(0)a ≠, 所以△24(1)0b a b =-->恒成立, 即2440b ab a -+>恒成立, ∴216160a a ∆=-<,则01a <<, ∴a 的取值范围是()0,1;(3)1a =,5b =时,2()64f x x x mx =++=在(0,4]上有两个不同实数解, 即46m x x-=+在(0,4]上有两个不同实数解,令4()h x x x=+,04x <≤, 结合对勾函数的性质可知,465m <-≤, 解可得,1011m <≤. 故m 的范围为(]10,11. 【点睛】本题以新定义为载体,主要考查了函数性质的灵活应用,属于中档题. 24.(1)2a =,单调递减,理由见解析;(2) 07m <<【解析】 【分析】(1)代入(3)1f =解得a ,可由复合函数单调性得出函数的单调性,也可用定义证明; (2)由对数函数的单调性化简不等式,再由分母为正可直接去分母变为整式不等式,从而转化为求函数的最值. 【详解】(1)由()3log 4log 2log 21a a a f =-==,所以2a =. 函数()f x 的定义域为()1,+∞,()()()222212log 1log 1log log 111x f x x x x x +⎛⎫=+--==+ ⎪--⎝⎭. 因为211y x =+-在()1,+∞上是单调递减, (注:未用定义法证明不扣分)所以函数()f x 在定义域()1,+∞上为单调递减函数. (2)由(1)可知()()()221log log 117x mf x x x x +=>---,[]2,6x ∈,所以()()10117x mx x x +>>---. 所以()()()2201767316m x x x x x <<+-=-++=--+在[]2,6x ∈恒成立.当[]2,6x ∈时,函数()2316y x =--+的最小值min 7y =.所以07m <<. 【点睛】本题考查对数函数的性质,考查不等式恒成立,解题关键是问题的转化.由对数不等式转化为整式不等式,再转化为求函数最值. 25.(Ⅰ)2()f x x =(Ⅱ)3,4⎛⎫-∞-⎪⎝⎭【解析】 【分析】(I )根据幂函数的奇偶性和在区间(0,)+∞上的单调性,求得m 的值,进而求得()f x 的解析式.(II )先求得()g x 的解析式,由不等式()0<g x 分离常数λ得到122xx λ<-,结合函数122xy x =-在区间[]1,2上的单调性,求得λ的取值范围. 【详解】 (Ⅰ)∵幂函数35()()m f x xm -+=∈N 为偶函数,且在区间(0,)+∞上单调递增,350m ∴-+>,且35m -+为偶数. 又N m ∈,解得1m =,2()f x x ∴=.(Ⅱ)由(Ⅰ)可知2()()2121g x f x x x x λλ=+-=+-. 当[1,2]x ∈时,由()0<g x 得122xx λ<-. 易知函数122xy x =-在[1,2]上单调递减, min 1123222224x x λ⎛⎫∴<-=-=- ⎪⨯⎝⎭.∴实数λ的取值范围是3,4⎛⎫-∞- ⎪⎝⎭. 【点睛】本小题主要考查幂函数的单调性和奇偶性,考查不等式在给定区间上恒成立问题的求解策略,属于中档题.26.(1)0;(2)证明见解析;(3)()()1,02019,2020x ∈-U 【解析】 【分析】(1)取1x y ==,代入即可求得()1f ; (2)任取210x x >>,可确定()()22110x f x f x f x ⎛⎫-=>⎪⎝⎭,根据单调性定义得到结论; (3)利用12f=将所求不等式变为f f<,结合定义域和函数单调性可构造不等式组求得结果. 【详解】(1)取1x y ==,则()()()111f f f =+,解得:()10f = (2)任取210x x >> 则()()()221111x f x f x f x f x x ⎛⎫-=⋅-=⎪⎝⎭()()221111x x f f x f x f x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭210x x >>Q 211x x ∴> 210x f x ⎛⎫∴> ⎪⎝⎭,即()()210f x f x -> ()f x ∴在定义域内单调递增(3)()20201f ff=+=Q12f∴=12ff ∴<=由(2)知()f x 为增函数220190x x ⎧->⎪∴< 解得:()()1,02019,2020x ∈-U 【点睛】本题考查抽象函数单调性的证明、利用单调性求解函数不等式的问题;关键是能够通过单调性的定义证明得到函数单调性,进而根据函数单调性将函数值的比较转化为自变量的比较;易错点是忽略函数定义域的要求,造成求解错误.。
2020-2021高一数学上期末试卷含答案(6)
2020-2021 高一数学上期末试卷含答案 (6)6.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的 0.5% .已知在过滤过程中的污染物的残留数量 P (单位:毫克 /升)与过滤时间 tktP P 0 e kt ( k 为常数, P 0 为原污染物总量) .若前 480%,那么要能够按规定排放废气,还需要过滤n 小子总数 N 约为 1080. 则下列各数中与 M最接近的是A .abc B . a c bC. c a bD .bca3 a x 4a,x 14若 f x2 是, 的增函数 , a 的取值范围是 ( )x 2,x 12 22,A,3 B . ,3C . ,3D5555. 函数 f (x) 的反函数图像向右平移 1 个单位,得到函数图像 C ,函数g(x) 的图像与函数图像 C 关于 y x 成轴对称,那么 g(x) ( )A .f(x 1) B . f(x1)C . f (x)1D .f(x) 1 已知a) c163,则5blog 31 141. 、选择题2, 1, 0,1, 2} ,B x|(x 1)(x 2) 0 ,则AI B ( ) A . 1,0B . 0,1C . 1,0,1D . 0,1,22. 已知函数 f (x) log a ( x 11)(ax10且 a 1)的定义域和值域都是 [0, 1], 则 a=( ) A .B .C .D .3. 时,则正整数 n 的最小值为(参考数据:取 log 5 2 0.43)A .8B . 9 7.根据有关资料,围棋状态空间复杂度的上限 C . 10 D . 14M 约为 3361,而可观测宇宙中普通物质的原 单位:小时)之间的函数关系为 个小时废气中的污染物被过滤掉了N53B .1093D .108.函数 f(x)=ax 2+ bx +c(a ≠0的) 图象关于直线 x =- 对称.据此可推测,对任意的非零实数 a ,b ,c ,m ,n ,p ,关于 x 的方程 m[f(x)]2+nf(x)+p =0 的解集都不可能是 ( ) A . {1,2} B .{1,4} C . {1,2,3,4}D . {1,4,16,64}9. 定义在 7,7 上的奇函数 f x ,当 0 x 7 时, f x 2x(参考数据: lg3 ≈0.48 )33A .10x 6 ,则不等式f x 0 的解集为A . 2,7B . 2,0 U 2,7C . 2,0 U 2,D . 7, 2 U2,7 10.函数 f x是周期为 4 的偶函数 ,当 x 0,2 时, f x x 1, 则不等式 xf x在 1,3上的解集是 ( )A . 1,3B . 1,1C .1,0 U 1,3 D . 1,0 U 0,111. 已知定义在 R 上的函数 f x 在 , 2 上是减函数, 若g2 是奇函数,且 g 20 ,则不等式 xf x 0的解集是 A . ,2 2, B . 4, 2 0, C . ,42,D . ,40,12. 若不等式 ax 1 0 对于一切 0,12 恒成立,则 a 的取值范围为A . a0B .a2 C .D .a、填空题13. 已知幂函数 (m 2)x m在(0,)上是减函数,则 14. 已知函数 fx1满足 2fx1 x 11 x ,其中 x xR 且 x 0,则函数 fx的解析式为 15. 若关于 x的方程 4x2xa有两个根,则 a 的取值范围是 16. 2 已知 f x x2,10x4的解,如果关于 n x i x 1 x 2 L i1,则 x 2 17. 已知函数 f任意的均有 x1 , x2xx 18.函数f(x)min b x 2,x 0,其中 a 是方程 x x0 x的方程 f x x的所有解分别为 n x i1xk x1lg x x 1,4 的解,x 2,⋯ b 是方程 x n ,记log1x 3x1 aln xx x 21R ,若对R,x 2 ,均有 fx 1g x 2 ,则实数 k 的取值范围是2 x, x 2 ,其中 mina,ba,a b{b a ,,a ab b,若动直线 y m 与函数y f (x) 的图像有三个不同的交点,则实数 m的取值范围是19.若函数f x a2x4a x2(a 0,a 1)在区间1,1的最大值为 10,则 a .x 5, x 220.已知函数f x a x2a 2,x 2,其中a 0且a 1,若f x 的值域为3, ,则实数a 的取值范围是 ___ .三、解答题21.节约资源和保护环境是中国的基本国策使排放的废气中含有的污染物数量逐渐减少.某化工企业 ,积极响应国家要求 ,探索改良工艺.已知改良工艺前所排放的废气中含有的污染物数量为2mg/m 3,首次改良后所排放的废气中含有的污染物数量为 1.94mg/m 3.设改良工艺前所排放的废气中含有的污染物数量为r0 ,首次改良工艺后所排放的废气中含有的污染物数量为r1 ,则第 n次改良后所排放的废气中的污染物数量r n ,可由函数模型r n rrr150.5n p(p R,n N*)给出,其中 n是指改良工艺的次数 . (1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求 ,企业所排放的废气中含有的污染物数量不能超过0.08mg/m 3,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标 . (参考数据 :取lg 2 0.3 )x22.已知函数f(x) 2x k 2 x,g(x) log a f (x) 2x(a 0且a 1),且f (0) 4.(1)求 k 的值;(2)求关于 x 的不等式g(x) 0 的解集;(3)若f ( x)t x8 对x R 恒成立,求 t 的取值范围 .2xk 2x23.已知函数f x k 2x(x R )12x(1)若函数 f (x)为奇函数,求实数k 的值;2(2)在( 1)的条件下,若不等式f ax f x24 0 对x 1,2 恒成立,求实数a 的取值范围 .124.已知f (x) ax b是定义在{x R |x 0}上的奇函数 ,且f (1) 5.x(1)求 f(x)的解析式;1(2)判断 f(x)在, 上的单调性 ,并用定义加以证明 .22 2 225.已知全集U=R,集合A x x2 4x 0 , B x x2(2m 2)x m2 2m 0 . (Ⅰ)若m 3,求C U B和AUB;(Ⅱ)若 B A ,求实数 m 的取值范围 .2 26. 已知函数 f x ax 2 bx c a 0 ,满足 f 0 2, f x 1 f x(1)求函数 f x 的解析式; (2)求函数 f x 的单调区间;(3)当 x1,2 时,求函数的最大值和最小值.【参考答案】 *** 试卷处理标记,请不要删除2x 1.、选择题1.A 解析: A 【解析】 【分析】 【详解】 由已知得 Bx| 2 x 1 ,因为 A { 2, 1, 0,1, 2},所以 A B 1,0 ,故选 A2.A解析:【解析】 【分析】 1由函数 f x log a ( )=0, (a 0,a 1)的定义域和值域都是 [0,1] ,可得 x1f(x) 为增函数,但 在[0 ,1] 上为减函数,得 0<a<1,把 x=1 代入即可求出 a的值. 【详解】 1由函数 f x log a ( )=0, (a 0,a 1)的定义域和值域都是 [0,1] ,可得x1函数, 但 在 [0 , 1] 上为减函数,∴ 0<a<1, 1 当 x=1 时, f(1) log a ( )=-log a 2=1,111解得 a= ,2f(x) 为增故选 A . 本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出 f (0)=0 ,这样避免了讨论.不然的话,需要 讨论函数的单调性 .3.C 解析: C 【解析】 【分析】首先将 b 表示为对数的形式,判断出 b 0 ,然后利用中间值以及对数、指数函数的单调性3比较 与 a, c 的大小,即可得到 a,b,c 的大小关系2【详解】大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较4.A解析: A 【解析】 【分析】利用函数 y f x 是 , 上的增函数,保证每支都是增函数,还要使得两支函数在2分界点 x 1处的函数值大小,即 3 a 1 4a 12,然后列不等式可解出实数 a 的取值 范围. 【详解】3 a x 4a,x 1 由于函数 f x 2 是 ,的增函数, x 2,x 1 则函数 y 3 a x 4a 在 ,1 上是增函数,所以, 3 a 0,即 a 3;22 且有 3 a 1 4a 1 ,即 3 5a 1 ,得 a ,5因为 5b114,所以b log1 5log 51又因为 log 31 14 3 log 34 log 3 3,log 33 3 ,所以1,2, 又因为 1631,83,所以32,2 ,所以 c b .故选: C.【点睛】 本题考查利用指、 对数函数的单调性比较大小, 难度一般 .利用指、对数函数的单调性比较41 80% P 0 P 0e 4k ,所以 0.2 e 4k,即 4k ln0.2ln5 ,所以 kln5则由 0.5%P 0 P 0e kt,得 ln 0.005 ln5t ,2因此,实数 a 的取值范围是 ,3 ,故选 A.5【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.5.D解析: D 解析】 分析】首先设出 y g(x) 图象上任意一点的坐标为 (x, y) ,求得其关于直线 y x 的对称点为 ( y, x) ,根据图象变换,得到函数 f(x) 的图象上的点为 (x,y 1) ,之后应用点在函数图象 上的条件,求得对应的函数解析式,得到结果 .【详解】 设 y g(x)图象上任意一点的坐标为 (x,y) , 则其关于直线 y x 的对称点为 (y,x),再将点 (y,x) 向左平移一个单位,得到 (y 1,x) , 其关于直线 y x 的对称点为 (x, y 1),该点在函数 f (x) 的图象上,所以有 y 1 f (x), 所以有 y f (x) 1,即 g(x)f(x) 1, 故选: D.【点睛】 该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求 法,两个会反函数的函数图象关于直线 y x 对称,属于简单题目 .6.C 解析: C 【解析】 【分析】1ln51根据已知条件得出 e4k 1,可得出 kln 5,然后解不等式ekt 1,解出t 的取值范 54200围,即可得出正整数 n 的最小值 .【详解】由题意,前 4个小时消除了 80%的污染物,因为 P P 0 e kt,所以对于形如 f g x0 的方程(常称为复合方程),通过的解法是令 t g x ,从而得所以 t 4ln 2004log 5200 4log 5 52 238 12log 52 13.16 , ln5 故正整数 n 的最小值为 14 4 10.故选: C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题7.D 解析: D 【解析】8.D解析: D 【解析】 【分析】4 个不同的解中,有两个的解的和与余下两个解的和相等,故 可得正确的选项 【详解】 设关于f 2x 的方程 mf 2x nf x p 0 有两根,即 f x t 1 或 f x t 2 . 而 f x ax 2 bx c 的图象关于 x b对称,因而 f x t 1 或 f x t 2 的两根也2a关于 x b 4 16 1 64对而选项 D 中 . 故选 D.2a 2 2点睛】试题分析:设 MN3613 361lg x lg 80 lg31080 1093,故选 【名师点睛】3361 13080,两边取对数,lg1080361 lg3 80 93.28 ,所以 x 1093.28,即 M最接近的运算关系, D. 本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数3361以及指数与对数运算的关系,难点是令行求解,对数运算公式包含 log a M log a N log a MN ,log a M log a N log a MN ,log a M nnlog a M .方程 mf2nf x p0 不同的解的个数可为 0,1,2,3,4. 若有 4 个不同解,则可根据二次函数的图像的对称性知道f t 0到方程组,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征g x t取决于两个函数的图像特征 .9.B解析: B【解析】【分析】当0 x 7时, f (x)为单调增函数,且f (2) 0,则f(x) 0的解集为2,7 ,再结合 f (x) 为奇函数,所以不等式f (x) 0 的解集为( 2,0) (2,7] .【详解】当0 x 7时,f(x) 2x x 6,所以 f (x)在(0,7] 上单调递增,因为2f(2) 222 6 0,所以当0 x 7时,f(x) 0等价于f(x) f (2),即2x 7 ,因为 f (x)是定义在[ 7,7] 上的奇函数,所以7 x 0 时, f(x)在[ 7,0) 上单调递增,且f ( 2) f (2) 0,所以f (x) 0 等价于f(x) f( 2),即2 x 0 ,所以不等式f (x) 0 的解集为( 2,0) (2,7]【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.10.C解析: C【解析】若x [ 2,0] ,则x [0,2],此时(f x) x 1,Q (fx)是偶函数,(f x) x 1 (f x),即(f x) x 1,x [ 2,0],若x [2,4] ,则x4 [ 2,0],∵函数的周期是 4,(f x) (f x 4) ( x 4) 1 3 x,x 1,2x0即(f x 1,0 x 2 ,作出函数(f x)在[ 1,3] 上图象如图,3x, 2 x 4若0<x 3,则不等式x(f x)>0 等价为(f x)>0 ,此时1<x<3,若1≤x≤ 0 ,则不等式x(f x)>0 等价为(f x)<0 ,此时1<x<0 ,综上不等式x(f x)>0 在[ 1,3] 上的解集为(1,3)( 1,0).【点睛】 本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档 题.12.C解析: C 【解析】 【分析】 【详解】即 a? -x- 1对于一切 x∈ (0, 1) 成立, x2故选 C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用 数形结合是解决本题的关键.11.C解析: C 【解析】是奇函数,可得 f x 的图像关于 2,0 中心对称,再由已知可得函 数 f x 的三个零点为 -4, -2, 0,画出 f x 的大致形状,数形结合得出答案 详解】由 g x f x 2 是把函数 f x 向右平移 2 个单位得到的,且2g 0 0 ,画出 f x 的大致形状2时, xf x 0 ,故选 C.x2 ax0 对于一切 x 0,1成立,2则等价为 a ?x 1对于一切 x∈(0, 1) 成立,x2设 y=-x- 1,则函数在区间 (0, 1〕上是增函数 x2x22故选 C.点睛:函数问题经常会遇见恒成立的问题: (1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 f (x) 0就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为 f (x)min 0,若 f (x) 0恒成立,转化为 f (x)max 0;(3)若 f (x) g(x) 恒成立,可转化为 f ( x min ) g(x)max . 二、填空题13.-3【解析】【分析】根据函数是幂函数可求出 m 再根据函数是减函数知故可求出 m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函 数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于解析: -3 【解析】 【分析】根据函数是幂函数可求出 m,再根据函数是减函数知 m 0 ,故可求出 m. 【详解】因为函数是幂函数所以 |m| 2 1,解得 m 3或 m 3. 当 m 3时, y x 3在 (0, )上是增函数; 当 m 3 时, y x 在 (0, ) 上是减函数, 所以 m 3 . 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题 . 14.【解析】【分析】用代换可得联立方程组求得再结合换元法即可求解【详 解】由题意用代换解析式中的可得 ⋯⋯(1)与已知方程 ⋯⋯(2)联立( 1)( 2 )的方程组可得令则所以所以故答案为:【点睛】本题主要考查了函11解析: f x ( x 1)3 x 111- x- < - -2=解析】分析】联立( 1) ( 2) 的方程组,可得 f x11 x ,x3x 11, 所以 f t1 1,令t,t 1, 则 x =x t-13 t1所以 f x1 1 (x1).3 x 1故答案为: f x 11 (x 1).3x 1【点睛】本题主要考查了函数解析式的解答中用x 代换 x ,联立方程1x 是解答的关键,着重考查了函数与方程思想,以及换元思想的应用,属3于中档试题 .15.【解析】【分析】令可化为进而求有两个正根即可【详解】令则方程化为 方程有两个根即有两个正根解得 :故答案为 :【点睛】本题考查复合函数所对应的 方程根的问题关键换元法的使用难度一般1解析: ( ,0)4【解析】 【分析】令 t 2x0,4x2xa ,可化为 t 2t a 0,进而求 t 2t a 0 有两个正根即可 . 【详解】令 t 2x0 ,则方程化为 :t 2t a 0Q 方程 4x 2x a 有两个根 ,即 t 2t a 0有两个正根 ,1 4a 01x 1 x 2 1 0 , 解得 :a 0.x1 1fx ,再结合换元法,即可求解 . x3【详解】由题意,用x1 x 代换解析式中的 x ,可得 2 f f x 11 x ,⋯⋯.(1)x x与已知方程x 1 x 12f f 1 x ,⋯⋯(2) xx用 x 代换 x ,可得 2 f 1 x ,联立方程组,求得xxx1x1 x1 x4x 1 x 2a 0故答案为 : ( 1,0) .4【点睛】 本题考查复合函数所对应的方程根的问题 ,关键换元法的使用 ,难度一般 . 16.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代 入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解 是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以 解析: 1【解析】 【分析】根据互为反函数的两个图像与性质 ,可求得 a ,b 的等量关系 ,代入解析式可得分段函数 f x分别解方程 f x x ,求得方程的解 ,即可得解 .【详解】a 是方程 x lg x 4的解,b 是方程 x 10x 4的解,则 a , b 分别为函数 y x 4 与函数 ylg x 和 y 10x 图像交点的横坐标因为 y lg x 和 y 10x互为反函数 ,所以函数 y lg x 和 y 10x 图像关于 y x 对称所以函数 yx 4 与函数 y lg x 和 y10x图像的两个交点也关于 y x 对称 4 与 y x 的交点满足 y x4 x2所以函yx ,解y2y x根据点坐标公式可得ab 4所以函数 f x 2 x 4x 2, x 02,x0当x 0时 , f x2x4x 2 ,关于 x 的方程 f x x ,即 x 2 4 x 2 x 解得x 2, x 1当x 0时, f x 2 ,关于x 的方程 f x x ,即 2 x 所以 n x i 2 1 2 1i1故答案为 : 1【点睛】本题考查了函数与方程的关系 ,互为反函数的两个函数的图像与性质 ,分段函数求自变量 ,属 于中档题 .17.