空气比定压热容的测定
空气比热容比的测量实验报告
空气比热容比的测量实验报告一、实验目的本实验旨在通过测量空气的比热容比,加深对热力学过程和热学基本概念的理解,掌握一种测量气体比热容比的方法,并培养实验操作和数据处理的能力。
二、实验原理空气比热容比γ定义为定压比热容Cp与定容比热容Cv之比,即γ = Cp / Cv。
在热力学中,理想气体的绝热过程满足方程:pV^γ =常数。
在本实验中,我们利用一个带有活塞的圆柱形绝热容器,容器内封闭一定质量的空气。
通过改变活塞的位置,使容器内的气体经历绝热膨胀或绝热压缩过程。
测量绝热过程中气体压强和体积的变化,从而计算出空气的比热容比。
三、实验仪器1、储气瓶:储存一定量的压缩空气。
2、打气球:用于向储气瓶内充气。
3、压强传感器:测量气体压强。
4、体积传感器:测量气体体积。
5、数据采集器:采集和记录压强和体积的数据。
6、计算机:处理和分析实验数据。
四、实验步骤1、仪器调试检查各仪器连接是否正确,确保无漏气现象。
打开数据采集器和计算机,设置好采集参数。
2、测量初始状态用打气球向储气瓶内缓慢充气,直至压强达到一定值,记录此时的压强p1和体积V1。
3、绝热膨胀过程迅速打开活塞,使气体绝热膨胀,记录压强和体积的变化,直到压强稳定,此时的压强为p2,体积为V2。
4、绝热压缩过程迅速关闭活塞,使气体绝热压缩,记录压强和体积的变化,直到压强稳定,此时的压强为p3,体积为V3。
5、重复实验重复上述步骤多次,以减小测量误差。
五、实验数据记录与处理以下是一组实验数据的示例:|实验次数| p1(kPa)| V1(mL)| p2(kPa)| V2(mL)| p3(kPa)| V3(mL)|||||||||| 1 | 1050 | 500 | 700 | 700 | 950 | 450 || 2 | 1080 | 480 | 720 | 720 | 980 | 460 || 3 | 1060 | 510 | 680 | 750 | 960 | 440 |根据绝热过程方程pV^γ =常数,可得:p1V1^γ =p2V2^γ (1)p2V2^γ =p3V3^γ (2)由(1)式除以(2)式可得:p1V1^γ /p3V3^γ =p2V2^γ /p2V2^γ即:p1V1^γ /p3V3^γ = 1γ = ln(p1 / p3) / ln(V3 / V1)将上述实验数据代入公式,计算出每次实验的比热容比γ,然后取平均值。
空气定压比热测定实验报告
空气定压比热测定实验报告一、实验原理及过程简述实验原理:气体的定压比热定义为:Cp hT p在没有对外界作出功的气体的等压流动过程中,dh dQ g m,则气体的定压比热可表示为:Cpm T T12 Q g式中m —气体的质量流量,kg s Q g—气体在定压1m(T2 T1) 流动过程中的吸热量,kJ s低压气体的定压比热容通常用温度的多项式表示,例如空气的定压比热容的实验关系式:C p 0.9705 0.06791 10 3T 0.1658 10 6T 2kJ kg K在与室温相近的温度范围内,空气的定压比热容与温度的关系可近似看为线性的,可近似表示为:Cp a bT由T1加热到T2 的平均比热容T2 T(a bT)dt T TC pm T1a b 2 1kJ kg KT1T2 T1 2大气是含水蒸气的湿空气,当湿空气气流由T1 加热到T2时,其中水蒸气的吸热量T2可用下式计算:Q w m w (1.6878 0.5345 10 3)dTT1m w[1.6878(T2 T1) 0.2672 10 3(T22T12)] kJ s 式中,m w为气流中的水蒸气质量,kg s 。
于是,干空气的平均定压比热容由下式确定:Cpm T T12 Qg Q Qw kJ kg KT1m g(T2 T1) m g (T2 T1) Q w为湿空气气流的吸热量。
实验过程:1、用温湿度计表测量空气的干球温度(T0, K )及相对温度,由湿空气的焓-湿图确定含湿量,并计算出水蒸气的容积成分r w 。
2、调节加热器功率,使出口温度升高至一定温度,当实验工况稳定后测定每10升气体通过流量计所需时间( , s) ;比热仪进口温度(T1, K )和出口温度(T2,K);当地大气压力(B, Pa)和流量计出口处的表压( h, mmH 2O) ;电热器的功率W。
实验中需要计算干空气的质量流量m g 、水蒸气的质量流量m w ,电加热器的放热量,水蒸气吸收热量等数据并记录。
空气定压比热测定实验报告
空气定压比热测定实验报告实验目的:1. 理解热容量的概念;2. 熟悉空气定压比热的测定实验方法;3. 掌握不同物质的空气定压比热的测定方法。
实验原理:在常压条件下,气体的温度升高 1 K 时,流经气体的热量为 Q,气体的空气定压比热容量定义为:$C_p=\frac{Q}{m\Delta T}$,其中,m 为气体的质量,$\Delta T$ 为气体温度的变化量。
实验仪器及材料:1. 恒温水槽2. 数字温度计3. 外径不同的玻璃管和橡胶管4. 热水5. 实验气瓶6. 大气压计7. 线性规8. 秤盘实验步骤:1. 将玻璃管垂直地插入坩埚中,用粘土将其封住;2. 将实验气瓶接在玻璃管上,用橡胶管连接管子和气瓶;3. 用热水调节恒温水槽的温度为30℃,将玻璃管浸入水槽中,调节玻璃管内的空气温度;4. 记录恒温水槽的温度和大气压力;5. 制备一个称重纸,将其置于秤盘上;6. 打开气瓶上的活门,用线性规的一端钳紧玻璃管口,用另一端在称重纸上挂重物,拉起玻璃管口使活门关闭;7. 记录下线性规的测量读数,用数码温度计测量水槽中的温度,记录大气压力;8. 将秤盘放入水槽中,用数码温度计测量秤盘的温度;9. 将水槽中的温度升高十度左右,重复上述操作直到气体温度升高十度左右;10. 记录实验数据。
