对数公式推导过程及总结

合集下载

对数的性质及推导

对数的性质及推导

对数的性质及推导用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-lo g(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2. MN=M*N 由基本性质1(换掉M和N)a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN) = log(a)(M) + log(a)(N)3.与2类似处理MN=M/N 由基本性质1(换掉M和N) a^[log(a)(M/N)] = a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N) = log(a)(M) - log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)] = a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N) / log(b)(a)推导如下N = a^[log(a)(N)] a = b^[log(b)(a)]综合两式可得N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)] 所以b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}所以log(a)(N)=log(b)(N) / log(b)(a)性质二:log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数底]log(a^n)(b^m)=ln(a^n) / ln(b^n)由基本性质4可得log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]} 再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]公式三: log(a)(b)=1/log(b)(a)证明如下: 由换底公式log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1 =1/log(b)(a)还可变形得: log(a)(b)*log(b)(a)=1三角函数的和差化积公式sinα+sinβ=2sin(α+β)/2·cos(α-β)/2sinα-sinβ=2cos(α+β)/2·sin(α-β)/2cosα+cosβ=2cos(α+β)/2·cos(α-β)/2cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2三角函数的积化和差公式sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)]cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]公式分类公式表达式乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h。

对数公式

对数公式

对数目录对数的概念定义若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质如果a>0,且a≠1,M>0,N>0,那么:1、a^log(a)(b)=b2、log(a)(a)=13、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);第5条的公式写法5、log(a)(M^n)=nlog(a)(M)6、log(a)[M^(1/n)]=log(a)(M)/n(注:下文^均为上标符号,例:a^1即为a)推导1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、因为a^b=a^b令t=a^b所以a^b=t,b=log(a)(t)=log(a)(a^b)令b=1,则1=log(a)(a)3、MN=M×N由基本性质1(换掉M和N)a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}两种方法只是性质不同,采用方法依实际情况而定又因为指数函数是单调函数,所以log(a)(MN) = log(a)(M) + log(a)(N)4、与(3)类似处理M/N=M÷N由基本性质1(换掉M和N)a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]由指数的性质a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M÷N) = log(a)(M) - log(a)(N)5、与(3)类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)] = {a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)] = a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)基本性质4推广log(a^n)(b^m)=m/n*[log(a)(b)]推导如下:由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(b^m)÷ln(a^n)换底公式的推导:设e^x=b^m,e^y=a^n则log(a^n)(b^m)=log(e^y)(e^x)=x/yx=ln(b^m),y=ln(a^n)得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)由基本性质4可得log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] =(m÷n)×{[ln(b)]÷[ln(a)]}再由换底公式log(a^n)(b^m)=m÷n×[log(a)(b)]--------------------------------------------(性质及推导完)函数图象1.对数函数的图象都过(1,0)点.2.对于y=log(a)(n)函数,①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1.②当a>1时,图象上显示函数为(0,+∞)单增,随着a的减小,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.其他性质性质一:换底公式log(a)(N)=log(b){N}/log(b){a}推导如下:N = a^[log(a){N}]a = b^[log(b){a}]综合两式可得N = {b^[log(b){a}]}^[log(a){N}] = b^{[log(a){N}]*[log(b){a}]} 又因为N=b^[log(b){N}]所以 b^[log(b){N}] = b^{[log(a){N}]*[log(b){a}]}所以 log(b){N} = [log(a){N}]*[log(b){a}]...... [这步不明白或有疑问看上面的]所以log(a){N}=log(b){N} / log(b){a}公式二:log(a){b}=1/log(b){a}证明如下:由换底公式 log(a){b}=log(b){b}/log(b){a} ----取以b为底的对数log(a){b}=1 =1/log(b){a} 还可变形得: log(a){b}×log(b){a}=1 在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进制整数或小数的对数。

对数公式推导过程及总结

对数公式推导过程及总结

对数公式推导过程及总结1.对数的定义对数的定义是为了解决指数运算的逆运算问题。

对于任意一个正实数a,我们定义对数函数y=loga(x)为满足a^y=x的实数y。

2.换底公式推导换底公式是对数计算中的一种重要公式。

它可以将对数的底从一个正实数a换成另一个正实数b,并且不改变原来的对数值。

首先,使用对数的定义可以得到:loga(x) = y 等价于 a^y = x假设有一个新的底数b,我们可以用b为底数表示原来的等式:logb(a^y) = logb(x)利用对数的性质:logb(a^y) = y*logb(a),上述等式可化简为:y*logb(a) = logb(x)将上式中的y换成loga(x),即得到:logb(a)*loga(x) = logb(x)以上推导过程就是换底公式的推导过程。

3.对数的乘法公式推导对数的乘法公式是求两个数的对数之和等于这两个数的乘积的对数。

假设有两个数x和y,它们的对数分别为:loga(x) = mloga(y) = n根据对数的定义,可以得到:a^m=xa^n=y将这两个等式相乘,得到:a^m*a^n=x*y根据指数的性质a^m*a^n=a^(m+n),可以得到:a^(m+n)=x*y根据对数的定义,上式可以写成:loga(x*y) = m + n以上推导过程就是对数的乘法公式的推导过程。

4.对数的除法公式推导对数的除法公式是求两个数的对数之差等于这两个数的商的对数。

假设有两个数x和y,它们的对数分别为:loga(x) = mloga(y) = n根据对数的定义,可以得到:a^m=xa^n=y将这两个等式相除,得到:a^m/a^n=x/y根据指数的性质a^m/a^n=a^(m-n),可以得到:a^(m-n)=x/y根据对数的定义,上式可以写成:loga(x/y) = m - n以上推导过程就是对数的除法公式的推导过程。