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【 详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:解析】分析】若对任意的均有 x 1 , x 2 x x R, x 2 ,均有 f x 1 g x 2 ,只需满足f ( x )max g (x )min ,分别求出 f (x)max , g (x )min ,即可得出结论 .【详解】 21 2 1 当 2 x 1f xx 2 x k (x)2 k , 24k 6 f ( x) 1k ,4当x 1, f x1 2 log 1 x 31 2,xgx a ln 2 2x 1设y x , 当x 0,y 0,x 21x111x 0,y20 y,当x 211 2 2,xx当x 1时,等号成立同理当2x 0时, 1 y 0,2x1 1y2[, ]x 212 2若对任意的均有 x 1,x2x x R, x 2 ,均有fx 1 g x 2 ,只需f ( x)maxg ( x)min ,当x 2ln(x 2) R若 a 0,x 2, g (x) 若 a 0, x , g( x)x所以 a 0 , g(x) ,g(x)1,x 2 12f (x)maxg (x)min 成立须, 1k 1,k 3424实数 k 的取值范围是 , 34.故答案为 ; , 3.4【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问8x+4≤ 0,解可得 4 2 3 x 4 2 3当 4 2 3 x 4 2 3时, 2 x x 2 ,此时 f (x )= |x ﹣2| 当 x>4 2 3或0x<4 3 3时, 2 x < x 2,此时 f (x )=2 x题解决问题能力,属于中档题 .18.【解析】【分析】【详解】试题分析:由可知是求两个函数中较小的一个f (x )= |x ﹣ 2|当或时此时 fx )=2∵f (4﹣2) 解析】分析】a,a 试题分析:由 min a,b {ab,,a abbb 可知 f (x )2 是求两个函数中较小的一个,分别画出两个函数的图象,保留较小的部分,即由2 x x 2 可得 x 2∵f(4﹣2 3)= 2 3 2其图象如图所示, 0<m<2 3 2时,y =m 与 y =f (x )的图象有 3个交点考点:本小题主要考查新定义下函数的图象和性质的应用,考查学生分析问题、解决问题 的能力和数形结合思想的应用 .点评:本小题通过分别画出两个函数的图象,保留较小的部分,可以很容易的得到函数的 图象,从而数形结合可以轻松解题 .19.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而 求【详解】时最大值为解得时最大值为解得故答案为 :或2【点知函数最值求参答题时需要结合指数函数与二次函数性质求解1解析: 2 或12【解析】【分析】x2将函数化为f(x) a x 2 6,分0 a 1和a 1两种情况讨论 f(x) 在区间1,1上的最大值 ,进而求a .【详解】22 x x xx a2 x4a x2a 2 6,Q 1 x 1,0 a 1时,a a xa1,121f ( x) 最大值为f ( 1) a 1 2 6 10 ,解得a2a 1时,a1a x a,2f x 最大值为f (1) a 2 6 10 ,解得a 2,1故答案为 : 或 2.2【点睛】本题考查已知函数最值求参 ,答题时需要结合指数函数与二次函数性质求解. 20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点1解析:,1 1,2【解析】【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论a 1,0 a 1两种情况,即可得到所求 a 的范围.【详解】x 5, x 2f函数函数f x a x2a 2,x 2 ,当0 a 1时,x 2 时,f x 5 x 3,xx 2时,f x a 2a 2 递减,可得2a 2 f x a22a 2 ,f x 的值域为3, ,可得2a 2 3 ,整理得, 50.5n 0.51.92 0.06即50.5n 0.532,两边同时取常用对数 ,得 0.5n 0.5lg32 lg 整理得 n 25lg 21解得 a 1 ;2当 a 1时, x 2 时, f x 5 x 3 ,x x 2时, f x a x2a 2 递增,2 可得 f x a 22a 2 5 ,则 f x 的值域为 3, 成立, a 1恒成立.1综上可得 a ,1 1, .2 1故答案为: ,1 1, .2【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的 思想方法,考查推理和运算能力,属于中档题.三、解答题21. (1) r n 2 0.06 50.5n 0.5n N *(2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可 . 【详解】解: ( 1)由题意得 r 0 2, r 1 1.94, 所以当 n 1时,r 1 r 0 r 0 r 1 50.5 p,即1.94 2 (2 1.94) 50.5 p,解得 p 0.5,0.5n 0.5所以 r n 2 0.06 50.5n 0.5(n N*) ,故改良后所排放的废气中含有的污染物数量的函数模型为 2)由题意可得 ,r n 2 0.06 50.5n 0.50.08 ,2 0.06 50.5n 0.5n N5lg 2 30将lg 2 0.3代入 ,得 21 lg2 17 1 5.3,又因为 n N*,所以 n 6.综上 ,至少进行 6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标 【点睛】 本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题 .22. (1) k 3;(2) 当a 1时, x ,log 2 3 ;当 0 a 1时, x log 2 3, (3) , 13 【解析】 【分析】(1) 由函数过点 0,4 ,待定系数求参数值; (2)求出 g x 的解析式,解对数不等式,对底数进行分类讨论即可 . (3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可 .【详解】(1)因为 f (x) 2xk 2 x且 f (0) 4,故: 1 k 4 , 解得 k 3.x(2)因为 g(x) log a f(x) 2x,由( 1),将 f x 代入得:xxg x log a (3n 2 x ?),则 log a (3n 2 x ?) 0 ,等价于:当a 1时, 3n 2 x1 ,解得 x ,log23 当0 a 1时, 3n 2 x 1 ,解得 x log 2 3, (3)f (x) t 2x 8在 R 上恒成立,等价于:2x28n 2xt 3 0 恒成立;令2xm ,则m 0, ,则上式等价于: m 28m t 3 0 ,在区间 0, 恒成立 .即:t m28m3 ,在区间 0, 恒成立, 又m 2 8m 3 2m 4 13 ,故:(m 28m 3) 的最小值为: -13 ,故:只需 t 13即可 . 综上所述, t , 13 .【点睛】 本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.23. ( 1) k 1(2) 3 a 0 【解析】 【分析】(1)根据 f 0 0计算得到 k 1 ,再验证得到答案 .2(2)化简得到 f x 24 f ax 对 x 1,2 恒成立,确定函数单调递减,利用单调性得到 x 2ax 4 0对 x 1,2 恒成立,计算得到答案【详解】所以( * )可化为 x 24 ax 对 x 1,2 恒成立,即x 2ax 4 0 对 x 1,2 恒成立 .令 g x x 2ax 4 ,因为 g x 的图象是开口向上的抛物线, g 1 0, 1 a 4 0, 所以由 g x 0 有对 x 1,2 恒成立可得: 即g 2 0, 4 2a 4 0, 解得: 3 a0 ,所以实数 a 的取值范围是 3 a 0.【点睛】本题考查了函数的奇偶性,单调性,恒成立问题,意在考查学生的综合应用能力1)因为 f x 为奇函数且定义域为 R ,则 f 00,即 k0 20,所以 k 1.201当k 1 时因为 fx 为奇函数, 2) 即f 因为x1 2xxx不等式 f ax 2x1 2x1f x2x 24 f ax 对f x 为奇函数,所以 在 R 上任取 x 1, x 2 ,且 x 1 则 f (x 1) f (x 2) 1 212x 1因为 x 2 x 1 ,所以 12x 1所以f x 1f x 2 x ,满足条件 f x 为奇函数 .0 对 x 1,2 恒成立 1,2 恒成立,x2 4ax 对 x 1,2 恒成立( * )x 2, 1 2x 21 2x 20,1 x 20,即 f x 1 2 2x2 2 x11 2x1 1 2x22 2, 2x 2 2x 2 x 1 0,f x 2 ,所以函数 f x 在区间 ( 1, ) 上单调递减;1124.(1) f (x) 4x (x 0) ( 2) f(x) 在 , 上单调递增 .见解析 x2【解析】 【分析】(1)利用奇函数的性质以及 f 1 5,列式求得 a,b 的值,进而求得函数解析式 1(2)利用单调性的定义,通过计算 f x 1f x 2 0,证得 f(x) 在 ,2 【详解】(1)∵ f(x) 为奇函数, ∴ f(- x)+ f(x)= 0,∴ b 0. 由 f (1) 5, 得 a 4,f (x) 4x 1(x 0) .x1(2) f(x ) 在,2 上单调递增 .证明如下 :1111 x 1 x 2,则 f x 1 f x2 4 x 1 x22x1 x24x 1x 2 1x1x2x1x 2∵14x 1x 2 1x1x 2,∴ x 1 x 2 0, 4x 1x 2 10,∴ x 1 x 21 20, 2x 1x 2∴fx1f x210, ∴ f (x) 在 , 上单调递增 .【点睛】本小题主要考查根据函数的奇偶性求参数,考查利用函数单调性的定义证明函数的单调 性,属于基础题 .25.(Ⅰ) A B {x 0 x 5}, C U B {x x 3或x 5}(Ⅱ) 0 m 2 解析】 分析】(Ⅰ)由 m 3时,求得集合 A {x0 x 4},B {x3 x 5},再根据集合的并集、 补集的运算,即可求解;(Ⅱ)由题意,求得 A {x 0 x 4},B {x m x m 2},根据 B A ,列出不等式 组,即可求解。
2020-2021高一数学上期末试卷及答案(4)
2020-2021高一数学上期末试卷及答案(4) 一、选择题1.已知函数()()2,2 11,2 2xax xf xx⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x1≠x2都有()()1212f x f xx x--<0成立,则实数a的取值范围为( )A.(-∞,2)B.13,8⎛⎤-∞⎥⎝⎦C.(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭2.定义在R上的偶函数()f x满足:对任意的1x,212[0,)()x x x∈+∞≠,有2121()()f x f xx x-<-,则().A.(3)(2)(1)f f f<-<B.(1)(2)(3)f f f<-<C.(2)(1)(3)f f f-<<D.(3)(1)(2)f f f<<-3.德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f(x)由右表给出,则1102f f⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭的值为()A.0B.1C.2D.34.已知函数2()2logxf x x=+,2()2logxg x x-=+,2()2log1xh x x=⋅-的零点分别为a,b,c,则a,b,c的大小关系为().A.b a c<<B.c b a<<C.c a b<<D.a b c<<5.下列函数中,值域是()0,+∞的是()A.2y x=B.211yx=+C.2xy=-D.()lg1(0)y x x=+>6.若函数y xa a-a>0,a≠1)的定义域和值域都是[0,1],则log a56+log a485=() A.1B.2C.3D.47.设()f x是R上的周期为2的函数,且对任意的实数x,恒有()()0f x f x--=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,68.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+9.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .10.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
人教版2020--2021学年度上学期高一年级数学期末测试题及答案(含三套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:120分 时间:100分钟)题号一 二 三 总分 得分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列四个结论:①函数f (x )=3x -6的零点是2;②函数f (x )=x 2+4x +4的零点是-2;③函数f (x )=log 3(x -1)的零点是1;④函数f (x )=2x-1的零点是0.其中正确的个数为( )A .1B .2C .3D .42.已知集合A ={x |y =1-x 2,x ∈Z },B ={y |y =x 2+1,x ∈A },则A ∩B 为( )A .∅B .{1}C .[0,+∞)D .{(0,1)}3.函数f (x )=x 3+x 的图象关于( ) A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称4.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .15.已知函数f (x )=7+ax -1(a >0且a ≠1)的图象恒过点P ,则P 点的坐标是( )A .(1,8)B .(1,7)C .(0,8)D .(8,0)6.设集合A ={x |-1<x -a <1,x ∈R },B ={x |1<x <5,x∈R },若A ∩B =∅,则实数a 的取值范围是( )A .0≤a ≤6B .a ≤2,或a ≥4C .a ≤0,或a ≥6D .2≤a ≤47.函数f (x )=e x-1x的零点所在的区间是( )A.⎝⎛⎭⎪⎪⎫0,12 B.⎝⎛⎭⎪⎪⎫12,1 C.⎝⎛⎭⎪⎪⎫1,32 D.⎝⎛⎭⎪⎪⎫32,2 8.函数y =x 2与函数y =|lg x |图象的交点个数为( )A .0B .1C .2D .39.若log a 2<0(a >0,且a ≠1),则函数f (x )=log a (x +1)的图象大致是( )10.函数f (x )=log 2(1+x ),g (x )=log 2(1-x ),则f (x )-g (x )( )A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上)11.由下表给出函数y =f (x ),则f (f (1))等于________.12.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={2,46,8},B ={1,3,6},则A *B =________.13.已知f (x )=⎩⎪⎨⎪⎧2x ,x <0x 2,x ≥0,若f (x )=16,则x ________.14.如果函数f (x )=x 2+mx +m +3则另一个零点是________.15.给出下列四个判断:密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题①若f (x )=x 2-2ax 在[1,+∞)上是增函数,则a =1;②函数f (x )=2x -x 2只有两个零点; ③函数y =2|x |的最小值是1;④在同一坐标系中函数y =2x 与y =2-x的图象关于y 轴对称.其中正确的序号是________.三、解答题(本大题共5小题,每小题10分,共50分.解答应写出必要的文字说明、证明过程或演算步骤)16.(1)计算:(2 79)12+(lg 5)0+(2764)-13;(2)解方程:log 3(6x-9)=3.17.某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示.则:(1)月通话为50分钟时,应交话费多少元; (2)求y 与x 之间的函数关系式.18.函数f 1(x )=lg(-x -1)的定义域与函数f 2(x )=lg(x -3)的定义域的并集为集合A ,函数g (x )=2x-a (x ≤2)的值域为集合B .(1)求集合A ,B ;(2)若集合A ,B 满足A ∩B =B ,求实数a 的取值范围. 19.设函数f (x )在定义域R 上总有f (x )=-f (x +2),且当-1<x ≤1时,f (x )=x 2+2.(1)当3<x ≤5时,求函数f (x )的解析式;(2)判断函数f (x )在(3,5]上的单调性,并予以证明. 20.设f (x )=ax 2+x -a ,g (x )=2ax +5-3a . (1)若f (x )在[0,1]上的最大值为54,求a 的值.答 题(2)若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立,求a 的取值范围.参考答案一、选择题1.解析:选C.当log 3(x -1)=0时,x -1=1,∴x =2,故③错,其余都对.2.解析:选B.由1-x 2≥0,得-1≤x ≤1, ∵x ∈Z ,∴A ={-1,0,1}.当x ∈A 时,y =x 2+1∈{2,1},即B ={1,2}, ∴A ∩B ={1}.3.解析:选C.∵f (x )=x 3+x 是奇函数,∴图象关于坐标原点对称.4.解析:选B.由已知可得,-f (1)+g (1)=2,f (1)+g (1)=4,两式相加解得,g (1)=3,故选B.5.解析:选A.过定点则与a 的取值没有关系,所以令x =1,此时f (1)=8,所以P 点的坐标是(1,8).故选A.6.解析:选C.由-1<x -a <1,得a -1<x <a +1. 如图,可知a +1≤1或a -1≥5.所以a ≤0,或a ≥7.解析:选B.∵f ⎝ ⎛⎭⎪⎪⎫12=e 12-2<0,f (1)=e -1>0,f ⎝ ⎛⎭⎪⎪⎫12·f (1)<0,∴函数f (x )=e x-1x的零点所在的区间是⎝ ⎛⎭⎪⎪⎫12,1. 8.解析:选B.在同一平面直角坐标系中分别作出y =x 和y =|lg x |的图象,如图,可得交点个数为1.9.解析:选B.∵log a 2<0(a >0,且a ≠1), ∴log a 2<log a 1.∴0<a <1.函数在定义域为减函数,将函数y =log a x 单位得log a (x +1)的图象,故答案为B.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题10.解析:选A.f (x )-g (x )的定义域为(-1,1),记F (x )=f (x )-g (x )=log 21+x 1-x ,则F (-x )=log 21-x1+x =log 2(1+x 1-x )-1=-log 21+x1-x=-F (x ),故f (x )-g (x )是奇函数. 二、填空题11.解析:f (f (1))=f (4)=2. 答案:212.解析:由A *B 的定义知:A *B 的元素就是属于集合A ,而不属于集合B 的元素,所以为{2,4,8}.答案:{2,4,8}13.解析:当x <0时,2x =16,无解;当x ≥0时,x 2=16,解得x =4.答案:414.解析:函数f (x )=x 2+mx +m +3的一个零点是原点, 则f (0)=0,∴m +3=0, ∴m =-3, 则f (x )=x 2-3x , 于是另一个零点是3. 答案:315.解析:若f (x )=x 2-2ax 在[1,+∞)上是增函数,其对称轴x =a ≤1,故①不正确;函数f (x )=2x -x 2有三个零点,所以②不正确;③函数y =2|x |的最小值是1正确;④在同一坐标系中,函数y =2x 与y =2-x的图象关于y 轴对称正确.答案:③④三、解答题16.解:(1)原式=(259)12+(lg 5)0+[(34)3]-13=53+1+43=4. (2)由方程log 3(6x-9)=3得6x -9=33=27,∴6x =36=62, ∴x =2.经检验,x =2是原方程的解.17.解:(1)由题可知当0<x ≤100时,设函数的解析式y =kx ,又因过点(100,40),得解析式为y =25x ,当月通话为50分钟时,0<50<100,所以应交话费y =25×50=20元.(2)当x >100时,设y 与x 之间的函数关系式为y =kx +b ,由图知x =100时,y =40;x =200时,y =60.则有⎩⎪⎨⎪⎧40=100k +b 60=200k +b ,解得⎩⎪⎨⎪⎧k =15b =20,所以解析式为y =15x +20,故所求函数关系式为y =⎩⎪⎨⎪⎧25x ,0<x ≤10015x +20,x >100.18.解:(1)由题意可知,函数f 1(x )=lg(-x -1)的定义域为(-∞,-1),函数f 2(x )=lg(x -3)的定义域为(3,+∞),故A ={x |x <-1或x >3},B ={y |y =2x -a ,x ≤2}={y |-a <y ≤4-a }.(2)∵A ∩B =B ,∴B ⊆A ,显然,B ≠∅,∴4-a <-1或-a ≥3,∴a ≤-3或a >5,即a 的取值范围是(-∞,-3]∪(5+∞).19.解:(1)∵f (x )=-f (x +2), ∴f (x +2)=-f (x ).∴f (x )=f [(x -2)+2]=-f (x -2) =-f [(x -4)+2]=f (x -4). ∵-1<x ≤1时,f (x )=x 2+2, 且当3<x ≤5时,-1<x -4≤1, ∴f (x -4)=(x -4)2+2.∴当3<x ≤5时,f (x )=(x -4)2+2.(2)∵函数f (x )=(x -4)2+2的对称轴是x =4,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴函数f (x )=(x -4)2+2在(3,4]上单调递减,在[4,5]上单调递增.证明:任取x 1,x 2∈(3,4],且x 1<x 2,有f (x 1)-f (x 2)=[(x 1-4)2+2]-[(x 2-4)2+2] =(x 1-x 2)(x 1+x 2-8).∵3<x 1<x 2≤4,∴x 1-x 2<0,x 1+x 2-8<0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 故函数y =f (x )在(3,4]上单调递减.同理可证函数在[4,5]上单调递增.20.解:(1)①当a =0时,不合题意. ②当a >0时,对称轴x =-12a <0,所以x =1时取得最大值1,不合题意. ③当a ≤-12时,0<-12a≤1,所以x =-12a 时取得最大值-a -14a =54.得:a =-1或a =-14(舍去).④当-12<a <0时,-12a >1,所以x =1时取得最大值1,不合题意,综上所述,a =-1.(2)依题意a >0时,f (x )∈[-a ,1],g (x )∈[5-3a ,5-a ],所以⎩⎪⎨⎪⎧5-3a ≤-a ,5-a ≥1,解得,a ∈[52,4],a =0时不符题意舍去.a <0时,g (x )∈[5-a ,5-3a ],f (x )开口向下,最小值为f (0)或f (1),而f (0)=-a <5-a ,f (1)=1<5-a 不符题意舍去,所以a ∈[52),4].人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:120分 时间:100分钟)题号一二三总分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为( )A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}2.函数f(x)=x2+x-2的零点的个数为( )A.0 B.1C.2 D.不确定3.下列函数中,既是奇函数又是增函数的是( )A.y=x+1 B.y=-x2C.y=1xD.y=x|x|4.函数f(x)=ln x+3x-11在以下哪个区间内一定有零点( )A.