《用代入消元法解二元一次方程组》教案
二元一次方程组的解法代入消元法教案
消元——解二元一次方程组(第1课时)——代入消元法一、教学目标:1、能较熟练地用代入消元法解二元一次方程组;2、理解解二元一次方程组时的“消元”思想,和“化未知为已知、化复杂为简单”的化归思想;3、引导学生自由讨论,养成检查的习惯,培养联想旧知识解决新知识的能力。
二、教学重、难点:1、用代入消元法解二元一次方程组的基本步骤;2、解二元一次方程组过程中“二元”转化为“一元”的消元思想。
三、教学方法:讨论法、归纳法四、教学工具:教案、多媒体五、教学过程:1、知识回顾:什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?2、新课讲解:问题一:有一个矩形草坪,周长是36米,已知长是宽的两倍,求长、宽各多少米?如果用之前一元一次方程的知识,我们可以设宽为x米,而长为2x米,由题目已知可得一元一次方程:2(2x+x)=36按解一元一次方程的步骤,解得x=6,所以草坪的长为12米,宽为6米。
但是,如果用二元一次方程组的知识,我们可以假设长为y米,宽为x米,由题目两个等量关系,我们可以得到一个二元一次方程组:y=2x (1)2(x+y)=36 (2)讨论一:应该怎么解这个二元一次方程组?它跟上面的一元一次方程有什么关系?对比上面的一元一次方程和二元一次方程组,我们发现,如果把二元一次方程组里的方程(1)代入到方程(2)中,我们就得到了一模一样的一元一次方程: 2(2x+x )=36按照一元一次方程的解法,我们解得x=6,再把x=6代入到方程(1)中,得到y=12。
经过检验, 就是原二元一次方程组的解。
这样,我们运用了代入、 消元的方法,就把一个二元一次方程组解出来了。
讨论二:在解上面的二元一次方程组的过程中,非常关键的一步是把方程(1)代入到方程(2)中,把二元一次方程组化归为一元一次方程,从而把复杂的问题化为简单化。
那么这种代入、消元的方法能否适合其它二元一次方程组呢?问题二:一个班级总人数有52人,需要佩戴眼镜的有20人,其中男生x 人,女生y 人,又有3x+2y=52,求x ,y 各为多少?讲解:根据题目的两个等量关系,我们可以得到一个二元一次方程组:首先,我们可以把方程(1)进行移项变换,得到:y=20-x (3)接着,把方程(3)代入到方程(2),得到:3x+2(20-x )=52这样,就把二元一次方程组化归为一元一次方程,解这个一元一次方程,得到x=12。
代入消元法解二元一次方程组教案
代入消元法解二元一次方程组教学目标1、会用代入消元法解一些简单的二元一次方程组。
2、理解解二元一次方程组的思路是消元,体会化归思想。
教学重难点教学重点:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。
教学难点:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。
体会代入消元法和化未知为已知的数学思想。
教学过程设计一、创设情境,提出问题问题1:篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。
设胜x场,负(10-x)场。
根据题意,得2x+(10-x)=16x=6,则胜6场,负4场。
教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能.设胜x场,负y场.根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.二、互动新授问题2:对比上面的方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y 都是这个队的负场数,由此可以由一个方程得到y 的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
师生活动:根据上面分析,你们会解这个方程组了吗?学生回答:会.⎩⎨⎧16 =y +2x 10 =y +x 由①,得y=10-x ③把③代入②,得2x+(10-x)=16x=6问题3:教师追问:你能把③代入①吗?试一试?师生活动:学生回答:不能,通过尝试,x 抵消了.设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。
让学生实际操作,得到体验,更好地认识这一点.教师追问:你能求y 的值吗?师生活动:学生回答:把x=6代入③得y=4教师追问:还能代入别的方程吗?学生回答:能,但是没有代入③简便教师追问:你能写出这个方程组的解,并给出问题的答案吗?学生回答:x=6,y=4,这个队胜6场,负4场设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。
代入法解二元一次方程组(教案)
代入法解二元一次方程组(教案) 8.2消元——解二元一次方程组第一课时:代入法解二元一次方程教学目标:1.能够用代入消元法解简单的二元一次方程组;2.初步理解解二元一次方程组的思想是“消元”;3.在探究代入消元法的过程中体会化归思想。
教学重难点:1.教学重点:用代入法解简单的二元一次方程组;2.教学难点:将“二元”转化为“一元”,消元思想。