总结:对数公式是解决指数运算的逆运算问题的一种重要数学工具。

对数的导数公式

对数的导数公式

对数的导数公式对数的导数是一个在微积分中常见且重要的概念。

它在解决许多实际问题中起着关键作用。

本文将介绍对数的导数公式以及其应用。

让我们回顾一下对数的定义。

对数是指数函数的逆运算。

对于任意正实数x和正实数a(a≠1),其中a被称为底数,x被称为真数,对数的定义可以表示为:logₐ(x) = y ⇔ a^y = x其中,logₐ(x)表示以a为底数的x的对数,y表示对数的值。

接下来,我们来推导对数的导数公式。

假设y = logₐ(x),我们要求y关于x的导数(dy/dx)。

为了完成这个推导,我们可以使用隐函数求导法。

首先,我们将等式两边同时取以a为底数的指数,得到:a^y = x接着,对等式两边同时求导,得到:a^y * ln(a) * (dy/dx) = 1根据隐函数求导法,我们可以将dy/dx解出来:dy/dx = 1 / (a^y * ln(a))根据对数的定义,我们可以将y表示为logₐ(x),代入上式中,得到:dy/dx = 1 / (a^(logₐ(x)) * ln(a))化简上式,我们可以得到对数的导数公式:dy/dx = 1 / (x * ln(a))这就是对数的导数公式。

接下来,让我们来看一些对数的导数公式的应用。

对数的导数公式在求解各种实际问题时非常有用。

其中一种常见的应用是在经济学中的复利计算。

复利是指在一定时间内,利息不仅仅基于本金,而且还基于先前的利息。

复利计算涉及到指数函数和对数函数,因此对数的导数公式可以帮助我们理解和计算复利。

另一个应用是在科学和工程领域中的模型拟合。

许多实际问题可以通过建立数学模型来解决。

对数函数常常用于描述一些具有指数增长或指数衰减的现象。

因此,对数的导数公式可以帮助我们计算模型中的斜率和速率。

对数的导数公式也在微积分的证明中起着重要作用。

通过对数的导数公式的推导,我们可以更深入地了解微积分的基本概念和原理。

总结一下,本文介绍了对数的导数公式及其应用。

纳皮尔对数推导

纳皮尔对数推导

纳皮尔对数推导纳皮尔对数推导(Napierian logarithm) 是数学家约翰·纳皮尔(John Napier)于1614年发明的一种方法,用于简化数值计算和解决复杂问题。

纳皮尔对数推导对于数学和科学领域的发展有着深远的影响,并被广泛应用于各种领域中。

纳皮尔对数推导的主要概念是基于对数的运算规则。

通过对数推导,我们可以将我们熟悉的乘法和除法运算转化为更简单的加法和减法运算。

这种方法大大简化了复杂计算的过程,节省了时间和精力。

纳皮尔对数推导的推导公式为:log(y) = x其中,y 是要求解的值,x 是底数为10的对数。

纳皮尔对数推导的重要性在于它的应用范围广泛。

它可以被用于解决各种领域的问题,包括数学、物理学、工程学等等。

在数学领域,纳皮尔对数推导可以用来解决复杂方程和不等式,简化计算过程。

在物理学领域,它可以被用于计算天体物理学、量子力学等领域的问题。

在工程学领域,纳皮尔对数推导可以被用于解决各种工程问题,例如电路设计、机械工程等等。

纳皮尔对数推导的优势在于它可以将复杂的计算过程简化为更简单的计算步骤。

通过将乘法和除法运算转化为加法和减法运算,我们可以更轻松地进行计算,减少错误的发生。

此外,纳皮尔对数推导还可以帮助我们理解数学和科学背后的基本原理,深入了解各种领域的知识。

然而,纳皮尔对数推导也有一些限制。

由于其计算过程需要通过查表或使用计算机软件进行,因此在没有计算工具的情况下,进行纳皮尔对数推导可能会比较困难。

此外,由于其计算过程中存在近似值的使用,所以在对于精确度要求较高的问题中,纳皮尔对数推导可能不够准确。

在总结一下,纳皮尔对数推导是一种用于简化数值计算和解决复杂问题的方法。

通过将乘法和除法转化为加法和减法运算,纳皮尔对数推导大大简化了复杂计算过程。

它被广泛应用于各种领域,包括数学、物理学和工程学等。

然而,纳皮尔对数推导也有其限制,例如需要依赖计算工具和近似值的使用。

尽管如此,纳皮尔对数推导仍然是一种重要的数学工具,对于人类对于数字和计算的理解和应用做出了贡献。

对数换底公式推导

对数换底公式推导

对数换底公式推导对数换底公式,也称作变底公式,是数学中比较常用的一种公式。

它可以用来换算一个底数的对数。

简而言之,对数换底公式就是一种便捷的计算方法,实现对数从一个底数转换到另一个底数的操作。

对数换底公式是一个有用的数学工具,它可以用来解决现实中的各种问题。

比如,它可以用来求解数字的增加或减少的百分比,以及数字的乘法或除法问题。

借助这个公式,用户还可以轻松的计算出不同的数字的对数之差。

二、对数换底公式的推导对数换底公式的推导可以简单地总结为:公式:loga b = rlog c b其中,a,b,c分别表示底数、被求对数数值和新底数。

现在我们来推导这个公式。

我们要从一个简单的例子入手。

假设有一个数值n,其对数以2为底。

这个数值的对数可以表示为:log2 n,其中n表示被求对数数值,2表示底数。

现在我们要求n以4为底的对数,可以在等式右边替换底数,即:log4 n = ?此时我们可以把等式右边的部分变形:log4 n = log2 n 2于是,等式可以变形为:loga b = rlog c b其中a、b、c表示底数,r表示log2 n的值。