(0,1) B.(1,2)C.(2,3) D.(3,4)5.若函数f(x)=log2(x-1)2-x的定义域为A,g(x)=ln(1-x)的定义域为B,则∁R(A∪B)=( ) A.[2,+∞) B.(2,+∞)C.(0,1]∪[2,+∞) D.(0,1)∪(2,+∞)6.已知a=21.2,b=⎝⎛⎭⎪⎪⎫12-0.2,c=2log52,则a,b,c 的大小关系为( )A.c<b<a B.c<a<bC.b<a<c D.b<c<a7.设集合A={x|-1<x-a<1,x∈R},B={x|1<x<5∈R},若A∩B=∅,则实数a的取值范围是( ) A.0≤a≤6 B.a≤2,或a≥4C.a≤0,或a≥6 D.2≤a≤48.已知函数f(x)=⎩⎪⎨⎪⎧x+2,x<-1,0,|x|≤1,-x+2,x>1,则f(x)( ) A.是奇函数但不是偶函数B.是偶函数但不是奇函数C.既是奇函数也是偶函数D.既不是奇函数也不是偶函数密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题9.某工厂2018年生产某种产品2万件,计划从2019年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过12万件( )A .2026年B .2027年C .2028年D .2029年10.函数y =log 2|1-x |的图象是( )二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上)11.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,x -4,x ≥0,则f (f (1))=_______.12.已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =________.13.已知点⎝⎛⎭⎪⎪⎫33,33在幂函数f (x )的图象上,则f (x )的定义域为_______,奇偶性为________,单调减区间为________.14.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超出800元部分的14%纳税;超过4 000元的按全稿酬的11.2%纳税.某人出版了一书共纳税420元,这个人的稿费为________元.15.给出下列四个判断:①若f (x )=x 2-2ax 在[1,+∞)上是增函数,则a =1;②函数f (x )=2x -x 2只有两个零点; ③函数y =2|x |的最小值是1;④在同一坐标系中,函数y =2x与y =2-x的图象关于y 轴对称.其中正确的序号是________.三、解答题(本大题共5小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)计算: (1)lg 2+lg 5-lg 8lg 50-lg 40+log 222;(2)⎝ ⎛⎭⎪⎪⎫2 790.5+0.1-2+⎝ ⎛⎭⎪⎪⎫2 1027-23-3π0+3748.17.(本小题满分10分)设f (x )=ax 2+(b -8)x -a -ab的两个零点分别是-3,2.(1)求f (x );(2)当函数f (x )的定义域为[0,1]时,求其值域.18.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按2log5(A+1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记奖金总额为y(单位:万元),销售利润为x(单位:万元).(1)写出该公司激励销售人员的奖励方案的函数表达式;(2)如果业务员老张获得5.5万元的奖金,那么他的销售利润是多少万元?19.已知集合A={x|3≤3x≤27},B={x|log2x>1}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.20.设f(x)=ax2+x-a,g(x)=2ax+5-3a.(1)若f(x)在[0,1]上的最大值为54,求a的值;(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.参考答案一、选择题1.解析:选C.易知∁U A={0,4},所以(∁U A)∪B={0,2,4},故选C.2.解析:选C.方程x2+x-2=0的解的个数即为函数f(x)=x2+x-2零点的个数.∵Δ=1-4×(-2)=9>0,∴函数f(x)有两个零点3.解析:选D.对于AB,是偶函数,在区间(-∞,0]上是增函数,在区间(0∞)上是减函数;对于C,是奇函数,在区间(-∞,0)函数,在区间(0,+∞)上是减函数;对于D又是增函数.4.解析:选D.因为f(x)且f(3)=ln 3+3×3-11=ln 3-2<0,f(4)=ln 4+3×11=ln 4+1>0,所以f(3)·f(4)<0,故f(x)在区间(3,内一定有零点,选D.5.解析:选C.由题意知,⎩⎪⎨⎪⎧x-1>0,2-x>0⇒1<x<2.∴A=(1,2).⎩⎪⎨⎪⎧1-x>0,ln(1-x)≥0⇒x≤0.∴B=(-∞,0],A∪B=(-∞,0]∪(1,2),∴∁R(A∪B)=(0,1]∪[2,+∞).6.解析:选A.a=21.2,b=⎝⎛⎭⎪⎪⎫12-0.2=20.2,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∵21.2>20.2>1,∴a >b >1,c =2log 52=log 54<1.∴c <b <a .7.解析:选C.由-1<x -a <1,得a -1<x <a +1.如图,可知a +1≤1或a -1≥5.所以a ≤0,或a ≥6.8.解析:选B.画出已知函数的图象如图,利用函数图象直观判断函数f (x )为偶函数.9.解析:选C.设经过x 年这种产品的产量开始超过12万件,则2(1+20%)x >12,即1.2x>6,∴x >lg 6lg 1.2≈9.8,取x =10,故选C.10.解析:选D.函数y =log 2|1-x |可由下列变换得到:y =log 2x →y =log 2|x |→y =log 2|x -1|→y =log 2|1-x |.故选D.二、填空题11.解析:由题f (f (1))=f (-3)=2-3=18.答案:1812.解析:0<log 4x <1⇔log 41<log 4x <log 44⇔1<x <4, 即A ={x |1<x <4}, ∴A ∩B ={x |1<x ≤2}. 答案:{x |1<x ≤2} 13.解析:设f (x )=x α(α∈R ),则⎝⎛⎭⎪⎪⎫33α=33, 即3-α2=332.∴-α2=32,得α=-3,∴f (x )=x -3=1x3, ∴定义域为{x |x ≠0},为奇函数. 单调减区间为(-∞,0)和(0,+∞).答案:(-∞,0)∪(0,+∞) 奇函数 (-∞,0)和(0,+∞)14.解析:设稿费为x 元,纳税为y 元. 由题意可知y =⎩⎪⎨⎪⎧0(0<x ≤800),(x -800)·14%(800<x ≤4 000),11.2%·x (x >4 000),∵此人纳税为420元,∴(x -800)×14%=420,∴x =3 800. 答案:3 80015.解析:若f (x )=x 2-2ax 在[1,+∞)上是增函数,其对称轴x =a ≤1,故①不正确;函数f (x )=2x -x 2有三个零点,所以②不正确;③函数y =2|x |的最小值是1正确;④在同一坐标系中,函数y =2x 与y =2-x的图象关于y 轴对称正确.答案:③④ 三、解答题16.(1)原式=lg (2×5)-lg 8lg 54+log 2(2)-1=lg54lg54-1=0.(2)原式=⎝⎛⎭⎪⎪⎫25912+102+⎝⎛⎭⎪⎪⎫6427-23-3+3748=53+100+916-3+3748=100. 17.解:(1)因为f (x )的两个零点分别是-3,2,所以⎩⎪⎨⎪⎧f (-3)=0,f (2)=0,即⎩⎪⎨⎪⎧9a -3(b -8)-a -ab =0,4a +2(b -8)-a -ab =0,解得a =-3,b =5,f (x )=-3x 2-3x +18.(2)由(1)知f (x )=-3x 2-3x +18的对称轴为x =-12,图象开口向下,所以f (x )在[0,1]上为减函数,f (x )值为f (0)=18,最小值为f (1)=12.所以值域为[12,18]. 18解:(1)由题意,得y =⎩⎪⎨⎪⎧0.1x ,0<x ≤15,1.5+2log 5(x -14),x >15.(2)∵x ∈(0,15]时,0.1x ≤1.5, 又y =5.5>1.5,∴x >15,所以1.5+2log 5(x -14)=5.5,解得x =39. 所以老张的销售利润是39万元.19.解:(1)A ={x |3≤3x≤27}={x |1≤x ≤3},B ={x |log 2x >1}={x |x >2},A ∩B ={x |2<x ≤3}.(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题综合①②,可得a 的取值范围是(-∞,3]. 20.解:(1)①当a =0时,不合题意.②当a >0时,对称轴x =-12a<0,所以x =1时取得最大值1,不合题意. ③当a ≤-12时,0<-12a≤1,所以x =-12a 时取得最大值-a -14a =54.得:a =-1或a =-14(舍去).④当-12<a <0时,-12a>1,所以x =1时取得最大值1,不合题意,综上所述,a =-1.(2)依题意a >0时,f (x )∈[-a ,1],g (x )∈[5-3a ,5-a ],所以⎩⎪⎨⎪⎧5-3a ≤-a ,5-a ≥1,解得,a ∈⎣⎢⎢⎡⎦⎥⎥⎤52,4, a =0时不符合题意舍去.a <0时,g (x )∈[5-a ,5-3a ],f (x )开口向下,最小值为f (0)或f (1),而f (0)=-a <5-a ,f (1)=1<5-a 不符合题意舍去,所以a ∈⎣⎢⎢⎡⎦⎥⎥⎤52,4. 人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:120分 时间:100分钟)题号 一 二 三 总分 得分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若10a =5,10b =2,则a +b 等于( ) A .-1 B .0 C .1 D .22.已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥0,2-x ,x <0(a ∈R ),若f [f (-1)]=1,则a =( )A.14B.12 C .1D .23.已知集合A ,B 均为集合U ={1,3,5,7,9}的子集,若A ∩B ={1,3},(∁U A )∩B ={5},则集合B 等于( )A.{1,3} B.{3,5} C.{1,5} D.{1,3,5}4.函数f(x)=4-xx-1+log4(x+1)的定义域是()A.(-1,+∞) B.[-1,1)∪(1,4]C.(-1,4) D.(-1,1)∪(1,4]5.若函数f(x)的图象是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列说法正确的是() A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(1,2)内有零点C.函数f(x)在区间(0,2)内有零点D.函数f(x)在区间(0,4)内有零点6.设全集U=R,M={x|x<-2,或x>2},N={x|1<x<3},则图中阴影部分所表示的集合是() A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}7.函数f(x)=x 12-⎝⎛⎭⎪⎫12x的零点的个数为()A.0 B.1C.2 D.38.若log a2<0(a>0,且a≠1),则函数f(x)=log a(x+1)图象大致是()9.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数10.函数y=f(x)是R上的偶函数,且在(-∞,0]函数,若f(a)≤f(2),则实数a的取值范围是()A.a≤2 B.a≥-2C.-2≤a≤2 D.a≤-2或a≥2二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上)11.计算2log525+3log264-8log71=________.12.函数y=log12(2x+2)在[1,3]上的值域为________密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题13.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.14.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,则a 的取值范围是________.15.下列说法: ①函数y =⎝ ⎛⎭⎪⎫12x的反函数是y =-log 2x ;②若函数f (x )满足f (x +1)=2x ,则f (x )=2x +2; ③若函数f (x )的定义域是[-1,3],则函数f (2x -1)的定义域是[0,2];④不等式log 3(x +1)>log 3(2x -3)的解集是(-∞,4). 正确的是________.三、解答题(本大题共5小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)函数f 1(x )=lg(-x -1)的定义域与函数f 2(x )=lg(x -3)的定义域的并集为集合A ,函数g (x )=2x -a (x ≤2)的值域为集合B .(1)求集合A ,B ;(2)若集合A ,B 满足A ∩B =B ,求实数a 的取值范围. 17.(本小题满分10分)设a >0,f (x )=e xa +aex 在R 上满足f (x )=f (-x ).(1)求a 的值;(2)求证:f (x )在(0,+∞)上是增函数.18.(本小题满分10分)已知函数f (x )=2|x -1|-x +1. (1)请在所给的平面直角坐标系中画出函数f (x )的图象;(2)根据函数f (x )的图象回答下列问题: ①求函数f (x )的单调区间; ②求函数f (x )的值域;③求关于x 的方程f (x )=2在区间[0,2]上解的个数.(回答上述3个小题都只需直接写出结果,不需给出演算步骤)19.(本小题满分10分)某地上年度电价为0.8元,年用电量为1亿千瓦时,本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)元成反比例.又当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]密封线20.(本小题满分10分)已知函数f(x)对任意实数x,y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1).(1)判断f(x)的奇偶性;(2)判断f(x)在[0,+∞)上的单调性,并给出证明;(3)若a≥0且f(a+1)≤39,求实数a的取值范围.参考答案一、选择题1.解析:选C.∵a=lg 5,b=lg 2,∴a+b=lg 5+lg 2=lg 10=1,故选C.2.解析:选A.由题意得f(-1)=2-(-1)=2,f[f(-1)]=f(2)=a·22=4a=1,∴a=14.3.解析:选D.画出满足题意的Venn图,由图可知B={1,3,5}.4.解析:选D.要使函数有意义,须⎩⎪⎨⎪⎧4-x≥0,x-1≠0,x+1>0,解得-1<x≤4且x≠1,即函数的定义域为(-1,1)∪(1,4].5.解析:选D.因为f(0)>0,f(1)·f(2)·f(4)<0,则f(1),f(2),f(4)恰有一负两正或三个都是负的,函数的图象与x相交有多种可能.例如,所以函数f(x)必在区间(0,4)内有零点.6.解析:选C.阴影部分所表示集合是N∩(∁U M),又∵∁U M={x|-2≤x≤2},∴N∩(∁U M)={x|1<x≤2}.7.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解析:选B.令f (x )=x 12-⎝ ⎛⎭⎪⎫12x =0,得x 12=⎝ ⎛⎭⎪⎫12x,求零点个数可转化为求两个函数图象的交点个数.如图所示:由图可知有1个交点,故选B.8.解析:选B.∵log a 2<0(a >0,且a ≠1),∴log a 2<log a 1.∴0<a <1.函数在定义域内为减函数,将函数y =log a x 向左平移一个单位得log a (x +1)的图象,故答案为B.9.解析:选C.A :令h (x )=f (x )·g (x ),则h (-x )=f (-x )·g (-x )=-f (x )·g (x )=-h (x ),∴h (x )是奇函数,A 错. B :令h (x )=|f (x )|g (x ),则h (-x )=|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x )=h (x ),∴h (x )是偶函数,B 错. C :令h (x )=f (x )|g (x )|,则h (-x )=f (-x )·|g (-x )|=-f (x )|g (x )|,∴h (x )是奇函数,C 正确.D :令h (x )=|f (x )·g (x )|,则h (-x )=|f (-x )·g (-x )|=|-f (x )·g (x )|=|f (x )·g (x )|=h (x ),∴h (x )是偶函数,D 错. 10.解析:选D.∵y =f (x )是偶函数,且在(-∞,0]上是增函数,∴y =f (x )在[0,+∞)上是减函数, 由f (a )≤f (2), 得f (|a |)≤f (2).∴|a |≥2,得a ≤-2或a ≥2.二、填空题11.解析:原式=2log 552+3log 226-0=4+18=22. 答案:2212.解析:∵x ∈[1,3],∴2x +2∈[4,8]. ∴log 128≤log 12(2x +2)≤log 124,即-3≤log 12(2x +2)≤-2.答案:[-3,-2]13.解析:∵f (x )是偶函数,∴f (-x )=f (x ),即x 2-|-x +a |=x 2-|x +a |,∴|x -a |=|x +a |,即(x -a )2=(x +a )2, ∴x 2-2ax +a 2=x 2+2ax +a 2. ∴4ax =0.因为上式对任意x ∈R 都成立,所以a =0. 答案:014.解析:∁R B ={x |x ≤1,或x ≥2}≠∅, ∵A ∁R B ,∴A =∅或A ≠∅.若A =∅,此时有2a -2≥a ,∴a ≥2.若A ≠∅,则有⎩⎪⎨⎪⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2,∴a ≤1.综上所述,a ≤1或a ≥2. 答案:{a |a ≤1,或a ≥2} 15.解析:函数y =⎝ ⎛⎭⎪⎫12x的反函数是y =log 12x =-log 2x ,故①正确.令x +1=t ,则x =t -1,代入f (x +1)=2x 得, f (t )=2(t -1)=2t -2,故②错.在③中,-1≤2x -1≤3,∴0≤x ≤2,故③正确. ④由不等式log 3(x +1)>log 3(2x -3)得x+1>2x -3>0. ∴32<x <4,故④错. 答案:①③ 三、解答题16.解:(1)由题意可知,函数f 1(x )=lg(-x -1)的定义域为(-∞,-1),函数f 2(x )=lg(x -3)的定义域为(3,+∞),故A ={x |x <-1或x >3},B ={y |y =2x-a ,x ≤2}={y |-a <y ≤4-a }. (2)∵A ∩B =B ,∴B ⊆A ,显然,B ≠∅,∴4-a <-1或-a ≥3,∴a ≤-3或a >5,即a 的取值范围是(-∞,-3]∪(5∞).17.解:(1)依题意,对一切x ∈R 有f (x )=f (-x )=1a e x +a e x,所以⎝ ⎛⎭⎪⎫1a -a ⎝ ⎛⎭⎪⎫e x -1e x =0对一切x ∈R 得a -1a=0,即a 2=1.又因为a >0,所以a =1.(2)证明:设0<x 1<x 2,则f (x 1)-f (x 2)=e x 1-e x 2+1e x 1-=(e x 2-e x 1)⎝ ⎛⎭⎪⎪⎫1e x 1+x 2-1=(e x 2-e x 1)·1-e x 1+x 2e x 1+x 2.由x 1x 2>0,得x 1+x 2>0,e x 2-e x 1>0,1-e x 1+x 2<0,所以f (f (x 2)<0,即f (x )在(0,+∞)上是增函数.18.解:(1)当x -1≥0时,f (x )=2(x -1)-x +1=x 当x -1<0时,f (x )=2(1-x )-x +1=3-3x 示.(2)①函数f (x )的单调递增区间为[1,+∞); 函数f (x )的单调递减区间为(-∞,1); ②函数f (x )的值域为[0,+∞);密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题③方程f (x )=2在区间[0,2]上解的个数为1.19.解:(1)∵y 与(x -0.4)成反比例, ∴设y =kx -0.4(k ≠0).把x =0.65,y =0.8代入上式, 得0.8=k0.65-0.4,k =0.2.∴y =0.2x -0.4=15x -2,即y 与x 之间的函数关系式为y =15x -2.(2)根据题意,得⎝⎛⎭⎪⎪⎫1+15x -2·(x -0.3)=1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x 1=0.5,x 2=0.6. 经检验x 1=0.5,x 2=0.6都是所列方程的根. ∵x 的取值范围是0.55~0.75, 故x =0.5不符合题意,应舍去. ∴x =0.6.所以当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.20.解:(1)令y =-1,则f (-x )=f (x )·f (-1). 因为f (-1)=1,所以f (-x )=f (x ),f (x )为偶函数. (2)f (x )在[0,+∞)上单调递增. 设0≤x 1<x 2, 所以0≤x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2).当x ≥0时,f (x )=f (x )·f (x )=[f (x )]2≥0, f (x )不恒为零.因为0≤x <1时,f (x )∈[0,1), 所以f ⎝ ⎛⎭⎪⎫x 1x 2<1,所以f (x 1)<f (x 2),故f (x )在[0,+∞)上是增函数.(3)因为f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=[f (3)]3.所以9=[f (3)]3, 所以f (3)=39, 因为f (a +1)≤39,所以a+1≤3,即a≤2,又a≥0,故0≤a≤2.。
2020-2021学年湖北省高一(上)期末数学试卷人教新课标A版