教学方法:引导发现、练法相结合教具准备:多媒体设备教学过程:一)复旧知,引入新课1.判断下列式子是否为二元一次方程:① xy + 3 = 0② x - y = 2③ x² + x = 10④ 1/x + y = -3⑤ x + 3y = -22.判断下列式子是否为二元一次方程组:x + 3y = 102x + z = -1ab = -12a + b = 15m + n = -13m - n = -23t + s = 1s = 11t3.已知二元一次方程 x - y = 2,如何用 x 表示 y?如何用 y 表示 x?将含 x 的项和常数项移到方程的右边,含 y 的项移到方程的左边,再将 y 的系数化为 1.①用 x 表示 y:x - y = 2②用 y 表示 x:x - y = 2y = 2 - xy = -2 + x练:课本 P93 练1将下列方程改写为含 x 的式子表示 y 的形式:1)2x - y = 32)3x + y - 1 = 0二)层层递进,探索新知探究:(回顾引例)解法一:设这个队胜了 x 场,负了 y 场。
由题意得:2x + y = 16y = 4解法二:设这个队胜了 x 场,则负了 (10-x) 场。
由题意得:2x + (10 - x) = 16x = 6问题:1)观察问题中的一元一次方程和二元一次方程组之间有什么联系?2)我们可以把方程②中的 y 替换为 10-x 吗?怎么换?3)这时,二元一次方程组转换为什么方程?这个方程可以解吗?可以求哪个未知数的值?问题解决了吗?4)另一个未知数 y 的值如何求?5)上述过程中,我们是如何消元的?解答:1)一元一次方程可以从二元一次方程组中得到;2)可以,将 y 的值用 10-x 替换;3)二元一次方程组转换为一元一次方程,可以解出 x 的值,还需求 y 的值;4)将 x 的值带入方程中,求出 y 的值;5)通过替换 y 的值,将二元一次方程组转换为一元一次方程,实现消元。
人教版七年级下册8.2.1用代入消元法法解二元一次方程组(教案)
-难点四:针对实际问题,如“小明和小华一起去书店,小明比小华多走了一段路,已知小明的速度是小华的两倍,两人一共用了30分钟,问小明和小华各走了多少时间?”需要指导学生如何建立方程组模型,并应用代入消元法求解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代入消元法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二元一次方程组的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生逻辑推理能力,通过代入消元法解二元一次方程组的实践,让学生理解数学问题的解决过程,提高他们分析问题和解决问题的能力;
2.增强学生数学运算能力,熟练掌握代入消元法的运算步骤,培养学生的运算准确性和效率;
3.激发学生数学建模思维,将现实生活中的问题转化为数学模型,通过代入消元法求解,使学生体会数学的应用价值;
2.教学难点
-难点一:选择适当的方程进行代入,特别是当方程组中方程的系数较复杂时,如何选择简化的方程;
-难点二:在代入过程中,正确处理变量间的替换关系,避免计算错误;
-难点三:理解代入消元法与换元消元法的区别和联系,以及在不同问题中如何选择合适的方法;
-难点四:将实际问题转化为方程组模型,并应用代入消元法求解。
此外,我也在思考如何更好地处理教学难点。在今后的教学中,我可能会引入更多的实际案例,让学生在不同的情境中应用代入消元法,通过反复的实践,加深对难点知识的理解。
用代入消元法解二元一次方程组教案
用代入消元法解二元一次方程组教案用代入消元法解二元一次方程组教案利用代入消元法解二元一次方程教案〔北师大版新课标实验教材八年级上册〕一、教学目的1、知识与技能会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。
2、过程与方法运用代入消元法解二元一次方程;理解解二元一次方程时的“消元”思想,初步体会“化未知为”的化归思想。
3、情感、态度、价值观在学生理解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“”和化复杂问题为简单问题的化归思想。
感受学习数学的乐趣,进步学习数学的热情;培养学生合作交流,自主探究的`好习惯。
二、教学重、难点1、教学重点会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。
2、教学难点“消元”的思想;“化未知为”的化归思想。
三、教学设计1、复习,引入新课上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。
下面请同学们回忆一下它们分别是怎样定义的?〔同学们说,说不完的老师利用ppt进展展示〕我们知道:合适一个二元一次方程组的一组未知数的值叫做这个二元一次方程组的解。
那么,我们能不能求出它的解呢?要怎样求呢?2、新课讲解〔1〕来看我们课本上的例子:上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。
...........(1)?x?y?1.......... ?x?1?2(y?1)........ ....(2)?如今要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?〔学生讨论,老师巡视指导〕通过同学们的讨论我们已经有理解题思想。
首先,由方程〔1〕将x视为数解出y=x-2,由于方程组中一样的字母表示同一未知数,所以可以用x-2代替方程〔2〕中的y,即将y=x-2代入方程〔2〕。
七年级数学《用代入消元法解二元一次方程组》教学设计
(一) 创设情境 新课引入
公主被困住了城堡了,我们去看一看吧.