我们可以继续用范例来说明这个公式的推导过程。

假设有一个数值n,其对数以4为底。

这个数值的对数可以表示为:log4 n,既然要求n以2为底的对数,则可以使用上述公式推导:log2 n = log4 n即:log2 n = (1/2)log4 n以上就是对数换底公式的推导过程,简而言之,它的形式就是:loga b = rlog c b三、数换底公式的应用对数换底公式是一个非常有用的数学工具,它可以用来解决现实中的各种问题。

比如,它可以用来求解数字的增加或减少的百分比,以及数字的乘法或除法问题。

借助这个公式,用户还可以轻松的计算出不同的数字的对数之差。

另外,对数换底公式在推导几何级数和统计学方面也有广泛的应用。

例如,在推导几何级数中,对数换底公式可以帮助计算复杂的公式,从而求出结果。

对数运算的公式推导

对数运算的公式推导

对数运算的公式推导好嘞,以下是为您生成的关于“对数运算的公式推导”的文章:在咱们数学这个奇妙的世界里,对数运算就像是一把神奇的钥匙,能打开很多难题的大门。

今天咱们就一起来瞅瞅对数运算公式到底是咋推导出来的。

先来说说对数是啥。

假如有一个等式 a^b = N (这里 a 是底数,b是指数,N 是幂),那咱们就把 b 叫做以 a 为底 N 的对数,记作logₐN 。

咱先从最简单的情况开始,假设底数相同,就是logₐM + logₐN 。

比如说有 log₂8 + log₂4 ,因为 2³ = 8 ,2² = 4 ,所以 log₂8 = 3 ,log₂4= 2 。

那 2³ × 2² = 2^(3 + 2) = 2^5 ,这就相当于 8×4 = 32 ,而 2^5 = 32 ,所以 log₂8 + log₂4 = log₂(8×4) = log₂32 = 5 。