2020-2021学年湖北省高一(上)期末数学试卷一、选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合A={x|x−1≤0},B={x|x2−x−6<0},则A∩B=()A.(−1, 2)B.(−2, 1]C.[1, 2)D.[−2, 3)2. sin454∘+cos176∘的值为()A.sin4∘B.cos4∘C.0D.2sin4∘3. 函数f(x)=ln x−的零点所在的大致区间是()A.(,1)B.(1, e)C.(e, e2)D.(e2, e3)4. 设p:实数a,b满足a>1且b>1,q:实数a,b满足,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5. 根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.已知0.4771<lg3<0.4772,则下列各数中与最接近的是()A.1033B.1053C.1073D.10936. 把函数的图象向左平移φ(0<φ<π)个单位可以得到函数g(x)的图象,若g(x)是偶函数,则φ的值为()A. B. C.或 D.或7. 已知,则=()A. B. C. D.8. 已知函数,若不等式f(3x−9x)+f(m⋅3x−3)<0对任意x∈R均成立,则m的取值范围为()A.(−∞,2−1)B.C. D.二、选择题:(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得3分)如果角α与角γ+45∘的终边相同,角β与γ−45∘的终边相同,那么α−β的可能值为()A.90∘B.360∘C.450∘D.2330∘下列函数中,既是偶函数又是区间(1, +∞)上的增函数有()A.y=3|x|+1B.y=ln(x+1)+ln(x−1)C.y=x2+2D.已知f(x)=cos(sin x),g(x)=sin(cos x),则下列说法正确的是()A.f(x)与g(x)的定义域都是[−1, 1]B.f(x)为偶函数且g(x)也为偶函数C.f(x)的值域为[cos1, 1],g(x)的值域为[−sin1, sin1]D.f(x)与g(x)最小正周期为2π高斯(Gauss)是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如:[−2.3]=−3,[15.31]=15.已知函数,G(x)=[f(x)],则下列说法正确的有()A.G(x)是偶函数B.G(x)的值域是{−1, 0}C.f(x)是奇函数D.f(x)在R上是增函数三、填空题:(本题共4小题,每小题5分,共20分.)已知扇形的弧长为6,圆心角弧度数为2,则其面积为________.已知实数a,b满足log4(a+9b)=log2,则a+b的最小值是________.已知函数f(x)的定义域为(0, +∞),且f(x)=2f(1x)√x−1,则f(x)=________.已知函数f(x)=A sin(2x+φ)−(A>0,0<φ<),g(x)=,f(x)的图象在y轴上的截距为1,且关于直线x=对称.若对于任意的x1∈[−1, 2],存在x2∈[0,],使得g(x1)≥f(x2),则实数m的取值范围为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.已知全集U=R,集合A={x|≤0},B={x|x2−2ax+(a2−1)<0}.(1)当a=2时,求(∁U A)∩(∁U B);(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.已知函数f(x)=sin(5π2−ωx)(ω>0),且其图象上相邻最高点、最低点的距离为√4+π2.(1)求函数f(x)的解析式;(2)若已知sinα+f(α)=23,求2sinαcosα−2sin2α1+tanα的值.李庄村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?已知函数f(x)=2sinωx,其中常数ω>0.(1)若y=f(x)在[−π4, 2π3]上单调递增,求ω的取值范围;(2)令ω=2,将函数y=f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y=g(x)的图象求y=g(x)的图象离原点O最近的对称中心.已知连续不断函数,.(1)求证:函数f(x)在区间上有且只有一个零点;(2)现已知函数g(x)在上有且只有一个零点(不必证明),记f(x)和g(x)在上的零点分别为x1,x2,试求x1+x2的值.已知f(x)=log2(4x+1)−kx(k∈R).(1)设g(x)=f(x)−a+1,k=2,若函数g(x)存在零点,求a的取值范围;(2)若f(x)是偶函数,设ℎ(x)=log2(b⋅2x−43b),若函数f(x)与ℎ(x)的图象只有一个公共点,求实数b的取值范围.参考答案与试题解析2020-2021学年湖北省高一(上)期末数学试卷一、选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【答案】B【考点】交集及其运算【解析】分别求出关于A、B的不等式,求出A、B的交集即可.【解答】由A={x|x−1≤0}={x|x≤5},B={x|x2−x−6<2}={x|−2<x<3},则A∩B={x|−4<x≤1},2.【答案】C【考点】运用诱导公式化简求值【解析】由题意利用诱导公式,化简可得结果.【解答】sin454∘+cos176∘=sin94∘−cos4∘=cos4∘−cos6∘=0,3.【答案】B【考点】函数零点的判定定理【解析】由于连续函数f(x)=ln x−满足f(1)<0,f(e)>0,根据函数零点判定定理,由此求得函数的零点所在的区间.【解答】由于连续函数f(x)=ln x−满足f(1)=−1<4>0,且函数在区间( 3, e)上单调递增的零点所在的区间为( 1.故选:B.4.【答案】A【考点】充分条件、必要条件、充要条件【解析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】当a>1且b>1时,ab>8,即充分性成立,反之当a=4,b=1时但a>1且b>2不成立,即p是q的充分不必要条件,5.【答案】D【考点】对数的运算性质【解析】根据条件可得M≈3361,N≈1080,由对数性质有3=10lg3≈100.477,从而得到M≈3361≈10172.2,由此能求出结果.【解答】∵围棋状态空间复杂度的上限M约为3361,可观测宇宙中普通物质的原子总数N约为1080.∴M≈3361,N≈1080,根据对数性质有8=10lg3≈100.477,∴M≈3361≈(100.477)361≈10172.2,∴≈=1092.2≈1093,6.【答案】D【考点】函数y=Asin(ωx+φ)的图象变换【解析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,正弦函数的奇偶性,求得φ的值.【解答】把函数的图象向左平移φ(7<φ<π)个单位,可以得到函数g(x)=sin(2x+2φ−)的图象,若g(x)是偶函数,则2φ−=,k∈Z,∴分别令k=0、k=1,或φ=,7.【答案】B【考点】两角和与差的三角函数【解析】利用诱导公式化简即可计算求解.【解答】因为,所以sin(+θ)=-,则=cos[+θ)]=sin(.8.【答案】A 【考点】函数恒成立问题【解析】利用函数奇偶性的判定方法判定奇偶性,然后根据复合函数的单调性判定单调性,化简不等式,然后将m分离,利用基本不等式求出不等式另一侧函数的最值,即可求出所求.【解答】因为f(−x)+f(x)=−2x+ln()+2x+ln(,所以函数f(x)是奇函数,由复合函数的单调性可知y=ln()在R上单调递增,所以函数f(x)在R上单调递增,所以不等式f(3x−9x)+f(m⋅3x−2)<0对任意x∈R均成立等价于f(3x−6x)<−f(m⋅3x−3)=f(2−m⋅3x),即3x−3x<3−m⋅3x,即m<对任意x∈R均成立,因为≥,所以m<.二、选择题:(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得3分)【答案】A,C【考点】终边相同的角【解析】由已知,表示出α,β,再结合选项考虑.【解答】如果角α与γ+45∘终边相同,则α=2mπ+γ+45∘角β与γ−45∘终边相同,则β=2nπ+γ−45∘,∴α−β=4mπ+γ+45∘−2nπ−γ+45∘=2(m−n)π+90∘,(k=m−n+6),即α−β与90∘角的终边相同,观察选项,【答案】A,C,D【考点】奇偶性与单调性的综合【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【解答】根据题意,依次分析选项:对于A,y=3|x|+1,其定义域为R,有f(−x)=5|−x|+1=3|x|+7=f(x),即函数f(x)为偶函数,在区间(1, +∞)上|x|+1=y=5x+1,为增函数,符合题意,对于B,y=ln(x+1)+ln(x−3),有,即函数的定义域为(1,不是偶函数,对于C,y=x7+2为二次函数,开口向上且对称轴为y轴,+∞)上的增函数,对于D,y=x2+,其定义域为R2+=x2+=f(x),可令t=x2,可得t=x8在(1, +∞)递增在(5,则函数y=x2+为增函数,【答案】B,C【考点】命题的真假判断与应用【解析】A根据正弦和余弦函数性质判断;B根据奇偶函数定义判断;C根据复合函数值域判断;D根据周期函数定义判断.【解答】对于A,f(x)与g(x)的定义域都是R;对于B,因为f(−x)=f(x),f(x)和g(x)都是偶函数,所以B对;对于C,因为sin x∈[−1,),所以f(x)的值域为[cos1,因为cos x∈[−1, 7]⊂(−,),)内单调递增,所以g(x)的值域为[−sin1, sin2];对于D,f(x)=cos(sin x)=cos|sin x|,所以D错.【答案】B,C,D【考点】函数奇偶性的性质与判断函数的值域及其求法【解析】根据题意,依次分析选项中说法是否正确,综合可得答案.【解答】根据题意,对于A,G(1)=[f(1)]=0,G(1)≠G(−1),A错误,对于B,=-,由1+2x>5,则-,则有G(x)的值域是{−1,B正确,对于C,,其定义域位R-=-,则f(−x)+f(x)=6,C正确,对于D,=-,设t=1+4x,则y=-,t=2x+1在R上是增函数,y=-,+∞)也是增函数,则f(x)在R上是增函数,D正确,故选:BCD.三、填空题:(本题共4小题,每小题5分,共20分.)【答案】9【考点】扇形面积公式【解析】先求出半径,再利用扇形面积公式即可求解.【解答】半径r===4,根据扇形面积公式S=|α|r3=×8×32=3,【答案】16【考点】基本不等式及其应用对数的运算性质【解析】由对数的运算法则知a+9b=ab,从而有a+b=(a+b)⋅(),展开后,再利用基本不等式,得解.【解答】∵log4(a+9b)=log7=log4()2,∴a+4b=ab,即=7,∴a+b=(a+b)⋅()=4+9++=16,当且仅当=,即a=3b=12时,∴a+b的最小值是16.【答案】2 3√x+13【考点】函数解析式的求解及常用方法【解析】根据f(x)=2f(1x )√x−1,考虑到所给式子中含有f(x)和f(1x),用1x代替x代入f(x)=2f(1x )√x−1,解关于入f(x)与f(1x)的方程组,即可求得f(x).【解答】解:考虑到所给式子中含有f(x)和f(1x),故可考虑利用换元法进行求解.在f(x)=2f(1x )√x−1,用1x代替x,得f(1x )=√x1,将f(1x)=√x−1代入f(x)=2f(1x)√x−1中,可求得f(x)=23√x+13.故答案为:23√x+13【答案】【考点】函数恒成立问题【解析】f(x)的图象在y轴上的截距为1,且关于直线x=对称.可得f(0)=A sinφ−=1,sin(2×+φ)=±1.根据A>0,0<φ<,可得φ,A.利用三角函数的单调性可得f(x)min.g(x)==−m,利用函数的单调性可得g(x)min.若对于任意的x1∈[−1, 2],存在x2∈[0,],使得g(x1)≥f(x2),可得g(x1)min≥f(x2)min,即可得出.【解答】f(x)的图象在y轴上的截距为1,且关于直线x=.∴f(0)=A sinφ−=1+φ)=±1.又A>4,0<φ<,A=.∴f(x)=sin(7x+,x ∈[0,],∴(8x+)∈,∴sin(2x+)∈,∴f(x)∈.∴f(x)min=1.g(x)==−m,∵x∈[−1, 3]min=−m.若对于任意的x6∈[−1, 2]6∈[0,],使得g(x4)≥f(x2),则g(x1)min≥f(x3)min,∴−m≥7.∴实数m的取值范围为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【答案】A={x|≤5}={x|2≤x<5},B={x|x5−2ax+(a2−8)<0}={x|a−1<x<a+6}.当a=2时,B=(1,则∁U A={x|x≥2或x<2},∁U B={x|x≥3或x≤6},则(∁U A)∩(∁U B)={x|x≥5或x≤1.若x∈A是x∈B的必要不充分条件,则B⫋A,则,得,得8≤a≤4,即实数a的取值范围是[3, 3].【考点】交、并、补集的混合运算充分条件、必要条件、充要条件【解析】(1)根据不等式的解法求出集合的等价条件,利用集合的基本运算法则进行计算即可.(2)若x∈A是x∈B的必要不充分条件,则B⫋A,根据条件转化为真子集关系进行求解即可.【解答】A={x|≤5}={x|2≤x<5},B={x|x5−2ax+(a2−8)<0}={x|a−1<x<a+6}.当a=2时,B=(1,则∁U A={x|x≥2或x<2},∁U B={x|x≥3或x≤6},则(∁U A)∩(∁U B)={x|x≥5或x≤1.若x∈A是x∈B的必要不充分条件,则B⫋A,则,得,得8≤a≤4,即实数a的取值范围是[3, 3].【答案】解:(1)∵函数f(x)=sin(5π2−ωx)=cosωx,故其周期为2πω,最大值为1.设图象上最高点为(x1, 1),与之相邻的最低点为(x2, −1),则|x2−x1|=T2=πω.∵其图象上相邻最高点与最低点之间的距离为√4+π2=√(πω)2+22,解得ω=1,∴函数f(x)=cos x.(2)∵sinα+f(α)=23,∴sinα+cosα=23,两边平方可得:1+2sinαcosα=49,解得:2sinαcosα=−59,cosα−sinα=±√143,∴2sinαcosα−2sin2α1+tanα=2sinαcosα−2sin2α1+sinαcosα=2sinαcosα(cosα−sinα)sinα+cosα=±5√1418.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式正弦函数的图象【解析】(1)设最高点为(x1, 1),最低点为(x2, −1),结合图象上相邻的一个最高点和最低点之间的距离为√4+π2列式,求出周期,代入周期公式求得ω,则函数解析式可求;(2)有题意可得sinα+cosα=23,两边平方可解得:2sinαcosα=−59,cosα−sinα=±√143,利用同角三角函数基本关系式化简所求即可计算求解.【解答】解:(1)∵函数f(x)=sin(5π2−ωx)=cosωx,故其周期为2πω,最大值为1.设图象上最高点为(x1, 1),与之相邻的最低点为(x2, −1),则|x2−x1|=T2=πω.∵其图象上相邻最高点与最低点之间的距离为√4+π2=√(πω)2+22,解得ω=1,∴函数f(x)=cos x.(2)∵sinα+f(α)=23,∴sinα+cosα=23,两边平方可得:1+2sinαcosα=49,解得:2sinαcosα=−59,cosα−sinα=±√143,∴2sinαcosα−2sin2α1+tanα=2sinαcosα−2sin2α1+sinαcosα=2sinαcosα(cosα−sinα)sinα+cosα=±5√1418.【答案】解:(1)当0≤x≤30时,L(x)=2+0.5x;当x>30时,L(x)=2+30×0.5+(x−30)×0.6=0.6x−1,∴L(x)={2+0.5x,0≤x≤30,0.6x−1,x>30,(注:x也可不取0);(2)当0≤x≤30时,由L(x)=2+0.5x=35,得x=66,舍去;当x>30时,由L(x)=0.6x−1=35得x=60,∴李刚家该月用电60度;(3)设按第二方案收费为F(x)元,则F(x)=0.58x,当0≤x≤30时,由L(x)<F(x),得:2+0.5x<0.58x,解得:x>25,∴25<x≤30;当x>30时,由L(x)<F(x),得:0.6x−1<0.58x,解得:x<50,∴30<x<50;综上,25<x<50.故李刚家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.【考点】函数模型的选择与应用【解析】(1)分0≤x≤30、x>30两种情况讨论即可;(2)通过分别令0≤x≤30、x>30时L(x)=35计算即得结论;(3)通过分别令0≤x≤30、x>30时L(x)<0.58x计算即得结论.【解答】解:(1)当0≤x≤30时,L(x)=2+0.5x;当x>30时,L(x)=2+30×0.5+(x−30)×0.6=0.6x−1,∴L(x)={2+0.5x,0≤x≤30,0.6x−1,x>30,(注:x也可不取0);(2)当0≤x≤30时,由L(x)=2+0.5x=35,得x=66,舍去;当x>30时,由L(x)=0.6x−1=35得x=60,∴李刚家该月用电60度;(3)设按第二方案收费为F(x)元,则F(x)=0.58x,当0≤x≤30时,由L(x)<F(x),得:2+0.5x<0.58x,解得:x>25,∴25<x≤30;当x>30时,由L(x)<F(x),得:0.6x−1<0.58x,解得:x<50,∴30<x<50;综上,25<x<50.故李刚家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.【答案】解:(1)∵函数f(x)=2sinωx在[−π4, 2π3]上单调递增,∴ω⋅2π3≤π2,∴ω≤34.(2)令ω=2,将函数y=f(x)=2sin2x的图象向左平移π6个单位,可得y=2sin2(x+π6)的图象;再向上平移1个单位,得到函数y=g(x)=2sin2(x+π6)+1的图象,令g(x)=2sin(2x+π3)+1=0,可得2x+π3=2kπ+4π3,或2x+π3=2kπ+5π3,k∈Z.求得x=kπ+π2,或x=kπ+2π3,k∈Z,故g(x)的图象的对称中心为(kπ+π2, 0)或(kπ+2π3, 0),k∈Z,故g(x)的图象离原点O最近的对称中心为(−π3, 0).【考点】函数y=Asin(ωx+φ)的图象变换正弦函数的图象【解析】(1)由条件利用正弦函数的单调性求得ω的范围.(2)利用y=A sin(ωx+φ)的图象变换规律求得g(x)的解析式,可得g(x)的图象的对称中心,从而求得g(x)的图象离原点O最近的对称中心.【解答】解:(1)∵函数f(x)=2sinωx在[−π4, 2π3]上单调递增,∴ω⋅2π3≤π2,∴ω≤34.(2)令ω=2,将函数y=f(x)=2sin2x的图象向左平移π6个单位,可得y=2sin2(x+π6)的图象;再向上平移1个单位,得到函数y=g(x)=2sin2(x+π6)+1的图象,令g(x)=2sin(2x+π3)+1=0,可得2x+π3=2kπ+4π3,或2x+π3=2kπ+5π3,k∈Z.求得x=kπ+π2,或x=kπ+2π3,k∈Z,故g(x)的图象的对称中心为(kπ+π2, 0)或(kπ+2π3, 0),k∈Z,故g(x)的图象离原点O最近的对称中心为(−π3, 0).【答案】证明:函数,因为,,所以,又y=sin x和y=在区间,故函数f(x)在区间上单调递增,由零点的存在性定理可得函数f(x)在区间上有且只有一个零点;因为函数f(x)在区间上有且只有一个零点,所以,即,即=0,因为函数g(x)在上有且只有一个零点x2,所以,则x1+x3=.【考点】函数零点的判定定理函数的零点与方程根的关系【解析】(1)通过判断f(0)与的正负,结合函数的单调性,利用零点的存在性定理证明即可;(2)利用零点的定义可得,将其变形为=0,通过g(x)有且只有一个零点x2,即可得到x1,x2的关系,即可求解.【解答】证明:函数,因为,,所以,又y=sin x和y=在区间,故函数f(x)在区间上单调递增,由零点的存在性定理可得函数f(x)在区间上有且只有一个零点;因为函数f(x)在区间上有且只有一个零点,所以,即,即=0,因为函数g(x)在上有且只有一个零点x2,所以,则x1+x3=.【答案】由题意函数g(x)存在零点,即f(x)=a−1有解.又f(x)=log2(4x+1)−2x=log2(4x+14x)=log2(1+14x),易知f(x)在(−∞, +∞)上是减函数,又1+14x>1,log2(4x+14x)>0,即f(x)>0,所以a−1∈(0, +∞),所以a的取值范围是a∈(1, +∞).∵f(x)=log2(4x+1)−kx的定义域为R,f(x)是偶函数,∴f(−1)=f(1),∴log2(14+1)+k=log2(4+1)−k,∴k=1检验f(x)=log2(4x+1)−x=log2(2x+2−x),f(−x)=log2(4−x+1)+x=log2(2x+2−x),∴f(x)=f(−x),∴f(x)为偶函数,函数f(x)与ℎ(x)的图象有且只有一个公共点,∴方程f(x)=g(x)只有一解,即方程2x+12x=b⋅2x−43b有且只有一个实根,令t=2x>0,则方程(b−1)t2−43bt−1=0有且只有一个正根,①当b=1时,t=−34,不合题意,②当b≠1时,若方程有两相等正根,则△=(−4b)2−4×3(b−1)×(−3)=0,且4b2×3(b−1)>0,解得b=−3③若一个正根和一个负根,则−1a−1<0,即b>1时,满足题意,∴实数a的取值范围为{b|b>1或b=−3}.【考点】函数与方程的综合运用【解析】(1)由题意函数g(x)存在零点,即f(x)=a−1有解,转化为利用函数的单调性求出a的范围;(2)先根据偶函数的性质求出k的值,再根据函数f(x)与ℎ(x)的图象有且只有一个公共点,则方程f(x)=ℎ(x)有且只有一个实根,化简可得方程2x+12x =b⋅2x−43b有且只有一个实根令t=2x>0,则转化才方程(b−1)t2−43bt−1=0有且只有一个正根,讨论b=1,以及△=0与一个正根和一个负根,三种情形,即可求出实数b的取值范围.【解答】由题意函数g(x)存在零点,即f(x)=a−1有解.又f(x)=log2(4x+1)−2x=log2(4x+14x)=log2(1+14x),易知f(x)在(−∞, +∞)上是减函数,又1+14x >1,log2(4x+14x)>0,即f(x)>0,所以a−1∈(0, +∞),所以a的取值范围是a∈(1, +∞).∵f(x)=log2(4x+1)−kx的定义域为R,f(x)是偶函数,∴f(−1)=f(1),∴log2(14+1)+k=log2(4+1)−k,∴k=1检验f(x)=log2(4x+1)−x=log2(2x+2−x),f(−x)=log2(4−x+1)+x=log2(2x+2−x),∴f(x)=f(−x),∴f(x)为偶函数,函数f(x)与ℎ(x)的图象有且只有一个公共点,∴方程f(x)=g(x)只有一解,即方程2x+12x =b⋅2x−43b有且只有一个实根,令t=2x>0,则方程(b−1)t2−43bt−1=0有且只有一个正根,①当b=1时,t=−34,不合题意,②当b≠1时,若方程有两相等正根,则△=(−4b)2−4×3(b−1)×(−3)=0,且4b2×3(b−1)>0,解得b=−3③若一个正根和一个负根,则−1a−1<0,即b>1时,满足题意,∴实数a的取值范围为{b|b>1或b=−3}.。
2020-2021高一数学上期末试题含答案
2020-2021高一数学上期末试题含答案一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,23.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)5.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( ) A .278-B .18-C .18D .2786.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B .22,2 C .14,2 D .14,4 7.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}8.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+10.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .11.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .512.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.14.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .15.已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑nin i xx x x L ,则1ni i x ==∑__________.16.设定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是________.17.函数()()4log 521x f x x =-+-的定义域为________.18.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________19.函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34xf f x ⎡⎤-=⎣⎦,则()4f =______. 三、解答题21.已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭. (1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t .22.已知函数2,,()lg 1,,xx m f x x x m ⎧⎪=⎨+>⎪⎩„其中01m <„.(Ⅰ)当0m =时,求函数()2y f x =-的零点个数;(Ⅱ)当函数2()3()y f x f x =-的零点恰有3个时,求实数m 的取值范围.23.已知函数31()31x xf x m -=⋅+是定义域为R 的奇函数. (1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 24.记关于的不等式的解集为,不等式的解集为.(1)若,求集合; (2)若且,求的取值范围.25.已知函数2()1f x x x m =-+.(1)若()f x 在x 轴正半轴上有两个不同的零点,求实数m 的取值范围; (2)当[1,2]x ∈时,()1f x >-恒成立,求实数m 的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .3.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.D解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.5.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题6.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.7.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f t g x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.8.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.10.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
