同济大学复试材料科学导论总结4

合集下载

同济大学复试材料科学导论总结2

同济大学复试材料科学导论总结2

第二篇 材料的物性 8.理解物性的基本概念1.波粒二象性:波粒二象性(wave-particle duality )指的是所有的基本粒子或量子不仅可以部分地以粒子的术语来描述,也可以部分地用波的术语来描述。

2.常规情况下,有两类决定材料物性的主导因素:一类是原子系统,通常作为经典粒子处理,反映了位置序或粒子序(性)的效应;另一类是电子系统,通常表现出明显的量子力学特征,反映了动量序或德布罗意波序(性)的效应。

3.经典电导理论和量子力学理论的区别1. 经典电导理论认为在外电场的作用下所有的自由电子都对电流有贡献;而量子力学理论认为只有费米能级附近的电子才对电流有贡献。

2. 根据量子力学理论,在理想周期性排列的晶格对能带中,电子的能量状态形成能带,能带之间是禁带,能带中的电子可以在晶格中自由运动,因此理想周期性排列的晶格对能带中电子没有散射作用,这是与经典电导理论不相同的。

4.金属自由电子理论:金属的高导电性是由于那些处于紧靠费米能的半占有状态上的电子漂移形成(外加电压对大多数电子不产生净效应,因为它们可能跃迁到的较高能态均已被填满)。

金属的功函数是从高的占有能级上取出一个电子所需的能量,在绝对零度时,即为费米能。

在室温,只有很少的一些电子被激发到高于费米能,因此功函数在一个宽的温度范围内几乎是恒定的。

自由电子理论能满意地解释绝大多数金属的导电性,但不能正确解释绝缘体。

5.能带的概念:能带理论就是认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动;结果得到:共有化电子的本征态波函数是Bloch 函数形式,能量是由准连续能级构成的许多能带。

固体的导电性能由其能带结构决定。

对一价金属,价带是未满带,故能导电。

对二价金属,价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电,绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。

材料科学导论重点

材料科学导论重点

word格式-可编辑-感谢下载支持材料导论题目类型:填空题、判断改错题、简答题、论述题第一章1、重要名词:材料、非金属材料、材料科学与工程、生态环境材料2、材料分类:金属、无机非金属、高分子、复合材料、半导体材料复合材料按复合材料分类3、材料科学与工程的组成要素4、材料的发展趋势第二章1、重要名词:强度、硬度、疲劳极限、蠕变极限、断裂韧度2、力学性能:⑴弹性、塑性、强度(基本公式以及指标)⑵硬度(测硬度方法选择。

注意邵氏硬度)⑶疲劳极限(表面强化处理提高疲劳极限)⑷蠕变极限⑸冲击吸收功(韧脆转变温度)⑹断裂韧度(材料的固有性质)3、物理性能(1)、电学性能①超导性的基本特性及三个重要性能指标②影响材料导电性的因素(2)磁学性能顺磁性、抗磁性、铁磁性、亚铁磁性、反磁性、磁滞回线以及他们的图形特点(3)化学性能①化学腐蚀、电化学腐蚀的区别②老化(两种类型降解和交联)(4)课后习题第3 题第三章这章大家自己看看呢,重要点的是原子间的结合键以及不同材料间的结合键第四章1、炼铁的基本反应(燃料的燃烧、冶金反应、造渣)和产品2、炼钢的基本反应、炼钢方法和钢的浇注和钢锭的分类3、合金的结构(特别注意固溶强化)4、晶体缺陷5、金属的结晶过程6、晶粒大小对力学性能的影响以及晶粒细化的方法7、了解经书的成型工艺有哪些类别第五章1、陶瓷的分类2、陶瓷的结构(晶相、玻璃相、气孔)和玻璃相的作用气孔是造成裂纹的根源第六章高分子材料的组成、结构和性能、热固性材料、热塑性材料等第七章复合材料的基体以及增强材料(玻璃纤维、碳纤维、硼纤维、芳纶纤维第九章1、材料的强化方法(细晶强化、固溶强化、位错强化、沉淀强化)2、普通材料的热处理(退火、正火、淬火、回火)调制处理:淬火并高温回火。

材料科学导论复习要点(完结篇)

材料科学导论复习要点(完结篇)

复习要点(Emphasis of revision)1. 考试是以PPT 和上述参考书内容为主。

2. 试题一共10题,有一半简单计算一半概念题。

3. 试题内容包含在上述复习要点中。

的部分为重点复习内容 ◆ PPT 第二讲 (英文参考书第二章) 原子结构的回顾电子,质子,中子,原子的量子力学,电子态,周期表 固体中的原子键合键能键能(Bond Energy )通常是指在101.3KPa 和298K 下将1mol 气态分子拆开成气态原子时,每个键所需能量的平均值,键能用E 表示。

是表征化学键强度的物理量,可以用键断裂时所需的能量大小来衡量。

基本的原子键离子键,共价键,金属键正负离子间的静电相互作用是离子键的根源。

共价键的本质在于两个原子各有一个自旋相反的未成对的电子,由于原子轨道相重叠而构成价键轨道,导致体系的能量下降。

金属键在本质上和共价键有类似的地方,但是其外层电子比共价键更公有化,电子自由游移于正离子之间,遍及整个晶体,构成近自由电子,这就像是正离子浸在近自由电子的海洋之中。

金属键和共价键最明显的区别就是金属键缺乏方向性和饱和性。

二次键(范德华力) ◆ PPT 第三讲 (英文参考书第三章)结构基元:通过周期性重复排列而组成晶体的最基本的重复单元。

晶体结构−−−−−−→偶极矩的感作用近原子相互作用→荷位移→偶极子(dipoles )范德力面心立方结构,体心立方结构,六角密堆结构原子堆积因素原子堆积系数APF=原子总体积/结构基元体积配位数:相邻原子周围没有电子轨道重叠的参考原子(离子)的数量。