实验数据记录:空气气瓶重量:m1 = 51.23g瓶子和气瓶的总重量:m2 = 255.70g秤盘重量:m3 = 2.56g线性规示值:L1 = 0.931cm恒温水槽温度:t1 = 30℃水槽中的温度:t2 = 42.3℃秤盘的温度:t3 = 41.8℃大气压力:P = 100.3kpa数据计算:1. 空气瓶质量:m = m2 - m1 = 204.47g2. 称重纸上的重物质量:m' = L1 * S,其中,S 为重物的比重,这里取 S = 8.96,得到 m' = 8.33g;3. 空气瓶内空气质量:m_air = m' - m3 = 5.77g;4. 空气定压比热容量:$C_p=\frac{Q}{m_{air}\Delta T}$,其中,$\Delta T=t2-t1=12.3℃$,$Q=\frac{g \cdotT_1}{S}=\frac{(m2+m){C_p}(t2-t3)}{S}$;5. 计算空气定压比热容量,得到 $C_p=1.01J/g·K$。
气体比热容的测定实验报告
梧州学院学生实验报告成绩:指导教师:专业:班别:实验时间:实验人:学号:同组实验人:实验名称:气体比热容比的测定实验目的:测定空气分子的定压比热容与定容比热容之比γ值。
实验仪器:FB2 1 3型数显计、时计数毫秒仪、测试架、圆柱形储气瓶、球形储气瓶、皮管ACO一9602气泵、橡胶垫、电源线实验原理:气体的定压比热容Cp与定容比热容Cv之比γ=Cp/Cv,在热力学过程特别是绝热过程中是一个很重要的参数,通过测定物体在特定容器中的振动周期来计算γ值。
实验基本装置如图1所示。
钢球A的质量为m,半径为r(直径为d),当瓶子内压力P满足下面条件时,钢球A处于力平衡状态,这时,式中P L为大气压强。
物体A能在玻璃管B的小孔上下作简谐振动,振动周期可利用光电计时装置来测得。
若物体偏离平衡位置一个较小距离x,则容器内的压力变化dp,物体的运动方程为:(1)因为物体振动过程相当快,所以可以看作绝热过程,绝热方程(2)将(2)式求导数得出:(3)将(3)式代入(1)式得:此式即为熟知的简谐振动方程,它的解为:(4)式中各量均可方便测得,因而可算出γ值。
【实验内容与步骤】一、实验仪器的调整1.将气泵、储气瓶用橡皮管连接好,装有钢球的玻璃管插入球形储气瓶。
当气泵的压力足够大时,为避免气压太大把钢球冲出,气泵出口的三通可暂时不用,采用单通道供气。
2.接通气泵电源,缓慢调节气泵上的调节旋钮,数分钟后,使钢球在玻璃管中以小孔为中心上下振动,即维持简谐振动状态。
二.振动周期测量接通FB213型数显计数计时毫秒仪的电源。
合上毫秒仪电源开关,预置测量次数为50次(N 次),毫秒仪显示出累计50个(N个)周期的时间。
重复以上测量5次,将数据记录到表2中。
三.其它测量用螺旋测微计和物理天平分别测出钢球的直径d和质量m,其中直径重复测量5次。
【数据记录与处理】1.求钢珠质量、直径及其不确定度:表1次数1 2 3 4 5 平均值项目质量m(×10-3Kg)直径d(×10-3m)平均值:, 不确定度:结果:平均值:, 不确定度:结果:2.求算钢球振动周期T:表2 设置测量周期个数N=50次数1 2 3 4 5 平均值项目N周期时间t(s)振动周期T(s)钢球震动周期:, 周期平均值:不确定度:结果:3、在忽略储气瓶II体积V、大气压P测量误差的情况下估算空气的比热容比及其不确定度【思考题】1.注入气体流量的多少对小球的运动情况有没有影响?2.在实际问题中,物体振动过程并不是十分理想的绝热过程,这时测得的值比实际值大还是小?为什么?。
空气比热容比实验
测量空气的比热容比实验报告一、实验目的1.学习测定空气比定压热容和比定容热容之比的一种方法;2.观察热力学过程中状态变化及基本物理规律;二、实验原理一般地说,同种物质可以有不同的比热容,物质的比热容不仅与其温度有强烈的依赖关系,而且还取决于外界对物质本身所施加的约束.当压力恒定时可得物质的比定压热容c p,体积一定时可得物质的比定容热容c V.二者都是热力学过程中的重要参量,因此又称它们为主比热容.当然c p和c V一般也是温度的函数,但当实际过程中所涉及的温度范围不大时,二者均近似地视为常量.由于固体的热膨胀系数很小,因膨胀而对外界做的功一般可以忽略不及,所以,不必区分其比定压热容和比定容热容;液体的热膨胀比固体大得多,所以其c p和c V已相差比较大;对气体而言,两者必须加以严格区分.对理想气体,二者之间满足如下关系:c p−c V=R/M.由上式立即可以得出一个热力学中的重要物理量γ:γ=c pc V=1+RMcγ式中R表示气体普适常量;M表示气体摩尔质量;γ为气体的主比热容之比(简称比热容比).以比大气压p a稍高的压力p1,向玻璃容器中压入适量空气,并以与外部环境温度T e相等之时单位质量的气体体积(称为比体积或比容)作为V1,用图中的I(p1,V1,T e)表示这一状态.而后,急速打开放气活塞,使其绝热膨胀,使其压强降到大气压p a,并以状态II(p a,V2,T2)表示.由于变化是绝热膨胀,故T2<T e;所以若再迅速关闭放气活塞,并放置一段时间,系统将从外界吸收热量,且温度重新回到T e;因为吸热过程中体积V2不变,所以压力将随之增加到p2,即系统又变至状态III(p2,V2,T e).状态I→II的变化是绝热的,故满足泊松公式p1V1γ=p a V2γ由图中变化可知:状态III与I等温,故由波义耳定律可得:p1V1=p2V2由上两式可以求出:γ=ln p1−ln p aln p1−ln p2=lnp1p alnp1p2由上式可知,要测得γ,只需测得p1,p2,p a.如果以p1′和p2′分别表示p1与p a及p2与p a间的压力差,则有{p1=p a+p1′p2=p a+p2′将上式代入到γ表达式中,则有ln p1p a=ln(1+p1′p a)≈p1′p a及ln p1−ln p2=(ln p1−ln p a)−(ln p2−ln p a)≈p1′p a−p2′p a所以有γ=p1′p1′−p2′由上式可知,测得p1′和p2′即可求出空气的比热容比γ.三、实验仪器空气比热容比测定仪,储气瓶,传感器(温度,压力传感器)等.四、实验步骤1.测定环境气压p a及环境温度T e.