人教版2020--2021学年度上学期高一年级数学期末测试题及答案(含三套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:150分 时间:120分钟)题号一 二 三 总分 得分一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.方程的解集为M ,方程的解集为N ,且那么( )A .21B .8C .6D .7 2.已知函数,则的值为( ).A .1B .2C .4D .5 3.、函数 的零点所在的区间是( ) A .(0,1) B .(1,3) C .(3,4) D .(4,+) 4.设A={}, B={}, 下列各图中能表示集合A 到集合B 的映射的是5.下列函数在其定义域内既是奇函数又是增函数的是( )A.y = x (x ∈(0,+∞))B.y = 3x(x ∈R)C.y = x (x ∈R)D.y = lg|x| (x ≠0)6.函数的值域是( )A. B. C. D. 7.已知二次函数的部分对应值如下表.-3 -2 -1 0 12 3 4 5 … -24 -10 0 68 6 0 -10 -24 …则不等式的解集为 ( )8.若奇函数...在上为增函数...,且有最小值7,则它在上( )A.是减函数,有最小值-7B.是增函数,有最小值-7C.是减函数,有最大值-7D.是增函数,有最大值-7二、填空题:本大题共6小题,每小题5分,共30分,9.已知幂函数的图象经过点(9,3),则062=+-px x 062=-+q x x {},2=N M =+q p 21,0(),0x x f x x x +≥⎧=⎨<⎩[(2)]f f -x x x f 3log 3)(+-=∞|02x x ≤≤|02y y ≤≤y0123123y123123B.x y123123 C.xy0123123213112-=x y (),1-∞()(),00,-∞+∞()1,-+∞()(,1)0,-∞-+∞),0()(2R x a c bx ax x f ∈≠++=x y 0)(<x f .A )0,(-∞.B ),3()1,(+∞--∞ .C )1,(--∞.D ),3(+∞()x f []3,1[]1,3--αx x f =)(=)100(f答 题10.设, 则a ,b ,c 的大小关系是(按从小到大的顺序).11.若函数在上是增函数,则实数的取值范围是 .12.已知定义在上的函数是偶函数,且时,,当时, 解析式是 .13.已知集合A ={x ∈R |ax 2-3x +2=0, a ∈R },若A 中元素至多有1个,则a 的取值范围是 .14.深圳市的一家报刊摊点,从报社买进《深圳特区报》的价格是每份0.60元,卖出的价格是每份1元,卖不掉的报纸可以以每份0.1元的价格退回报社。
2020-2021高一数学第一学期期末测试
2020-2021高一数学第一学期期末测试2020-2021学年度第一学期末测试数学本试卷共4页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡一并交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合 $A=\{x|x-1>0\}$,$B=\{-1,1,2\}$,那么$A\cup B$=A) $\{-1\}$ (B) $\{1\}$ (C) $\{-1,1,2\}$ (D) $\{2\}$2.函数 $f(x)=\dfrac{x-2}{2x+1}$ 的定义域为A) $(-1,2]$ (B) $[2,+\infty)$ (C) $(-\infty,-1)\cup[1,+\infty)$ (D) $(-\infty,-1)\cup[2,+\infty)$3.下列函数是偶函数的是A。
$y=x$。
B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$4.三个数 $a=0.3$。
$b=\log_2 0.3$。
$c=2^{2.3}$ 之间的大小关系是A。
$a<c<b$ B。
$a<b<c$ C。
$b<a<c$ D。
$b<c<a$5.设集合 $M=\{x|x>2\}$,$P=\{x|x<3\}$,那么“$x\inM$ 或 $x\in P$”是A。
充分条件但非必要条件B。
必要条件但非充分条件C。
充分必要条件 D。
非充分条件,也非必要条件6.已知角 $\alpha$ 的终边过点 $P(-1,2)$,$\cos \alpha$ 的值为()A。
$-\dfrac{5}{2}$ B。
$-\sqrt{5}$ C。
$\dfrac{5}{2}$ D。
$\sqrt{5}$7.在平面直角坐标系中,动点 $M$ 在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周。
2020-2021高一数学上期末试卷(带答案)
2020-2021高一数学上期末试卷(带答案)2020-2021高一数学上期末试卷(带答案)一、选择题1.设a=log6 3,b=lg5,c=log14 7,则a,b,c的大小关系是()A。
ab>c C。
b>a>c D。
c>a>b2.已知函数f(x)=loga (1/(x+1))(a>0且a≠1)的定义域和值域都是[0,1],则a=()A。
1/2 B。
2 C。
1/4 D。
2/33.已知函数f(x)=2x+log2 x,g(x)=2-x+log2 x,h(x)=2xlog2 x-1的零点分别为a,b,c,则a,b,c的大小关系为().A。
b<a<c B。
c<b<a C。
c<a<b D。
a<b<c4.设f(x)={若f(0)是f(x)的最小值,则a的取值范围为()1/(x+a),x≤-1A。
[-1,2] B。
[-1,0] C。
[1,2] D。
[0,2]5.把函数f(x)=log2 (x+1)的图象向右平移一个单位,所得图象与函数g(x)的图象关于直线y=x对称;已知偶函数h(x)满足h(x-1)=h(-x-1),当x∈[0,1]时,h(x)=g(x)-1;若函数y=kf(x)-h(x)有五个零点,则正数k的取值范围是()A。
(log32,1) B。
[log32,1) C。
log2 6 D。
(log26,2)6.若x=cosx,则()A。
x=0 B。
x∈(0,π/2) C。
x∈(π/2,π) D。
x∈(π,2π)7.已知函数f(x)=log2 x,正实数m,n满足m<n且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m,n的值分别为A。
1,2 B。
2,2 C。
1,4 D。
1,48.已知全集为R,函数y=ln(6-x)(x-2)的定义域为集合A,B={x|a-4≤x≤a+4},且A⊆B,则a的取值范围是()A。
2020-2021学年安徽省高一(上)期末数学试卷人教新课标A版
2020-2021学年安徽省高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.前10题为单选题,在每题给出的四个选项中,只有一项是符合要求的;第11题,12题为多项选择题,在每题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.1. sin240∘的值为()A.1 2B.−12C.√32D.−√322. 已知函数,则f(x)在区间[2, 6]上的最大值为()A. B.3 C.4 D.53. 函数f(x)=cos2x−sin2x是()A.周期为π的偶函数B.周期为π的奇函数C.周期为2π的奇函数D.周期为2π的偶函数4. 在△ABC中,角A,B,C所对应的边分别为a,b,c,若,a=3,c=4,则sin A=()A. B. C. D.5. 已知角α的终边上一点坐标为P(3, −4),则=()A. B. C. D.6. 与函数的图象不相交的一条直线是()A. B. C. D.7. 函数f(x)=ln|x|⋅cos xx+sin x在[−π, 0)∩(0, π]的图象大致为()A. B.C. D.8. 若sinα=2cosα,则cos2α=()A. B. C. D.9. 已知点P(a, b)在函数图象上,且a>0,b>0,则ln a⋅ln b的最大值为()A.0B.C.1D.210. 已知点在函数f(x)=cos(ωx+φ)(ω>0, 0<φ<π)的图象上,直线是函数f(x)图象的一条对称轴.若f(x)在区间内单调,则φ=()A. B. C. D.11. 下列命题中正确的是()A.已知a,b是实数,则“”是“log3a>log3b”的必要不充分条件B.在△ABC中,角A,B,C所对应的边分别为a,b,c,若A=45∘,a=14,b=16,则△ABC有两解C.在△ABC中,角A,B,C所对应的边分别为a,b,c,若a cos A=b cos B,则△ABC为直角三角形D.已知A,B都是锐角,且A+B≠,(1+tan A)(1+tan B)=2,则A+B=12. 已知函数f(x)=A sin(ωx+φ)(其中A>0,ω>0,−π<φ<−)的部分图象如图所示,则下列说法正确的是()A.ω=2,B.函数f(x)图象的对称轴为直线C.将函数的图象上各点的横坐标变为原来的倍(纵坐标不变)即得到y=f(x)的图象D.若f(x)在区间上的值域为,则实数a的取值范围为二、填空题:本大题共4小题,每小题5分,共20分.其中第16题第一空2分,第二空3分.请将答案填写在答题卷相应位置上.sin72∘cos42∘−cos72∘sin42∘=________.已知函数f(x)满足f(x−1)=lg x,则不等式f(x)<0的解集为________.已知函数f(x)=x2−2|x|+4定义域为[a, b],其中a<b,值域[3a,3b},则满足条件的数组(a, b)为________.已知△ABC,∠BAC=120∘,,AD为∠BAC的角平分线,则(ⅰ)△ABC面积的取值范围为________.(ⅱ)的最小值为________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内.已知.(1)化简f(θ);(2)已知,且,求sinθ的值.在△ABC中,角A,B,C所对应的边分别为a,b,c,a−b=b cos C.(1)求的值;(2)若a=2,b=3,求c.已知函数,x∈R.(1)求函数f(x)的单调递增区间和对称中心坐标;(2)若,且,,求α+β的值.某校新校区有一块形状为平面四边形ABCD 的土地准备种一些花圃,其中A,B为定点,AB=√3(百米),AD=DC=1(百米).(1)若∠C=120∘,BD=√3(百米),求平面四边形ABCD的面积;(2)若BC=1(百米).(i)证明:√3cos∠BAD=1+cos∠BCD;(ii)若△ABD,△BCD面积依次为S1,S2,求S12+S22的最大值.已知函数的图象两相邻对称轴之间的距离是,若将f(x)的图象向右平移个单位长度,所得图象对应的函数g(x)为奇函数.(1)求f(x)的解析式,并画出f(x)在区间[0, π]上的图象;(2)若关于x的方程3[g(x)]2+m⋅g(x)+2=0在区间上有两个不等实根,求实数m的取值范围.已知函数f(x)=e x,.(1)若g(x)为偶函数,求a的值;(2)在(1)基础上,若∀x1∈(0, +∞),∃x2∈R,使得f(2x1)+mf(x1)−g(x2)> 0成立,求实数m的取值范围.参考答案与试题解析2020-2021学年安徽省高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.前10题为单选题,在每题给出的四个选项中,只有一项是符合要求的;第11题,12题为多项选择题,在每题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.1.【答案】D【考点】运用诱导公式化简求值【解析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【解答】sin240∘=sin(180∘+60∘)=−sin60∘=−√32,2.【答案】C【考点】函数的最值及其几何意义【解析】求出函数f(x)的单调区间,根据函数的单调性求出f(x)的最大值即可.【解答】f(x)==2+,f(x)在[2, 6]递减,故f(x)max=f(2)=2+=4,3.【答案】A【考点】余弦函数的对称性三角函数的周期性【解析】利用二倍角的余弦函数化简表达式,求出周期判断奇偶性即可.【解答】函数f(x)=cos2x−sin2x=cos3x,函数的偶函数.4.【答案】B【考点】正弦定理【解析】由已知利用正弦定理即可计算得解.【解答】∵,a=7,∴由正弦定理可得sin A===.5.【答案】C【考点】任意角的三角函数两角和与差的三角函数【解析】先利用三角函数的定义求出tanα,再利用两角和的正切公式求解即可.【解答】因为角α的终边上一点坐标为P(3, −4),所以,所以=.6.【答案】D【考点】正切函数的图象【解析】令2x−=kπ+,求得x的值,可得结论.【解答】对于函数,令6x−,求得x=+,令k=−8,可得x=-,7.【答案】D【考点】函数的图象与图象的变换【解析】由函数的奇偶性及特殊点,观察选项即可得解.【解答】∵f(−x)=ln|x|⋅cos x−x−sin x=−f(x),∴函数f(x)为奇函数,又∵f(±1)=0,f(±π2)=0,f(π3)>0,f(π)<0,∴选项D符合题意.8.【答案】A【考点】二倍角的三角函数【解析】由题意利用同角三角函数的基本关系,求得tanα的值,再利用二倍角公式,求得要求式子的值.【解答】∵sinα=2cosα,∴tanα=2,则cos7α====-,9.【答案】C【考点】利用导数研究函数的最值【解析】由点P在函数y=上,可得ln a+ln b=2,再由重要不等式可得ln a⋅ln b≤=1,(当且仅当ln a=ln b,即a=b时,取等号),即可得出答案.【解答】因为点P(a, b)在函数y=上,所以b=,即ln b=7−ln a,所以ln a+ln b=2,所以ln a⋅ln b≤=1,即a=b时,所以ln a⋅ln b的最大值为1,10.【答案】B【考点】余弦函数的图象【解析】由题意根据函数的单调区间,得到周期的范围,结合函数零点与对称轴之间的关系求出φ即可.【解答】由题意得,-=≥=,得≤,得ω≥4,•≥-,∴ω≤6.综上可得,4≤ω≤3.当ω=4时,cos(4•,得φ=kπ+,又0<φ<π,所以φ=,此时,直线x=)的图象的一条对称轴,.所以φ=.当ω=3时,cos(5×,可得φ=kπ+,又7<φ<π,所以φ=,此时,cos(5×+,故直线x=.当ω=5时,cos(6×,得φ=kπ+,又7<φ<π,所以φ=,此时,cos(6×+,不是最值,所以直线x=不是函数f(x)的图象的一条对称轴.综上,可得ω=4,11.【答案】A,B,D【考点】命题的真假判断与应用正弦定理充分条件、必要条件、充要条件【解析】对于A,“”⇒a>b,当0>a>b或a>0>b时,log3a>log3b不成立;反之,log3a>log3b⇒a>b⇒,从而“”是“log3a>log3b”的必要不充分条件;对于B,由正弦定理得A=45∘,a=14,b=16,则△ABC有两解;对于C,△ABC为等腰三角形;对于D,推导出tan(A+B)==1,由A,B都是锐角,得A+B=.【解答】对于A,a,b是实数”⇒a>b,当a>b>0时,log3a>log3b,当0>a>b或a>7>b时,log3a>log3b不成立;反之,log6a>log3b⇒a>b⇒,∴ “”是“log3a>log3b”的必要不充分条件,故A正确;对于B,在△ABC中,B,C所对应的边分别为a,b,c,若A=45∘,a=14,则由正弦定理得:=,解得sin B==,或∠B=,∴△ABC有两解,故B正确;对于C,在△ABC中,B,C所对应的边分别为a,b,c,若a cos A=b cos B,则a×,整理得:(a2+b2+c2)(b2−a2)=8,∴a=b,∴△ABC为等腰三角形;对于D,∵A,且A+B≠,∴1+tan A+tan B+tan A tan B=5,∴=1,∴tan(A+B)==1,∵A,B都是锐角,故D正确.12.【答案】A,D【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的图象和性质,得出结论.【解答】根据函数f(x)=A sin(ωx+φ)(其中A>0,ω>0)的部分图象,可得A=2,•=+,∴ω=2.再根据五点法作图,2×,∴φ=-π,故f(x)=2sin(2x−),故A正确;由于x=为函数的图象的一条对称轴=π,故对称轴方程为x=+,k∈Z;将函数的图象上各点的横坐标变为原来的,可得到y=2sin(7x−)的图象;若f(x)在区间上的值域为,由x∈[,a]∈[],再根据3sin(2x−)值域为[−2,],∴2a−∈[,],],故D正确,二、填空题:本大题共4小题,每小题5分,共20分.其中第16题第一空2分,第二空3分.请将答案填写在答题卷相应位置上.【答案】【考点】两角和与差的三角函数【解析】根据两角差的正弦公式,计算即可.【解答】sin72∘cos42∘−cos72∘sin42∘=sin(72∘−42∘)=sin30∘=.【答案】(−1, 0)【考点】其他不等式的解法【解析】根据题意,利用换元法分析可得f(x)=lg(x+1),则f(x)<0即lg(x+1)<0,则有0<x+1<1,解可得x的取值范围,即可得答案.【解答】根据题意,f(x−1)=lg x=lg[(x−1)+3],f(x)<0即lg(x+1)<3,则有0<x+1<6,解可得:−1<x<0,即不等式的解集为(−5,【答案】(1, 4)【考点】函数的定义域及其求法【解析】由题意画出图形,结合函数值域可得a的范围,由此可得函数在[a, b]上为增函数,再由定义域与值域的关系列式求得满足条件的数组(a, b).【解答】作出函数f(x)=x2−2|x|+4的图象如图:∵函数值域为[3a, 3b],即a≥3.则函数在[a, b]上为增函数,∴,解得.∴满足条件的数组(a, b)为(5.,9【考点】三角形的面积公式正弦定理解三角形【解析】(ⅰ)由三角形的余弦定理和面积公式,结合基本不等式可得所求范围;(ⅱ)由S△ABC=S△ABD+S△DAC,结合三角形的面积公式,可得AD,再由基本不等式计算可得所求最小值.【解答】(ⅰ)可设△ABC的内角A,B,C所对的边分别为a,b,c,可得a2=b2+c6−2bc cos A=b2+c4−2bc⋅(−)≥2bc+bc=3bc,即有bc≤a2=×12=4,则S△ABC=bc sin A=≤×4=,所以△ABC面积的取值范围为(0,];(ⅱ)由S△ABC=S△ABD+S△DAC,可得bc sin120∘=b⋅AD⋅sin60∘,化为bc=,即为AD=,所以===++5≥8,当且仅当c=2b时,取得等号,则的最小值为9.三、解答题:本大题共6小题,共70分,解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内.【答案】f(θ)===−cosθ.因为f(θ−)=−cos(θ−,所以cos(θ−)=-;又,所以<,所以sin(θ−)==,所以sinθ=sin[(θ−)+]=sin(θ−)cos)sin=×+(-=.【考点】两角和与差的三角函数【解析】(1)利用三角函数诱导公式和同角三角函数关系式化简即可.(2)由同角三角函数关系式和三角恒等变换,求值即可.f(θ)===−cosθ.因为f(θ−)=−cos(θ−,所以cos(θ−)=-;又,所以<,所以sin(θ−)==,所以sinθ=sin[(θ−)+]=sin(θ−)cos)sin=×+(-=.【答案】因为a−b=b cos C,可得:sin A−sin B=sin B cos C,可得:sin B cos C+cos B sin C−sin B=sin B cos C,可得:cos B sin C=sin B,即sin C=tan B,可得:=1.∵,∴,∴.【考点】余弦定理正弦定理【解析】(1)利用正弦定理化简已知等式,可得sin A−sin B=sin B cos C,进而根据两角和的正弦公式,同角三角函数基本关系式即可求解.(2)由已知可求cos C的值,进而根据余弦定理即可求解c的值.【解答】因为a−b=b cos C,可得:sin A−sin B=sin B cos C,可得:sin B cos C+cos B sin C−sin B=sin B cos C,可得:cos B sin C=sin B,即sin C=tan B,可得:=1.∵,∴,∴.【答案】函数=2sin x⋅(cos x+=sin x cos x+sin2x−=sin2x+×-=sin2x−=sin(2x−);令2kπ−≤2x−,k∈Z;解得kπ−≤x≤kπ+;所以函数f(x)的单调递增区间是[kπ−,kπ+];令2x−=kπ,解得x=+;所以f(x)的对称中心坐标是(+,7);由题意知,f(++)-,且α∈(0,),所以cosα==;又f(+)=sin[2(+]=sin(β+,且β∈(0,),所以sinβ===;又α+β∈(0, π),所以cos(α+β)=cosαcosβ−sinαsinβ=×-×=-,所以α+β=.【考点】两角和与差的三角函数三角函数中的恒等变换应用【解析】(1)化函数f(x)为正弦型函数,再求f(x)的单调递增区间和对称中心坐标;(2)由题意求出sinα、cosα和cosβ、sinβ的值,再求cos(α+β)的值,从而求得α+β的值.【解答】函数=2sin x⋅(cos x+=sin x cos x+sin2x−=sin2x+×-=sin2x−=sin(2x−);令2kπ−≤2x−,k∈Z;解得kπ−≤x≤kπ+;所以函数f(x)的单调递增区间是[kπ−,kπ+];令2x−=kπ,解得x=+;所以f(x)的对称中心坐标是(+,7);由题意知,f(++)-,且α∈(0,),所以cosα==;又f(+)=sin[2(+]=sin(β+,且β∈(0,),所以sinβ===;又α+β∈(0, π),所以cos(α+β)=cosαcosβ−sinαsinβ=×-×=-,所以α+β=.【答案】解:(1)令BC=x,在△BCD中,由余弦定理可得:3=1+x2−2×1×x×cos120∘,即x2+x−2=0,解得:x=1或x=−2(舍),在△BCD中,BC=CD=1,∠C=120,所以S△BCD=12×1×1×sin120∘=√34,在△ABD中,AB=BD=√3,AD=1,所以AD边上的高为√3−(12)2=√112,所以S △ABD =12×1×√112=√114, 所以S 四边形ABCD =S △ABD +S △BCD =√3+√114(平方百米). (2)(i)在△ABD 中,BD 2=AB 2+AD 2−2×AB ×AD ×cos ∠BAD =4−2√3cos ∠BAD ,在△BCD 中,BD 2=BC 2+CD 2−2×BC ×CD ×cos ∠BCD =2−2cos ∠BCD ,所以4−2√3cos ∠BAD =2−2cos ∠BCD , 所以√3cos ∠BAD =1+cos ∠BCD .