(1)面心立方结构:配位数CN=12每个结构基元的原子数,n=4面上:6×1/2=3角上原子数:8×1/8=1原子堆积系数APF=0.68总体积:结构基元的体积:(2)体心立方结构:a=4R √3配位数CN=8每个结构基元的原子数,n=2中间原子数:1×1=1角上原子数:8×1/8=1原子堆积系数APF=0.68 (3)六角密堆结构:配位数CN=12每个结构基元的原子数,n=6中间原子数:1×3=3角上原子数:12×1/6=2角上原子数:2×1/2=1原子堆积系数APF=0.7 原子堆积系数密度计算:其中:Vc=a 3(FCC 和BCC), a=2R √2(FCC);a=4R √3(BCC);n —原子中的结构基元数;A---分子量;N A =6.023×1023atoms/mol.晶面指数结晶取向◆ PPT 第四讲 (英文参考书第四、五章)点缺陷:包括(空缺,间隙,杂质)晶体中的点缺陷是在晶体晶格结点上或邻近区域偏离其正常结构的一种缺陷。

材料导论总结

材料导论总结

第一章材料是宇宙间可用于制造有用物品的物质,是人类赖以生存的物质基础材料是人类文明的里程碑。

历史学家往往把制造工具的原材料作为社会发展的标志。

石器陶瓷青铜铁水泥钢硅高分子材料复合材料信息功能工程结构能源纳米生物智能化生态新材料技术是工业革命和产业发展的先导材料的发展史就是科学技术的发展史材料的可持续发展战略与生态环境材料材料按物理、化学性质分:金属无机非金属有机高分子复合材料科学与工程(MSE)材料成分-结构-合成与加工-性能-使用效能第二章材料性能:工艺性能是指制造工艺过程种材料适应加工的性能。

使用性能是指材料制成零件或产品后,在使用过程中能适应或抵抗外界对它的力、化学、电池、温度等作用而必须具有的能力。

载荷类型:静载荷、动载荷、变载荷载荷F(力)伸长量ΔL拉伸曲线应力σ应变ε应力-应变曲线名义工程试样能恢复到原状称为弹性形变卸去载荷后,试样不能恢复到原状,即有残余形变试样产生永久残余形变而不断裂的变形为塑性形变弹性极限:材料产生完全弹性形变时所承受的最大应力值弹性模量:金属材料在弹性状态下的应力与应变比值 E=σ/ε Mpa塑性:断裂前材料发生不可逆永久变形的能力断后伸长率:试样拉断后标距的伸长与原始标距之比δ=(L1-L0)/L0 mm断面收缩率:试样拉断后缩颈处横截面积的最大缩减量与原始横截面积的百分比ψ=(S0-S1)/S0 mm2屈服强度:载荷不增加而材料还继续伸长的现象为屈服,材料开始屈服时对应的应力σs 抗拉强度:材料在试样拉断前所承受的最大应力σb硬度是衡量金属材料软硬程度的指标布氏硬度HB(S,W):试应力F 直径D淬火钢球或硬质合金球压入被测金属表面,保持规定时间后卸除试应力,测量压痕直径d,计算出压痕球缺表面积S所承受的平均应力值洛氏硬度HR:工厂中应用最广泛的测试方法。

锥顶角为120的金刚石圆锥体或直径为1.588mm的淬火钢球为压头,在规定载荷作用下压入被测金属表面,测定压痕深度疲劳极限:循环应力应变局部永久性累积损伤突然发生完全断裂蠕变:金属材料在较高温度和应力作用下产生缓慢塑性形变蠕变极限:在T下和规定试验时间t内,使试样产生一定蠕变伸长量的应力冲击吸收功最常用冲击试验方法:摆锤式一次性冲击试验摩擦:两个相互接触的物体或物体与介质间相对运动时出现的阻碍作用磨损:由于摩擦而导致材料表面逐渐损失以致表面损伤的现象电阻率:阻碍电流流动的度量数值上等于单位长度和单位面积的导电体电阻值只与材料性质有关Ωm电导率:电阻率倒数σ=S/m 其值越大,材料导电性能越好超导电性:一定的低温条件下材料突然失去电阻的现象性能指标:临界转变温度Tc 临界磁场Hc 临界电流密度Jc影响材料导电性的因素温度化学成分晶体结构杂质金属电阻率随温度升高而增大锑铋镓反例冷塑性变形是金属电阻率增大合金化对导电性有显著影响磁化:材料中磁矩排列时取向趋于一致而呈现出一定的磁性磁化率:M/H=χ磁导率:B/H=μ抗磁性:材料被磁化后,磁化矢量与外加磁场方向相反顺磁性:………相同磁化曲线:磁感应强度或磁化强度与外加磁场强度的关系曲线磁滞回线:磁化一周得到一个闭合回线磁滞效应:磁感应强度的变化总落后与磁场强度的变化磁滞损耗:回线所包围的面积相当于磁化一周所产生的能量损耗软磁回线:瘦小高磁导率高饱和磁感强度较小矫顽力小磁滞损失硬磁回线:肥大较大矫顽力和剩磁硬磁由称永磁材料热容:在没有相变和化学反应下,材料温度升高1K时所吸收的热量J/K比(质量)热容:单位质量材料的热容J/(kgK) 摩尔热容J/(molK)热膨胀:物体的体积或长度随温度升高而增大的现象线膨胀系数:α温度上升1K,单位长度的伸长量,单位K-1 随温度升高而加大热传导:当固体材料一端的温度比另一端高时,热量就会从热端自动地传向冷端热导率:一定温度梯度下,单位时间通过单位垂直面积的热量J/(mKs)腐蚀是物质的表面因发生化学或电化学反应而受到破坏的现象材料的腐蚀是一种自发进行的过程,是物质由高能态向低能态的转变形式化学腐蚀:金属表面与非电解质直接发生化学反应而引起的破坏电化学腐蚀:金属表面与电解质溶液发生电化学反应引起的破坏老化:外观变化物理性能变化力学性能变化第三章材料结构组成材料原子(或离子,分子)的结构组成材料原子(或离子、分子)间的结合金属离子共价分子组成材料原子(或离子、分子)的排列晶体非晶体混合材料结构内存在缺陷面缺陷线缺陷点缺陷质子数Z决定元素本性核内质子和中子总数决定原子量原子直径埃A为单位A=10-10m 量子力学:微观粒子的波粒两象性海森堡测不准原理薛定谔方程根据结合键的不同状态,可把凝聚态分成五大类:液体液晶橡胶态玻璃态晶态结合键:原子间吸引力和排斥力合力结果离子键:正离子和负离子由于静电引力相互吸引,当它们充分接近时会产生排斥,引力,斥力相等即形成稳定的离子键。