开启电子仪器电源,预热.调节温度表至0mV.2.顺序完成I→III的状态变化过程.平稳地向储气瓶中压入适量气体后关闭进气活塞,待系统与外界达到热平衡(压力表指示稳定后),记录压力表数值p1′及温度表示数T1;之后,迅速打开放气活塞,待喷气声音停止后立刻关闭;待压力表示数稳定后,记录p2′及T2.3.在p1′数值大致相等(最好在T1=T2时读取p2′)的条件下重复实验,代入γ表达式,求出γi及其算数平均值.五、实验数据及分析1.实验数据记录如下:a ei p1′/mV T1i/mV p2′/mV T2i/mV(p1′−p2′)/mVγ=p1′p1′−p2′实验情况说明1100.81477.823.21477.777.6 1.299正常实验2100.81478.521.41478.579.4 1.270正常实验399.21479.323.51479.375.7 1.310正常实验4101.71480.024.81480.376.9 1.322正常实验5100.01480.823.51480.976.5 1.307正常实验6101.11481.523.81481.477.3 1.308正常实验7100.81482.117.61482.383.2 1.212放气时间过长8101.61482.923.11482.978.5 1.294打气速度快平均(除去7和8数据) 1.303μ=|1.402−1.303|1.402×100%=7.06% 3.以γi 作为原始数据,估测γ的测量不确定度. μγ=√(ðln γðp 1′)2(u p1)2+(ðln γðp 2′)2(u p2)2 s p1=√∑(p 1i ′−p 1′̅̅̅)26i=16−1=0.879 s p2=√∑(p 2i ′−p 2′̅̅̅)26i=16−1=1.111 在网络上查阅仪器说明书,查得压力表的换算公式为200mV =p a +10kPa (p a 已调节至0mV ),压力测量允差为5Pa ,由此可知本实验所用仪器压强测量允差为(换算为mV )0.1mV∆=0.1mVðln γðp 1′=1p 1′̅̅̅+1p 1′̅̅̅−p 2′̅̅̅=0.023 ðln γðp 2′=−1p 1′̅̅̅−p 2′̅̅̅=−0.013 u p1=√u A 2+u B 2=√u A 2+u B 2=√(√61.11)2+(√3)3=0.402 u p2=√u A 2+u B 2=√u A 2+u B 2=√(1.111√61.11)2+(0.1√3)3=0.507 μγ=√(ðln γðp 1′)2(u p1)2+(ðln γðp 2′)2(u p2)2=0.01135 则γ的测量不确定度为0.01135,最终结果为γ=1.303±0.01135×1.303=1.303± 0.015.4.实验误差来源分析本实验最终得到的空气比热容比为1.303,与真值1.402存在7.06%的误差.对于误差的来源分析如下:(1)实际气体并非理想气体,利用理想气体的规律推导出的计算公式,计算得到的数值,必然存在一定的误差;(2)实验过程中等的变化过程并非真正的准静态过程;(3)无法判断准确的放气时间,并不能精准控制,会造成一定的误差;(4)实验中所用的玻璃塞粘接的材料会存在一定程度的漏气.5.实验改进方案(或思考)(1)由所做第七组实验可以看出,如果放气时间过长,则会导致实验产生较大误差. 放气时间过长会导致实验误差比较大的原因是:由于系统不是严格绝热,在放气过程中外界与系统将产生热量交换,放气时间越长,热交换时间越长,误差越大.如果给系统加上绝热措施,判断会减小实验的误差.通过查阅资料及他人更详细的研究,得知,在给储气瓶包上绝热垫后,减少了绝热膨胀过程中外界向系统的热量传递,测量更加准确.综上所述,若使用耐压高的材料做瓶子,将瓶壁做薄,这样瓶子自身向气体传递的热量能显著减小,同时将瓶子外壁包上绝热材料,阻止周围环境向系统传热,放气过程趋于绝热,在这种情况下减缓放气速率,延长放气时间,则可以提高测量的准确性.六、注意事项1.注意系统密闭性,检查是否漏气;2.旋转活塞时不可动作过猛,防止活塞被折断;3.平稳压入气体,防止气压表超程;4.严格掌握放气活塞从打开到关闭的时间,否则会给实验造成较大的不确定度;5.注意掌握实验进程,防止因实验周期过长、环境温度较大变化对实验造成的影响;6.实验结束后将装置复原,注意将放气活塞打开,使容器与大气相同.七、实验思考1.本实验所研究气体的I,II,III状态分别与实验步骤中何时的气体对应?有什么特点?以比大气压p a稍高的压力p1,向玻璃容器中压入适量空气,并以与外部环境温度T e 相等之时单位质量的气体体积(称为比体积或比容)作为V1, I(p1,V1,T e)表示这一状态.而后,急速打开放气活塞,使其绝热膨胀,使其压强降到大气压p a,并以状态II(p a,V2,T2)表示.由于变化是绝热膨胀,故T2<T e;所以若再迅速关闭放气活塞,并放置一段时间,系统将从外界吸收热量,且温度重新回到T e;因为吸热过程中体积V2不变,所以压力将随之增加到p2,即系统又变至状态III(p2,V2,T e).2.本实验中研究的气体是哪一部分?为什么?研究的是储气瓶中的气体再加打入的气体(即一直研究气瓶中存在的气体).。
空气定压比热测定实验报告
空气定压比热测定实验报告空气定压比热测定实验报告一、实验目的本实验的主要目的是通过实验测量空气的定压比热,并对理论值和实测值之间的误差进行分析和探讨。
通过这个实验,可以让学生更好地理解空气的热力学特性,提高实验操作能力和科学研究能力,为今后的科研工作打下基础。
二、实验原理热力学第一定律表明,能量不能被创造或消失,只能从一种形式转化为另一种形式。
热力学第二定律表明,热量自能量高的物体流向能量低的物体。
这些定律在空气的定压下比热测定实验中是非常重要的。
定压比热的定义为物质在固定压力下单位质量热容。
对于一个容器内的气体,温度升高后,气体分子的热运动增强,分子间相互碰撞的力量也会增大,从而使气体的内能增加。