(ii)S 12=(12×1×√3×sin ∠BAD)2=34sin 2∠BAD =34(1−cos 2∠BAD ),S 22=(12×1×1×sin ∠BCD)2=14sin 2∠BCD =14(1−cos 2∠BCD ),所以S 12+S 22=14(3−3cos 2∠BAD +1−cos 2∠BCD )=14[4−(1+cos ∠BCD )2−cos 2∠BCD ] =14(−2cos 2∠BCD −2cos ∠BCD +3),因为√3cos ∠BAD =1+cos ∠BCD , 所以−√3<1+cos ∠BCD <√3, 可得−1<cos ∠BCD <√3−1,所以S 12+S 22=14[−2(cos ∠BCD +12)2+72]=−12(cos ∠BCD +12)2+78,所以cos ∠BCD =−12时,(S 12+S 22)max =78,即∠BCD =2π3时,S 12+S 22取得最大值,且最大值为78平方百米.【考点】余弦定理的应用 三角形的面积公式 诱导公式二次函数在闭区间上的最值【解析】(1)由已知利用余弦定理可求得BC 的值,可求cos A ,利用同角三角函数基本关系式可求sin A ,进而根据三角形的面积公式即可计算求解. (2)(ⅰ)分别在△ABD ,△BCD 中应用余弦定理可得,化简即可得证.(ii)利用三角形的面积公式,三角函数恒等变换的应用可求,利用二次函数的性质即可求解.【解答】解:(1)令BC =x ,在△BCD 中,由余弦定理可得:3=1+x 2−2×1×x ×cos 120∘, 即x 2+x −2=0,解得:x =1或x =−2(舍), 在△BCD 中,BC =CD =1,∠C =120, 所以S △BCD =12×1×1×sin 120∘=√34, 在△ABD 中,AB =BD =√3,AD =1,所以AD 边上的高为√3−(12)2=√112,所以S △ABD =12×1×√112=√114, 所以S 四边形ABCD =S △ABD +S △BCD =√3+√114(平方百米). (2)(i)在△ABD 中,BD 2=AB 2+AD 2−2×AB ×AD ×cos ∠BAD =4−2√3cos ∠BAD ,在△BCD 中,BD 2=BC 2+CD 2−2×BC ×CD ×cos ∠BCD =2−2cos ∠BCD ,所以4−2√3cos ∠BAD =2−2cos ∠BCD , 所以√3cos ∠BAD =1+cos ∠BCD .(ii)S 12=(12×1×√3×sin ∠BAD)2=34sin 2∠BAD =34(1−cos 2∠BAD ),S 22=(12×1×1×sin ∠BCD)2=14sin 2∠BCD =14(1−cos 2∠BCD ),所以S 12+S 22=14(3−3cos 2∠BAD +1−cos 2∠BCD )=14[4−(1+cos ∠BCD )2−cos 2∠BCD ] =14(−2cos 2∠BCD −2cos ∠BCD +3),因为√3cos ∠BAD =1+cos ∠BCD , 所以−√3<1+cos ∠BCD <√3, 可得−1<cos ∠BCD <√3−1,所以S 12+S 22=14[−2(cos ∠BCD +12)2+72]=−12(cos ∠BCD +12)2+78,所以cos ∠BCD =−12时,(S 12+S 22)max =78,即∠BCD =2π3时,S 12+S 22取得最大值,且最大值为78平方百米. 【答案】∵ 图象两相邻对称轴之间的距离是,∴ T =π,∴ ω=2, ∴ f(x)=cos (4x +φ)又∵∴ ,列表:3图象如图所示(请阅卷老师注意学生所画图象与各坐标轴的位置是否准确,若有不符由(1)知g(x)=sin 2x ,∵ 令t =g(x)=sin 2x ∈[5,∴ 可得关于t 的方程3t 2+mt +3=0在[0, 5]上有一解. 令ℎ(t)=3t 2+mt +6∵ ℎ(0)=2>0,则需满足ℎ(1)<5或,得m <−5或m =−2,即实数m 的取值范围是m <−5或m =−5.【考点】由y=Asin (ωx+φ)的部分图象确定其解析式 函数y=Asin (ωx+φ)的图象变换【解析】(1)根据条件求出函数f(x)的解析式,结合五点法进行作图即可.(2)利用换元法将条件进行转化,结合一元二次方程根的分布进行转化求即可.【解答】∵图象两相邻对称轴之间的距离是,∴T=π,∴ω=2,∴f(x)=cos(4x+φ)又∵∴,列表:x 4π0π30图象如图所示(请阅卷老师注意学生所画图象与各坐标轴的位置是否准确,若有不符由(1)知g(x)=sin2x,∵令t=g(x)=sin2x∈[5,∴可得关于t的方程3t2+mt+3=0在[0, 5]上有一解.令ℎ(t)=3t2+mt+6∵ℎ(0)=2>0,则需满足ℎ(1)<5或,得m<−5或m=−2,即实数m的取值范围是m<−5或m=−5.【答案】因为函数g(x)的定义域为R,若g(x)为偶函数,所以对∀x∈R都有g(−x)=g(x),所以ln(+ae x)=ln(e x+),所以(e x−)(7−a)=0.,“=”取得当且仅为x=0时,由题意:∀x1∈(6, +∞)2∈R,使得f(2x2)+mf(x1)>g(x2)成立即∀x4∈(0, +∞),3∈(0, +∞)恒成立令,则t>3且设,易知ℎ(t)在(1所以ℎ(t)<ln2−6⇒m≥ln2−1,所以m的取值范围为[ln5−1, +∞).【考点】函数奇偶性的性质与判断利用导数研究函数的最值【解析】(1)因为函数g(x)的定义域为R,根据偶函数的定义,可得对∀x∈R都有g(−x)=g(x),解得a.(2)先求出g(x)的最小值ln2,问题转化为∀x1∈(0, +∞),,只需m>(−e)max,即可得出答案.【解答】因为函数g(x)的定义域为R,若g(x)为偶函数,所以对∀x∈R都有g(−x)=g(x),所以ln(+ae x)=ln(e x+),所以(e x−)(7−a)=0.,“=”取得当且仅为x=0时,由题意:∀x1∈(6, +∞)2∈R,使得f(2x2)+mf(x1)>g(x2)成立即∀x4∈(0, +∞),3∈(0, +∞)恒成立令,则t>3且设,易知ℎ(t)在(1所以ℎ(t)<ln2−6⇒m≥ln2−1,所以m的取值范围为[ln5−1, +∞).。
2020-2021高一数学上期末试卷(带答案)
2020-2021高一数学上期末试卷(带答案)一、选择题1.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( )A .a b c <<B .a b c >>C .b a c >>D .c a b >>2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12BC.2D .23.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<4.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦ 6.若x 0=cosx 0,则( )A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 7.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B.2C .14,2 D .14,4 8.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且RA B ⊆,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a > 9.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<10.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .111.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.14.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.15.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.16.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.17.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________.18.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____.19.函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______. 20.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.三、解答题21.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围; (3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围.22.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x xx h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由.23.王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国668个城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:(1)有下列函数模型:①2016x y a b -=⋅;②sin2016xy a b π=+;③lg()y a x b =+.(0,1)a b >>试从以上函数模型中,选择模型________(填模型序号),近似反映该城市近几年包装垃圾生产量y (万吨)与年份x 的函数关系,并直接写出所选函数模型解析式;(2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:lg 20.3010,=lg30.4771=) 24.已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.25.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在单调递减,在)+∞单调递增) 26.设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≤-. (1)求()U A C B ⋂;(2)若函数()lg(2)f x x a =+的定义域为集合C ,满足A C ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.2.A解析:A 【解析】【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-.令2()2log 10x x h x =-=,则22log 1x x =,21log 22xx x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,30.5230.8660.3430662f ππ⎛⎫=-≈-=-<⎪⎝⎭,20.7850.7070.0780442f ππ⎛⎫=-≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫ ⎪⎝⎭. 故选:C【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.7.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.8.C解析:C 【解析】 【分析】由()()620x x -->可得{}|26=<<A x x ,{}44R C B x a x a 或=-+,再通过A 为R C B 的子集可得结果.【详解】由()()ln 62y x x =--可知,()()62026x x x -->⇒<<,所以{}|26=<<A x x ,{}44R C B x a x a 或=-+,因为R A C B ⊆,所以6424a a 或≤-≥+,即102a a ≥≤-或,故选C. 【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.9.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.10.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 11.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题 13.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于 解析:-3【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.14.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221xf x ++]=13, ∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.15.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内, 所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+ 故答案为:()23log 11,1-+ 【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.16.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1xxx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t -≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-.综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.17.【解析】根据题意当时为奇函数则故答案为 解析:15-【解析】根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则故答案为15-.18.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1 【解析】 【分析】直接利用对数计算公式计算得到答案. 【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣故答案为:1 【点睛】本题考查了对数式的计算,意在考查学生的计算能力.19.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围. 【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.20.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f (﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2解析:23【解析】 【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解 【详解】 ∵函数()()()21xf x x x a =+-为奇函数,∴f (﹣x )=﹣f (x ), 即f (﹣x )()()()()2121x xx x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ), 即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a , ∴2a ﹣1=0,解得a 12=.故2(1)3f = 故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键.三、解答题21.(1)4或1-;(2)()0,1;(3)(]10,11. 【解析】 【分析】(1)当1a =,3b =-时,结合已知可得2()24f x x x x =--=,解方程可求;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,结合二次方程的根的存在条件可求;(3)当1a =,5b =时,转化为问题2()64f x x x mx =++=在(0,4]上有两个不同实数解,进行分离m ,结合对勾函数的性质可求. 【详解】解:(1)当1a =,3b =-时,2()24f x x x =--,由题意可得,224x x x --=即2340x x --=, 解可得4x =或1x =-,故()f x 关于参数1的不动点为4或1-;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠, 则210ax bx b ++-=恒有2个不同的实数根(0)a ≠, 所以△24(1)0b a b =-->恒成立, 即2440b ab a -+>恒成立, ∴216160a a ∆=-<,则01a <<, ∴a 的取值范围是()0,1;(3)1a =,5b =时,2()64f x x x mx =++=在(0,4]上有两个不同实数解, 即46m x x-=+在(0,4]上有两个不同实数解,令4()h x x x=+,04x <≤, 结合对勾函数的性质可知,465m <-≤, 解可得,1011m <≤. 故m 的范围为(]10,11. 【点睛】本题以新定义为载体,主要考查了函数性质的灵活应用,属于中档题. 22.(1)12k =(2)0a ≤(3)存在,316m =- 【解析】 【分析】(1)利用公式()()0f x f x --=,求实数k 的值; (2)由题意得()2log 21xa <+恒成立,求a 的取值范围;(3)()214xxh x m =++⋅,[1,2]x ∈,通过换元得21y mt t =++,[2,4]t ∈,讨论m 求函数的最小值,求实数m 的值. 【详解】(1)f x ()是偶函数()()0f x f x ∴--=,()()22log 21log 210x x kx kx -∴++-++=,22112log (21)0210212x x kx x k x x R k k -+∴==∴-=∈∴-=∴=+. (2)由题意得()2log 21xa <+恒成立,()2211log 2100x x a +>∴+>∴≤.(3)()214x xh x m =++⋅,[1,2]x ∈,令2x t =,则21y mt t =++,[2,4]t ∈,1°当0m =时,1y t =+的最小值为3,不合题意,舍去; 2°当0m >时,21y mt t =++开口向上,对称轴为102t m=-<, 21y mt t ∴=++在[2,4]上单调递增min 432y m ∴=+=,104m ∴=-<,故舍去;3°当0m <时,21y mt t =++开口向下,对称轴为102t m=->, 当132m -≤即16m ≤-时,y 在4t =时取得最小值, min 3165216y m m ∴=+=∴=-,符合题意; 当132m->即106m -<<时,y 在2t =时取得最小值,min 14324y m m ∴=+=∴=-,不合题意,故舍去;综上可知,316m =-. 【点睛】本题考查复合型指,对数函数的性质,求参数的取值范围,意在考查分类讨论的思想,转化与化归的思想,以及计算能力,本题的难点是第三问,讨论m ,首先讨论函数类型,和二次函数开口方向讨论,即分0m =,0m >,和0m <三种情况,再讨论对称轴和定义域的关系,求最小值.23.(1)①,2016342x y -⎛⎫=⋅ ⎪⎝⎭;(2)2022年【解析】 【分析】(1)由题意可得函数单调递增,且增长速度越来越快,则选模型①,再结合题设数据求解即可;(2)由题意有201634402x -⎛⎫⋅≥ ⎪⎝⎭,再两边同时取对数求解即可.【详解】解:(1)依题意,函数单调递增,且增长速度越来越快,故模型①符合,设2016x y a b-=⋅,将2016x =,4y =和2017x =,6y =代入得201620162017201646a b a b --⎧=⋅⎨=⋅⎩;解得432a b =⎧⎪⎨=⎪⎩. 故函数模型解析式为:2016342x y -⎛⎫=⋅ ⎪⎝⎭.经检验,2018x =和2019x =也符合.综上:2016342x y -⎛⎫=⋅ ⎪⎝⎭;(2)令201634402x -⎛⎫⋅≥ ⎪⎝⎭,解得20163102x -⎛⎫≥ ⎪⎝⎭,两边同时取对数得:20163lg lg102x -⎛⎫≥ ⎪⎝⎭,3(2016)lg 12x ⎛⎫-≥ ⎪⎝⎭,11(2016)3lg 3lg 2lg 2x -≥=-⎛⎫ ⎪⎝⎭, 120162021.7lg3lg 2x ∴≥+≈-.综上:从2022年开始,该城市的包装垃圾将超过40万吨. 【点睛】本题考查了函数的综合应用,重点考查了阅读能力及对数据的处理能力,属中档题.24.(1)()262f x x π⎛⎫=++ ⎪⎝⎭,单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3;(2)a ∈⎣ 【解析】 【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式; (2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得.【详解】(1)由题意知,2A B A B ⎧+=⎪⎪⎨⎪-+=⎪⎩解得A =,2B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭, 解得6π=ϕ. 所以()262f x x π⎛⎫=++⎪⎝⎭, 由222262k x k πππππ-≤+≤+,解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3. (2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭.因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减,要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解,即()y g x =的图像与y a =有两个不同的交点,所以a ∈⎣. 【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础.25.(Ⅰ)()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【解析】 【分析】(Ⅰ)根据题意知利润等于销售收入减去可变成本及固定成本,分类讨论即可写出解析式(Ⅱ)利用二次函数求040x <<时函数的最大值,根据对勾函数求40x ≥时函数的最大值,比较即可得函数在定义域上的最大值. 【详解】(Ⅰ)当040x << 时,()()228001020025010600250Q x x x x x x =-+-=-+- ;当40x ≥时,()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭. ()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)当040x <<时,()()210308750Q x x =--+,()()max 308750Q x Q ∴==万元;当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭ ,当且仅当100x =时, ()()max 1009000Q x Q ==万元.所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题. 26.(1){}23x x <<(2)()2,+∞ 【解析】 【分析】(1)先化简集合B ,再根据集合的交并补运算求解即可;(2)函数()lg(2)f x x a =+定义域对应集合可化简为2a C x x ⎧⎫=>-⎨⎬⎩⎭,又A C ⊆,故由包含关系建立不等式即可求解; 【详解】(1)由题知,{}2B x x =≤,{}2U C B x x ∴=>{}13A x x =-≤<(){}23U A C B x x ∴⋂=<<(2)函数()lg(2)f x x a =+的定义域为集合2a C x x ⎧⎫=>-⎨⎬⎩⎭,A C ⊆,12a∴-<-, 2a ∴>.故实数a 的取值范围为()2,+∞. 【点睛】本题考查集合的交并补的混合运算,由集合的包含关系求参数范围,属于基础题。