(录音)公主的话:同学们好! 我是公主,我被困在城堡里了,你们 来解救我,好吗?首先去搜集小蘑菇,你 们中间有九个小蘑菇,线索就在小蘑菇的 身后. 问:每组的式子有什么特点?
学生参加游戏 并思考回答问 题.
在游戏的同时 复习二元一次 方程,用含一个 未知数的式子 表示另一个未 知数.
一次方程组的
方法.
⑤ 验——口头检验.
教学过程
教师活动
学生活动
设计意图
6
闯关游戏
在教师的
我们已经获得了知识,要想救出公主, 引导下,让学
大家有没有信心?孩子们,加油吧!
生自己选题来
1.已知 3x y 1,用含 x 的式子表示 y , 做,体验竞赛
则 y = ______________.
的乐趣.
另一个未知数; ② 代——消去一个元; ③ 解——分别求出两个未知数的值; ④ 写——写出方程组的解;
通过尝试完成
练习题,及时巩
固新知,规范做 学 生 独 立 完 题格式. 成,黑板演示,
多媒体展示,
教师纠正错误 并规范书写.
总结归纳代入 消元法解二元
体会合并同类 项对化简方程 的作用. 通过对“变、代、 解、写、验”的 归纳,完善解题 步骤.
教学过程
教师活动
5
学生活动
设计意图
问题:
1.可以用含 y 的式子表示 x 吗? 2.把③式代入①式中可以吗?可以求解
吗?为什么要代入③式中呢?
提出问题,让 学生更为透彻
进一步挖掘,提 出问题,突破学 习中的重难点.
3.解出的 x 的值代入①、②两式中可以求 的理解代入消 元法的解二元
代入消元法——解二元一次方程组教学设计
代入消元法——解二元一次方程组教学设计《代入消元法——解二元一次方程组》教学设计安顺市普定县补郎中学杨兴一、教材依据人民教育出版社七年级数学下册第八章第二节第一课时二、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。
教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。
同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。
三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地运用“代入消元法”解方程组。
过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。
情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。
四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。
五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。
六、教学方法引导发现法、谈话讨论法、练习法、尝试指导法。
七、教学具准备电脑、投影仪。
八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、下列方程中是二元一次方程的有()A.xy-7=1B.2x-1=3y+1C.4x-5y=3x-5yD.2x+3z+4y=63、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______。
消元代入法解二元一次方程组教案
8.2第一课时用代入消元法解二元一次方程组教学目标:1、知识与技能:(1)会用代入法解二元一次方程组。
(2)能体会“代入法”解二元一次方程组的基本思路。
2、过程与方法:(1)通过代入消元,使学生初步了解把“未知”转化为“已知”,和把复杂问题转化为简单问题的思想方法。
(2)培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较为简单的方程进行变形。
3、情感与态度:(1)训练学生的运算技巧,养成检验的习惯。
(2)通过本节课的学习,渗透化归的数学思想。
重点:用代入消元法解二元一次方程组难点:探究如何用代入法将“二元”化为“一元”教学方式:常规课教学过程:一、 问题情境导入(课件展示问题情境)同学们,上节课我们学习什么是二元一次方程组。
这节课,我们将对二元一次方程组进行更加深入的学习,现在,我们先来回顾一下上节课两个小朋友的对话,一起来帮助他们解决这个问题吧。
甲:昨天,我们8个人去红山公园玩,买门票花了34元.乙:每张成人票5元,每张儿童票3元.你们到底去了几个成人、几个儿童呢?解:设他们中有x 个成人,y 个儿童.我们列出的二元一次方程组为:8,5334.x y x y +=⎧⎨+=⎩想想以前学习过的一元一次方程,能不能解决这一问题?X 表示成年人的个数,成年人和儿童一共有8人,如何用含x 的式子来表示儿童的个数呢?(生答):8-x那我们就可以用一元一次方程来解决这一问题了。
