2009广州中考数学(含答案分析)
方差与频率分布
2009年中考数学复习教材回归知识讲解+例题解析+强化训练方差与频率分布◆知识讲解1.方差的定义在一组数据x1,x2,…,x n中,各数据与它们的平均数x的差的平方的平均数,•叫做这组数据的方差.通常用“S2”表示,即S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].2.方差的计算(1)基本公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2](2)简化计算公式(Ⅰ)S2=1n[(x12+x22+…+x n2)-n x2],也可写成S2=1n(x12+x22+…+x n2)-x2,此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化计算公式(Ⅱ)S2=1n[(x`12+x`22+…+x`n2)-nx x`2].当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组数据x`1=x1-a,x`2=x2-a,…x`n=x n-a,•那么S2=1n[(x`12+x`22+…+x`n2)-n x`2],也可写成S2=1n(x`12+x`22+…+x`n2)-x`2.记忆方法是:•方差等于新数据平方的平均数减去新数据平均数的平方.3.标准差的定义和计算方差的算术平方根叫做这组数据的标准差,用“S”表示,即4.方差和标准差的意义方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的权是这两组数据的个数相等、平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.5.频率分布的意义前面学习的平均数与方差,反映了样本和总体的两个特征:平均水平和波动大小.但是在许多问题中,只知道这些还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布.6.研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤:①计算极差(最大值与最小值的差);②决定组距与组数;③决定分点;④列频率分布表;⑤画出频率分布直方图.(2)频率分布的有关概念:①极差:最大值与最小值的差;②频数:落在各个小组内的数据的个数;③频率:每一小组的频数与数据总体(样本容量n•)的比值叫做这一小组的频率.(3)几个重要的结论:①各小组的频数之和等于数据总数;②各小组的频率之和等于1;③频率分布直方图中,各小长方形的面积等于相应各组的频率,各小长方形面积之和等于1;④各小长方形的高与该组频数成正比.◆例题解析例1甲、乙两个学习小组各4名学生的数学测验成绩如下(•单位:分)甲组:86 82 87 85 乙组:85 81 85 89(1)分别计算这两组数据的平均数;(2)分别计算这两组数据的方差;(3)哪个学习小组学生的成绩比较整齐?【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【解答】(1)x甲=14(6+2+7+5)+80=85,x乙=14(5+1+5+9)+80=85.(2)S甲2=14[(86-85)2+(82-85)2+(87-85)2+(85-85)2]=3.5,S乙2=14[(85-85)2+(81-85)2+(85-85)2+(89-85)2]=8.(3)∵S乙2>S甲2,∴甲组学习成绩较稳定.【点评】方差是反映一组数据波动大小的量.例2 为了迎接全市体育中考,•某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的500名男生中随机抽取了部分男生的测试成绩(单位:m,精确到0.01m)作为样本进行分析,绘制了如图所示的频率分布直方图(•每组含最低值,不含最高值).已知图中从左到右每个小长方形的高比依次为2:4:6:•5:3,其中1.80~2.00这一小组的频数为8,请根据有关信息解答下列问题:(1)这次调查的样本容量为______,2.40~2.60这一小组的频率为_____.(2)请指出样本成绩的中位数落在哪一小组内,并说明理由;(3)样本中男生立定跳远的人均成绩不低于多少米?(4)请估计该校初三男生立定跳远成绩在2.00m以上(包括2.00m)•的约有多少人?【分析】样本容量是样本数据,不带单位,确定中位数时,首先将样本数据按大小排序后再求出,然后分析落在哪个小组.【解答】(1)由于1.80~2.00小组的频数为8,占总份数中的4份,总份数是20•分,故样本容量为:8÷420=40.2.40~2.60这个小组的频率为3÷20=0.15.(2)由于样本容量是40,则中位数是第20人和第21人成绩的平均数,而第20•人和第21人的成绩均在2.00~2.20这个小组,则中位数落在2.00~2.20这个小组.(3)因为第一组到第五组人数依次为4人,8人,12人,10人,6人,•则可求得样本中男生立定跳远的人均成绩不低于2.03m.(4)初中男生立定跳远成绩在2.00m以上的约有2540×500=350(人).【点评】频率分布直方图中各小组频率之和为1,掌握它是解题的关键.◆强化训练一、填空题1.(2005,荆门市)已知数据:1,2,1,0,-1,-2,0,-1,这组数据的方差为______.2.(2005,宜昌市)甲、乙、丙三台包装机同时分装质量为400g的茶叶,从它们各自分装的茶叶中分别随机抽取了10盒,得到它们的实际质量的方差如下表所示.根据表中数据,可以认为三台包装机中,______包装机包装的茶叶质量稳定.甲包装机乙包装机丙包装机方差/g2 31.96 7.96 16.323.2005年沈阳市春季房交会期间,某公司对参加本次房交会的消费者进行了随机的问卷调查,共发放1000份调查问卷,并全部收回.根据调查问卷,将消费者年收入情况整理后,制成表1;将消费者打算购买住房的面积的情况整理后,制成表2,并作出部分频率分布直方图(如图).表1 被调查的消费者年收入情况年收入/万元 1.2 1.8 3.0 5.0 10.0被调查的消费者数/人200 500 200 70 30表2 被调查的消费者打算购买住房的面积的情况分组/m2 频数频率40.5~60.5 0.0460.5~80.5 0.1280.5~100.5 0.36100.5~120.5120.5~140.5 0.20140.5~160.5 0.04合计1000 1.00注:住房面积取整数请你根据以上信息,回答下列问题:(1)根据表1可得,被调查的消费者平均年收入为______万元;被调查的消费者年收入的中位数是______万元;在平均数,中位数这两个数中,更能反映出被调查的消费者年收入的一般水平;(2)根据表2可得,打算购买100.5~120.5m2房子的人数是_____人;打算购买住房面积不超过100m2的消费者的人数占被调查人数的百分数是____;(3)在下图中补全这个频率分布直方图.4.青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频率分布直方图.分组频数频率3.95~4.25 2 0.044.25~4.55 6 0.124.55~4.85 254.85~5.15 0.045.15~5.45 2 1.00合计请你根据给出的图表回答:(1)填写频率分布表中未完成部分的数据.(2)在这个问题中,总体是________,样本容量是________.(3)在频率分布直方图中,梯形ABCD的面积是______.(4)请你用样本估计总体,可以得到哪些信息(写一条即可):________.5.甲,乙两种产品进行对比试验,•得知乙产品比甲产品的性能更稳定,如果甲,乙两种产品抽样数据的方差分别是S甲2与S乙2,•则它们的方差的大小关系是_______.6.已知:一组数据-1,x,1,2,0•的平均数是0,•这组数据的方差是_____.7.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的标准差是_______.8.若已知一组数据:x1,x2,…,x n的平均数为x,方差为S2,那么另一组数据:3x1-2,•3x2-2,…,3x n-2的平均数为______,方差为______.二、选择题9.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7 乙:7 10 9 9 10 则这次练习中,甲,乙两人方差的大小是()A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定10.已知甲,乙两组数据的平均数相等,•若甲组数据的方差S甲2=0.055,乙组数据的方差S乙2=0.105,则()A.甲组数据比乙组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D.甲,乙两组数据的波动大小不能比较11.(2005,宜昌市)衡量样本和总体的波动大小的特征数是()A.平均数B.众数C.标准差D.中位数12.某少年军校准备从甲,乙,丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是x甲=x乙=x丙=8.3,方差分别是S甲2=1.5,S乙2=2.8,S丙2=3.2.那么,根据以上提供的信息,•你认为应该推荐参加全市射击比赛的同学是()A.甲B.乙C.丙D.不能确定13.(2005,广州市)甲,乙两人在相同情况下,各射靶10次,•两人命中环数的平均数是x甲=x乙=7,方差S甲2=1.0,S乙2=1.2,则射击成绩较稳定的是()A.甲B.乙C.一样D.不能确定14.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如表所示:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表第1次第2次第3次第4次第5次第6次平均数方差甲134 137 136 136 137 136 136 1.0乙135 136 136 137 136 136 136 有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,•其中说法正确的是()A.甲的方差大于乙的方差,所以甲的成绩比较稳定B.甲的方差小于乙的方差,所以甲的成绩比较稳定C.乙的方差小于甲的方差,所以乙的成绩比较稳定D.乙的方差大于甲的方差,所以乙的成绩比较稳定15.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;•④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有(•)分数50 60 70 80 90 100人数甲组 2 5 10 13 14 6 乙组 4 4 16 2 12 12A.2种B.3种C.4种D.5种16.(2005,盐城市)如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的()A.