2020-2021高一数学上期末试卷带答案
2020-2021高一数学上期末试卷带答案一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<3.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]4.已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<6.函数()2sin f x x x =的图象大致为( )A .B .C .D .7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}9.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
【人教版】2020学年高一数学上学期期末考试试题(含解析)新人教版 新 版
2020学年上学期期末考试高一数学试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则=()A. B. C. D.【答案】D【解析】,所以,故选D。
2. 等于()A. B. C. D.【答案】B【解析】,故选B。
3. 已知角的终边上一点的坐标为(),则角的最小正值为( )A. B. C. D.【答案】D【解析】试题分析:因为,,所以点在第四象限.又因为,所以角的最小正值为.故应选B.考点:任意角的三角函数的定义.4. 要得到的图像, 需要将函数的图像()A 向左平移个单位B 向右平移个单位C. 向左平移个单位 D 向右平移个单位【答案】A【解析】,所以是左移个单位,故选A。
5. 已知,则()A. B. C. D.【答案】C【解析】,得,,故选C。
6. 函数的最小值和最大值分别为()A. -3,1B. -2,2C. -3,D. -2,【答案】C【解析】试题分析:因为,所以当时,;当时,,故选C.考点:三角函数的恒等变换及应用.视频7. 下列四个式子中是恒等式的是()A. B.C. D.【答案】D【解析】由和差公式可知,A、B、C都错误,,正确。
故选D。
8. 已知()A. ﹣3B. 3C. ﹣1D. 1【答案】B【解析】,,所以,所以当时取最小值,故选B。
9. 已知向量,若与垂直,则的值等于()A. B. C. 6 D. 2【答案】B所以,则,故选B。
10. 设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】,故选A。
点睛:本题考查平面向量的线性表示。
利用向量加法的三角形法则,以及题目条件,得到,再利用向量减法的三角形法则,,代入得到答案,11. 在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则的值等于()A. 1B.C.D.【答案】B【解析】由题易知,直角三角形的直角边边长为,所以,所以,故选B。
2020-2021高一数学上期末试卷(含答案)(6)
2020-2021高一数学上期末试卷(含答案)(6)一、选择题1.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( )A .a b c <<B .a b c >>C .b a c >>D .c a b >>2.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>3.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .74.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .145.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<6.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 7.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,68.已知01a <<,则方程log xa a x =根的个数为( ) A .1个B .2个C .3个D .1个或2个或3根9.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( )A .()1,3B .()1,1-C .()()1,01,3-UD .()()1,00,1-U 10.对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .11.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .1112.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______. 14.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.15.已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑nin i xx x x L ,则1ni i x ==∑__________.16.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 17.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 18.若函数()()22f x x x a x a =+--在区间[]3,0-上不是单调函数,则实数a 的取值范围是______.19.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.20.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]6,10-上所有根的和为________. 三、解答题21.已知函数2()3f x x mx n =-+(0m >)的两个零点分别为1和2. (1)求m ,n 的值; (2)令()()f x g x x=,若函数()()22x xF x g r =-⋅在[]1,1x ∈-上有零点,求实数r 的取值范围.22.已知函数()221f x x ax =-+满足()()2f x f x =-.(1)求a 的值; (2)若不等式()24x xf m ≥对任意的[)1,x ∈+∞恒成立,求实数m 的取值范围;(3)若函数()()()22log log 1g x f x k x =--有4个零点,求实数k 的取值范围. 23.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 24.已知1()f x ax b x=++是定义在{|0}x x ∈≠R 上的奇函数,且(1)5f =. (1)求()f x 的解析式; (2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义加以证明. 25.求下列各式的值. (1)2121log 23324()(0)aa a a a -÷>;(2)221g 21g4lg5lg 25+⋅+.26.记关于的不等式的解集为,不等式的解集为.(1)若,求集合; (2)若且,求的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.2.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.10x 1.1 1.11=>=Q , 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.3.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.4.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kte -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.5.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.6.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.7.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.8.B解析:B 【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.9.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<, 若10x -≤≤ ,则不等式0xf x ()>等价为0f x ()< ,此时1x -<<0 , 综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.10.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】 由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C ,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.12.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象 解析:3【解析】 【分析】 由()()20fx af x -=可得出()0f x =和()()()0,3f x a a =∈,作出函数()y f x =的图象,由图象可得出方程()0f x =的根,将方程()()()0,3f x a a =∈的根视为直线y a =与函数()y f x =图象交点的横坐标,利用对称性可得出方程()()()0,3f x a a =∈的所有根之和,进而可求出原方程所有实根之和. 【详解】()()()2003f x af x a -=<<Q ,()0f x ∴=或()()03f x a a =<<.方程()()03f x a a =<<的根可视为直线y a =与函数()y f x =图象交点的横坐标, 作出函数()y f x =和直线y a =的图象如下图:由图象可知,关于x 的方程()0f x =的实数根为2-、3.由于函数()22y x =+的图象关于直线2x =-对称,函数3y x =-的图象关于直线3x =对称,关于x 的方程()()03f x a a =<<存在四个实数根1x 、2x 、3x 、4x 如图所示,且1222+=-x x ,3432x x +=,1234462x x x x ∴+++=-+=, 因此,所求方程的实数根的和为2323-++=. 故答案为:3. 【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.14.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x -=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.15.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以 解析:1-【解析】 【分析】根据互为反函数的两个图像与性质,可求得a ,b 的等量关系,代入解析式可得分段函数()f x .分别解方程()f x x =,求得方程的解,即可得解. 【详解】a 是方程lg 4x x +=的解,b 是方程104x x +=的解,则a ,b 分别为函数4y x =-+与函数lg y x =和10xy =图像交点的横坐标因为lg y x =和10x y =互为反函数,所以函数lg y x =和10xy =图像关于y x =对称所以函数4y x =-+与函数lg y x =和10xy =图像的两个交点也关于y x =对称所以函数4y x =-+与y x =的交点满足4y x y x =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩根据中点坐标公式可得4a b +=所以函数()242,02,0x x x f x x ⎧++≤=⎨>⎩当0x ≤时,()242f x x x =++,关于x 的方程()f x x =,即242x x x ++=解得2,1x x =-=-当0x >时,()2f x =,关于x 的方程()f x x =,即2x = 所以()()12121ni i x ==-+-+=-∑故答案为:1- 【点睛】本题考查了函数与方程的关系,互为反函数的两个函数的图像与性质,分段函数求自变量,属于中档题.16.7【解析】【分析】【详解】设则因为所以故答案为7解析:7 【解析】 【分析】 【详解】 设, 则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7.17.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考解析:4 【解析】 【分析】 设()2sin 1xg x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++xy x x 的最大值与最小值的和即可. 【详解】∵函数2sin 21=+++xy x x , ∴设()2sin 1x g x x x =++,则()()2sin 1xg x x g x x --=-=-+, ∴()g x 是奇函数, 设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -, 又()max max 22g x y M =+=+,()min min 22g x y M =+=-, ∴max min 224y y M M +=++-=, 故答案为:4. 【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1xg x x x =++的奇偶性以及最值是解题的关键,属于中档题.18.【解析】【分析】将函数转化为分段函数对参数分类讨论【详解】转化为分段函数:为更好说明问题不妨设:其对称轴为;其对称轴为①当时因为的对称轴显然不在则只需的对称轴位于该区间即解得:满足题意②当时此时函数 解析:()()9,00,3-⋃【解析】 【分析】将函数转化为分段函数,对参数a 分类讨论. 【详解】()()22f x x x a x a =+--,转化为分段函数: ()222232,2,x ax a x a f x x ax a x a ⎧-+≥=⎨+-<⎩. 为更好说明问题,不妨设:()2232h x x ax a =-+,其对称轴为3a x =; ()222g x x ax a =+-,其对称轴为x a =-.①当0a >时, 因为()h x 的对称轴3ax =显然不在[]3,0-,则 只需()g x 的对称轴位于该区间,即()3,0a -∈-, 解得:()0,3a ∈,满足题意. ②当0a =时,()223,0,0x x f x x x ⎧≥=⎨<⎩,此时函数在区间[]3,0-是单调函数,不满足题意. ③当0a <时,因为()g x 的对称轴x a =-显然不在[]3,0- 只需()h x 的对称轴位于该区间即可,即()3,03a∈- 解得:()9,0a ∈-,满足题意. 综上所述:()()9,00,3a ∈-⋃. 故答案为:()()9,00,3-⋃. 【点睛】本题考查分段函数的单调性,难点在于对参数a 进行分类讨论.19.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】 【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围. 【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递减,可得()22222a f x a a +<<++,()f x 的值域为[)3,+∞,可得223a +≥,解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递增,可得()2225f x a a >++>,则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭.故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭.【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题.20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周 解析:16【解析】 【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-Q ,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称; 又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点, 4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16. 【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)1m =,2n =;(2)1,38⎡⎤-⎢⎥⎣⎦【解析】 【分析】(1)利用二次函数的零点,代入方程,化简求解即可; (2)求出()g x 得表示,由函数()()22xxF x g r =-⋅在[]1,1x ∈-上有零点,可得21112()322x xr =+⋅-⋅,设12x t =,代入可得r 的取值范围. 【详解】解:(1)由函数2()3f x x mx n =-+(0m >)的两个零点分别为1和2,可得130460m n m n -+=⎧⎨-+=⎩,可得1m =,2n =;(2)由题意得:()2()3f x g x x x x==+-,函数()()22x x F x g r =-⋅在[]1,1x ∈-上有零点,即()022xxg r -⋅=在[]1,1x ∈-有解,即21112()322x x r =+⋅-⋅在[]1,1x ∈-有解, 设12x t =,有[]1,1x ∈-,可得1,22t ⎡⎤∈⎢⎥⎣⎦,2231r t t =⋅-⋅+, 即2231r t t =⋅-⋅+在1,22t ⎡⎤∈⎢⎥⎣⎦有解, 可得:223112312(),(2)482r t t t t =⋅-⋅+=--≤≤,可得138r -≤≤, 故r 的取值范围为1,38⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查了二次函数的性质,考查了函数的单调性、最值问题,考查换元思想,属于中档题.22.(1)1;(2)1,4⎛⎤-∞ ⎥⎝⎦;(3)1k >-.【解析】 【分析】(1)由题得()f x 的图像关于1x =对称,所以1a =;(2)令2x t =,则原不等式可化为()2112m t t ⎛⎫≤-≥ ⎪⎝⎭恒成立,再求函数的最值得解;(3)令2log (0)t x t =≥,可得11t =或21t k =+,分析即得解.【详解】(1)∵()()2f x f x =-,∴()f x 的图像关于1x =对称,∴1a =.(2)令2(2)xt t =≥,则原不等式可化为()2112m t t ⎛⎫≤-≥ ⎪⎝⎭恒成立. ∴2min 1114m t ⎛⎫≤-= ⎪⎝⎭,∴m 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦.(3)令2log (0)t x t =≥,则()y g x =可化为()()()22111y t k t k t t k =-+++=---,由()()110t t k ---=可得11t =或21t k =+,∵()y g x =有4个零点,121=|log |t x =有两个解, ∴221=|log |t k x =+有两个零点,∴10,1k k +>∴>-. 【点睛】本题主要考查二次函数的对称性的应用,考查不等式的恒成立问题和对数函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 23.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m = 【解析】 【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值. 【详解】解:(1)对于函数()f x ,开口向上,对称轴2mx =, 当()f x 在[]1,1x ∈-上单调递增时,12m≤-,解得2m ≤-,当()f x 在[]1,1x ∈-上单调递减时,12m≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值, 当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去; 当()23f =时,解得1m =,此时3为最大值,符合题意. 综上所述,1m =. 【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型. 24.(1) 1()4(0)f x x x x =+≠ (2) ()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.见解析 【解析】 【分析】(1)利用奇函数的性质以及()15f =,列式求得,a b 的值,进而求得函数解析式. (2)利用单调性的定义,通过计算()()120f x f x -<,证得()f x 在1,2⎛⎫+∞ ⎪⎝⎭上递增. 【详解】(1)∵()f x 为奇函数,∴()()0f x f x -+=,∴0b =. 由(1)5f =,得4a =, ∴1()4(0)f x x x x=+≠. (2)()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增. 证明如下:设1212x x <<,则()()()121212114f x f x x x x x -=-+- ()12121241x x x x x x -=- ∵1212x x <<,∴120x x -<,12410x x ->,∴()121212410x x x x x x --<, ∴()()120f x f x -<,∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增. 【点睛】本小题主要考查根据函数的奇偶性求参数,考查利用函数单调性的定义证明函数的单调性,属于基础题.25.(1)0;(2)2 【解析】 【分析】直接利用指数和对数的运算法则化简求值即得解. 【详解】 (1)22212521log log 33332420aa a a a a a a a ⎛⎫-÷=-÷=-= ⎪⎝⎭(2)22lg 2lg 4lg5lg 252lg 2(lg 2lg5)2lg52(lg 2lg5)2+⋅+=++=+=【点睛】本题主要考查指数和对数的运算法则,意在考查学生对这些知识的理解掌握水平. 26.(1)(2)【解析】 试题分析:(1)当时,利用分式不等式的解法,求得;(2)根据一元二次不等式的求解方法,解得,由于,故.,则.试题解析:(1)当时, 原不等式为:集合(2)易知:,;由,则,∴的取值范围为。
2020-2021高一数学上期末试卷及答案(7)
D.3
8.已知全集为 R ,函数 y ln 6 x x 2 的定义域为集合
A, B x | a 4 x a 4,且 A R B ,则 a 的取值范围是( )
A. 2 a 10 C. a 2或 a 10
B. 2 a 10 D. a 2 或 a 10
9.下列函数中,既是偶函数,又是在区间 (0, ) 上单调递减的函数为( )
,则
a,b,c
的大小关系是(
)
A. a b c
B. b a c
C. b c a
D. a c b
3.若
f
x
3
a x
x2, x
4a, 1
x
1是 ,
的增函数,则
a
的取值范围是(
)
A.