根据热力学第一定律的原理,内能的变化量等于热量和做功之和。
由于在定压下,气体的压强保持不变,因此,气体所做的功可以表示为W=PΔV,其中P为气压,ΔV为气体体积的改变量。
当气体在定压下吸收一定量的热量Q 时,内能增加ΔU=Q-W,由此可得定压比热:Cp=Q/mΔT其中m为气体质量,ΔT为气体所吸收的温度变化(Tf-Ti)。
三、实验仪器1.定容量热器2.热电偶温度计3.电子天平4.压力计四、实验流程1.将热水倒入定容量热器中,温度调至室温+3°C。
2.测试质量为m=0.3g的铜棒的质量,并记录其质量。
3.将铜棒插入设有不漏气的塞子中的热水中,使其达到热平衡。
4.测量热水温度并记录为Ti。
5.将定容量热器加热,使温度上升至90°C左右,并记录温度Tf。
6.较为精确地将铜棒从热水中移动到定容量热器内,此时间隔应尽可能短。
7.立即记录塞子内铜棒的温度,再记录等待2-3分钟后铜棒温度的变化,直到温度基本稳定。
8.根据热力学公式,计算空气的定压比热。
9.重复以上实验,取得一系列数据,并计算试验值的平均值。
五、实验结果在实验中取得了以下数据:Ti = 24°CTf = 89°Cm = 0.3gΔT = 11°C充气前和充气后气压差值为ΔP=4.4kPa通过计算得出的定压比热实验值为Cp=1.008 J/g·℃。
实验一 气体定压比热的测定
实验一 气体定压比热容的测定一、实验目的1. 掌握气体比热容测定装置的基本原理,了解辐射屏蔽绝热方法的基本思路; 2. 进一步熟悉温度、压力和流量的测量方法;3. 测定空气的定压比热容,并与文献中提供的数据进行比较。
二、实验原理按定压比热容的定义, Tq c pp d δ=T c q p p d ⋅=δ⎰⋅=21d T T p p T c m Q气体定压比热容的积分平均值: Tm Q T T m Q c p p pm ∆=-=)(12 (1)式中,Q p 是气体在定压流动过程中由温度T 1被加热到T 2时所吸收的热量(W ),m 是气体的质量流量(kg/s ),△T 是气体定压流动受热的温升(K )。
这样,如果我们能准确的测出气体的定压温升△T ,质量流量m 和加热量Q ,就可以求得气体的定压比热容c pm 。
在温度变化范围不太大的条件下,气体的定压比热容可以表示为温度的线性函数,即 c p =a +bT不难证明,温度T 1至T 2之间的平均比热容,在数值上等于平均温度T m =( T 1+T 2)/2下气体的真实比热容,即c pm =c p [(T 1+T 2)/2]=a+b T m (2)据此,改变T 1或T 2,就可以测出不同平均温度下的比热容,从而求得比热容与温度的关系。
三、实验设备实验所用的设备和仪器主要有风机、流量计、比热仪主体、调压变压器、温度计等。
实验时,被测气体由风机经流量计送入比热仪主体,经加热、均流、旋流、混流后流出。
在此过程中,分别测定:在流量计出口处的干、湿球温度T 0和T w ,气体流经比热仪主体的进出口温度T 1和T 2;气体的体积流量V ;电加热功率P 以及实验时的大气压p b 和流量计出口处的表压p e 。
气体的流量由节流阀控制,气体出口温度由输入电加热器的功率来调节。
本比热仪可测300℃以下气体的定压比热容。
前已指出,提高测量精度的关键是提高Q p 、ΔT 和m 的测量精度,设电加热器的功率为P ,则,P=Q g +Q ζ (3)其中,Q g 是气体所吸收的热量,Q ζ是损失到环境中的热量。
空气比热容比的测定
实验5—2 空气比热容比的测定理想气体的定压比热容C p 和定容比热容C v 之间满足关系:p v C C R -=,其中R 为气体普适常数;二者之比p v C C γ=称为气体的比热容比,也称气体的绝热指数,它在热力学理论及工程技术的实际应用中起着重要的作用,例如:热机的效率及声波在气体中的传播特性都与空气的比热容比γ有关。
【实验目的】⒈ 用绝热膨胀法测定空气的比热容比。
⒉ 观测热力学过程中的状态变化及基本物理规律。
⒊ 学习空气压力传感器及电流型集成温度传感器的原理和使用方法。
【实验原理】把原处于环境压强P 0及室温T 0下的空气状态称为状态O (P 0 ,T 0)。
关闭放气阀、打开充气阀,用充气球将原处于环境压强P 0、室温T 0状态下的空气经充气阀压入贮气瓶中。
打气速度很快时,此过程可近似为一个绝热压缩过程,瓶内空气压强增大、温度升高。
关闭进气阀,气体压强稳定后,达到状态Ⅰ(P 1 ,T 1 )。
随后,瓶内气体通过容器壁和外界进行热交换,温度逐步下降至室温T 0,达到状态Ⅱ(P 2 ,T 0 ),这是一个等容放热过程。
迅速打开放气阀,使瓶内空气与外界大气相通,当压强降至P 0时立即关闭放气阀。
此过程进行非常快时,可近似为一个绝热膨胀过程,瓶内空气压强减小、温度降低;气体压强稳定后,瓶内空气达到状态Ⅲ(P 0 ,T 2 )。
随后,瓶内空气通过容器壁和外界进行热交换,温度逐步回升至室温T 0,达到状态IV(P 3 ,T 0 ),这是一个等容吸热过程。
O (P 0 ,T 0 ) ① 绝热压缩→ Ⅰ(P 1 ,T 1 )② 等容放热→ Ⅱ(P 2 ,T 0 )③ 绝热膨胀→ Ⅲ(P 0 ,T 2 )④ 等容吸热→ IV(P 3 ,T 0 )其中过程①、② 对测量γ没有直接影响,这两个过程的目的是获取温度等于环境温度T 0的压缩空气,同时可以观察气体在绝热压缩过程及等容放热过程中的状态变化。
对测量结果有直接影响的是③、④两个过程。
空气比定压热容的测定
空气比定压热容的测定————————————————————————————————作者: ————————————————————————————————日期:气比定压热容的测定一、实验目的(1)了解比热容测定装置的设备组成及各设备的作用,掌握比热容测定方法。
(2)掌握本实验中的温度、压力、流量、热量等的测定方法。
(3)掌握计算比热值和求得比热容公式的方法,并计算空气的比定压热容。
(4)列表示平均比热容与温度的关系,并用方程表示。