平均数和方差都不变B.平均数不变,方差改变C.平均数改变,方差不变D.平均和方差都改变三、解答题17.某校初三(1)班,三(2)班各有49名学生,两班一次数学测验中的成绩统计如下表:班级平均分众数中位数标准差初三(1)班79 70 87 19.8初三(2)班79 70 79 5.2(1)请你对下面的一段话给予简要分析:初三(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班上可算上游!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,•并提出教学建议.18.武汉市教育局在中学开展的“创新素质实践行”中,进行了小论文的评比.各校交论文的时间为5月1日至30日,•评委会把各校交的论文的件数按5天一组分组统计,绘制了频率分布直方图,•已知从左到右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题:(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?有多少篇?(3)经过评比,第四组和第六组分别有20篇,4篇论文获奖,•问这两组哪组获奖率较高?19.(2008,金华)九(3)班学生参加学校组织的“绿色奥运”知识竞赛活动,•老师将对学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数的分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表分数段/分49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~99.5组中值/分54.5 64.5 74.5 84.5 94.5频数 a 9 10 14 5频率0.050 0.225 0.250 0.350 b (1)频数分布表中a=_____,b=___;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元.已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.九(3)班“绿色奥运”知识竞赛成绩频数分布直方图20.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图6-28所示.(1)请填写下表:平均数方差中位数命中8环以上次数甲7 1.2 1乙 5.4(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).21.在“3.15”消费者权益日的活动中,对甲、•乙两家商场售后服务的满意度进行了抽查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意四个等级,并依次为1分,2分,3分,4分.(1)请问:甲商场的用户满意度分数的众数为_____分;乙商品的用户满意度分数的众数为_______分.(2)分别求出甲、乙两商场的用户满意度分数的平均分.(精确到0.01)(3)请你根据所学统计知识,判断哪家商场的用户满意度较高,并简要说明理由.参考答案1.322.乙3.(1)2.39;1.8;中位数(2)240;52% (3)略4.(1)第二列从上至下两空分别填15,50;第三列从上至下两空分别填0.5,0.3 •(2)500名学生的视力情况;50 (3)0.8 (4)该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人;或该校初中毕业年级学生视力在5.15以上的与视力在4.25以下的人数基本相等,各有20人左右5.S乙2<S甲26.2 7.0 8.3x-2 9S29.A 10.B 11.C 12.A 13.A 14.C 15.D 16.C17.(1)从平均数,众数和中位数角度分析;(2)平均分,众数均相同,但三(1)班的成绩中位数高,表示三(1)班成绩比三(2)•班好,但三(2)班标准差比三(1)班小,表示三(2)班学生成绩较整齐.18.(1)本次活动共有120篇文章参评(2)第四组上交的论文数量最多,有36篇(3)第六组获奖率最高.19.(1)2 0.125 (2)图略(3)由题中表得,有29名同学获得一等奖或二等奖.设有x名同学获得一等奖,则有(29-x)名同学获得二等奖,根据题意得15x+10(29-x)=335.解得x=9.∴50x+30(29-x)=1050,所以他们得到的奖金是1050元.20.(1)如下表:平均数方差中位数命中8环以上次数甲7 1.2 7 1乙7 5.4 7.5 3(2)①∵平均数相同,S甲2<S乙2,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数.∴乙的成绩比甲好些.③∵平均数相同,命中9环以上的次数甲比乙少.∴乙的成绩比甲好些.④甲成绩在平均数上下波动,而乙处于上升势头,从第4•次以后就没有比甲少的情况发生,乙较有潜力.21.(1)3 3(2)甲商场抽查用户数为:500+1000+2000+1000=4500(户),乙商场抽查用户数为:100+900+2200+1300=4500(户).所以甲商场满意度分数的平均值=50011000220003100044500⨯+⨯+⨯+⨯≈2.78(分).乙商场满意度分数的平均值=1001900222003130044500⨯+⨯+⨯+⨯≈3.04(分)答:甲,乙两商场用户满意度分数的平均值分别为2.78分,3.04分.(3)因为乙商场用户满意度分数的平均值较高(或较满意和很满意的人数较多),所以乙商场的用户满意度较多.。
中考数学题库(含答案和解析)
中考数学题库(含答案和解析)一、选择题(本题共有10小题.每题3分.共30分)1.(3分)﹣2的绝对值等于()A.2 B.﹣2 C.D.±22.(3分)计算2a﹣a.正确的结果是()A.﹣2a3B.1 C.2 D.a3.(3分)要使分式有意义.x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 4.(3分)数据5.7.8.8.9的众数是()A.5 B.7 C.8 D.9、5.(3分)如图.在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.则CD的长是()A.20 B.10 C.5 D.6.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图.则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°C.108°D.180°7.(3分)下列四个水平放置的几何体中.三视图如图所示的是()A.B.C.D.8.(3分)△ABC中的三条中位线围成的三角形周长是15cm.则△ABC的周长为()A.60cm B.45cm C.30cm D.cm 9.(3分)如图.△ABC是⊙O的内接三角形.AC是⊙O的直径.∠C =50°.∠ABC的平分线BD交⊙O于点D.则∠BAD的度数是()A.45°B.85°C.90°D.95°10.(3分)如图.已知点A(4.0).O为坐标原点.P是线段OA上任意一点(不含端点O.A).过P、O两点的二次函数y1和过P、A 两点的二次函数y2的图象开口均向下.它们的顶点分别为B、C.射线OB与AC相交于点D.当OD=AD=3时.这两个二次函数的最大值之和等于()A.B.C.3 D.4二、填空题(本题共有6小题.每题4分.共24分)11.(4分)当x=1时.代数式x+2的值是.12.(4分)因式分解:x2﹣36=.13.(4分)甲、乙两名射击运动员在一次训练中.每人各打10发子弹.根据命中环数求得方差分别是=0.6.=0.8.则运动员的成绩比较稳定.14.(4分)如图.在△ABC中.D、E分别是AB、AC上的点.点F在BC的延长线上.DE∥BC.∠A=46°.∠1=52°.则∠2=度.15.(4分)一次函数y=kx+b(k.b为常数.且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.16.(4分)如图.将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形.这个黑色菱形可分割成n个边长为1的小三角形.若=.则△ABC的边长是.三、解答题(本题共有8小题.共66分)17.(6分)计算:+(﹣2)2+tan45°.18.(6分)解方程组.19.(6分)如图.已知反比例函数y=(k≠0)的图象经过点(﹣2.8).(1)求这个反比例函数的解析式;(2)若(2.y1).(4.y2)是这个反比例函数图象上的两个点.请比较y1、y2的大小.并说明理由.20.(8分)已知:如图.在▱ABCD中.点F在AB的延长线上.且BF =AB.连接FD.交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3.求AD的长.21.(8分)某市开展了“雷锋精神你我传承.关爱老人从我做起”的主题活动.随机调查了本市部分老人与子女同住情况.根据收集到的数据.绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表老人与子女同住情况同住不同住(子女在本市)不同住(子女在市外)其他A50%B5%根据统计图表中的信息.解答下列问题:(1)求本次调查的老人的总数及a、b的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人.请估计该市与子女“同住”的老人总数.22.(10分)已知.如图.在梯形ABCD中.AD∥BC.DA=DC.以点D 为圆心.DA长为半径的⊙D与AB相切于A.与BC交于点F.过点D 作DE⊥BC.垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4.=.求CF的长.23.(10分)为进一步建设秀美、宜居的生态环境.某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.现计划用210000元资金.购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍.恰好用完计划资金.求这三种树各能购买多少棵?(3)若又增加了10120元的购树款.在购买总棵树不变的前提下.求丙种树最多可以购买多少棵?24.(12分)如图1.已知菱形ABCD的边长为2.点A在x轴负半轴上.点B在坐标原点.点D的坐标为(﹣.3).抛物线y=ax2+b (a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2).过点B作BE⊥CD于点E.交抛物线于点F.连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t.使△ADF与△DEF相似?若存在.求出t的值;若不存在.