材料科学与工程导论及总结

材料科学与工程导论及总结

材料科学与工程导论及总结内容:学习材料学的基本知识;主要涉及到各种材料的组成、结构、性能、应用以及它们之间的关系。

目的:材料类专业的入门课及专业基础课之一。

了解材料的基本知识,逐步扩大材料的专业知识面,培养分析和解决有关材料问题的初步能力。

1、材料的定义与分类材料是人类用来制造有用的构件、器件或物品的物质。

材料与物质的区别:①对材料而言,可采用“好”或“不好”等字眼加以评价,对物质则不能这样;②材料总是和一定的用途相的;③材料可由一种物质或若干种物质构成;④同一种物质,由于制备方法或加工方法的不同,可成为用途各异的不同类型的材料。

按化学组成和结构特点:金属材料、无机非金属材料、高分子材料、复合材料按材料性能:结构材料、功能材料按使用领域:建筑材料、电子材料、耐火材料、医用材料……2、材料的地位和作用材料是人类社会发展的基础和先导,是人类社会进步的里程碑和划时代的标志。

材料、能源、信息被称为人类社会的“三大支柱”。

纵观人类利用材料的历史,可以清楚地看到,每一种重要新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平。

材料科学技术的每一次重大突破都会引起生产技术的重大变革,甚至引起一次世界性的技术革命,大大地加速社会发展的进程,从而把人类物质文明推向前进。

人类文明的发展史就是材料的发展史材料的发展史就是人类文明的发展史石器时代、青铜器时代、铁器时代、• • •、半导体时代新材料是高技术发展的基础,是工业革命和产业发展的先导3、材料的性质材料性质:是材料的功能特性和效应的描述,是材料对电.磁.光.热.机械载荷的反应。

材料性质描述:力学性质:强度、硬度、刚度、塑性、韧性材料在力的作用下所表现出的特性即为材料的力学性质。

(1)弹性模量弹性模量是指材料在弹性极限范围内,应力与应变(即与应力相对应的单位变形量)的比值,用E表示,即:(2)强度在外力作用下,材料抵抗变形和断裂的能力称为强度。

(有多种强度类型)材料在外力作用下发生塑性变形的最小应力叫屈服强度,用σs表示。

材料导论期末考点总结

材料导论期末考点总结

材料导论期末考点总结材料导论是一门综合性的学科,广泛涉及材料科学、材料工程以及相关学科的知识体系。

期末考试是对学生对所学知识的综合应用能力的考察,理解和掌握期末考点对于顺利通过考试至关重要。

本文将对材料导论期末考点进行总结,以便学生在复习时有针对性地了解和把握重点内容。

一、晶体和晶体缺陷1.晶体的结构和性质:晶格、晶体结构类型、晶体的性质与晶格结构之间的关系。

2.晶体缺陷的分类和特点:点缺陷、线缺陷、面缺陷的具体分类和特点。

3.晶体缺陷的原因和形成机制:热原子运动、拉伸和压缩等外力、辐射等原因引起晶体缺陷形成的机制。

4.晶体缺陷对材料性能的影响:晶体缺陷对导电性、导热性、塑性、疲劳性等材料性能的影响。

二、金属材料的结构和性能1.金属晶体结构:简单立方、面心立方、体心立方晶体结构的特点和性质。

2.金属的力学性能:塑性和韧性的概念、强度、硬度、延性、弹性模量等力学性能的定义和计算方法。

3.金属的物理性能:导电性、导热性、合金化等物理性能的定义、计算和提高途径。

三、陶瓷材料的结构和性能1.陶瓷晶体结构:离子晶体结构的特点、堆垛方式、层间间隔和离子间离心距的关系。

2.陶瓷的物理性能:绝缘性、压电性、磁性、光学性质等物理性能的定义、计算和提高途径。

3.陶瓷的力学性能:脆性的概念、强度、硬度、韧性等力学性能的定义和计算方法。

四、高分子材料的结构和性能1.高分子链结构:线性链、支化链和交联链的结构特点和分子量对聚合物结构和性能的影响。

2.高分子的物理性能:热稳定性、熔融性、黏度、玻璃化转变温度等物理性能的定义和计算方法。

3.高分子的力学性能:强度、韧性、刚性、弹性恢复性等力学性能的定义和计算方法。

五、复合材料的结构和性能1.复合材料的组成和结构:基体材料、增强材料和界面相的特点和组成关系。

2.复合材料的力学性能:强度、韧性、疲劳性、层间剪切强度等力学性能的定义和计算方法。

3.复合材料的物理性能:导电性、导热性、热稳定性等物理性能的定义和计算方法。

材料科学导论

材料科学导论

书名:一、1、按化学成碳量5%)、10%)。

2、(1点、(2弯的比断裂或起层,即认为冷弯性能合格。

冷弯试验试件的弯曲处会产生不均匀塑性变形,能在一定程度上揭示钢材是否存在内部组织的不均匀、内应力。

夹杂物、未熔合和微裂纹等缺陷。

因此,冷弯性能也能反映钢材的冶炼质量和焊接质量。

(3)冲击韧性冲击韧性是指钢材抵抗冲击荷载的能力。

冲击韧性指标是通过标准时间的弯曲冲击韧性试验确定的。

试验以摆锤打击刻槽的时间,于刻槽处将期打断。

以时间打断时说吸收的能量作为钢材的冲击韧性值,以Kv表示:Kv=GH1-GH2(4)硬度钢材的硬度是指其表面局部体积内抵抗外物压入产生塑性变形的能力。

(5)耐疲劳性在交变应力作用下的结构构件,钢材往往在应力远低于抗拉强度时发生断裂,这种现象沉稳钢材的疲劳破坏。

疲劳破坏的危险应力用疲劳极限来表示,它是指疲劳试验中,时间在交变应力作用下,于规定的周期基数内部发生断裂所能承受的最大应力。

3、钢材的冷加工强化及时效强化、热处理和焊接(1)钢材的冷加工强化及时效强化将钢材于常温下进行冷拉、冷拔或冷轧,使产生塑性变形,从而提高屈服强度,称为冷加工强化。