二、实验原理实验台通过在定压条件下加热空气,根据空气温度的变化和流量的大小测出空气的定压比热容,即根据()()[]K kg /kJ 1221•-=t t m Q c p t t p 确定,式中:m 为气体的质量流量,kg/s;p Q 为气体在等压流动过程中的吸热量,k J/s 。
在距室温不很远的温度范围内,空气的比定压热容与温度的关系可近似认为是线性的,即可近似表示为bt a c p +=,由1t 加热到2t 的平均比热容为 2)(21122121t t b a t t bt a c t t t t p ++=-+=⎰,因此,若以221t t +为横坐标,p c 为纵坐标,则可根据不同温度范围内的平均比热容确定截距a 和斜率b ,从而得出比热容随温度变化的近似关系式。
(1)空气中水蒸气容积成分iv ϕ的确定。
大气是含有水蒸气的湿空气,当湿空气的温度由1t 加热到2t 时,根据布置在流量计出口的干湿球温度计读数t 、w t ,从干湿球温度计的湿度表中查的空气的相对湿度ϕ,再由ϕ和干球温度t 从湿空气的焓湿图查出含湿量d ,则可用下式计算出空气中水蒸气的容积成分(也称为体积分数) ﻩ%100622/1622/iv ⨯+=d d ϕ式中:d 为含湿量,g (水蒸气)/kg (干空气)。
(2)湿空气的吸热量p Q 的确定。
当比热议出口空气温度稳定时,湿空气吸收的热量即为电热器消耗的电功率。
实验报告空气比热容比的测定
1. 实验名称空气比热容比的测定2.实验目的(1)了解绝热、等容的热力学过程及有关状态方程。
(2)测定空气的比热容比。
3.实验原理:主要原理公式及简要说明、原理图 (1)热力学第一定律及定容比热容与定压比热容热力学第一定律:系统从外界吸收的热量等于系统内能的增加与系统对外做功之与。
考虑在准静态情况下气体由于膨胀对外做功为PdV dA =,所以热力学第一定律的微分形式为PdV dE dA dE dQ +=+= (1)定容比热容C v 是指1mol 的理想气体在保持体积不变的情况下,温度升高1K 所吸收的热量。
由于体积不变,那么由(1)式可知,这吸收的热量也就是内能的增加(d Q =d E ),所以dTdE dT dQ C v v =⎪⎪⎭⎫⎝⎛=(2) 由于理想气体的内能只是温度的函数,所以上述定义虽然是在等容过程中给出,实际上任何过程中内能的变化都可以写成d E =C v dT定压比热容是指1mol 的理想气体在保持压强不变的情况下,温度升高1K 所吸收的热量。
即pp dT dQ C ⎪⎪⎭⎫⎝⎛=(3) 由热力学第一定律(3)式,考虑在定压过,就有dT dV p dT dE dT dQ pp +⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛(4) 由理想气体的状态方程PV =RT 可知,在定压过程中PRdT dV =,又利用v C dTdE=代入(4)式,就得到定压比热容与定容比热容的关系 R C C v p +=(5)R 是气体普适常数,为8.31 J / mol· K,引入比热容比γ为v p C C /=γ(6)在热力学中,比热容比是一个重要的物理量,它与温度无关。
气体运动理论告诉我们,γ与气体分子的自由度f 有关ff 2+=γ(7) 例如,对单原子气体(Ar 、He),3=f 67.1=γ对双原子气体(N 2、H 2、O 2)5=f40.1=γ,对多原子气体(CO 2、CH 4),6=f 33.1=γ(2)绝热过程系统如果与外界没有热交换,这种过程称为绝热过程,因此,在绝热过程中,d Q =0。
空气比热容比的测定实验报告
一、实验目的1. 通过实验测定室温下空气的比热容比。
2. 深入理解理想气体在绝热膨胀过程中的热力学规律。
3. 掌握气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理空气的比热容比(γ)是指空气的定压比热容(Cp)与定容比热容(Cv)的比值,即γ = Cp / Cv。
对于理想气体,根据热力学定律,有γ = (Cp - Cv) / Cv。
本实验通过测量气体在绝热膨胀过程中的压强和温度变化,计算出空气的比热容比。
三、实验器材1. 储气瓶一套2. 气体压力传感器3. 电流型集成温度传感器4. 测空气压强的三位半数字电压表5. 测空气温度的四位半数字电压表6. 连接电缆及电阻7. 打气球8. 计时器四、实验步骤1. 将储气瓶充满与周围空气同压强同温度的气体,关闭活塞C2。
2. 将打气球连接到充气活塞C1,向储气瓶内充入一定量的气体,使瓶内压强增大,温度升高。
3. 关闭充气活塞C1,等待瓶内气体温度稳定,达到与周围温度平衡。
4. 迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀。
5. 使用气体压力传感器和电流型集成温度传感器实时测量瓶内气体的压强和温度变化。
6. 记录气体膨胀过程中的关键数据,如初始压强P0、初始温度T0、膨胀后压强P1、膨胀后温度T1等。
五、实验结果及数据处理1. 根据实验数据,绘制气体膨胀过程中的压强-温度图。
2. 利用理想气体状态方程 P0V0 = P1V1 和理想气体绝热方程P0^γ = P1^γ,求解空气的比热容比γ。
3. 对实验数据进行误差分析,包括系统误差和随机误差。
六、实验结果分析1. 通过实验,测量得到室温下空气的比热容比γ ≈ 1.4。
2. 分析实验结果,发现实验值与理论值基本吻合,说明本实验方法可靠。
3. 通过实验,加深了对理想气体绝热膨胀过程中热力学规律的理解。
七、实验总结1. 本实验通过测定室温下空气的比热容比,验证了理想气体绝热膨胀过程中的热力学规律。
空气比热容比的测定
空气比热容比的测定空气比热容比是一个非常重要的物理量,它是描述气体热力学性质的基本参数之一。
在热力学研究和工程应用中,对空气比热容比的精确测定是非常关键的。
空气比热容比的定义是氧与氮分子热容比值,也就是γ=cP/cV。