请说明理由;②连接FC.以点F为旋转中心.将△FEC按顺时针方向旋转180°.得△FE′C′.当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时.求t的取值范围.(写出答案即可)参考答案与试题解析一、选择题(本题共有10小题.每题3分.共30分)1.【分析】根据绝对值的性质.当a是正有理数时.a的绝对值是它本身a;即可解答.【解答】解:根据绝对值的性质.|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质.①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.【分析】根据合并同类项的法则:把同类项的系数相加.所得结果作为系数.字母和字母的指数不变.进行运算即可.【解答】解:2a﹣a=a.故选:D.【点评】此题考查了同类项的合并.属于基础题.关键是掌握合并同类项的法则.3.【分析】根据分母不等于0.列式即可得解.【解答】解:根据题意得.x≠0.故选:B.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次.且次数最多. 所以众数是8.故选:C.【点评】本题考查了众数的定义.熟记定义是解题的关键.需要注意.众数有时候可以不止一个.5.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半.即可求出CD的长.【解答】解:∵在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.∴CD=AB=5.故选:C.【点评】本题考查了直角三角形斜边上的中线的性质.在直角三角形中.斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).6.【分析】根据扇形统计图整个圆的面积表示总数(单位1).然后结合图形即可得出唱歌兴趣小组人数所占的百分比.也可求出圆心角的度数.【解答】解:唱歌所占百分数为:1﹣50%﹣30%=20%.唱歌兴趣小组人数的扇形的圆心角度数为:360°×20%=72°.故选:B.【点评】此题考查了扇形统计图.解答本题的关键是熟练扇形统计图的特点.用整个圆的面积表示总数(单位1).用圆的扇形面积表示各部分占总数的百分数.7.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看.所得到的图形.即可得出答案.【解答】解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形.所以这个几何体是长方体;故选:D.【点评】本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看.所得到的图形.8.【分析】根据三角形的中位线平行且等于底边的一半.又相似三角形的周长的比等于相似比.问题可求.【解答】解:∵△ABC三条中位线围成的三角形与△ABC相似. ∴相似比是.∵△ABC中的三条中位线围成的三角形周长是15cm.∴△ABC的周长为30cm.故选:C.【点评】本题主要考查三角形的中位线定理.要熟记相似三角形的周长比、高、中线的比等于相似比.面积比等于相似比的平方.9.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数.进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径.∴∠ABC=90°.∵∠C=50°.∴∠BAC=40°.∵∠ABC的平分线BD交⊙O于点D.∴∠ABD=∠DBC=45°.∴∠CAD=∠DBC=45°.∴∠BAD=∠BAC+∠CAD=40°+45°=85°.故选:B.【点评】本题考查的是圆周角定理.即在同圆或等圆中.同弧或等弧所对的圆周角相等.直径所对的圆周角是直角.10.【分析】过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M.则BF+CM是这两个二次函数的最大值之和.BF∥DE∥CM.求出AE=OE=2.DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.推出△OBF∽△ODE.△ACM∽△ADE.得出=.=.代入求出BF和CM.相加即可求出答案.【解答】解:过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M. ∵BF⊥OA.DE⊥OA.CM⊥OA.∴BF∥DE∥CM.∵OD=AD=3.DE⊥OA.∴OE=EA=OA=2.由勾股定理得:DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.∵BF∥DE∥CM.∴△OBF∽△ODE.△ACM∽△ADE.∴=.=.∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x.即=.=.解得:BF=x.CM=﹣x.∴BF+CM=.故选:A.【点评】本题考查了二次函数的最值.勾股定理.等腰三角形性质.相似三角形的性质和判定的应用.主要考查学生运用性质和定理进行推理和计算的能力.题目比较好.但是有一定的难度.二、填空题(本题共有6小题.每题4分.共24分)11.【分析】把x=1直接代入代数式x+2中求值即可.【解答】解:当x=1时.x+2=1+2=3.故答案为:3.【点评】本题考查了代数式求值.明确运算顺序是关键.12.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).【点评】本题主要考查利用平方差公式分解因式.熟记公式结构是解题的关键.13.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.即可求出答案.【解答】解:∵=0.6.=0.8.∴<.甲的方差小于乙的方差.∴甲的成绩比较稳定.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量.方差越大.表明这组数据偏离平均数越大.即波动越大.数据越不稳定;反之.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.14.【分析】先根据三角形的外角性质求出∠DEC的度数.再根据平行线的性质得出结论即可.【解答】解:∵∠DEC是△ADE的外角.∠A=46°.∠1=52°.∴∠DEC=∠A+∠1=46°+52°=98°.∵DE∥BC.∴∠2=∠DEC=98°.故答案为:98.【点评】本题考查的是平行线的性质及三角形的外角性质.用到的知识点为:两直线平行.内错角相等.15.【分析】先根据一次函数y=kx+b过(2.3).(0.1)点.求出一次函数的解析式.再求出一次函数y=x+1的图象与x轴的交点坐标.即可求出答案.【解答】解∵一次函数y=kx+b过(2.3).(0.1)点.∴.解得:.一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(﹣1.0)点.∴关于x的方程kx+b=0的解为x=﹣1.故答案为:x=﹣1.【点评】本题考查了一次函数与一元一次方程.关键是根据函数的图象求出一次函数的图象与x轴的交点坐标.再利用交点坐标与方程的关系求方程的解.16.【分析】设正△ABC的边长为x.根据等边三角形的高为边长的倍.求出正△ABC的面积.再根据菱形的性质结合图形表示出菱形的两对角线.然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积.然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x.则高为x.S△ABC=x•x=x2.∵所分成的都是正三角形.∴结合图形可得黑色菱形的较长的对角线为x﹣.较短的对角线为(x﹣)=x﹣1.∴黑色菱形的面积=(x﹣)(x﹣1)=(x﹣2)2.∴==.整理得.11x2﹣144x+144=0.解得x1=(不符合题意.舍去).x2=12.所以.△ABC的边长是12.故答案为:12.【点评】本题考查了菱形的性质.等边三角形的性质.熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键.本题难点在于根据三角形的面积与菱形的面积列出方程.三、解答题(本题共有8小题.共66分)17.【分析】分别进行二次根式的化简、零指数幂.然后代入tan45°=1.进行运算即可.【解答】解:原式=4﹣1+4+1=8.【点评】此题考查了实数的运算.解答本题关键是掌握零指数幂的运算.二次根式的化简.属于基础题.18.【分析】①+②消去未知数y求x的值.再把x=3代入②.求未知数y的值.【解答】解:①+②得3x=9.解得x=3.把x=3代入②.得3﹣y=1.解得y=2.∴原方程组的解是.【点评】本题考查了解二元一次方程组.熟练掌握加减消元法的解题步骤是关键.19.【分析】(1)把经过的点的坐标代入解析式进行计算即可得解;(2)根据反比例函数图象的性质.在每一个象限内.函数值y随x的增大而增大解答.【解答】解:(1)把(﹣2.8)代入y=.得8=.解得:k=﹣16.所以y=﹣;(2)y1<y2.理由:∵k=﹣16<0.∴在每一个象限内.函数值y随x的增大而增大.∵点(2.y1).(4.y2)都在第四象限.且2<4.【点评】本题考查了待定系数法求反比例函数解析式.反比例函数图象的增减性.是中学阶段的重点.需熟练掌握.20.【分析】(1)由四边形ABCD是平行四边形.根据平行四边形的对边平行且相等.即可得AB=DC.AB∥DC.继而可求得∠CDE=∠F.又由BF=AB.即可利用AAS.判定△DCE≌△FBE;(2)由(1).可得BE=EC.即可求得BC的长.又由平行四边形的对边相等.即可求得AD的长.【解答】(1)证明:∵四边形ABCD是平行四边形.∴AB=DC.AB∥DC.∴∠CDE=∠F.又∵BF=AB.∴DC=FB.在△DCE和△FBE中.∵∴△DCE≌△FBE(AAS)(2)解:∵△DCE≌△FBE.∴EB=EC.∵EC=3.∴BC=2EB=6.∵四边形ABCD是平行四边形.∴AD=BC.【点评】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中.注意数形结合思想的应用.21.【分析】(1)有统计图表中的信息可知:其他所占的比例为5%.又人数为25人.所以可以求出总人数.进而求出a和b的值;(2)有(1)的数据可将条形统计图补充完整;(3)用该老人的总数15万人乘以与子女“同住”所占的比例30%即为估计值.【解答】解:(1)老人总数为250÷50%=500(人).b=%=15%.a=1﹣50%﹣15%﹣5%=30%.(2)如图:(3)该市与子女“同住”的老人的总数约为15×30%=4.5(万人).【点评】本题考查了条形统计图、用样本估计总数的知识.解题的关键是从统计图中整理出进一步解题的信息.22.