这么一捣鼓,就发现logₐM + logₐN = logₐ(M×N) 。

再来看个例子,logₐM - logₐN 。

就拿 log₃9 - log₃3 来说,因为 3² = 9 ,3¹ = 3 ,所以 log₃9 = 2 ,log₃3 = 1 。

而 9÷3 = 3 ,3 = 3^1 ,所以log₃9 - log₃3 = log₃(9÷3) = log₃3 = 1 。

这么一来,就得出logₐM -logₐN = logₐ(M÷N) 。

还有个重要的,就是logₐM^n 。

比如说 log₂4³,因为 4 = 2²,所以4³ = (2²)³ = 2^6 ,那 log₂4³ = log₂2^6 = 6 。

而 log₂4 = 2 ,所以 log₂4³= 3×log₂4 ,这样就得出logₐM^n = n×logₐM 。

对数函数及其性质,对数的公式互化,详尽的讲解

对数函数及其性质,对数的公式互化,详尽的讲解

§2.2对数函数2.2.1对数与对数运算1.对数的概念一般地,如果a x=N (a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y=a x的另一种表达形式,例如:34=81与4=log381这两个式子表达是同一关系,因此,有关系式a x=N⇔x=log a N,从而得对数恒等式:a log a N=N.(2)“log”同“+”“×”“”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N(a>0,且a≠1)具有下列性质:①零和负数没有对数,即N>0;②1的对数为零,即log a1=0;③底的对数等于1,即log a a=1.2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a(MN)=log a M+log a N (a>0,a≠1,M>0,N>0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN=log a M-log a N(a>0,a≠1,M>0,N>0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n=n·log a M (a>0,a≠1,M>0,n∈R),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M>0,N>0,例如log a[(-3)×(-4)]是存在的,但是log a(-3)与log a(-4)均不存在,故不能写成log a[(-3)×(-4)]=log a(-3)+log a(-4).②防止出现以下错误:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,log a M N=log a Mlog a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数,得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N =1log N b 或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1);(2)log bn N m =mnlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一 正确理解对数运算性质对于a >0且a ≠1,下列说法中,正确的是( ) ①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2.A .①与③B .②与④C .②D .①、②、③、④解析 在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1.(2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2 =2+1-(lg2)2+(lg2)2=3.(3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值. 解 方法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.点评 方法一是先将括号换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,数x 的值.错解 由对数的性质可得x 2+3x =x +3. 解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了.正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0 ∴(3x -7)(3x +1)=0 ∴3x =7或3x =-1(舍去) ∴x =log 37. 答案 log 372.(高考)设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=____. 解析 g ⎝⎛⎭⎫12=ln 12<0,g ⎝⎛⎭⎫ln 12=eln 12=12, ∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞) 答案 C解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2. 3.log 56·log 67·log 78·log 89·log 910的值为( )A .1B .lg5 C.1lg5D .1+lg2答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值围是( )A .(0,1) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1 D .(1,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 B.14 C .3 D.13答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( )A .lg7·lg5B .lg35C .35 D.135答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝⎛⎭⎫12=________. 答案 2解析 令log 2x =12,则212=x ,∴f ⎝⎛⎭⎫12=212= 2.8.log (2-1)(2+1)=________. 答案 -1解析 log 2-1(2+1)=log 2-1(2+1)(2-1)2-1=log (2-1)12-1=-1.9.已知lg2=0.301 0,lg3=0.477 1,lg x =-2+0.778 1,则x =________. 答案 0.06解析 ∵lg2=0.301 0,lg3=0.477 1,而0.301 0+0.477 1=0.778 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=0.06.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy的值;(2)已知log 189=a,18b =5,试用a ,b 表示log 365. 解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y , 又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b2-a. 11.设a ,b ,c 均为不等于1的正数,且a x =b y =c z ,1x +1y +1z =0,求abc 的值.解 令a x =b y =c z =t (t >0且t ≠1),则有1x =log t a ,1y =log t b ,1z =log t c ,又1x +1y +1z=0,∴log t abc =0,∴abc =1. 12.已知a ,b ,c 是△ABC 的三边,且关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,试判定△ABC 的形状.解 ∵关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根, ∴Δ=0,即4-4[lg(c 2-b 2)-2lg a +1]=0.即lg(c2-b2)-2lg a=0,故c2-b2=a2,∴a2+b2=c2,∴△ABC为直角三角形.2.2.1对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a(a>0且a≠1)的b次幂等于N,就是a b=N,那么数b叫做以a为底N的对数,记作b=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质有:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e 为底的对数叫做自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .4.若a >0,且a ≠1,则a b =N 等价于log a N =b . 5.对数恒等式:a log a N =N (a >0且a ≠1).一、对数式有意义的条件例1 求下列各式中x 的取值围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x 的不等式(组),解之即可. 解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2. (3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5 D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)54=625; (2)log 128=-3;(3)⎝⎛⎭⎫14-2=16; (4)log 101 000=3. 分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4.(2)∵log 128=-3,∴⎝⎛⎭⎫12-3=8. (3)∵⎝⎛⎭⎫14-2=16,∴log 1416=-2. (4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x =N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值:(1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2.(4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝⎛⎭⎫12x =16,即2-x =24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0);(2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N=c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2C.5-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3.5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100.7.设log a 2=m ,log a 3=n ,则a 2m +n 的值为________. 答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12.8.已知lg6≈0.778 2,则102.778 2≈________. 答案 600解析 102.778 2≈102×10lg6=600. 三、解答题9.求下列各式中x 的值(1)若log 3⎝⎛⎭⎫1-2x 9=1,则求x 值;(2)若log 2 003(x 2-1)=0,则求x 值. 解 (1)∵log 3⎝⎛⎭⎪⎫1-2x 9=1,∴1-2x 9=3 ∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log224;(2)x =log 93;(3)x =71-log 75; (4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎫22x =4,∴2-12x =22,-x2=2,x =-4.(2)由已知得:9x =3,即32x =312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8, 即⎝⎛⎭⎫1x 3=23,1x =2,x =12. (5)由已知得:x =⎝ ⎛⎭⎪⎫124=116.2.2.1 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n =n log a M (n ∈R ).2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的. 点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)lg 27+lg8-lg 1 000lg1.2;(4)(lg5)2+lg2·lg50. 分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1.(3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622 =log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y =36,求2x +1y的值;(2)已知log 189=a,18b =5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36, ∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1.(2)∵log 189=a,18b =5,∴log 185=b .∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a .点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值.解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a 3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( ) A.a +b a B.a +b bC.a a +bD.b a +b 答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +bb.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg ab 2的值等于( ) A .2 B.12 C .4 D.14答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg ab 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.4.若2.5x =1 000,0.25y =1 000,则1x -1y等于( )A.13 B .3 C .-13 D .-3 答案 A解析 由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000, 则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13.5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005|=2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 1.8=__________.答案 a +2b -12解析 lg 1.8=12lg1.8=12lg 1810=12lg 2×910=12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63=0.613 1,log 6x =0.386 9,则x =________. 答案 2解析 由log 63+log 6x =0.613 1+0.386 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12. 方法二 原式=lg 427-lg4+lg7 5=lg42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2=lg10·lg 52+lg4=lg ⎝⎛⎭⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1.10.若26a =33b =62c ,求证:1a +2b =3c .证明 设26a =33b =62c =k (k >0),那么 ⎩⎪⎨⎪⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎨⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k =2log k6.∴1a +2b=6·log k 2+2×3log k 3 =log k (26×36)=6log k 6=3×2log k 6=3c,即1a +2b =3c. 2.2.2 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数. 对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y=log a x中,log a x前面的系数为1,自变量在真数的位置,底数a 必须满足a>0,且a≠1;(3)以10为底的对数函数为y=lg x,以e为底的对数函数为y=ln x.实际上,观察对数函数的图象不难发现,对数函数中的值y =log m n 有以下规律:(1)当(m -1)(n -1)>0,即m 、n 围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1;(2)y =11-log a (x +a ) (a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的围. 解 (1)要使函数有意义,必须{2x +3>0,x -1>0,3x -1>0,3x -1≠1同时成立,解得⎩⎨⎧x >-32,x >1,x >13,x ≠23. ∴x >1. ∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba ,logb a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1,log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba ∈(0,1),logb a ∈(0,1).又a >b a >1,且b >1,∴log b ba<log b a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限,图象越靠近x 轴的对数函数的底数越小. 已知log a 12<1,那么a 的取值围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12. 故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1;(2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,数a 的取值围. 解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值围为2221⎪⎭⎫⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫ ⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a 的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f(x)=lg(ax2+2x+1),若f(x)的值域是R,数a的取值围.错解∵f(x)的值域是R,∴ax2+2x+1>0对x∈R恒成立,即{a>0Δ<0⇔{a>04-4a<0⇔a>1.错因分析出错的原因是分不清定义域为R与值域为R的区别.正解函数f(x)=lg(ax2+2x+1)的值域是R⇔真数t=ax2+2x+1能取到所有的正数.当a=0时,只要x>-12,即可使真数t取到所有的正数,符合要求;当a≠0时,必须有{a>0Δ≥0⇔{a>04-4a≥0⇔0<a≤1.∴f(x)的值域为R时,实数a的取值围为[0,1].本节容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(高考)已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于()A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数,∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b . c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b . 答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅答案 C2.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1=-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ;又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数.又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x 下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x 上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x 互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)的每一个x 值都有f (x )>0,则实数a 的取值围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫12,1 D.⎝⎛⎭⎫0,12 答案 D 解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1,即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数,一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2, 又1≤x ≤2,∴0≤log 2x ≤1. ∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).对数函数y =log a x (a >0且a ≠1)和指数函数y =a x _(a >0且a ≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.101,53,34,3B .53,101,34,3C .101,53,3,34 D .53,101,3,34 答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二 过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系:(1)若logm5>logn5,则m n ;(2)若logm0.5>logn0.5,则m n.答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域:(1)y =3log 2x ;(2)y =log 0.5(4x -3);(3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义,必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1. ∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1. (3)由⎩⎪⎨⎪⎧ x +1>0x +1≠12-x >0,得⎩⎨⎧ x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域.解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1,∴4x -3≥1,x ≥1.当0<a <1时,(*)可化为log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1. 综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小:(1)log 0.81.5与log 0.82;(2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =log 0.8x 在(0,+∞)是减函数,∵1.5<2,∴log 0.81.5>log 0.82.(2)log 35和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64,∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小:(1)log 0.52.7,log 0.52.8; (2)log 34,log 65;(3)log a π,log a e (a >0且a ≠1).解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数.又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数,∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数,∴log 65<log 66=1.∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数.∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数.∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ;当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值围. 分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a . 当a >1时,1a <34<a ,∴a >43. 当0<a <1时,1a >34>a ,∴0<a <34. ∴a 的取值围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性.(2)解决与对数函数相关的问题时要遵循“定义域优先”原则.(3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值围.解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎨⎧ 0<2a +1<10<3a <12a +1<3a, 解得⎩⎪⎨⎪⎧ -12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎨⎧ 2a +1>13a >12a +1>3a ,解得⎩⎨⎧ a >0a >13a <1,∴13<a <1. 综上所述,a 的取值围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。