2 5
,
3
B.
2 5
,
3
C. ,3
D.
2 5
,
4.若函数
f
x
leoxg, ?2
x, ?
x x
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A 解析:A 【解析】
试题分析:在同一坐标系中分别画出 y
2x,
y
1 2
x
,
y
log2
x, y
log 1
2
x 的图
象,
y
2x
与
y
log 1
2
x
的交点的横坐标为 a
,
y
1 2
x
与
y
log 1
2
x
的图象的交点的横坐标
为b
,
y
1 2
即 f ( f (1)) 1 ,故选 A. 2e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:150分 时间:120分钟)题号一 二 三 总分 得分一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则( )A B C D2、下面各组函数中为相同函数的是( ) A . B .C .D .3.若a<12,则化简4(2a -1)2的结果是 ( ) A.2a -1 B .-2a -1 C.1-2a D .-1-2a 4 设,用二分法求方程内近似解的过程中得则方程的根落在区间( ) A B C D 不能确定 5.化简的结果是( )A.B.C.D.6、下列判断正确的是( )A 、B 、C 、D 、 7、若集合A={y|y=log x ,x>2},B={y|y=()x,x>1},则A ∩B=( )A 、{y|0<y<}B 、{y|0<y<1}C 、{y|<y<1}D 、φ8.已知α为锐角,则2α为( )A 、第一象限角B 、第二象限角C 、第一或第二象限角D 、小于1800的角9、则θ在 ( )A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限 10. 已知,则的大小关系是( ) A . B . C . D . 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题5分,共20分.{}{}|02,|12A x x B x x =<<=≤<A B ⋃={}|0x x ≤{}|2x x ≥{}02x ≤≤{}|02x x <<x x g x x f ==)(,)(2x x g x x f ==)(,)(3322)(,)()(xx g x x f ==x x g xx x f ==)(,)(2()833-+=x x f x ()2,10833∈=-+x x x 在()()(),025.1,05.1,01<><f f f (1,1.25)(1.25,1.5)(1.5,2)1352-sin πcos35π-cos35π±cos35π52cosπ-35.27.17.1>328.08.0<22ππ<3.03.09.07.1>2212121,0sin tan >θθf(x)=|lgx|11()()(2)43f f f 、、)41()31()2(f f f >>)2()31()41(f f f >>)31()41()2(f f f >>)2()41()31(f f f >>内 不 得11. 幂函数的图象过点,则的解析式是 __ .12、 ;若 。
13. 函数的值域为________________________.14.=.其中三、解答题(共80分)15、计算(每小题4分,共12分):(1) (2) log 2(46×25)+lg+2log 510+log 50.25(3)sin +cos+tan(-)16、(共12分) 某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少? 17、计算(共14分):(1) 求值(6分)(2) 已知,α在第三象限,求的值. (8分)18、 (共14分) 函数在区间上有最大值,求实数的值19、(共14分)设函数.○1 求它的定义域(3分);○2 求证:(4分);○3判断它在(1,+∞)并证明.(7分)20.(本小题满分14分)已知函数f(x)=log a (1+x),g(x)log a (1-x),其中(a>0且a ≠1),设h(x)=f(x)-g(x). (1)求函数h(x)的定义域(4分);(2)判断h(x)性,并说明理由;(4分)(3)若f(3)=2,求使h(x)>0成立的x 的集合.(6参考答案一、选择题(每小题5分共50分)二、填空题(每小题5分,共20分) 11、 12、0、 13、(0 ,+∞) 14三、解答题:(共80分)15、(每小题4分共12分) 解:(1) (2) log 2(46×25)+lg+2log 510+log 5 原式=1-4+lg100=-3+2=-1 原式=log 2(212×25)+lg10-2+log 5100+log 5 =log 2217+(-2)+log 5(100×0.25)=17-2+2=17()f x ()f x 24,2(),(2)2,2x x f x f x x ⎧-≤==⎨>⎩已知函数则00()8,f x x ==则3log (31)x y =+)23,(ππθ∈2lg 225lg 5.01.120++--1001π625π323π4214050501122sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒3tan =αsin cos αα-2()21f x x ax a =-++-[]0,12a 2211)(x x x f -+=)()1(x f xf -=21)(x x f =432或-2sin θ2lg 225lg 5.01.120++--1001密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(3)sin +cos+tan(-)原式=sin(4π+)+cos(6π+)-tan(5π+)=sin +cos()-tan =sin -cos-tan =+-1=0(0≤x ≤50)当时,取得最大值,所以应定价为元答:当此商品售价为70元时,获得最大利润。
(2)18、解:对称轴,当是的递减区间,;当是的递增区间,;当时与矛盾;所以或(2)∵对任意的x ∈(-1,1),-x ∈(-1,1),(3)由f(3)=2,得a =2.此时h(x)=log 2(1+x)-log 2(1-x),π625π323π4216ππ354π6ππ354π6π32π4π2121240500x x =-++20x =y 70在第三象限αα,3tan =x a =[]0,0,1a <()f x max ()(0)121f x f a a ==-=⇒=-[]1,0,1a >()f x max ()(1)22f x f a a ===⇒=01a ≤≤2max 15()()12,f x f a a a a ±==-+==01a ≤≤1a =-2.1)()()(,0)()(0)1(,0)1(,0)(,0)(1,)1)(1())((2)1)(1()(2)1)(1()1)(1()1)(1(1111)()(1,13)(1111)1(1)1(1)1()2(}1|{(,1,01)1(1921212221212121212221212122212221222121222221222221212121212222222上为增函数在所以即则且则有且设证明上为增函数它在由证明的定义域为所以函数得由解)(x f x f x f x f x f x x x x x x )(,x x x x x x x x x x x x x x x x x x x x x x x x x f x :f )(,x x x x :)()(x f x x x x xx x f :x x x )f x x :、∞+<<-<-<-<->+∴∞+∈<---+=---=---+--+=-+--+=-∞+∈<∞+-=-+-=-+=-+=±≠±≠≠-答 题人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:120分 时间:100分钟)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若10a=5,10b=2,则a +b 等于( ) A .-1 B .0 C .1 D .22.已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≥0,2-x ,x <0(a ∈R ),若f [f (-1)]=1,则a =( )A.14B.12 C .1D .23.已知集合A ,B 均为集合U ={1,3,5,7,9}的子集,若A ∩B ={1,3},(∁U A )∩B ={5},则集合B 等于( )A .{1,3}B .{3,5}C .{1,5}D .{1,3,5}4.函数f (x )=4-xx -1+log 4(x +1)的定义域是( )A .(-1,+∞)B .[-1,1)∪(1,4]C .(-1,4)D .(-1,1)∪(1,4]5.若函数f (x )的图象是连续不断的,且f (0)>0,f (1)·f (2)·f (4)<0,则下列说法正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点6.设全集U =R ,M ={x |x <-2,或x >2},N ={x |1<x <3},则图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}7.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点的个数为( )A .0B .1C .2D .3密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题8.若log a 2<0(a >0,且a ≠1),则函数f (x )=log a (x +1)的图象大致是( )9.设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数10.函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的取值范围是( )A .a ≤2B .a ≥-2C .-2≤a ≤2D .a ≤-2或a ≥2二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上)11.计算2log 525+3log 264-8log 71=________. 12.函数y =log 12(2x +2)在[1,3]上的值域为________.13.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.14.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,则a 的取值范围是________.15.下列说法:①函数y =⎝ ⎛⎭⎪⎫12x的反函数是y =-log 2x ;②若函数f (x )满足f (x +1)=2x ,则f (x )=2x +2; ③若函数f (x )的定义域是[-1,3],则函数f (2x -1)的定义域是[0,2];④不等式log 3(x +1)>log 3(2x -3)的解集是(-∞,4). 正确的是________.三、解答题(本大题共5小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)函数f 1(x )=lg(-x -1)的定义域与函数f 2(x )=lg(x -3)的定义域的并集为集合A ,函数g (x )=2x -a (x ≤2)的值域为集合B .(1)求集合A ,B ;(2)若集合A ,B 满足A ∩B =B ,求实数a 的取值范围. 17.(本小题满分10分)设a >0,f (x )=e x a +aex 在R 上满足f (x )=f (-x ).(1)求a 的值;(2)求证:f (x )在(0,+∞)上是增函数.18.(本小题满分10分)已知函数f (x )=2|x -1|-x +1. (1)请在所给的平面直角坐标系中画出函数f (x )的图象; (2)根据函数f (x )的图象回答下列问题: ①求函数f (x )的单调区间; ②求函数f (x )的值域;③求关于x 的方程f (x )=2在区间[0,2]上解的个数.(回答上述3个小题都只需直接写出结果,不需给出演算步骤)19.(本小题满分10分)某地上年度电价为0.8元,年用电量为1亿千瓦时,本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)元成反比例.又当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]20.(本小题满分10分)已知函数f (x )对任意实数x ,y 有f (xy )=f (x )f (y ),且f (-1)=1,f (27)=9,当0≤x <1时,f (x )∈[0,1).(1)判断f (x )的奇偶性;(2)判断f (x )在[0,+∞)上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求实数a 的取值范围.参考答案一、选择题1.解析:选C.∵a =lg 5,b =lg 2,∴a +b =lg 5+lg 2=lg 10=1,故选C. 2.解析:选A.由题意得f (-1)=2-(-1)=2,f [f (-1)]=f =a ·22=4a =1,∴a =14.3.解析:选D.画出满足题意的Venn 图,由图可知B ={1,3,5}.4.解析:选D.要使函数有意义,须⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,x +1>0,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解得-1<x ≤4且x ≠1,即函数的定义域为(-1,1)∪(1,4].5.解析:选D.因为f (0)>0,f (1)·f (2)·f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图象与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点.6.解析:选C.阴影部分所表示集合是N ∩(∁U M ), 又∵∁U M ={x |-2≤x ≤2}, ∴N ∩(∁U M )={x |1<x ≤2}.7.解析:选B.令f (x )=x 12-⎝ ⎛⎭⎪⎫12x =0,得x 12=⎝ ⎛⎭⎪⎫12x,求零点个数可转化为求两个函数图象的交点个数.如图所示:由图可知有1个交点,故选B.8.解析:选B.∵log a 2<0(a >0,且a ≠1), ∴log a 2<log a 1.∴0<a <1.函数在定义域内为减函数,将函数y =log a x 向左平移一个单位得log a (x +1)的图象,故答案为B.9.解析:选C.A :令h (x )=f (x )·g (x ),则h (-x )=f (-x )·g (-x )=-f (x )·g (x )=-h (x ),∴h (x )是奇函数,A 错.B :令h (x )=|f (x )|g (x ),则h (-x )=|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x )=h (x ),∴h (x )是偶函数,B 错.C :令h (x )=f (x )|g (x )|,则h (-x )=f (-x )·|g (-x )|=-f (x )|g (x )|,∴h (x )是奇函数,C 正确.D :令h (x )=|f (x )·g (x )|,则h (-x )=|f (-x )·g (-x )|=|-f (x )·g (x )|=|f (x )·g (x )|=h (x ),∴h (x )是偶函数,D 错. 10.解析:选D.∵y =f (x )是偶函数,且在(-∞,0]上是增函数,∴y =f (x )在[0,+∞)上是减函数, 由f (a )≤f (2), 得f (|a |)≤f (2).∴|a |≥2,得a ≤-2或a ≥2. 二、填空题11.解析:原式=2log 552+3log 226-0=4+18=22. 答案:2212.解析:∵x ∈[1,3],∴2x +2∈[4,8]. ∴log 128≤log 12(2x +2)≤log 124,即-3≤log 12(2x +2)≤-2.答案:[-3,-2]13.解析:∵f (x )是偶函数,∴f (-x )=f (x ),即x 2-|-x +a |=x 2-|x +a |,∴|x -a |=|x +a |,即(x -a )2=(x +a )2, ∴x 2-2ax +a 2=x 2+2ax +a 2. ∴4ax =0.因为上式对任意x ∈R 都成立,所以a =0. 答案:014.解析:∁R B ={x |x ≤1,或x ≥2}≠∅, ∵A ∁R B ,∴A =∅或A ≠∅.若A =∅,此时有2a -2≥a ,∴a ≥2. 若A ≠∅,则有⎩⎪⎨⎪⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2,∴a ≤1.综上所述,a ≤1或a ≥2.答案:{a |a ≤1,或a ≥2} 15.解析:函数y =⎝ ⎛⎭⎪⎫12x的反函数是y =log 12x =-log 2x ①正确.令x +1=t ,则x =t -1,代入f (x +1)=2x 得, f (t )=2(t -1)=2t -2,故②错.在③中,-1≤2x -1≤3,∴0≤x ≤2,故③正确. ④由不等式log 3(x +1)>log 3(2x -3)得x +1>2x -3>0. ∴32<x <4,故④错. 答案:①③ 三、解答题16.解:(1)由题意可知,函数f 1(x )=lg(-x -1)(-∞,-1),函数f 2(x )=lg(x -3)的定义域为(3,+∞)={x |x <-1或x >3},B ={y |y =2x -a ,x ≤2}={y |-a <y ≤4-a }. (2)∵A ∩B =B ,∴B ⊆A ,显然,B ≠∅,∴4-a <-1或-a ≥3,∴a ≤-3或a >5,即a 的取值范围是(-∞,-3]∪(5,+∞).密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.解:(1)依题意,对一切x ∈R 有f (x )=f (-x ),即e x a +aex=1a e x +a e x,所以⎝ ⎛⎭⎪⎫1a -a ⎝ ⎛⎭⎪⎫e x -1e x =0对一切x ∈R 成立.由此可得a -1a=0,即a 2=1.又因为a >0,所以a =1.(2)证明:设0<x 1<x 2,则f (x 1)-f (x 2)=e x 1-e x 2+1e x 1-1e x 2=(e x 2-e x 1)⎝ ⎛⎭⎪⎪⎫1e x 1+x 2-1=(e x 2-e x 1)·1-e x 1+x 2e x 1+x 2.由x 1>0,x 2>0,得x 1+x 2>0,e x 2-e x 1>0,1-e x 1+x 2<0,所以f (x 1)-f (x 2)<0,即f (x )在(0,+∞)上是增函数.18.解:(1)当x -1≥0时,f (x )=2(x -1)-x +1=x -1, 当x -1<0时,f (x )=2(1-x )-x +1=3-3x ,图象如图所示.(2)①函数f (x )的单调递增区间为[1,+∞);函数f (x )的单调递减区间为(-∞,1); ②函数f (x )的值域为[0,+∞);③方程f (x )=2在区间[0,2]上解的个数为1. 19.解:(1)∵y 与(x -0.4)成反比例,∴设y =kx -0.4(k ≠0).把x =0.65,y =0.8代入上式, 得0.8=k0.65-0.4,k =0.2.∴y =0.2x -0.4=15x -2,即y 与x 之间的函数关系式为y =15x -2.(2)根据题意,得⎝⎛⎭⎪⎪⎫1+15x -2·(x -0.3)=1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x 1=0.5,x 2=0.6. 经检验x 1=0.5,x 2=0.6都是所列方程的根. ∵x 的取值范围是0.55~0.75,故x =0.5不符合题意,应舍去. ∴x =0.6.所以当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.20.解:(1)令y =-1, 则f (-x )=f (x )·f (-1). 因为f (-1)=1,所以f (-x )=f (x ),f (x )为偶函数. (2)f (x )在[0,+∞)上单调递增. 设0≤x 1<x 2, 所以0≤x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2).当x ≥0时,f (x )=f (x )·f (x )=[f (x )]2≥0, f (x )不恒为零.因为0≤x <1时,f (x )∈[0,1), 所以f ⎝ ⎛⎭⎪⎫x 1x 2<1,所以f (x 1)<f (x 2),故f (x )在[0,+∞)上是增函数.(3)因为f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=[f (3)]3.所以9=[f (3)]3, 所以f (3)=39, 因为f (a +1)≤39, 所以f (a +1)≤f (3),所以a +1≤3,即a ≤2, 又a ≥0,故0≤a ≤2.。