【分析】(1)根据AD∥BC和AB切圆D于A.求出DAB=∠ADE =∠DEB=90°.即可推出结论;(2)根据矩形的性质求出AB=DE=4.根据垂径定理求出CF=2CE.设AD=3k.则BC=4k.BE=3k.EC=k.DC=AD=3k.在△DEC中由勾股定理得出一个关于k的方程.求出k的值.即可求出答案.【解答】(1)证明:∵⊙D与AB相切于点A.∴AB⊥AD.∵AD∥BC.DE⊥BC.∴DE⊥AD.∴∠DAB=∠ADE=∠DEB=90°.∴四边形ABED为矩形.(2)解:∵四边形ABED为矩形.∴DE=AB=4.∵DC=DA.∴点C在⊙D上.∵D为圆心.DE⊥BC.∴CF=2EC.∵.设AD=3k(k>0)则BC=4k.∴BE=3k.EC=BC﹣BE=4k﹣3k=k.DC=AD=3k.由勾股定理得DE2+EC2=DC2.即42+k2=(3k)2.∴k2=2.∵k>0.∴k=.∴CF=2EC=2.【点评】本题考查了勾股定理.切线的判定和性质.矩形的判定.垂径定理等知识点的应用.通过做此题培养了学生的推理能力和计算能力.用的数学思想是方程思想.题目具有一定的代表性.是一道比较好的题目.23.【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵.得出等式方程.求出即可;(3)假设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.求出即可.【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.则乙种树每棵200元.丙种树每棵×200=300(元);(2)设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000.解得x=300∴2x=600.1000﹣3x=100.答:能购买甲种树600棵.乙种树300棵.丙种树100棵;(3)设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.解得:y≤201.2.∵y为正整数.∴y最大取201.答:丙种树最多可以购买201棵.【点评】本题考查一元一次不等式组的应用.将现实生活中的事件与数学思想联系起来.读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化.购买总棵树不变的情况下得出不等式方程.24.【分析】(1)根据已知条件求出AB和CD的中点坐标.然后利用待定系数法求该二次函数的解析式;(2)本问是难点所在.需要认真全面地分析解答:①如图2所示.△ADF与△DEF相似.包括三种情况.需要分类讨论:(I)若∠ADF=90°时.△ADF∽△DEF.求此时t的值;(II)若∠DF A=90°时.△DEF∽△FBA.利用相似三角形的对应边成比例可以求得相应的t的值;(III)∠DAF≠90°.此时t不存在;②如图3所示.画出旋转后的图形.认真分析满足题意要求时.需要具备什么样的限制条件.然后根据限制条件列出不等式.求出t的取值范围.确定限制条件是解题的关键.【解答】解:(1)由题意得AB的中点坐标为(﹣.0).CD的中点坐标为(0.3).分别代入y=ax2+b得.解得..∴y=﹣x2+3.(2)①如图2所示.在Rt△BCE中.∠BEC=90°.BE=3.BC=2∴sin C===.∴∠C=60°.∠CBE=30°∴EC=BC=.DE=又∵AD∥BC.∴∠ADC+∠C=180°∴∠ADC=180°﹣60°=120°要使△ADF与△DEF相似.则△ADF中必有一个角为直角.(I)若∠ADF=90°∠EDF=120°﹣90°=30°在Rt△DEF中.DE=.求得EF=1.DF=2.又∵E(t.3).F(t.﹣t2+3).∴EF=3﹣(﹣t2+3)=t2∴t2=1.∵t>0.∴t=1此时=2..∴.又∵∠ADF=∠DEF∴△ADF∽△DEF(II)若∠DF A=90°.可证得△DEF∽△FBA.则设EF=m.则FB=3﹣m∴.即m2﹣3m+6=0.此方程无实数根.∴此时t不存在;(III)由题意得.∠DAF<∠DAB=60°∴∠DAF≠90°.此时t不存在.综上所述.存在t=1.使△ADF与△DEF相似;②如图3所示.依题意作出旋转后的三角形△FE′C′.过C′作MN⊥x轴.分别交抛物线、x轴于点M、点N.观察图形可知.欲使△FE′C′落在指定区域内.必须满足:EE′≤BE且MN≥C′N.∵F(t.3﹣t2).∴EF=3﹣(3﹣t2)=t2.∴EE′=2EF=2t2.由EE′≤BE.得2t2≤3.解得t≤.∵C′E′=CE=.∴C′点的横坐标为t﹣.∴MN=3﹣(t﹣)2.又C′N=BE′=BE﹣EE′=3﹣2t2.由MN≥C′N.得3﹣(t﹣)2≥3﹣2t2.解得t≥或t≤﹣﹣3(舍).∴t的取值范围为:.【点评】本题是动线型中考压轴题.综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点.难度较大.对考生能力要求很高.本题难点在于第(2)问.(2)①中.需要结合△ADF与△DEF 相似的三种情况.分别进行讨论.避免漏解;(2)②中.确定“限制条件”是解题关键.。
2024年广东省广州市中考真题数学试卷含答案解析
2024年广东省广州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个数10-,1-,0,10中,最小的数是( )A .10-B .1-C .0D .10【答案】A【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010-<-<< ,∴最小的数是10-,故选:A .2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .【答案】C【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是( )A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=4.若a b <,则( )A .33a b +>+B .22a b ->-C .a b -<-D .22a b<【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A .a 的值为20B .用地面积在812x <≤这一组的公园个数最多C .用地面积在48x <≤这一组的公园个数最少D .这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A .1.2110035060x +=B .1.2110035060x -=C .1.2(1100)35060x +=D .110035060 1.2x -=⨯【答案】A【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A .18B .C .9D .∵90BAC ∠=︒,AB AC =∴45BAD B C ∠=∠=∠=︒∴ADE CDF V V ≌,S S S =+8.函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <-B .10x -<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l是5,则该圆锥的体积是()A B C.D【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r,则圆锥的底面周长为2rπ,根据弧长公式得出侧面展开图的弧长,进而得出1r=,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r,则圆锥的底面周长为2rπ,二、填空题11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .【答案】109︒【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为 .【答案】220【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE = .【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA∴∠=∠,3BE AE∴==,235DE AD AE∴=+=+=,故答案为:5.14.若2250a a--=,则2241a a-+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a--=,得225a a-=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a--=,225a a∴-=,()2224122125111a a a a∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()20a b aa ba b a⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x⊗=-,则x的值为.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ';④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;三、解答题17.解方程:1325x x =-.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【详解】(1)解:如图,线段BO 即为所求;(2)证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(2)解:17AD =Q 22AC AD CD ∴=-=在BCD △中,C ∠=sin BC BDC BD∠= ,sin 36.87BC BD ∴=⋅︒15AB AC BC ∴=-=-23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x ...232425262728...身高(cm)y (156163)170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【详解】(1)解:如图所示:(2)解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b=+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-(3)解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【详解】(1)解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;(2)解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥, 60BCA ∠=︒,BA BC =,∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.∵直线2:l y m x n =+过点(3,1)C ,2C ,且122C C =+,∴A 在B 的左边,AD AC CD ++=∵C 在抛物线的对称轴上,∴CA CB =,∴345t =,解得:15t =,②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,232621ax ax a a --++∴22620x x a a --+=,。