解:设去了x 个成人,则去了(8-x)个儿童,根据题意,得: 解得:x=5.将x=5代入8-x=8-5=3.().34835=-+x x(师总结)同学们,通过这种等量的替换,我们把二元方程变成了一个一元方程,而一元一次方程,是我们能够解决的,这是不是给我们提供了一种解二元一次方程组的方法呢。
接下来我们就来探讨一下如何解二元一次方程组。
二、 新课讲解解:设去了x 个成人,去了y 个儿童,根据题意,得:由①得:y=8-x把③代入②得:5x+3(8-x)=34.解得:x = 5.把x=5代入③得:y=3所以原方程组的解为: ⎩⎨⎧==.3,5y x注:引导学生用第2个方程对第一个方程进行替换,从而达到消元的目标。
《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
代入消元法解方程组的教案及说课稿
一、教案基本信息代入消元法解方程组的教案及说课稿学科领域:数学年级:八年级课时:2课时教学目标:1. 理解代入消元法的概念和意义;2. 学会运用代入消元法解二元一次方程组;3. 提高解决实际问题的能力。
教学内容:1. 代入消元法的定义和步骤;2. 代入消元法在解二元一次方程组中的应用。
二、教学过程第一课时1. 导入:通过复习一元一次方程的解法,引出代入消元法的概念。
2. 新课讲解:(1)介绍代入消元法的定义和意义;(2)讲解代入消元法的步骤;(3)通过例题演示代入消元法的运用。
3. 课堂练习:让学生独立完成练习题,巩固代入消元法的应用。
4. 总结:对本节课的内容进行总结,强调代入消元法的步骤和注意事项。
第二课时1. 复习导入:回顾上节课的内容,引出本节课的主题。
2. 课堂讲解:(1)讲解代入消元法在解二元一次方程组中的应用;(2)通过例题展示解题过程,让学生掌握解题方法。
3. 课堂练习:让学生独立完成练习题,进一步巩固代入消元法的应用。
4. 拓展提高:提出一些实际问题,引导学生运用代入消元法解决问题。
5. 总结:对本节课的内容进行总结,强调代入消元法在实际问题中的应用。
三、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习状态。
2. 练习完成情况:检查学生完成练习题的数量和质量,评价学生对代入消元法的掌握程度。
3. 实际应用:观察学生在解决实际问题时的表现,评价学生运用代入消元法解决问题的能力。
四、教学反思1. 讲解代入消元法时,要清晰地阐述每一步骤,让学生易于理解;2. 举例时要选择具有代表性的题目,便于学生模仿和掌握;3. 课堂练习环节,要关注学生的解题过程,及时发现并纠正错误;4. 在解决实际问题时,引导学生运用代入消元法,提高学生的应用能力。
五、课后作业1. 复习代入消元法的步骤和应用;2. 完成课后练习题,巩固代入消元法的运用;六、教学策略1. 案例教学:通过具体的例题,让学生理解代入消元法的原理和步骤。
人教版数学七年级下册8.2《代入消元法解二元一次方程组》第一课时教学设计
1.创设情境,激发兴趣:通过引入生活中的实际问题,让学生感受到数学的实用性和趣味性,激发学生学习代入消元法的兴趣。
2.分步骤教学,循序渐进:将代入消元法的步骤分解,从简单的例子入手,逐步引导学生掌握每个步骤的操作,降低学习难度。
3.小组合作,互动交流:在教学过程中,组织学生进行小组合作,让学生在讨论、交流中相互学习,共同进步。
7.关注个体差异,因材施教:在教学过程中,关注每个学生的掌握情况,对学习困难的学生给予更多关心和指导,确保每个学生都能跟上教学进度。
8.精讲精练,提高效率:在课堂上,教师要以精讲为主,注重启发学生思考,同时设计具有针对性的练习题,提高课堂效率。
9.课后巩固,拓展提升:通过课后作业和拓展任务,巩固所学知识,培养学生自主学习的习惯,提高学生的综合素养。
五、作业布置
为了巩固本节课所学内容,培养学生的自主学习和解决问题的能力,特布置以下作业:
1.请同学们完成课本第8.2节后的练习题1、2、3,并认真检查答案,确保解题过程正确无误。
2.选择一道生活中的实际问题,将其转化为二元一次方程组,并运用代入消元法求解。要求写出详细的解题过程和答案。
3.小组合作,共同探讨以下问题:在代入消元法中,为什么需要先确定一个方程为已知方程,另一个方程为未知方程?请给出理由。
2.提问:我们之前学过解一元一次方程,那么对于这个二元一次方程组,我们应该如何求解呢?从而引出本节课的学习内容——代入消元法解二元一次方程组。
(二)讲授新知,500字
1.教师讲解代入消元法的概念和原理,通过具体的二元一次方程组实例,演示代入消元法的步骤和操作。
2.讲解代入消元法的三个步骤:
a.确定一个方程为已知方程,另一个方程为未知方程。
七年级数学下册《代入消元法解二元一次方程组》教案、教学设计
(4)实践:让学生独立完成练习题,巩固代入消元法的应用,教师巡回指导,解答学生的疑问。