其中,cP是定压比热容,cV是定容比热容。
在理想气体模型中,γ=1.4。
空气比热容比的测量方法有许多种,下面介绍其中一种方法——焦耳法。
焦耳法的原理是通过在定压状态下给气体传递一定的热量,来测定气体的比热容及其比热容比。
实验器材主要包括加热器、水箱、装置及热计等。
具体实验步骤如下:1、将空气流量计接入装置,使空气流经加热器,并调节空气流量控制阀门,调节至合适的加热器进气压力和水箱出气口压力,保持稳定的气流流量。
2、将实验热计与装置连接,打开热计,读取热计的初值,并且记录时间t0。
3、将实验装置加热到恒定温度T0,此时读取加热器进气的温度和压力,水箱出气口的温度和压力,并且记录下这些数据。
同时关闭加热器电源。
4、打开一倍流量控制阀门调节阀门,使空气流经装置时产生压缩波,观察和记录热计内的压强和时间变化曲线。
5、当热计内气压达到最大值时立即记录此时的值,并读取此时的热计终值,记录下来并且记录时间t。
6、计算所测得的气体的定压比热容。
在实验中,可以使用以下公式计算定压比热容:cP = Q/mΔT,其中Q表示在实验过程中传递给气体的热量,m表示气体的质量,ΔT 表示空气温度变化量。
7、计算所测得的气体的定容比热容。
可以使用以下公式计算定容比热容:cV=cP/γ8、计算空气比热容比。
γ=cP/cV通过以上实验步骤,可以测得空气的定压比热容、定容比热容以及空气比热容比。
在实验中,需要严格控制各个实验参数,避免实验误差的发生。
同时,实验结果的分析也非常重要,需要对结果进行分析和讨论,并且对实验结果进行准确的处理。
总之,空气比热容比的测定是一个非常重要的实验,对热力学研究和工程应用具有重要意义。
在实验中,需要掌握实验技术和注意实验精度,才能得到准确的实验结果。
气体定压比热测定实验指导书
气体定压比热测定实验指导书气体定压比热容的测定实验是工程热力学基本实验之一,实验中涉及温度、压力、热量(电功率)、流量等基本量的测量,计算中用到比热及混合气体(湿空气)方面的基本知识。
本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,有利于培养分析问题和解决问题的能力。
.一、实验要求1. 了解气体比热测定装置的基本原理和构思。
2. 熟悉本实验中测温、测压、测热、测流量的方法。
3. 掌握由基本数据计算出比热值和比热公式的方法。
4. 分析本实验产生误差的原因及减小误差的可能途径。
二、实验装置介绍1、实验所用的设备和仪器仪表由风机、流量计,比热仪本体、电功率调节测量系统共四部分组成,实验装置系统如图1所示。
2、装置中采用湿式流量计测定气流流量,流量计出口的恒温槽用以控制测定仪器出口气流的温度。
装置可以采用小型单级压缩机或其它设备作为气源设备,并用钟罩型气罐维持供气压力稳定。
气流流量用调节阀1调整。
3、比热容测定仪本体(图2)由内壁镀银的多层杜瓦瓶2,进口温度计1和出口温度计8(铂电阻温度计或精度较高的水银温度计)电加热器3和均流网4,绝缘垫5,旋流片6和混流网7组成。
4、气体自进口管引入,进口温度计4测量其初始温度,离开电加热器的气体经均流网4均流均温,出口温度计8测量加热终了温度,后被引出。
5、该比热仪可测300℃以下气体的定压比热。
三、实验方法及数据处理实验中需要测定干空气的质量流量g m 、水蒸气的质量流量w m 、电加热器的加热量(即气流吸热量)'p Q 和气流温度等数据,测定方法如下:1.干空气的质量流量g m 和水蒸气的质量流量w m电加热器不投入,摘下流量计出口与恒温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流干球温度0t 和湿球温度w t 温度(或由流量计上的温度计测量和相对湿度ϕ),根据0t 与w t (或0t 与ϕ值)由湿空气的焓-湿图确定含湿量d (g /k g ),并计算出水蒸气的容积成分水蒸气的容积成分计算式:622/1622/d d y w += (1)d --- 克水蒸汽/千克干空气. 图1测定空气定压比热容的实验装置系统1-节流阀;2-流量计;3-比热仪本体;4-温控仪;5功率表;6开关;7-风机。
实验一 空气定压比热容测定
实验一 空气定压比热容测定一、实验目的1.增强热物性实验研究方面的感性认识,促进理论联系实际,了解气体比热容测定的基本原理和构思。
2.学习本实验中所涉及的各种参数的测量方法,掌握由实验数据计算出比热容数值和比热容关系式的方法。
3.学会实验中所用各种仪表的正确使用方法。
二、实验原理由热力学可知,气体定压比热容的定义式为()p p hc T∂=∂ (1) 在没有对外界作功的气体定压流动过程中,p dQ dh M=, 此时气体的定压比热容可表示为p p TQM c )(1∂∂=(2) 当气体在此定压过程中由温度t 1被加热至t 2时,气体在此温度范围内的平均定压比热容可由下式确定)(1221t t M Q c p t t pm-=(kJ/kg ℃) (3)式中,M —气体的质量流量,kg/s;Q p —气体在定压流动过程中吸收的热量,kJ/s 。
大气是含有水蒸汽的湿空气。
当湿空气由温度t 1被加热至t 2时,其中的水蒸汽也要吸收热量,这部分热量要根据湿空气的相对湿度来确定。
如果计算干空气的比热容,必须从加热给湿空气的热量中扣除这部分热量,剩余的才是干空气的吸热量。
低压气体的比热容通常用温度的多项式表示,例如空气比热容的实验关系式为3162741087268.41002402.41076019.102319.1T T T c p ---⨯-⨯+⨯-=(kJ/kgK)式中T 为绝对温度,单位为K 。
该式可用于250~600K 范围的空气,平均偏差为0.03%,最大偏差为0.28%。
在距室温不远的温度范围内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似的表示为Bt A c p += (4)由t 1加热到t 2的平均定压比热容则为m t t t t pm Bt A tt B A dt t t Bt A c+=++=-+=⎰221122121(5) 这说明,此时气体的平均比热容等于平均温度t m = ( t 1 + t 2 ) / 2时的定压比热容。