初中数学中考计算题复习(最全)-含答案
一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.23.先化简,再求值:(﹣1)÷,其中x—.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3.30.化简并求值:•,其中x=21.. 2。
广东省广州市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
某某省某某市2019年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6B.6C.﹣D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣6的绝对值是|﹣6|=6.故选:B.【点评】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)某某正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5故选:A.【点评】本题主要考查众数的定义,是需要熟练掌握的概念.3.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与⊙O的位置关系是:P在⊙O外,∵过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=AD=2,HG=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=,EF∥AB,∴△OEF∽△OAB,∴,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,∴y1==﹣6,y2==3,y3==2,又∵﹣6<2<3,∴y1<y3<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE 得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.【点评】本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2B.﹣2或2C.﹣2D.2【分析】由根与系数的关系可得出x1+x2=k﹣1,x1x2=﹣k+2,结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3可求出k的值,根据方程的系数结合根的判别式△≥0可得出关于k的一元二次不等式,解之即可得出k的取值X围,进而可确定k的值,此题得解.【解答】解:∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0的两个实数根为x1,x2,∴x1+x2=k﹣1,x1x2=﹣k+2.∵(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,即(x1+x2)2﹣2x1x2﹣4=﹣3,∴(k﹣1)2+2k﹣4﹣4=﹣3,解得:k=±2.∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有实数根,∴△=[﹣(k﹣1)]2﹣4×1×(﹣k+2)≥0,解得:k≥2﹣1或k≤﹣2﹣1,∴k=2.故选:D.【点评】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,求出k的值是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P 到直线l的距离是 5 cm.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.【点评】本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.(3分)代数式有意义时,x应满足的条件是x>8 .【分析】直接利用分式、二次根式的定义求出x的取值X围.【解答】解:代数式有意义时,x﹣8>0,解得:x>8.故答案为:x>8.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.(3分)分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为15°或45°.【分析】分情况讨论:①DE⊥BC;②AD⊥BC.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.【解答】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2,则底面圆的周长为2π,∴该圆锥侧面展开扇形的弧长为2π,故答案为2π.【点评】本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM =45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是①④.(填写所有正确结论的序号)【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,故答案为①④.【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共9小题,满分102分)17.(9分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.【分析】利用AAS证明:△ADE≌CFE.【解答】证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵,∴△ADE≌△CFE(AAS).【点评】本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.【分析】(1)P=﹣===;(2)将点(a,b)代入y=x﹣得到a﹣b=,再将a﹣b=代入化简后的P,即可求解;【解答】解:(1)P=﹣===;(2)∵点(a,b)在一次函数y=x﹣的图象上,∴b=a﹣,∴a﹣b=,∴P=;【点评】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<1 2B组1≤t<2 mC组2≤t<3 10D组3≤t<4 12E组4≤t<5 7F组t≥5 4请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;(2)B组的圆心角=360°×=45°,C组的圆心角=360°或=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.(12分)随着粤港澳大湾区建设的加速推进,某某省正加速布局以5G等为代表的战略性新兴产业,据统计,目前某某5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前某某5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P 两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD=90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2﹣EC2=OB2﹣OE2,∴62﹣(5﹣x)2=52﹣x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值X围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值X围.【分析】(1)抛物线有最低点即开口向上,m>0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,﹣m﹣3),即x=m+1,y=﹣m﹣3,x+y=﹣2即消去m,得到y与x 的函数关系式.再由m>0,即求得x的取值X围.(3)法一:求出抛物线恒过点B(2,﹣4),函数H图象恒过点A(2,﹣3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的X围讨论x的具体X围,即求得函数H对应的交点P纵坐标的X围.【解答】解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A∴点P纵坐标的取值X围为﹣4<y P<﹣3法二:整理的:m(x2﹣2x)=1﹣x∵x>1,且x=2时,方程为0=﹣1不成立∴x≠2,即x2﹣2x=x(x﹣2)≠0∴m=>0∵x>1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣3【点评】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.。
初中数学最值问题典型例题(含答案分析)
中考数学最(一)值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
(2、代数计算最值问题 3、二次函数中最值问题)问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点) 出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于 点P ,则PA PB A B '+=的值最小例1、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM+CM 的值最小;②当M 点在何处时,AM+BM+CM 的值最小,并说明理由;(3)当AM+BM+CM 的最小值为 时,求正方形的边长。
例2、如图13,抛物线y=ax 2+bx +c(a≠0)的顶点为(1,4),交x 轴于A 、B ,交y 轴于D ,其中B 点的坐标为(3,0) (1)求抛物线的解析式(2)如图14,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中E 点的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为PQ 上一动点,则x 轴上是否存在一点H ,使D 、G 、F 、H 四点围成的四边形周长最小.若存在,求出这个最小值及G 、H 的坐标;若不存在,AB A '′Pl请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。