产生加工强化的原因是:钢材在冷加工时晶格缺陷增多,晶格畸变,对位错运动的阻力增大,因而屈服强度提高,塑性和韧性降低。

由于冷加工时产生的内应力,故冷加工钢材的弹性模量有所下降。

(2(3焊件4、(1(25、(1)建筑钢材的主要钢种碳素结构钢低合金高强度结构钢(2)常用建筑钢材①钢筋:热轧光圆钢筋钢筋混凝土用热轧带肋钢筋冷轧带肋钢筋预应力混凝土用钢棒预应力混凝土用钢丝与钢绞线②型钢:热轧型钢冷弯薄壁型钢钢板和压型钢板二、无机胶凝材料1、气硬性胶凝材料(1)石膏石膏胶凝材料是以硫酸钙为主要成分的气硬性胶凝材料。

由于石膏胶凝材料及其制品具有许多优良的性质,原料来源丰富,生产能耗低,因而在建筑工程得到广泛应用。

建(2生石灰熟化为石灰浆时,能自动形成颗粒极细(直径约为1微米)的呈胶体分散状态的氢氧化钙,表面吸附一层厚的水膜。

同济大学材料研究方法复习重点

同济大学材料研究方法复习重点

材料研究方法复习重点第三章XRDXRD这一章中布拉格方程必出一道题,布拉格方程是XRD的基本原理,是理解XRD的关键,所以怎么强调都不过分。

应用分析题也必出题,而且可以不止一道,极有可能出两道题,还可能以分析题的形式存在。

3.1X射线的物理基础这个内容去年考过。

考X射线的物理性质确实挺出乎我的意料。

因为这个知识点太简单了。

历年考过的题有:1.X射线与物质相互作用时会产生那些效应?利用其中那些效应可以进行晶体结构的分析鉴定?如何利用X射线衍射分析法鉴定晶态与非晶态?(04)2.画出晶体对X射线衍射的示意图(04)6.简述特征X射线的产生,性质和应用。

(07)在解答这些题的时候只要把书上X射线的基本定义、性质用自己的语言叙述出来就可以了。

这些都是送分题。

并且这里很受出题老师的青睐的,基本上每个知识点都出过题,还有出下去的趋势。

3.2X射线衍射原理在上面已经介绍过了衍射原理布拉格方程比出题。

这方面在我的研究生复习题中阐述的非常详细。

再加上真题应该是足够了。

真题如下:1.画出晶体对X射线衍射的示意图,写出布拉格方程,并说明该方程中各参数的意义。

(04) 5.写出布拉格方程,分析物质产生X衍射的充要条件,简述X射线粉末衍射物相鉴定过程。

请说明样品制备对物相鉴定的影响。

(07)从这两道题也可以大概的看出这些年命题的基本趋势。

其中04的这道题综合性不大,而且考的也比较简单,把布拉格方程写出来,并说明个参数的意义就可以了。

而07的这道题要求对布拉格方程的认识要更加深刻,还和X射线粉末衍射物相鉴定过程相综合。

但只要复习到位,并理解重要内容的意义,也是没什么难度的。

劳厄方程和厄瓦尔德图解是不做要求的,劳厄方程很好理解,可以掌握它以拓宽知识面,但厄瓦尔德图解很不好理解,需要点阵的知识,只作阅读内容就可以了。

考试和学知识就是差距大,其实如果不能熟练的掌握倒易点阵的知识,就什么也干不了,XRD就算白学,中国教育体制的悲哀啊!3.3 X射线衍射束的强度这一小节考纲上写的很含糊。

《材料科学导论》考试复习.doc

《材料科学导论》考试复习.doc

《材料科学导论》考试复习1材料按结构分类可分为:晶体、准晶体、非晶体、胶体2材料按化学组成可分为:金属材料、无机非金属材料、有机高分子材料、复合材料。

3晶体的基本性质有:①对称性,②均一性,③各向异性,④自限性,⑤最小内能性、⑥稳定性。

4化学键与结构类型可分为:①金属键,②离子键,③原子键,④共价键,⑤ 氢键及其晶格,⑥过渡型键及晶格,⑦单键与多键型的晶格。

5按对称规律晶体可分为:①3个晶族,②7个晶系,③32对称型(点群)。

晶系分别是:①单斜,②三斜,③斜方,④三方,⑤四方,⑥六方,⑦等轴晶系。

6晶体具有格子构造,格子有4种类型它们是:原始格子(P)、底心格子(C、A、B)、面心格子(F)、体心格子(I)7格子的选择要求%1平行六面体应包括空间格子的全部对称②平行六面体中相等棱和角的数目尽可能多③平行六面体中棱之间存在直角时,直角数要力求最多④在上要求条件下,平行六面体的体积最小。