大学物理实验空气比热容比的测定实验报告
大学物理实验空气比热容比的测定实验报告一、实验目的1、学习用绝热膨胀法测定空气的比热容比。
2、观测热力学过程中状态的变化及基本物理规律。
3、学习使用气压计、温度计等实验仪器。
二、实验原理气体的比热容比γ定义为定压比热容 Cp 与定容比热容 Cv 之比,即γ = Cp / Cv 。
对于理想气体,比热容比γ只与气体分子的自由度有关。
单原子分子气体(如氦、氖等)γ = 5/3,双原子分子气体(如氧气、氮气等)γ ≈ 7/5。
本实验采用绝热膨胀法测定空气的比热容比。
实验装置主要由储气瓶、玻璃管、气阀、压强计等组成。
实验过程中,首先关闭放气阀,使瓶内充满一定压强的气体。
打开放气阀,瓶内气体迅速绝热膨胀,压强降低,温度也随之降低。
由于放气时间很短,可以认为这是一个绝热过程。
绝热过程满足方程:p1V1^γ =p2V2^γ其中 p1、V1 为膨胀前气体的压强和体积,p2、V2 为膨胀后气体的压强和体积。
当瓶内气体压强从 p1 变化到 p2 时,测量出相应的压强值,再根据储气瓶的体积,就可以计算出空气的比热容比γ。
三、实验仪器1、储气瓶:储存一定量的气体。
2、压强计:测量瓶内气体的压强。
3、温度计:测量气体的温度。
4、气阀:控制气体的进出。
四、实验步骤1、实验前准备检查实验仪器是否完好,储气瓶及各连接处是否漏气。
读取初始压强 p0 和环境温度 T0 。
2、打开放气阀,使瓶内气体迅速绝热膨胀,待瓶内压强稳定后,关闭放气阀。
3、等待一段时间,使瓶内气体温度恢复到环境温度,读取此时的压强 p1 。
4、重复步骤 2 和 3 多次,记录多组数据。
5、实验结束后,整理实验仪器。
五、实验数据记录与处理|实验次数|初始压强 p0 (Pa) |最终压强 p1 (Pa) |环境温度 T0 (K) ||::|::|::|::|| 1 |_____ |_____ |_____ || 2 |_____ |_____ |_____ || 3 |_____ |_____ |_____ || 4 |_____ |_____ |_____ || 5 |_____ |_____ |_____ |根据绝热过程方程p1V1^γ = p2V2^γ,可得γ = ln(p0 / p1) /ln(V1 / V2) 。
空气比定压热容的测定
空气比定压热容的测定气比定压热容的测定一、实验目的(1)了解比热容测定装置的设备组成及各设备的作用,掌握比热容测定方法。
(2)掌握本实验中的温度、压力、流量、热量等的测定方法。
(3)掌握计算比热值和求得比热容公式的方法,并计算空气的比定压热容。
(4)列表示平均比热容与温度的关系,并用方程表示。
二、实验原理实验台通过在定压条件下加热空气,根据空气温度的变化和流量的大小测出空气的定压比热容,即根据()()[]K kg /kJ 1221•-=t t m Q c p t t p 确定,式中:m 为气体的质量流量,kg/s ;p Q 为气体在等压流动过程中的吸热量,kJ/s 。
在距室温不很远的温度范围内,空气的比定压热容与温度的关系可近似认为是线性的,即可近似表示为bt a c p +=,由1t 加热到2t 的平均比热容为2)(21122121t t ba t t bt a c t t t t p ++=-+=⎰,因此,若以221t t +为横坐标,p c 为纵坐标,则可根据不同温度范围内的平均比热容确定截距a 和斜率b ,从而得出比热容随温度变化的近似关系式。
(1)空气中水蒸气容积成分iv ϕ的确定。
大气是含有水蒸气的湿空气,当湿空气的温度由1t 加热到2t 时,根据布置在流量计出口的干湿球温度计读数t 、w t ,从干湿球温度计的湿度表中查的空气的相对湿度ϕ,再由ϕ和干球温度t 从湿空气的焓湿图查出含湿量d ,则可用下式计算出空气中水蒸气的容积成分(也称为体积分数) %100622/1622/iv ⨯+=d d ϕ式中:d 为含湿量,g (水蒸气)/kg (干空气)。
(2)湿空气的吸热量p Q 的确定。
当比热议出口空气温度稳定时,湿空气吸收的热量即为电热器消耗的电功率。
功率的测定方法有两种,一种是根据测量的电压和电流计算;另一种由功率表直接测量。
吸热量的单位为kJ/s 。
(3)干空气质量流量m 的确定)(15.27305.287/1000/10)1()8.9(iv 0+⨯⨯-⨯∆+==t h p T R V p m a a a a τϕ 式中:0p 为当地的大气压力,Pa ;a p 为干空气的压力,Pa ;a V 为干空气的体积,m 3;a R 为干空气的气体常数,)(K kg J/•;h ∆为流量计出口处的表压力,mmH 2O ;t 为流量计出口处的温度,℃;τ为每10L 气体通过流量计所需的时间,s 。
空气定压比热容
空气定压比热容
1、空气的比热容没有确定值,即便是在温度确定时,通常使用
定压比热容或定容比热容来反映空气比热容的大小,这两者都与温度有关(温差不太大时可认为基本相等)。
2、空气的比热容与温度有关,温度为250K时,空气的定压比热容cp=1.003kJ/(kg×K),300K时,空气的定压比热容
cp=1.005kJ/(kg×K)。
一定质量的物质,在温度升高时,所吸收
的热量与该物质的质量和升高的温度乘积之比,称做这种物质的比热容(比热),用符号c表示。
3、在普通物理实验中,测定空气比热容比的常用方法有绝热
膨胀法、振动法、EDA方法等。
大学物理实验中的空气比热容比实验采用的大多是FD-NCD型测定仪,这种装置是人工打气、放气和
关闭气阀来实现空气的绝热膨胀等过程,从而测得空气比热容比γ。
4、振动法原理是通过实现热力学中的准静态过程(等温、等
容及绝热),小钢球以小孔为中心上下作简谐振动,测定振动周期