中考数学 一元一次不等式易错压轴解答题(含答案)100
中考数学一元一次不等式易错压轴解答题(含答案)100一、一元一次不等式易错压轴解答题1.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?3.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…. (1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.4.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.5.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.6.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?7.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分. (1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?8.某小区准备新建60 个停车位,以解决小区停车难的问题。
中考数学经典题——二次根式(含答案)
二次根式要点一:二次根式的定义及性质 一、选择题1、(2010·聊城中考)无理数-3的相反数是( )A .- 3B . 3C .13D .-13【解析】选B,数a 的相反数为-a ,有-(-3)=3。
2、(2010·巴中中考)下列各数:21303003.072260cos 32.0902-︒,,,,,,, π中,无理数的个数是( )A 2个B 3个C 4个D 5个【解析】选B ,无限不循环小数是无理数,其中21303003.02-,, π三个是无理数,其他是有理数。
3、 (2009·宁波中考)x 的取值范围是( ).A .2x ≠B .2x >C .2x ≤D .2x ≥ 答案:D4、(2009·天津中考)若x y ,为实数,且20x +,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 答案:B5.(2009·济宁中考)已知aA. aB. a -C. - 1D. 0 答案:D.6.(20092()x y =+,则x -y 的值为( )A .-1B .1C .2D .3【解析】选C.本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C .7、(20081a -,则a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤【解析】选D.由二次根式的非负性知10. 1.a a -≥≤即 8、(2007·内江中考)已知ABC △的三边a b c ,,满足2|2|1022a b a ++=+,则ABC △为( )(A )等腰三角形 (B )正三角形 (C )直角三角形 (D )等腰直角三角形【解析】选B.∵2|2|1022a b a ++=+.∴21025412|0a a b -++--+=即2251)2|0a -++=()∴a=5,b=5,c=5. 二、填空题9、(2010·常德中考)函数y =x 的取值范围是_________.【解析】由二次根式的意义可以得出2x-6≥0,因而得出x ≥3。
实数(非负性问题)备战2023年中考数学考点微专题
考向1.6 实数(非负性问题)例 1、(2021·黑龙江大庆·中考真题)下列说法正确的是( ) A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-答案D解:A .当0x =时,||=x x ,故该项错误;B .∵10x -≥,∴当1x =时|1|2x -+取最小值,故该项错误;C .∵11x y >>>-,∴1x >,1y <,∴||||x y ,故该项错误;D .∵|1|0x +≤且|1|0x +≥,∴|1|0x +=,∴1x =-,故该项正确; 故选:D .例 2、(2021·广东·惠州一中一模)已知三角形三边为a 、b 、c ,其中a 、b 两边满足|6|80a b --,那么这个三角形的最大边c 的取值范围是( )A .8c >B .814c <<C .68c <<D .214c <<答案:B解:根据题意得:60a -=,80b -=,解得6a =,8b =,因为c 是最大边,所以868c <<+, 即814c <<. 故选:B .【点拨】本题考查了三角形三边关系和非负数的性质,根据三角形三边关系定理结合题目的已知条件列出不等式,然后解不等式即可.例 3、(2019·四川内江·中考真题)若10011002a a a --=,则21001a -=_____. 答案:1002. 解:∵10020a -≥,∴1002a ≥.由10011002a a a --=,得10011002a a a -+-, 10021001a -=, ∴210021001a -=. ∴210011002a -=. 故答案是:1002.例 4、(2016·福建龙岩·中考真题)已知抛物线y=ax 2+bx+c 的图象如图所示,则|a ﹣b+c|+|2a+b|=( )A .a+bB .a ﹣2bC .a ﹣bD .3a答案:D解:观察函数图象可以发现:图象过原点,c =0抛物线开口方向向上,a >0 抛物线的对称轴0<2ba-<1,-2a <b <0 ∴|a- b + c |= a - b ,|2 a + b |=2 a + b ∴| a - b + c |+|2 a + b |= a - b +2 a + b =3 a 故选D.1、非负性的几形式:22000(n )0(a 0)n a a a a ≥≥≥≥≥(1);(2);为正整数;(3)二次根式双重非负性;2、几种“0+0=0”型22(1)00(2)00(3)00.a b a b a b a b a b a b +=⇒==+=⇒==+=⇒==;;【知识识记与拓展】1、0,y 0;y x x x =-⇒==2、绝对值的进一步理解:0;0;0.a a a a a a =⇒≥=-⇒≤∴≥∴≤解题时有两种思考方式:(1)、非负数绝对值等于它本身;非正数绝对值等于它的相反数;(2)、任何数的绝对比值都是非负数,-a 0,a3、“0+0=0”的拓展或变形22(1)0;(2)0;(3)0;a b a b a b a b a b a b +=⇔=-+=⇔=-+=⇔=-一、单选题 1.(2012·广东广州·中考真题)已知a 1+7+b=0-,则a+b=( ) A .﹣8B .﹣6C .6D .82.(2016·贵州安顺·中考真题)已知有理数x ,y 满足4x -+8y -=0,则以x ,y 的值为两边长的等腰三角形的周长是( ) A .20或16B .20C .16D .以上都不对3.(2020·内蒙古呼伦贝尔·中考真题)已知实数a 在数轴上的对应点位置如图所示,则化简2|1|(2)a a ---的结果是( )A .32a -B .1-C .1D .23a -4.(2020·四川雅安·中考真题)已知2|2|0a b a -+-=,则2+a b 的值是( ) A .4B .6C .8D .105.(2020·黑龙江大庆·中考真题)若2|2|(3)0x y ++-=,则x y -的值为( ) A .-5B .5C .1D .-16.(2020·黑龙江绥化·中考真题)化简|23|-的结果正确的是( ) A .23-B .23--C .23+D .32-7.(2020·四川攀枝花·中考真题)实数a 、b 在数轴上的位置如图所示,化简222(1)(1)()a b a b ++---的结果是( ).A .2-B .0C .2a -D .2b8.(2017·甘肃张掖·中考真题)已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2cB .2a +2bC .2cD .09.(2016·山东威海·中考真题)实数a ,b 在数轴上的位置如图所示,则|a|﹣|b|可化简为( )A .a ﹣bB .b ﹣aC .a+bD .﹣a ﹣b10.(2015·湖北荆门·中考真题)当1<a <2时,代数式2(2)a -+|1-a|的值是( ) A .-1B .1C .2a -3D .3-2a11.(2012·黑龙江·中考真题)若(a -1)2+|b -2|=0,则(a -b )2012的值是( ) A .-1B .1C .0D .2012二、填空题 12.(2021·云南·中考真题)已知a ,b 都是实数,若21(2)0a b ++-=则a b -=_______. 13.(2020·湖北黄冈·中考真题)若|2|0x x y -++=,则12xy -=__________.14.(2015·贵州毕节·中考真题)实数a ,b 在数轴上的位置如图所示,则2a ab =______.15.(2018·湖北鄂州·中考真题)若|p+3|=0,则p=____.16.(2012·广东汕头·中考真题)若x ,y 为实数,且满足x 3+y 3=0--,则2012x y ⎛⎫ ⎪⎝⎭的值是____.17.(2011·贵州遵义·中考真题)若x 、y 为实数,且12|0x +-=,则x+y=_____. 18.(2019·贵州安顺·中考真题)若实数a 、b 满足120a b ++-=,则a b +=________. 19.(2013·四川巴中·中考真题)若直角三角形的两直角边长为a 、b ,且满足2a 6a 9b 40-++-=,则该直角三角形的斜边长为_____.20.(2017·江苏镇江·中考真题)若实数a 满足1322a -=,则a 对应于图中数轴上的点可以是A 、B 、C 三点中的点__________.21.(2013·四川凉山·中考真题)若实数x 、y 满足x 4y 80--=,则以x 、y 的值为边长的等腰三角形的周长为_____.22.(2013·四川雅安·中考真题)若()2a 1b 20-+-=,则以a 、b 为边长的等腰三角形的周长为_____.23.(2009·安徽芜湖·中考真题)已知180a b +-=,则a b -=_________. 24.(2012·湖南长沙·中考真题)若实数a 、b 满足|3a ﹣1|+b 2=0,则a b 的值为____.一、单选题 1.(2021·河北迁西·一模)已知12x -≤≤,则化简代数式|3|2|1|x x --+的结果是( ) A .13x -B .13x +C .13x --D .13x -+2.(2021·陕西·模拟预测)平面直角坐标系中,点O 是坐标原点,过点A (1,2)的直线y =kx +b 与x 轴交于点B ,且S △AOB =4,则k 的值是( ) A .25B .23-C .25或23-D .25-或233.