8晶体空间对称中共有230个空间群,空间群包括:格子类型+空间对称的国际符号9化学键与结构类型包括:①离子键及离子晶格。

②共价键及原子晶格。

③金属键及金属晶格。

④分子键及分子晶格。

⑤氢键及其晶格。

⑥过渡型键及晶格。

⑦单键与多键型的晶格。

10人眼的分辩率是(0. 1mm),光学显微镜的分辩率是( 200nm),扫描电子显微镜的分辩率是(2nm ),透射电子显微镜的分辩率是(0. 1-0. 05nm )o11X射线分析方法有①粉晶X射线照相法(晶体物相分析)②粉晶X射线衍射分析(晶体物相分析)③单晶X射线照相法(晶体结构分析)④四圆单晶X射线衍射分析(晶体结构分析)12在晶体对称规律中:低级晶族,无高次轴;中级晶族,只有一个高次轴;高级晶族,有多个高次轴13晶体常数对应关系为:三斜晶系aHbHc, a h (3 H Y H 9 0单斜晶系a工b工c,a = Y = 90° P >90°斜方晶系aHbHc, a = [3 = 丫 = 9 0四方晶系 a = a = B = 丫 = 9 0_三方晶系 a =bHc,a = |3 =90°Y = 120°k方晶系 a = b 工c,a = P = 90°Y =120°等轴晶系 a = b = c, a = p = 丫 = 9 014电子显微镜与光学显微镜对比①照射束★电子显微镜电子束☆光学显微镜光束②媒质★电子显微镜真空☆光学显微镜大气③透镜★电子显微镜电子透镜(电磁透镜)☆光学显微镜光学玻璃透镜④分辨率★电子显微镜透射电镜为0. 14nm,扫描电镜为6nm☆光学显微镜可见光区为200nm,紫外光区为lOOnm %1放大倍数★电子显微镜☆光学显微镜1 0-2000倍,更换透镜调节%1景深★电子显微镜在1000倍时,景深约为☆光学显微镜在1000倍时,景深约为⑦聚焦原理★电子显微镜☆光学显微镜电子聚焦机械聚焦%1图像特点★电子显微镜像子☆光学显微镜%1主要图像黑白反差的电子图像,高分辨率像及衍射图像、格子产生七色光的颜色及干涉颜色★电子显微镜:透射电子像,二次电子像,背散射电子,吸收电子像,X射线面扫描像,X射线扫描像☆光学显微镜:光学透射像,反射像及其他干涉像,光的吸收、反射、透过形成光学图⑩主要附件★电子显微镜:⑴电子衍射装置,⑵特征X射线波谱仪,⑶特征X射线能谱仪,⑷电子能量损失谱仪,⑸俄歇电子谱仪,⑹阴极发光装⑺电子通道花样附件,⑻微粒分析仪,⑼热台,冷台,(10)拉伸、旋钮、压缩,(11)电动势放大器,等等☆光学显微镜:⑴带偏光、反光附件,⑵锥光附件,⑶费氏台及旋转针,⑷热台及冷台,⑸油浸法应用,等等15电子探针分析与化学分析对比化学分析一般只适于分析固态样品对样品要求量极少,可以少到10-l0g微区成分分析,分析体积可在几个M m3范围内,薄晶体能谱分析小到10 rm?以内不损坏样品微区成分与区形貌综合分析分析速度快成分分析的针对性强,除掉了各种杂质成分影响有多种分析功能,可进行元素面分析、线分析、点分析以及背散电子成分像观察样品挑选制备简单元素分析范围:波谱仪B-U能谱仪Na-U元索价态一般不能分析一般不能分析H.H2O.OH.Li 等,Be、C、N、O 一些轻元素分析也困难岩石、矿石、化探样全分析时需制成均匀玻璃样品,再作探针分析;制样困难,有的误差较大成分分析灵敏度为IO'4可对气、液、固态物质进行分析样品fit—般为数百毫克对成千上万个赖粒加工研磨,分析样体积很大坏样品不能综合形貌分析分析时间长数百毫克由无数个颗粒集合,它的平均成分缺乏针对性没有这种功能样品分选、制备极麻烦费劲可以分析所有常见有元索可以进行元索价态分析可以进行H、H2O、OH、Li、Be的分析岩石、矿石、土壤、地化等样全分析方便化学分析灵敏度高16透射电子显微分析与X射线分析的特点对比透射电子显微分析已广泛应用于微晶体和超微晶体结构分析,有着许多优点,是微区研究的重要方法。

同济大学材料科学与工程学院考研专业课821材料科学基础大纲详解

同济大学材料科学与工程学院考研专业课821材料科学基础大纲详解

821材料科学基础大纲详解本课程主要考察考生对材料科学的基础理论和专业知识的掌握程度,以及运用这些理论和知识解决实际问题的能力。

同时还将考察考生对常规材料表征技术的掌握程度和应用能力。

考查的知识要点包括以下内容:(1)材料及材料科学的含义:材料及材料的基本要素和相互之间的关系、材料的结构层次及材料结构与性能的关系、材料选择的基本原理;(2)材料的原子结构与分子结构:原子结构、原子间的键合、材料的化学组成和结构对性能的影响、高分子链的近程结构与远程结构:(3)固体材料结构基础:晶体的基本特性、晶体的结构特征(空间点阵和晶胞、晶向指数和晶面指数)、配位数和配位多面体、金属的晶体结构、离子晶体结构、共价晶体结构、高分子凝聚态结构(晶态结构、非晶态结构、取向结构)、非晶态的形成及结构特征、固体材料能带结构的基础知识(导体、半导体、绝缘体)及与性能之间的关系;(4)晶体的结构缺陷:缺陷分类、点缺陷的形成、位错的基本类型和特征、晶体结构缺陷对材料性能的影响;(5)材料的相结构与相变:相的定义、相结构、固溶体的概念及特点、相变的定义、相变的分类(按结构分类、按热力学分类、按相变方式分类、按原子迁移特征分类)、结晶的基本规律与条件:热力学条件、动力学条件(成核-长大机理);(6)高分子材料中的分子链运动:高分子链的内旋转及柔顺性的本质和影响因素,高分子材料的三种力学状态(玻璃态、高弹态及粘流态)、玻璃化转变温度;(7)金属材料、无机非金属材料、高分子材料及复合材料的结构特征、性能特点及其应用分析;(8)常规材料表征技术及应用:XRD、TEM、SEM、IR、DSC的工作原理、影响这些表征技术的主要因素及在材料研究中的应用。


考试题型: 专业术语或基本概念的解释、简答题、论述或辨析题、综合分析题等。

材料学面试知识点总结

材料学面试知识点总结

材料学面试知识点总结材料学是研究材料的组成、性能以及制备、改性、应用等方面的学科。

在材料学的面试中,面试官会主要考察面试者对于材料学领域的基础知识掌握和应用能力。

下面我们将对材料学面试的知识点进行总结,希望对准备面试的同学有所帮助。

1. 材料的基本分类面试者需要了解几种常见的材料分类,如金属材料、聚合物材料、陶瓷材料以及复合材料等。

对不同材料的性质、结构和特点进行分析,并能举例说明典型的材料在实际工程中的应用。

2. 结构与性能的关系面试者需要理解材料的结构与性能之间的关系,比如晶体结构对材料性能的影响、晶界对材料强度的影响以及晶格缺陷对材料的性能影响等。

对于晶体结构的基本概念、晶体缺陷的种类和性质、以及晶界的类型和性质等有一定的了解。

3. 材料的物理性能需要熟悉材料的各种物理性能,包括力学性能(强度、塑性、韧性等)、热学性能(热膨胀系数、热导率等)、电学性能(导电性、介电常数等)以及磁学性能(磁化强度、磁滞回线等)。