对数计算公式

对数计算公式

性质①loga1=0;②logaa=1;③负数与零无对数.2对数恒等式a^logaN=N a>0 ,a≠13运算法则①logaMN=logaM+logaN;②logaM/N=logaM-logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的,即lna=m,…为自然对数的底;定义:若a^n=ba>0且a≠1 则n=logab基本性质:1、a^logab=b2、logaMN=logaM+logaN;3、logaM÷N=logaM-logaN;4、logaM^n=nlogaM5、loga^nM=1/nlogaM推导:1、因为n=logab,代入则a^n=b,即a^logab=b;2、MN=M×N由基本性质1换掉M和Na^logaMN = a^logaM×a^logaN由指数的性质a^logaMN = a^{logaM + logaN}又因为指数函数是,所以logaMN = logaM + logaN3、与2类似处理 M/N=M÷N由基本性质1换掉M和Na^logaM÷N = a^logaM÷a^logaN由指数的性质a^logaM÷N = a^{logaM - logaN}又因为是单调函数,所以logaM÷N = logaM - logaN4、与2类似处理M^n=M^n 由基本性质1换掉M a^logaM^n = {a^logaM}^n由指数的性质a^logaM^n = a^{logaMn}又因为指数函数是单调函数,所以logaM^n=nlogaM基本性质4推广loga^nb^m=m/nlogab推导如下:由换底公式见下面lnx是logex,e称作 loga^nb^m=lnb^m÷lna^n换底公式的推导:设e^x=b^m,e^y=a^n 则loga^nb^m=loge^ye^x=x/y x=lnb^m,y=lna^n 得:loga^nb^m=lnb^m÷lna^n由基本性质4可得 loga^nb^m = m×lnb÷n×lna = m÷n×{lnb÷lna}再由换底公式 loga^nb^m=m÷n×logab4换底公式设b=a^m,a=c^n,则b=c^n^m=c^mn………………………………①对①取以a为底的对数,有:logab=m……………………………..②对①取以c为底的对数,有:logcb=mn……………………………③③/②,得:logcb/logab=n=logca∴logab=logcb/logca注:logab表示以a为底x的对数;换底公式拓展:以e为底数和以a为底数的公式代换:logae=1/lna5推导公式log1/a1/b=logablogablogba=16求导数xlogax'=logax+lna其中,logax中的a为底数,x为真数;logax'=1/xlna特殊的即a=e时有logex'=lnx'=1/x。

对数求导公式推导过程

对数求导公式推导过程

对数求导公式推导过程是数学中一个重要的知识点,它是用来解决特定函数曲线的斜率问题。

首先,我们需要知道什么是对数。

对数是把一个数乘以自身的次幂,得到一个特定的数值。

例如,10^2=100,这里的2就是10的对数。

现在让我们来求导数据公式的推导过程,以下是求导的步骤:
1. 首先,假设有一个函数y=lnx,它的导数是什么?
2. 将y=lnx替换为y=x的对数形式,即y=loga(x),其中a是底数。