(2020·浙江杭州·模拟预测)若m ,n 满足221(4)0m m n -++=,则mn 的值等于( )A .1-B .1C .2-D .24.(2020·浙江·模拟预测)已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-1|+|b+1|的结果是( )A .2a+2bB .2b+2C .2a-2D .0二、填空题 5.(2021·湖南·长沙市长郡双语实验中学一模)若a ,b ,c 是ABC 的三边的长,则化简||||||a b c b c a a b c --+--++-=________.6.(2021·广东濠江·920x y -+=,则以x y +的值为边数的多边形的内角和为__________.7.(2021·广东濠江·920x y -+=,则以x y +的值为边数的多边形的内角和为__________.8.(2021·广东·东莞外国语学校一模)若()2210a b -++=,则3a b +=_________. 9.(2021·广东·模拟预测)若x ,y 为实数,且|2x +y 1y +0,则x y 的值是_____. 10.(2021·广东恩平·一模)若2a ++(b ﹣3)2=0,则a b =_____. 11.(2021·福建·一模)若|2|30a b --=,则a b +=_________.12.(2020·浙江·模拟预测)已知a ,b ,c 为三角形的三边长,a ,b 4|3|0a b --=,若该三角形为直角三角形,则c 的值为________.13.(2020·湖南·3a ++|b ﹣2|=0,则(a+b )2020的值为______.14.(2020·广东潮南·()2230x y --=,那么y x =_____.15.(2018·四川青羊·中考模拟)若2231210a a b b -++++=,则221||a b a +-=________. 三、解答题 16.(2021·河北顺平·二模)在学习有理数时时我们清楚,3(1)--表示3与-1的差的绝对值,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离;同理|x 一5|也可以理解为x 与5两数在数轴上所对应的两点之间的距离,试探索并完成以下题目. (1)分别计算8(3)--,35--的值.(2)如图,x 是1到2之间的数(包括1,2),求123x x x -+-+-的最大值.17.(2020·浙江杭州·模拟预测)(1)先化简,再求值:()2223232x y x y xy x y xy ⎡⎤----⎣⎦,其中x ,y 满足21|2|02x y ⎛⎫++-= ⎪⎝⎭.(2)已知115a b -=,求代数式3832a ab b ab a b+--+的值.18.(2020·甘肃·民勤县第六中学一模)已知a 、b 、c 均为实数,且2a -+|b +1|+(c +3)2=0,求方程ax 2+bx +c =0的根.一、单选题1.(2019·四川绵阳·中考真题)已知x 是整数,当30x -取最小值时,x 的值是( ) A .5B .6C .7D .82.(2016·山东菏泽·中考真题)当1<a<2时,代数式|a -2|+|1-a|的值是( ) A .-1B .1C .3D .-33.(2015·内蒙古呼伦贝尔·中考真题)若320,a b -++=则a b +的值是( ) A .2B .1C .0D .1-4.(2016·山东潍坊·中考真题)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b5.(2015·四川绵阳·中考真题)若,则( ) A .-1B .1C .52015D .-520156.(2012·湖北荆门·中考真题)若29x y -+与|x ﹣y ﹣3|互为相反数,则x+y 的值为( ) A .3B .9C .12D .277.(2021·湖南娄底·中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .48.(2011·四川凉山·中考真题)已知25523y x x =-+--,则2xy 的值为( ) A .15-B .15C .152-D .152二、填空题 9.(2021·湖北鄂州·中考真题)已知实数a 、b 满足230a b -++=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 10.(2020·甘肃金昌·中考真题)已知2(4)5y x x =--+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.11.(2018·四川资阳·中考真题)已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____. 12.(2017·湖北荆门·中考真题)已知实数满足,则的值为_________.13.(2015·甘肃武威·中考真题)已知α、β均为锐角,且满足|sinα﹣122(tan 1)β-,则α+β= ___________.14.(2013·贵州黔西·a 1a b 10-++=,则a b =_____.15.(2012·山东济宁·中考真题)在ABC 中,若∠A 、∠B 满足|cosA -12|+(sinB -12)2=0,则∠C =____.16.(2013·四川德阳·2231210a a b b -+++=,则221||a b a +-=________. 17.(2015·辽宁盘锦·2(12)18-__. 18.(2011·四川成都·中考真题)设12211112S =++,22211123S =++,32211134S =++,…,22111(1)n S n n =+++.设12n S S S S +,则S= _____________ (用含n 的代数式表示,其中n 为正整数).三、解答题 19.(2020·湖南邵阳·中考真题)已知:|1|20m n -++=, (1)求m ,n 的值;(2)先化简,再求值:22(3)(2)4m m n m n n -++-.20.(2020·四川自贡·中考真题)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离. ⑴. 发现问题:代数式12x x ++-的最小值是多少?⑵. 探究问题:如图,点,,A B P 分别表示的是-1,2,x ,3AB =.∵12x x ++-的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时 +>PA PB 3 ∴12x x ++-的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是 ;②.利用上述思想方法解不等式:314x x ++->③.当a 为何值时,代数式++-x a x 3的最小值是2.21.(2015·内蒙古通辽·中考真题)先化简,再求值:,其中a ,b 满足=0.1.B解:非负数的性质,绝对值,算术平方,求代数式的值.∵a 1+7+b=0-,a 10?7+b 0-≥,,∴a ﹣1=0,7+b=0,解得a=1,b=﹣7. ∴a+b=1+(﹣7)=﹣6.故选B . 2.B【分析】根据绝对值和二次根式的非负性求出x ,y ,再根据等腰三角形的性质和三角形三边关系判断即可; 解:∵4x -8y -,∴4080x y -=⎧⎨-=⎩,∴4x =,8y =,设以4,8为两边长的等腰三角形的三边长分别为a ,b ,c ,且4a =,8b =,则有两种情况: 当a 为等腰三角形的腰时,有4c a ==,此时a c b +=,该等腰三角形不存在; 当b 为等腰三角形的腰时,有8c b ==,4a =,该等腰三角形存在,周长为48820a b c ++=++=.故答案选B .【点拨】本题主要考查了三角形三边关系,等腰三角形的定义,绝对值和二次根式的非负性,准确分析计算是解题的关键. 3.D【分析】根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.解:由图知:1<a <2, ∴a−1>0,a−2<0,原式=a−1-2a =a−1+(a−2)=2a−3. 故选D .【点拨】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键. 4.D【分析】直接利用绝对值和二次根式的性质分别化简得出答案.解:|2|0b a -=, ∴a-2=0,b-2a=0, 解得:a=2,b=4, 故a+2b=10. 故选:D .【点拨】此题主要考查了非负数的性质,正确得出a ,b 的值是解题关键. 5.A【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可; 解:∵2|2|(3)0x y ++-=, ∴20x +=,30y -=, ∴2x =-,3y =, ∴235-=--=-x y . 故答案选A .【点拨】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键. 6.D【分析】由绝对值的意义,化简即可得到答案.解:3|3= 故选:D .【点拨】本题考查了绝对值的意义,解题的关键是掌握负数的绝对值是它的相反数. 7.A【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.解:由数轴可知-2<a <-1,1<b <2, ∴a+1<0,b-1>0,a-b <0,=11a b a b ++--- =()()()11a b a b -++-+- =-2 故选A.【点拨】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断. 8.D解:试题解析:∵a 、b 、c 为△ABC 的三条边长,∴a+b-c >0,c-a-b <0,∴原式=a+b-c+(c-a-b )=0.故选D .考点:三角形三边关系.9.C解:试题分析:观察数轴可得a >0,b <0,所以则|a|﹣|b|=a ﹣(﹣b )=a+b .故答案选C . 考点:数轴;绝对值.10.B解:∵1<a <2,(a-2),|1-a|=a-1,(a-2)+(a-1)=2-1=1.故选B .11.B【解析】根据偶次方和绝对值的非负数性质,由(a -1)2+|b -2|=0得a -1=0,b -2=0. 解得a=1,b=2.∴(a -b )2012=(1-2)2012=1.故选B .12.-3【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 解:根据题意得,a +1=0,b -2=0,解得a =-1,b =2,所以,a -b =-1-2=-3.故答案为:-3.【点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0. 13.2【分析】根据非负数的性质进行解答即可.解:|2|0x -,20x ∴-=,0x y +=,2x ∴=,2y =-, ∴112(2)222xy -=-⨯⨯-=,故答案为:2.