(5)总结:引导学生总结代入消元法的解题步骤和注意事项,提高学生的归纳总结能力。
3.教学评价:
(1)关注学生在课堂上的参与程度,评价学生在小组合作中的表现,了解学生的学习效果。
1.学生对方程组的理解程度,部分学生可能对方程组的结构及解法仍存在疑惑,需要教师耐心引导和讲解。
2.学生在解题过程中可能遇到代入、替换等操作上的困难,教师应适时给予指导和鼓励,帮助学生克服困难,提高解题能力。
3.学生的自主学习能力尚在培养中,需要教师在教学过程中注重引导,激发学生的学习兴趣和探究欲望。
(三)情感态度与价值观
1.培养学生面对数学问题时的积极态度,增强学生解决问题的信心和决心。
2.通过代入消元法的学习,让学生体会到数学的简洁美和逻辑美,提高学生对数学学科的兴趣。
3.引导学生关注生活中的数学问题,认识到数学在现实生活中的重要作用,培养学生的应用意识。
4.培养学生勇于探索、不断创新的精神,激发学生的学习潜能。
(2)教师巡回指导,解答学生的疑问。
(3)学生互相讨论,交流解题方法。
(4)教师对学生的解题过程进行评价,指出存在的问题。
2.设计意图:让学生在练习中巩固代入消元法的应用,提高解题能力。
(五)总结归纳
1.教学内容:引导学生总结本节课所学知识,提高归纳总结能力。
教学过程:
(1)教师提问:本节课我们学习了什么内容?请简要概括。
2.难点:
(1)理解代入消元法的原理,明确代入、替换的步骤。
(2)能够根据方程组的特点选择合适的代入方法,提高解题效率。
(完整版)代入法解二元一次方程组教案
《代入法解二元一次方程组》教案教学目标1.使学生会用代入消元法解二元一次方程组;2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.教学重点和难点重点:用代入法解二元一次方程组.难点:代入消元法的基本思想.课堂教学过程设计一、从学生原有的认知结构提出问题1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考) 教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?(4)能否由方程组中的方程②求解该问题呢?(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y 用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得 x=30.将x=30代入方程③,得y=20.即鸡有30只,兔有20只.本节课,我们来学习二元一次方程组的解法.二、讲授新课例1 解方程组分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?3.只求出一个未知数的值,方程组解完了吗?4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2 解方程组分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)2(8-3y)+5y=-21,-y=-37,所以y=37.(问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.(本题可由一名学生口述,教师板书完成)三、课堂练习(投影)用代入法解下列方程组:四、师生共同小结在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.五、作业用代入法解下列方程组:5.x+3y=3x+2y=7.。
代入法解二元一次方程组教案
代入法解二元一次方程组教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!代入法解二元一次方程组教案代入法解二元一次方程组教案(通用5篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。
8.2用代入消元法解二元一次方程组教案
此外,实践活动和小组讨论的环节,学生的参与度较高,课堂氛围较为活跃。但我也注意到,部分学生在讨论过程中过于依赖同伴,自己独立思考的能力有待提高。在后续的教学中,我将注重引导学生独立思考,鼓励他们提出自己的观点和解决问题。