3. 使用对数求导法则,即求导时将原函数的对数形式求导,即d/dx(loga(x))=1/x。

4. 将求导的结果带入原函数的对数形式,即d/dx(lnx)=1/x,这就得到了对数求导公式。

以上就是对数求导公式推导过程的介绍,从上面的推导过程可以看出,对数求导公式是一个非常简单易懂的求导公式,而且可以用来解决许多数学中的问题。

对数的运算法则及公式是什么

对数的运算法则及公式是什么

对数的运算法则及公式是什么对数是数学中比较重要的知识点之一,那么对数都有哪些公式呢?下面是由编辑为大家整理的“对数的运算法则及公式是什么”,仅供参考,欢迎大家阅读本文。

运算法则loga(MN)=logaM+logaN;loga(M/N)=logaM-logaN;logaNn=nlogaN;(n,M,N∈R);如果a=em,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底,其为无限不循环小数。

定义:若an=b(a>0,a≠1)则n=logab。

换底公式logMN=logaM/logaN;换底公式导出:logMN=-logNM。

推导公式log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b);loga(b)*logb(a)=1;loge(x)=ln(x);lg(x)=log10(x)。

拓展阅读:学好数学的几条建议1、要有学习数学的兴趣。

“兴趣是最好的老师”。

做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。

但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。

有的同学老想做难题,看到别人上数奥班,自己也要去。

如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。

建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。

2、要有端正的学习态度。

首先,要明确学习是为了自己,而不是为了老师和父母。

因此,上课要专心、积极思考并勇于发言。

其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。

3、要有“持之以恒”的精神。

要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。

即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。

对数的换底公式推导

对数的换底公式推导

对数的换底公式推导
对数的换底公式是数学中一个很重要的公式,它可以用来计算不同对数之间的关系,成为科学研究中不可缺少的一部分。

本文将通过证明换底公式来帮助读者理解其中的原理。

首先,我们要明确一下关于对数的概念,以及换底公式的定义。

对数(log)是一个抽象概念,它表示两个数字之间的关系。

换底公式(logab = logcb / logca)指的是两个对数(logab logcb)之间的关系,即logab于logcb以logca商。

接下来,我们来证明换底公式。

设有两个数ab,其中ab0。

由于logab = logcb / logca,我们可以认为:
b = c^(logca logcb )
下一步,我们可以将b两边同时乘以a:
ab = c^(logca logcb ) a
我们知道,ab于cn幂。

我们可以进一步将上式简化为:
ab = c^(logca + logcb )
以上就是换底公式的证明。

换底公式的应用不仅限于简单的计算,它也可以用于更深层次的研究。

比如,由于logar = logbr + logcr,因此可以用换底公式推导出ab 之间的指数表达式。

此外,换底公式还可以用于方程解等数学问题。

比如,在一个简单的方程中,如果已知ab对数,则可以通过换底公式求解方程。

综上所述,换底公式是一个重要的数学公式,它不仅可以用于简
单的计算,还可以用于更深层次的研究,从而为科学研究带来更多可能性。

对数的运算法则及公式推导过程

对数的运算法则及公式推导过程

对数的运算法则及公式推导过程1. 引言:对数,神秘的数学小精灵说到对数,很多人可能一脸懵,甚至有些人会说:“这是什么鬼?”其实,对数在数学中可是个大角色,像个神秘的小精灵,虽然它的名字听起来高大上,但一旦你了解了它的本领,真的会觉得它挺可爱的。

简单来说,对数就是用来处理指数运算的。

你想象一下,指数就像是个狂奔的小马,而对数呢,就是那位骑士,帮你把这个小马的速度给控制住。

哎,听起来是不是有点玄乎?别着急,咱慢慢来,把它搞明白。

2. 对数的基本概念2.1 对数的定义首先,咱们得搞清楚什么是对数。

对数是问:“多少次的乘法能得到一个数?”比如说,(2^3 = 8),那我们就可以说,(log_2(8) = 3)。

在这里,2是底数,8是被对数,3就是指数。

其实,这就像在问,“我要把2这个小伙伴重复叫几次,才能把它变成8?”有意思吧?2.2 常用对数说到对数,还有一种“常用对数”,它的底数是10。

这就好比在我们的日常生活中,常常用到的那个“十”,比如说我们买东西的时候,价钱总是和10有关系,几块钱几毛的。

所以,(log_{10(100) = 2)就是在告诉我们,10这个小家伙要重复叫两次,才能变成100。

3. 对数的运算法则3.1 加法法则好啦,咱们开始讲对数的运算法则。

第一个法则就是加法法则,这个法则可好用啦!它告诉我们,当你要计算两个对数的和时,可以把它们的底数相乘。

比如说,(log_b(m) + log_b(n) = log_b(m times n))。

举个简单的例子,假如你有(log_2(4))和(log_2(8)),那么你可以把它们合起来,得到(log_2(32))(因为4乘以8等于32)。

这个法则真是方便,简直像是个快速通道,让你一瞬间就能得到答案。

3.2 减法法则接着,咱们聊聊减法法则。

这个法则和加法法则有点像,但稍微复杂一点。

它告诉我们,如果要计算一个对数减去另一个对数,就可以把它们的底数相除。

对数运算性质的推导

对数运算性质的推导

对数运算性质的推导过程以下所有公式的推导多次用到了log a N a N =这一性质,以及指数的运算性质。

1、()log log log a a a M N MN +=的推导过程证明:M N MN ⋅=log log log ()a a a M N MN a a a ⋅=log log log ()a a a M N MN a a +=()log log log a a a M N MN +=2、log log log a a aM M N N-=的推导过程 证明:M M N N = log log log a a a M MN N a a a= log log log a a a M M N N a a -=log log log a a aM M N N -= 3、log log m n a a n b b m=的推导过程 这里分成log log n a a b n b =和1log log m a a b b m =的推导过程。