对于这些性能参数的测试方法、影响因素以及提高方法都需要有一定的了解。

4. 材料的化学性能面试者需要对材料的化学性能有所了解,包括材料的化学成分、化学反应、腐蚀行为等。

此外,对于材料的表面处理和防腐蚀方法也需要有一定的了解。

5. 材料的加工工艺需要了解材料的制备和加工工艺,对于材料的熔炼、铸造、热处理、成形、焊接等加工工艺有一定的了解。

还需要对于不同材料的加工特点、加工方法以及加工工艺对材料性能的影响有所了解。

6. 材料的表征与分析面试者需要了解材料的表征与分析方法,包括显微组织分析、表面形貌观测、化学成分分析以及性能测试等。

对于常见的材料分析仪器和测试方法有一定的了解,能够分析测试数据并对测试结果进行合理解释。

7. 材料的性能改性与应用面试者需要对材料的性能改性方法有所了解,包括材料的改性方式、改性方法以及改性后的效果。

此外,对于材料在各种工程领域中的应用也需要有一定的了解,能够举例说明材料在航空航天、汽车、建筑等领域的具体应用案例。

2024年材料科学导论心得体会样本(2篇)

2024年材料科学导论心得体会样本(2篇)

2024年材料科学导论心得体会样本尊敬的教师:您好!首先非常感谢您给予我写心得体会的机会。

在这学期的材料科学导论课程中,我收获了很多知识,也对材料科学有了更深入的了解。

在此,我将结合个人对课程的理解和感悟,写下我对材料科学导论的心得体会。

一、对材料科学导论的认识材料科学导论作为一门导论性的课程,是我们学习材料学的第一课。

通过本课的学习,我对材料科学的定义、发展历程和研究内容等方面有了更全面的了解。

材料科学是一门交叉学科,它研究的是物质的结构、性能和制备方法等方面的知识。

材料科学的发展源远流长,从古代的陶瓷、金属材料到现代的高分子材料、纳米材料,材料科学与人类的生产生活息息相关。

二、材料科学导论的教学特点材料科学导论的教学特点主要体现在以下几个方面:1. 主动性:在课程中,我们不仅仅只是被动地接受知识,更重要的是要积极主动地思考和探索。

在老师的引导下,我们常常有机会进行小组讨论、实验研究和课堂演讲等活动,这样不仅能够加深对知识的理解,还能培养我们的分析和解决问题的能力。

2. 交叉性:材料科学是一门交叉学科,与物理、化学、工程学等学科有密切的联系。

因此,在材料科学导论中我们需要综合运用各个学科的知识进行学习和研究。

这种交叉性的教学方法不仅能够增加知识的广度,还能够激发我们的创造力和创新思维。

3. 实践性:材料科学是一门实践性很强的学科,需要通过实验和实际操作来加深对理论知识的理解和掌握。

因此,在课程中,我们常常有机会进行实验和实践活动,这样不仅可以巩固理论知识,还能够培养我们的实际操作能力和动手能力。

三、材料科学导论的学习方法在材料科学导论的学习过程中,我总结了以下几点学习方法,供参考:1. 多角度学习:材料科学导论是一门综合性很强的课程,需要我们从多个角度进行学习。

在学习过程中,我们应该充分利用教材、课堂讲义、参考书籍和网络等资源,从理论和实践两个方面来进行学习。

2. 理论联系实际:学习材料科学导论不仅要注重理论知识的学习,还要注重将理论与实际生活联系起来。

同济大学材料科学与工程学院考研资料体会及建议分享

同济大学材料科学与工程学院考研资料体会及建议分享
11.试写出有机化合物ETIR谱图的要紧基团特点频率,并说出FTIR在材料分析中有哪些应用。
12.试写出胡克定律的数学表达式,并依照该表达式举例说明IR集团频率的转变规律。 13.请画出一张乙醇的质子NMR示意谱图,并说明该谱图要紧给出哪些信息;再请论述核磁共振分析中阻碍化学位移的要紧因素。
14.简述核磁共振实验中弛豫进程的类型,并说明通常进行的核磁共振实验分析中为何应先将固体式样配成溶液,然后再测式样溶液样品的核磁共振。
三:画图谱及解析(4选3,每一个20分)
一、画任一XRD示意谱图,说明峰位的表示方式,通过该谱图能够取得哪些材料的信息?
二、画出某一元素的波色散图,每一个峰的意思?(这题之前温习压根没注意到过,因此题目大致是如此,不能很保证)
3、画出某一材料的DTA曲线,并说明吸收峰和/或折台的意义。
4、画出某一物质的NMR示意谱图,并说明从谱图中能够取得哪些信息
2 二次电子、背散射电子、特点X射线表征形貌时的不同,说明他们在材料分析中的应用。
3 阻碍红外吸收的因素,什么缘故说红外光谱和拉曼光谱互补,拉曼光谱和红外光谱相较有什么特点。
4 试画出一种典型的热分析曲线,并说明各个吸收峰和转变处的意义。
5 表达透射电镜的制样方式,并分析其特点。
6 如何用差热分析、热重分析、热膨胀分析区别碳酸盐分解、金属氧化、玻璃析晶、晶型转变。并举例说明热分析在玻璃中的应用。
7 光谱分析的基础是什么?各类波长的电子与原子作用产生的光谱,并简要表达其应用。
8 结合乙醇的质谱图,从谱图上可取得哪些信息并表达谱图解析步骤。
9 介绍材料分析和表征的大致步骤和分析方式。
10 选择分析方式表征碳酸盐水泥水化进程的研究,并评判你选用的方式
2020