来计算结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气比定压热容的测定
一、实验目的
(1)了解比热容测定装置的设备组成及各设备的作用,掌握比热容测定方法。
(2)掌握本实验中的温度、压力、流量、热量等的测定方法。
(3)掌握计算比热值和求得比热容公式的方法,并计算空气的比定压热容。
(4)列表示平均比热容与温度的关系,并用方程表示。
二、实验原理
实验台通过在定压条件下加热空气,根据空气温度的变化和流量的大小测出空气的定压比热容,即根据()()[]K kg /kJ 1221•-=t t m Q c p t t p 确定,式中:m 为气体
的质量流量,kg/s ;p Q 为气体在等压流动过程中的吸热量,kJ/s 。
在距室温不很远的温度围,空气的比定压热容与温度的关系可近似认为是线性的,即可近似表示为bt a c p +=,由1t 加热到2t 的平均比热容为
2
)(21122121t t b
a t t bt a c t t t t p ++=-+=⎰,因此,若以221t t +为横坐标,p c 为纵坐标,则可根据不同温度围的平均比热容确定截距a 和斜率
b ,从而得出比热容随温度变化的近似关系式。
(1)空气中水蒸气容积成分iv ϕ的确定。
大气是含有水蒸气的湿空气,当湿
空气的温度由1t 加热到2t 时,根据布置在流量计出口的干湿球温度计读数t 、
w t ,从干湿球温度计的湿度表中查的空气的相对湿度ϕ,再由ϕ和干球温度t 从湿空气的焓湿图查出含湿量d ,则可用下式计算出空气中水蒸气的容积成分(也称为体积分数) %100622/1622/iv ⨯+=d d ϕ
式中:d 为含湿量,g (水蒸气)/kg (干空气)。
(2)湿空气的吸热量p Q 的确定。
当比热议出口空气温度稳定时,湿空气吸收的热量即为电热器消耗的电功率。
功率的测定方法有两种,一种是根据测量的电压和电流计算;另一种由功率表直接测量。
吸热量的单位为kJ/s 。
(3)干空气质量流量m 的确定
)
(15.27305.287/1000/10)1()8.9(iv 0+⨯⨯-⨯∆+==t h p T R V p m a a a a τϕ 式中:0p 为当地的大气压力,Pa ;a p 为干空气的压力,Pa ;a V 为干空气的体积,
m 3;a R 为干空气的气体常数,)(K kg J/•;h ∆为流量计出口处的表压力,mmH 2O ;t 为流量计出口处的温度,℃;τ为每10L 气体通过流量计所需的时间,s 。
(4)水蒸气质量流量m 的确定
)
(15.2735.461/1000/10)8.9(iv 0v v v v +⨯⨯⨯∆+==t h p T R V p m τϕ 式中:v p 为当地的大气压力,Pa ;v V 为水蒸气的体积,m 3;a R 为水蒸气的气体常数,J /(kg •K)。
(5)水蒸气吸热量v Q 的确定
[])(0002443.0844.11212v v t t t t m Q -+-=)( (kJ/s )
式中:1t 、2t 为气体流经比热仪主体的进、出口温度,℃。
(6)干空气的比定压热容计算
()()
()[]K kg /kJ 12a v 12a a 21•--=-=t t m Q Q t t m Q c p t t p 式中:a Q 为干空气的热流量,kJ/s 。
由以上计算过程可以看出,要计算干空气的比定压热容,需要测定的相关量分别是p 021w ,,,,,,,,Q d h p t t t t ∆τ。
三、实验装置及其规
实验装置由风机、湿式气体流量计(含温度计、U 行压差计)、比热仪主体、电功率调节及测量系统等四部分组成,如图1所示。
附属测量仪表有大气压力表、干湿球温度计、秒表,图2为比热仪主体结构示意图。
图1 比定压热容实验装置
图2 比热仪主体
实验时,被测空气(也可是其他气体)有风机经流量计送进比热仪主体,经加热、均流、旋流、混流后流出。
气体流量有节流阀控制,气体出口温度由输入电加热器的功率来调节。
该比热仪可测300度以下气体的定压比热容。
规:(1)切勿在无气流通过的情况下将加热器投入工作,以免引起局部过热而损坏比热仪主体。
(2)输入加热器的电压不得超过200V,气体出口最高温度不得超过200℃。
(3)加热和冷却要缓慢进行,防止比热仪主体因为温度骤变而破裂。
(4)测度表压力h
∆时,因液面上下波动,应读取其平均值。
(5)不许随意调整数控温度表的温度设定值。
(6)不要在靠近风机处方纸屑,以免将纸屑吸入系统或堵塞管道。
(7)试验结束后,应先关加热器,等
2
t降至30℃左右再停风机,最后关掉总电源。
四、实验步骤
(1)检查调压器的输出电压是否在零位状态,不再时,调至零位状态。
加热器和风机开关全部出于关闭状态(向下),节流阀全开。
(2)接通总电源,启动风机,摘下流量计出口温度计活塞,调节节流阀直至流量达到仪器上标注的额定值附近。
流出的空气流吹过干湿球温度计的湿纱布表
面,直至湿球温度计的读值恒定不变,记录湿球温度
w
t。
(3)将温度计活塞插回流量计,调大流量,使它仍保持在额定值附近。
当指针转动均匀时,用秒表测量流过流量计10L空气所需时间τ。
打开加热器开关,逐渐提高加热器功率,使出口温度升高至预计温度(最高不超过200℃)。
可根
据式
τt
P
∆
≈12预先估计所需功率,式中:P为电功率,W;t∆为进出口温度差,℃;
为每流过10L空气所需时间,s。
t在10min之无变化或有微小起伏,即可(4)带出口温度稳定后(出口温度
2
视为稳定),读出并记录相关数据,填入数据记录表中。
(5)改变加热器功率使出口温度发生变化,带出口温度稳定后,再读取数据,如此重复不少于3次,以便进行数据整理及误差分析。
(6)测试结束后,将调压旋钮旋至输出电压零位,并切断加热器电源,但风机应继续运转,直至出口温度将至30℃以下后再停运,然后关闭总电源,结束实验。
五、数据记录与处理
1.常规数据记录
t=27℃
室温。