证明:①、n n b b =()log log n a a n b ba a = log log n a ab n b a a =log log n a a b n b =②b b =()()11log log log log ()[]a m a a a b b b b m m m m m a a a a ===()1log log ()a m a b b m m m a a =1og log m a a l b b m= 由①②知log log m n a a n b b m =. 4、log log log a b a b c c ⋅=的推导过程。

证明:c c =log log b a c c b a =()log log log b a a c b c a a =log log log a b a b c c a a ⋅=log log log a b a b c c ⋅=5、log log log a b a b c c ⋅=的变形。

对数算法公式

对数算法公式

对数算法公式在过去几十年里,对数算法在计算机科学和信息处理领域中得到了广泛的应用。

本文将对这一算法进行详细的阐述,包括其定义、公式推导、优缺点分析以及实际应用案例。

最后,我们将探讨如何提高对数算法的性能,以便读者能更好地理解和应用这一算法。

一、对数算法的定义和应用场景对数算法(Logarithmic algorithm)是一种基于对数函数的算法。

它利用对数函数的性质,将指数运算转化为对数运算,从而降低问题的复杂度。

对数算法广泛应用于信号处理、图像处理、加密算法、数据压缩等领域。

二、对数算法的公式及其推导对数算法的核心公式为:loga(b) = c,其中a、b、c分别为底数、真数和对数。

根据这个公式,我们可以将指数运算转化为对数运算,从而简化问题。

证明:假设loga(b) = c,那么a的c次方等于b,即a^c = b。

由此可知,对数算法实际上是一种将指数运算转化为对数运算的方法。

三、对数算法的优缺点分析优点:1.降低问题复杂度:对数算法将指数运算转化为对数运算,使得问题更容易处理。

2.高效性:对数算法在某些情况下具有较高的计算效率,特别是在大规模数据处理中。

3.易于理解和实现:对数算法的概念和公式相对简单,便于理解和编程实现。

缺点:1.适用范围有限:对数算法并非适用于所有问题,只有在特定场景下才能发挥作用。

2.数值溢出:当底数a过大或真数b过大时,可能导致对数运算结果溢出。

四、实际应用中的对数算法案例分享1.信号处理:对数算法常用于信号处理中的频域分析,如傅里叶变换和对数变换。

2.图像处理:在图像处理中,对数算法可用于直方图均衡化、边缘检测等任务。

3.加密算法:对数算法在加密算法中具有重要作用,如RSA加密算法就基于大数分解问题。

4.数据压缩:对数算法的应用还可体现在数据压缩领域,如霍夫曼编码就是基于对数原理。

五、提高对数算法性能的方法和建议1.选择合适的底数:根据问题特点,选择合适的底数,以提高算法的计算效率。

对数换底公式推导过程

对数换底公式推导过程

对数换底公式推导过程对数换底公式是高中数学中的一种重要公式,用于计算不同底数的对数之间的关系。

通过对数换底公式,我们可以将一个底数为a的对数转化为底数为b的对数,从而简化计算。

对数是指数运算的逆运算,对数换底公式是将底数不同的对数互相转化的一种方法。

换底公式的一般表达式为:logₐb = logₓb / logₓa,其中logₐb表示以a为底,b的对数,logₓb表示以x为底,b的对数。

对数换底公式的推导过程如下:假设对数换底公式为:logₐb = logₓb / logₓa,我们需要证明它的正确性。

我们将底数为a的对数表示为以x为底的对数:logₐb = logₓb / logₓa。

假设logₓa = m,那么x^m = a。

然后,将底数为b的对数表示为以x为底的对数:logₓb = logₓb / logₓa。

假设logₓb = n,那么x^n = b。

接下来,我们将x^m = a代入logₓb = logₓb / logₓa中得到:logₓb = logₓb / m。

将m移到等号右边,得到:m = logₓb / logₓa。

再将x^n = b代入logₐb = logₓb / logₓa中得到:logₐb = n / logₓa。

将n移到等号右边,得到:n = logₐb * logₓa。

将m = logₓb / logₓa和n = logₐb * logₓa代入logₓb = logₓb / m 和logₐb = n / logₓa中,得到:logₓb = logₓb / (logₓb / logₓa) = logₐb * logₓa / logₓb。