《材料科学导论》-课程的重点、难点及解决办法

《材料科学导论》-课程的重点、难点及解决办法

《材料科学导论》(复旦大学)课程的重点、难点及解决办法本课程的重点是通过系统的学习,使学生除了掌握五大基础材料的基础理论、基本方法和主要性能外,还要大致了解八类新材料的特点、特征和特性及其在高科技领域中的应用,为设计、研发、推广基础材料和新材料在国民经济各个领域中的应用提供重要的基础,并在创新能力和综合能力方面得到有效的训练和培养。

一般认为,材料科学是入门容易深入难。

概念多、内容广、涉及面宽是其主要特点,而概念抽象、内容缺少连惯性、材料之间缺少必然联系是其另一重要特点,尤其是材料性能繁锁枯燥,缺乏理论依托,故学生在学习材料科学过程中普遍存在学得快、忘得快的现象,甚至不知学后究竟有何用。

为了解决学生遇到的这些困惑,我们在讲解材料科学的各个知识点时尽量结合实际材料案例来分析和解释,尽量用通俗易懂的语言来解析复杂而难记的概念及理论。

首先,chuerials物质(matter)和材料(material) 既相似又有区别,一般易混淆。

为了厘清它们的异同点,特以公众关心的空气质量颗粒物含量mq5formance实例,来诠释材料的基本特征及其PM2.5的检测为例,说明PM组合词中必须用matter而不用material的原因,强调物质可以是一种无形的东西,包括人眼看不见的东西;而生活中使用的各种材料,比如塑料要用plastic material而不能用plastic matter,这是因为材料强调的是有形的东西,二者区别就一目了然了。

而且,学生从matter与property的相互关系,就联想到物理、化学等基础课程学过的物质结构,自然延伸到material与performance的相互关系,从理论上就认识到基础学科与材料科学的有机衔接,但又有内在的区别。

其次,材料品种繁多,基础材料如何分类是教学中必须澄清的一个重要的基本问题。

国外近年出版的教科书都已经把基础材料分成五类,即金属、陶瓷、聚合物、复合材料和半导体,我国则仍然停留在前三类基础材料的介绍。

同济大学材料研究方法专业课复习重点归纳

同济大学材料研究方法专业课复习重点归纳

考试重点:1-2章一般不会考1.2图表从总体上把握一下就可以了第三章图3.1 大致了解①X射线的性质;②可见光。

图3.2 X射线的产生3.1.2.2 同步辐射X射线的特点图3.6 特征X射线的产生(重点)3.15 X射线与物质的相互作用(重点)图3.8要熟记3.2 X射线的衍射(相干散射)劳厄方程布拉格方程(重点计算题可能出)厄瓦尔德不考影响衍射强度的因素的条件(重点)3.4实验方法以及样品的制备德拜—谢东照相法、聚焦法、单晶法均不考3.4.2粉末衍射仪法第一句话图3.30中a图的夹角的由来弄清粉末衍射仪中连续扫描和步进扫描的区别3.4.2.3不是重点3.4.2.4 不考3.4.2.5样品的制备(重点)3.4.2.6 不考3.5 X射线粉末衍射物相的定向分析(重点)PDF卡片中字母索引、哈那瓦尔特索引、芬克索引排列方法结合图形怎么看定性分析过程(不是重点)X射线物相定量分析两个公式(3.53与3.54)外标法与内标法不考3.7.7X射线衍射结构分析中的应用高分子、无机、玻璃中的应用总结出来(细节不必太在意)在其余方面的应用也要整理出来第四章电镜分析引言部分也要注意一下工作原理、特点(重点)图4.3能够画出来以及记住上面两句话表格4.2 光学显微镜与透射电镜的比较(重点)4.2.2 作用原理(看4.8图)透射电镜样品的制备(重点)质厚衬度(重点)定义原理(公式不需要记)小孔径角成像(有用)4.2.5.2透射电镜中电子衍射的特点(三句话)(3)选区电子衍射基本原理4.2.6衍射衬度成像原理明场成像、暗场成像(重点)4.2.6.2 衍射衬度图像分析不考4.2.7投射电镜应用举例(重点)4.3 扫描电镜工作原理扫描电镜成像的物理信号扫描电镜的主要性能:放大倍数M和分辨本领(重点)、景深(重点)、焦长(重点)。

4.3.5扫描电镜的样品的制备4.3.6 像衬度4.3.6.1 形貌衬度4.3.6.2 (重点)原子序数衬度背散射电子像衬度与吸收电子像衬度应用举例电子探针特点和工作原理检测特征X射线的波长和强度是X射线谱仪(波谱仪或能谱仪来完成的)4.4.2不考波谱能谱的8个优缺点实验方法不考样品制备(三句话)4.4.3.3分析方法(大标题说说,内容了解一下)定量分析(看一下)目的是要求出试样中某元素的浓度(重量百分数)它的依据是某元素的X射线强度在试样中的浓度成比例4.4.5 应用举例第四章一定记着每个分析方法的原理、样品制备、应用等,并且自己最好能总结一下每个方法的异同第五章热分析(概念)四大热分析技术DTA装置图(重点)差热分析曲线图(必考)结合所给文字影响因素基本上背标题DSC (热流型与功率补偿型)定义图5.9(重点)5.4.4.2不考5.5(重点)热天平、弹簧秤看看5.5.2 需要看看5.5.3 因素5.5.3.1 基线漂移(重要)以下的各个因素需要看看5.6.1 热膨胀分析法膨胀系数机械不考分析应用第5-22页放、吸热对应图谱分析相对的各个峰5.7.1.2 分析理解应用(重点)5.7.1.4 应用图5.27 (重点)热重分析(TG)、DTA、DSC应用紫外(重点)红外产生条件:两个6.10最后一句话红外活性和非红外活性6.3.4 分子振动的形式(重点)6.3.7 外部内部(重点)6.3.11 试样制备(重点)(紫外和红外)固、气、液材料应用6.3.12.2(重点)6.4(重点)什么叫拉曼,定义、特点。