3.重点难点解析:在讲授过程中,我会特别强调代入消元法的步骤和涉及到的代数运算这两个重点。对于难点部分,如选择合适的方程进行变形和代入,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与代入消元法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示代入消元法的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代入消元法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对代入消元法的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-教师需引导学生如何在小组内部分工合作,有效利用每个人的优势,共同完成方程组的求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“8.2用代入消元法解二元一次方程组”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(如购物时计算总价和数量)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索代入消元法的奥秘。
8_2_代入消元法解二元一次方程教案
2x- 3y=1 ① x=y-1 ②x- y=3 ① 3x-8y=1 4②8.2消元——解二元一次方程组【教学目标】1.会用代入消元法解简单的二元一次方程组。
2.理解解二元一次方程组的思想是“消元”,由“二元”转化为“一元”。
3.培养学生自主学习,合作交流的意识与探究精神。
【重 点】会用代入法解二元一次方程组,体会消元思想。
【难 点】理解“二元”向“一元”转化的关键是将一个方程的变形。
【教学方法】探究、引导、练习【教学用具】电子白板设备【教学过程】:一、自主探究,挑战自我课件展示问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.七1班在8场比赛中得了14分。
设比赛胜了x 场,负了y 场,由此可列出二元一次方程组 。
二、合作探究,成就自我1.课前热身:(1)把方程2x -y=3写成用含x 的式子表示 y 的形式:y= (2)把方程3x +y - 1=0写成用含y 的式子表示x 的形式x=2.例题1讲解:解方程组:3.师生归纳:(1)上面解方程组的基本思路是“消元”,把“二元”变为“一元”。
(2)主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。
这种解方程组的方法称为代入消元法,简称代入法。
.4.学生尝试,教师引导,完成例题2:5.归纳用代入法解二元一次方程组的一般步骤:(1)将方程组里的一X+y=5 ① x-y=1 ② 2 x +3y=10 ① 3x-y=4 ②ax +by=5 ①bx-ay=5 ② x=2 y=-1 个方程变形,用含有一个未知数的一次式表示另一个未知数(变形);(2)用这个一次式代替另一个方程中的相对应未知数,得到一个一元一次方程,求得一个未知数的值(代入);(3)把这个未知数的值代入一次式,求得另一个未知数的值(再代);(4)写出方程组的解并检验(写解)。
6.学以致用:引导学生完成“引入”中篮球联赛问题。
代入消元法解二元一次方程组教案设计
教学过程分析
发现规律
结论:这种将“二元”转化为“一元”的思想方法,我们称为消元法(并板书课题),在消元法中我们消去一个未知数,消元是我们解方程组的关键。进而提示:我们是如何消元的引导学生去发现,把一个方程中的某一个未知数用另一个未知数表示后代入另一个方程,消去一个未知数,这种消元法我们称之为代入消元法。
x+y=20 ①
2x+y=38②
能不能得到方程2X+(20-X)=38如何得到提出问题后,将学生分成小组讨论,教师深入学生的讨论中,引导学生观察。 例如:从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察。学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上结合幻灯显示,暴露知识发生过程:(1)Y=20-X
为了这一节课的内容有更进一步的掌握
(2)选做题:(让学生带问题走出课堂)
求解下列诗歌中的数学问题
一百馒头一百僧,
大僧三个更无争,
小僧三人分一个,
几个大僧几小僧
这个问题是让学生了解数学来源于生活,也服务于生活,增强学生学习数学的兴趣。
板书设计
8.2 消元
用代入消元解二元一次方程组的步骤: 例1题 引例
根据三维教学目标及新课程标准对本节课的要求,结合当前学生的心理特点以及现有的认知水平,拟定本课教学目标。
教学过程分析
提
出
问
题
引
入
新
课
引例(幻灯显示):(问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少)
二元一次方程组的数学教案最新9篇
二元一次方程组的数学教案最新9篇公式法解二元一次方程教案篇一一。
教学目标(一)教学知识点1、代入消元法解二元一次方程组。
2、解二元一次方程组时的消元思想,化未知为已知的化归思想。