化简得到对数换底公式:logₐb = logₓb / logₓa。

通过对数换底公式,我们可以将求解一个底数为a的对数问题转化为一个底数为b的对数问题,从而简化计算。

对数换底公式在解决各种数学问题中具有广泛的应用,特别是在指数和对数的运算中起到了重要的作用。

对数公式的推导全

对数公式的推导全

对数公式的推导全我们从最基本的定义开始,即对数的定义。

对数是指一个数在一些底数下的指数,它表示这个底数需要乘以多少次才能得到这个数。

假设我们有一个方程式:a^x=b,我们想要求出x的值。

这时,我们就需要用到对数的概念。

假设我们定义了一个以a为底数的对数函数:log_a(b) = x。

根据对数的定义,我们可以将这个函数表述为:a^x = b。

所以,通过求解这个对数方程,我们可以得到x的值。

这就是对数的基本概念。

接下来,我们来推导对数公式。

首先,我们考虑一个十分有用的对数公式:log_a(b*c) = log_a(b) + log_a(c)。

为了证明这一公式,我们假设log_a(b) = x,log_a(c) = y。

根据对数的定义,我们有a^x = b,a^y = c。

我们希望找到一个表达式,使得它等于a^(x+y)。

因此,我们猜测:log_a(b*c) = x + y。

我们可以用等式a^(x+y) = b*c来验证我们的猜测。

根据指数的定义,左边的表达式等价于a^x * a^y,而右边的表达式等价于b * c。

由于我们假设log_a(b) = x和log_a(c) = y,所以a^x = b,a^y = c。

因此,左边的表达式等于b * c,右边的表达式也等于b * c。

所以我们证明了我们的猜测是正确的,即log_a(b*c) = log_a(b) + log_a (c)。

接下来,我们考虑另一个常用的对数公式:log_a(b^c) = c *log_a(b)。

为了推导这个公式,我们假设log_a(b) = x。

根据对数的定义,我们有a^x = b。

那么,我们可以猜测:log_a(b^c) = c * x。

我们用等式a^(c*x) = b^c来验证我们的猜测。

根据指数的定义,左边的表达式等价于(a^x)^c,右边的表达式等价于b^c。

由于我们假设log_a(b) = x,所以a^x = b。

所以左边的表达式等于b^c,右边的表达式也等于b^c。

对数公式证明过程

对数公式证明过程

对数公式证明过程对数公式是数学中非常重要的一部分,咱们一起来瞅瞅它的证明过程。

还记得我读高中那会,有一次数学课上,老师正讲到对数公式的证明。

那天阳光透过窗户洒在课桌上,我却满脑子都是昨晚没看完的漫画。

老师在黑板上写下了对数的定义:如果 a 的 x 次方等于 N(a>0,且a≠1),那么数 x 叫做以 a 为底 N 的对数,记作x = logₐN。

就拿logₐ(MN) = logₐM + logₐN 这个公式来说吧。

咱们设logₐM = p,logₐN = q,那根据对数的定义,就有 a^p = M,a^q = N。

所以 MN = a^p × a^q = a^(p + q)。

再根据对数的定义,就能得出logₐ(MN) = p + q,也就是logₐM + logₐN 啦。

再比如说换底公式logₐb = logₙb / logₙa 。

咱设x = logₐb,那么 a^x = b。

两边取以 n 为底的对数,得到 logₙa^x = logₙb ,也就是 x logₙa = logₙb 。

所以 x = logₙb / logₙa ,这不就证明出来了嘛。

其实刚开始学的时候,我真是觉得这一堆公式绕得我头晕。

特别是做作业的时候,看着题目里那些对数,感觉它们就像一群调皮的小精灵,总是跟我捉迷藏,让我找不着头绪。

有一次考试,就考到了对数公式的证明和应用。

我那会心里直打鼓,看着题目干瞪眼。

最后成绩出来,那叫一个惨不忍睹啊。

从那以后,我痛定思痛,每天花好多时间去琢磨这些公式。

慢慢发现,其实只要理解了它背后的原理,也就没那么难了。

就像logₐM^n = n logₐM 这个公式。

设logₐM = p,那 M = a^p 。

所以 M^n = (a^p)^n = a^(pn) 。

再根据对数定义,logₐM^n = pn = n logₐM 。

经过这么一番学习和琢磨,我发现对数公式就像一把神奇的钥匙,能打开好多数学难题的大门。

ln的导函数公式

ln的导函数公式

ln的导函数公式自然对数函数(ln)是一种常见的数学函数,其导函数公式在微积分中具有重要的应用。

本文将介绍ln函数的导函数公式及其推导过程。

ln函数的定义ln函数是以常数e为底的对数函数,通常表示为ln(x),其中x为函数的自变量。

ln函数的定义域为正实数集合,即x>0。

ln函数的导数ln函数的导数表示为ln’(x),即ln函数的对x的导数。

根据导数的定义,ln’(x)可以通过极限的方式进行推导。

定义ln函数为y=ln(x),则可得到ln函数的导数如下:$$ ln'(x) = \\lim_{h \\to 0} \\frac{ln(x+h) - ln(x)}{h} $$利用ln函数的性质和极限的定义,可以进一步推导ln函数的导数公式。

ln函数的导函数公式根据导数的定义和ln函数的特性,可以得到ln函数的导函数公式如下:$$ ln'(x) = \\frac{1}{x} $$这就是ln函数的导函数公式。

其含义是:ln函数在任意点x处的导数等于1除以x。

推导过程为了更好地理解ln函数的导数公式,可以通过一定的推导过程来验证导函数的正确性。

这里给出ln’(x) = 1/x 的推导过程:1.定义ln函数为y=ln(x)。

2.计算ln(x+h) 和 ln(x) 的差值:$$ ln(x+h) - ln(x) = ln(\\frac{x+h}{x}) = ln(1+\\frac{h}{x}) $$3.根据ln函数的特性,可以展开ln(1+h)为其泰勒级数展开式:$$ ln(1+h) = h - \\frac{h^2}{2} + \\frac{h^3}{3} -\\frac{h^4}{4} + \\ldots $$4.将展开式中的h替换为h/x,并应用极限的定义,得到ln’(x)的计算公式:$$ ln'(x) = \\lim_{h \\to 0} \\frac{ln(x+h) - ln(x)}{h} =\\lim_{h \\to 0} \\frac{ln(1+\\frac{h}{x})}{h} = \\frac{1}{x} $$5.故得到ln函数的导函数公式为ln’(x) = 1/x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档