材料科学导论总结复习2012-12-10

材料科学导论总结复习2012-12-10

3. 计算题 ① Calculate the equilibrium numbers of vacancies or interstitials, and the energy for vacancy formation, given the atomic weight, density (点缺陷平衡浓度公式的 应用),参照例题5.1,和习题5.2 和5.3;
2. 计算题
① 工程应力和工程应变的计算,参照习题7.3, 和7.4和7.5; ② Compute the modulus of elasticity ,or its original length (运用虎克定律和泊松比公 式等),参照例题7.1 和7.2, 习题7.18,7.19 ③ Calculate ductility of material,参照习题 7.31(这次不要求)
历年考试试卷
(a) Briefly explain why Cu metals with FCC crystal structure are more ductile than Zn metals with HCP crystal structure. (b) Determine which technique or method to strengthen and harden the ductile and highpurity Cu metal. (2009—2010学年第一学期试题A) What techniques may be taken to strengthening and hardening a kind of metal .(2009—2010学年第一学期试题B) Explain why a metal having small and fine grains is stronger than one having large and coarse grains. (2008 —

2024年材料科学导论心得体会范本(2篇)

2024年材料科学导论心得体会范本(2篇)

2024年材料科学导论心得体会范本「材料科学导论」心得体会一、引言材料科学是一门研究材料的性质、制备及应用的学科,具有广泛的应用领域和重要的科学价值。

在学习《材料科学导论》这门课程的过程中,我对材料科学的基本理论和实践应用有了更深入的了解,并从中收获了许多宝贵的经验和体会。

二、课堂学习通过课堂学习,我对材料科学的基本概念、基本原理以及材料分类有了更全面的认识。

老师深入浅出地讲解了材料结构与性能之间的关系,并且通过实例和案例分析使概念更加形象具体。

在课堂上,老师还引导我们主动参与讨论,加深对材料科学的理解。

三、实验实践在课程中,我们还进行了一系列的实验实践,通过自己动手进行材料制备、材料性能测试等实验操作,使我对材料科学的实践应用有了更深入的认识。

通过实验实践,我体会到了科学研究的严谨性和重复性,也了解到实验操作的方法和技巧对结果的影响。

同时,实验实践也锻炼了我们的团队合作能力和解决问题的能力。

四、学习方法在学习材料科学导论的过程中,我发现积极主动的学习方法对于掌握知识和提高学习效果非常重要。

我利用课余时间,积极阅读相关的学术论文和专业书籍,扩大自己的知识面。

我还参加了一些相关的学术会议和讲座,与专家学者进行交流,扩展自己的学术视野。

通过这些学习方法,我能够更好地理解课堂上的知识,掌握学科的前沿动态。

五、思考与启示通过学习《材料科学导论》,我不仅了解了材料科学的基本理论和应用,还对科学研究的方法和思维方式有了更深入的了解。

我认识到科学研究需要有严谨的态度和创新的思维,需要不断追求真理、勇于挑战传统观念。

同时,我也体会到了团队合作的重要性,只有团结合作、共同努力才能达到更好的研究成果。

六、结语通过学习材料科学导论,我更加深入地了解了材料科学的基本理论和实践应用。

课程的学习使我受益匪浅,不仅提高了我对材料科学的兴趣和热爱,还培养了我科学思维和独立思考的能力。

我相信,在今后的学习和研究中,我将能够将所学知识应用到实践中,为材料科学的发展做出自己的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同济复试材料导论资料
22.材料表征
1、分析方法综述
SEM的优点:
(一)能够直接观察样品表面的结构,样品的尺寸可大至120mm ×80mm×50mm。

(二)样品制备过程简单,不用切成薄片。

(三)样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。

(四)景深大,图象富有立体感。

扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。

(五)图象的放大范围广,分辨率也比较高。

可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。

分辨率介于光学显微镜与透射电镜之间,可达3nm。

(六)电子束对样品的损伤与污染程度较小。

(七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。

SEM的缺点:
①异常反差。

由于荷电效应,二次电子发射受到不规则影响,造成图像一部分异常亮,另一部分变暗。

②图像畸形。

由于静电场作用使电子束被不规则地偏转,结果造成图像畸变或出现阶段差。

③图像漂移。

由于静电场作用使电子束不规则偏移引起图像的漂移。

④亮点与亮线。

带电样品常常发生不规则放电,结果图像中出现不规则的亮点和亮线。

TEM:由于电子的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。

因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构。

透射电子显微镜在材料科学、生物学上应用较多。

由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。

所以用透射电子显微镜观察时的样品需要处理得很薄。

常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。

对于液体样品,通常是挂预处理过的铜网上进行观察。

原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。

它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。

优点:AFM提供真正的三维表面图。

同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。

第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。

这样可以用来研究生物宏观分子,甚至活的生物组织。

缺点:成像范围太小,速度慢,受探头的影响太大。

XRD:可以做定性,定量分析。

即可以分析合金里面的相成分和含量,可以测定晶格参数,可以测定结构方向、含量,可以测定材料的内应力,材料晶体的大小等等。

一般主要是用来分析合金里面的相成分和含量。

热重分析:在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。

影响热重法测定结果的因素,大致有下列几个方面:仪器因素,实验条件和参数的选择,试样的影响因素等等。

热重分析法可以研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;研究物质的热稳定性、分解过程、脱水、解离、氧化、还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学等化学现象。

质谱(MS)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。

在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。

质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。

红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。

此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。

红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。

2.X射线分析
①X射线光电子能谱:由于它可以更准确地测量原子的内层电子束缚能及其化学位移,所以它不但为化学研究提供分子结构和原子价态方面的信息,还能为电子材料研究提供各种化合物的元素组成和含量、化学状态、分子结构、化学键方面的信息。

它在分析电子材料时,不但可提供总体方面的化学信息,还能给出表面、微小区域和深度分布方面的信息。

另外,因为入射到样品表面的X射线束是一种光子束,所以对样品的破坏性非常小。

这一点对分析有机材料和高分子材料非常有利。

②X射线荧光法:用放射性同位素作激发源,照射待测样品,使受激元素产生二次特征X射线(即荧光),使用X射线荧光仪测量并记录样品中待测元素的特征X射线照射量率,从而确定样品的成分和目标元素含量的方法。

方法操作简单,速度快,可以原位测量。

③X射线衍射分析:建立在X射线与晶体物质相遇时能发生衍射现象的基础上的一种分析方法。

应用这种方法可进行物相定性分。

相关文档
最新文档