(二)能力训练要求1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。
(三)情感与价值观要求1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。
2、培养学生合作交流,自主探索的良好习惯。
二。
教学重点1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。
三。
教学难点1、消元的思想。
2、化未知为已知的化归思想。
四。
教学方法启发自主探索相结合。
教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。
二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。
五。
教具准备投影片两张:第一张:例题(记作7.2A);第二张:问题串(记作7.2B)。
六。
教学过程Ⅰ。
提出疑问,引入新课[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?[生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。
所以成人和儿童分别去了5个人和3个人。
[师]但是,这个解是试出来的。
我们知道二元一次方程的解有无数个。
难道我们每个方程组的解都去这样试?[生]太麻烦啦。
[生]不可能。
[师]这就需要我们学习二元一次方程组的解法。
Ⅰ。
讲授新课[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:5x+3(8-x)=34解得x=5将x=5代入8-x=8-5=3答:成人去了5个,儿童去了3个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:8.2二元一次方程组的解法(1)
【教学目标】
1.会运用代入消元法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想—“消元”
3.体会把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想.
【教学重点】
代入法的步骤,会用代入法解二元一次方程组
【教学难点】
对代入消元法解方程组过程的理解,及方程组未知数系都不为1(或-1)时,如何用一个未知数表示另一个未知数。
【回顾与思考】
问题1:什么是二元一次方程?
问题2:什么是二元一次方程组?
问题3:什么是二元一次方程的解?
问题4:什么是二元一次方程组的解?
问题5:什么叫做解方程?
【新课】
探究试练:
{x=5
大家能不能求出y 的值?你是如何求出y 的值的?
大家能不能求出x 、y 的值?你是如何求出x 、y 的值的?
运用上述方法,能不能求出下面这个方程组的解:
设计意图:采用逐层递进的方法引导学生找出代入的方法。
归纳:大家是如何求出这些方程组的解的?
(1)将方程组里的一个方程变形,用含有一个未知数的一次式表示另一个未知数(变形);
(2)用这个一次式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值(代入求解);
(3)把这个未知数的值再代入一次式求得另一个未知数的值(再代入求解);
(4)写出方程组的解(写解)。
由此可以看出,解方程组的方法是要减少未知数的个数,这种将未知数的个数由多化少、逐一解决的思想叫做消元思想。
这种把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
{ x=10-y 3y+10x=8
{ y=2x 3y+10x=8 { 3x +4y =3 5x -y=2
达标练习
把下列各式用含x 的式子表示y: (1) 2x -y=5 (2) +=4
(3)2x+3y=3 (4)2(3y-3)=6x+4
设计意图:
让学生能熟练的用含有一个未知数的式子表示另外的一个未知数。
解方程组:
① ②
③ ④
⑤
设计意图:
方程组①中可进行直接代入;②、③要经过变形才能代入,让学生有一个步骤熟悉过程;④、⑤不再是直接变形即可,要进行整理计算,加深学生对代入消元法的印象和计算能力。
【谈收获】
本节课学习了哪些内容?
{
x=1-2y 2x+3y=-2 { x -y =3 3x -8y=14 { 3s -t=5 5s+2t=15 { 4(x-y-1)=3(1-y)-2 +=2 { 3x +4y =16 5x -6y=33
你有哪些收获?
【达标测评】
(1)已知x +2y -3=0,用含x 的代数式表示y 为 ,用含y 的代数式表示x 为 。
(2)用代入法解下列方程组
【作业】
P97 1、2
{ y =2x -3 3x +2y=8 {
2x -y =5 3x +4y=2。