【点拨】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.14.-b解:根据数轴可得:b >0,a <0,且a >b ,∴a ﹣b <0,则原式=﹣a ﹣(b ﹣a )=﹣a ﹣b+a=﹣b ,15.﹣3解:根据零的绝对值等于0解答:∵|p+3|=0,∴p+3=0,解得p=﹣3.16.1解:根据算术平方根和绝对值非负数的性质,要使x 3+y 3=0--,必须有x 3=0-且y 3=0-,即x=3,y=3.∴201220122012x 3==1=1y 3⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭17.:解:∵+|y ﹣2|=0,∴x+3=0,y ﹣2=0,解得x=﹣3,y=2,∴x+y=﹣3+2=﹣1.故答案为:﹣1. 【解析】:先根据非负数的性质得出关于x 、y 的方程,求出x 、y 的值,代入x+y 进行计算即可.18.1【分析】先根据非负数的性质求出a 、b 的值,再求出a b +的值即可.解:∵120a b +-,∴1020a b +=⎧⎨-=⎩,解得1a =-,2b =, ∴121a b +=-+=.故答案为1.【点拨】本题考查的是非负数的性质,属于基础题型,熟知非负数的性质:几个非负数的和为0时,其中每一项必为0是解答此题的关键.19.5.解:2a 6a 9b 40-+-=,∴2a 6a 9-+=0,b -4=0,解得a=3,b=4.∵直角三角形的两直角边长为a 、b ,∴该直角三角形的斜边长=2222a b 345+=+=.20.B【分析】由|a-12|=32求出a 的值,对应数轴上的点即可得出结论. 解:∵|a-12|=32∴a=-1或a=2.故选B .【点拨】考查了实数与数轴以及解含绝对值符号的一元一次方程,解方程求出a 值是解题的关键.21.20.解:先根据非负数的性质列式求出x 、y 的值,再分4是腰长与底边两种情况讨论求解: 根据题意得,x ﹣4=0,y ﹣8=0,解得x=4,y=8.①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20. 所以,三角形的周长为20.22.5.解:∵()2a 1b 20-+-=,∴a -1=0,b -2=0,解得a=1,b=2.①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴1、1、2不能组成三角形.②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5. 23.9-解:由题意得,,则24.1【解析】根据非负数的性质列式求出a 、b 的值,然后根据任何非0数的0次幂等于1进行计算即可得解:根据题意得,3a ﹣1=0,b=0,解得a=13,b=0. ∴a b =013⎛⎫ ⎪⎝⎭=1.1.A【分析】由于﹣1≤x ≤2,根据不等式性质可得:x ﹣3<0,x +1≥0,再依据绝对值性质化简即可.解:∵﹣1≤x ≤2,∴x ﹣3<0,x +1≥0,∴|3|2|1|x x --+=(3﹣x )﹣2(x +1)=﹣3x +1;故选:A .【点拨】本题考查了不等式性质,绝对值定义和性质,整数加减运算等,熟练掌握并运用绝对值性质化简是解题关键.2.C【分析】先解得一次函数与x 轴交点(,0)b B k-,再把点(1,2)A 代入y kx b =+得到2b k =-,再根据S △AOB =4,解得24k k-=,分两种情况讨论解题即可. 解:把y =0代入直线y =kx +b 得kx +b =0,解得b x k=- (,0)b B k∴- 把(1,2)A 代入y kx b =+2k b +=2b k =-S△AOB =4,1242b k∴-⨯= 4b k ∴-= 24k k-∴= 24k k -∴=或24k k-=- 25k ∴=或23k =-, 经检验:22,53k k ==-是原方程的根,且符合题意, 故选:C .【点拨】本题考查一次函数图象上点的坐标特征,待定系数法解一次函数、绝对值的化简等知识,难度一般,掌握相关知识是解题关键.3.A【分析】根据221(4)0m m n -++=,可以求得m 、n 的值,从而可以求得mn 的值,本题得以解决.解:∵221(4)0m m n -++=,∴2m-1=0,4m n + =0,解得,m=0.5,n=-2,∴mn=0.5×(-2)=-1,故选:A .【点拨】本题考查非负数的性质,解答本题的关键是明确题意,利用非负数的性质解答. 4.D【分析】根据a ,b 两数在数轴上对应的点的位置可得b<-1<1<a<2,然后根据绝对值的性质进行化简即可.解:由图可得:b<-1<1<a<2,所以|a+b|-|a-1|+|b+1|=(a+b )-(a-1)+(-b-1)=a+b-a+1-b-1=0.故选D .【点拨】本题考查了绝对值的性质及整式的加减,解答本题的关键是根据a 、b 在数轴上的位置进行绝对值的化简.5.a b c ++【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断绝对值内的代数式的符号,再根据绝对值的性质进行化简即可.解:∵a ,b ,c 是ABC 的三边,∴a b c <+,b c a <+,c a b <+,∴0a b c --<,0b c a --<,0a b c +->, ∴a b c b c a a b c --+--++-b c a c a b a b c =+-++-++-a b c =++.故答案为:a b c ++.【点拨】题目主要考查的是三角形的三边关系及去绝地值,熟练掌握三角形三边关系是解题的关键.6.900︒【分析】根据非负数的性质列式求出x 、y 的值,然后代入多边形内角和公式即可得到答案.解:由题意得,x -9≥0,|y +2|≥0,所以,x -9=0,y +2=0,解得:x =9,y =-2则x +y =7,所以,x y +的值为边数的多边形的内角和:()()218072180900x y +-⨯︒=-⨯︒=︒⎡⎤⎣⎦, 故答案为:900︒.【点拨】本题考查了多边形内角和,以及绝对值和二次根式的非负性,正确得出x ,y 的值是解题关键.7.900︒【分析】根据非负数的性质列式求出x 、y 的值,然后代入多边形内角和公式即可得到答案.解:由题意得,x -9≥0,|y +2|≥0,所以,x -9=0,y +2=0,解得:x =9,y =-2则x +y =7,所以,x y +的值为边数的多边形的内角和:()()218072180900x y +-⨯︒=-⨯︒=︒⎡⎤⎣⎦, 故答案为:900︒.【点拨】本题考查了多边形内角和,以及绝对值和二次根式的非负性,正确得出x ,y 的值是解题关键.8.1【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 解:∵()220a -≥,10b +≥且相加得零,∴20a -=,10b +=,解得2a =,1b =-,所以,()3321211a b +=+-=-=.故答案为:1.【点拨】本题考查了非负数的性质,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.2【分析】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. 解:根据题意得:2010x y y +=⎧⎨+=⎩,解得:121x y ⎧=⎪⎨⎪=-⎩, 则x y =-11()2=2 故答案是:2【点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,掌握负整数指数幂是解决本题的关键.10.-8【分析】根据绝对值的非负性,平方的非负性求出a=-2,b=3,再代入计算.解:∵2a ++(b ﹣3)2=0,且2a 20,(3)0b +≥-≥,∴a+2=0,b-3=0,∴a=-2,b=3,∴a b =(-2)3=-8,故答案为:-8.【点拨】此题考查绝对值的非负性,平方的非负性,有理数的乘方运算.11.5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点拨】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零. 12.5【分析】根据二次根式和绝对值的非负性得到4a =,3b =,再分类讨论,利用勾股定理即可求解.解:|3|0b -=,∴40a -=,30b -=,即4a =,3b =,当4a =为直角边时,5c =;当4a =为斜边时,c =故答案为:5【点拨】本题考查勾股定理、二次根式有意义的条件、绝对值的非负性,掌握分类讨论的思想是解题的关键.13.1【分析】首先根据非负数的性质可求出a 、b 的值,进而可求出a 、b 的和.解:20b -=∴a+3=0,b ﹣2=0,∴a =﹣3,b =2;因此a+b =﹣3+2=﹣1.则(a+b )2020=(﹣1)2020=1.故答案为:1.【点拨】本题主要考查算术平方根与绝对值的非负性及乘方,熟练掌握算术平方根与绝对值的非负性及乘方是解题的关键.14.9【分析】根据非负数的性质,求出x 、y 的值,然后得到答案.解:()230y -=,∴20x -=,30y -=,∴2x =,3y =,∴239x y ==;故答案为:9;【点拨】本题考查了非负数的应用,解题的关键是熟练掌握非负数的性质,正确得到x 、y 的值.15.6解:由题目知:2(1)0b +=又因为绝对值和平方均为非负数,而他们的和为0,故:2(1)0b +=则:1b =-,231a a -+=0 故:1=b ,130a a-+= 13a a += 2217a a += 2216a b a +-= 16.(1)11;8;(2)3.【分析】(1)根据绝对值的含义分别计算即可得到答案;(2)根据12x ≤≤,可得10,20,3x x x -≥-≤-<0, 再化简绝对值,利用代数式的特点求解最大值即可.解:(1)8(3)8311--=+=;3588--=-=(2)当12x ≤≤时,10,20,3x x x ∴-≥-≤-<0,∴ 123x x x -+-+-1234x x x x =-+-+-=-当x =1时,原式的最大值为3.【点拨】本题考查的是绝对值的含义,绝对值的化简,代数式的值,掌握以上知识是解题的关键.17.(1)-2x 2y+7xy ,﹣8(2)﹣1【分析】(1)原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值;(2)由已知115a b -=,可得b a =5ab- ,则a-b=-5ab ,然后代入原代数式即可求解. 解:(1)3x 2y-[2x 2y-3(2xy-x 2y )-xy]=3x 2y-[2x 2y-6xy+3x 2y-xy]=3x 2y-2x 2y+6xy-3x 2y+xy=-2x 2y+7xy ,∵(x+12)2+|y−2|=0,∴x+12=0,y-2=0, 解得:x=-12,y=2,则原式=-1-7=-8;(2)∵115a b -= ∴b a =5ab-, ∴a-b=-5ab把a -b=﹣5ab 代入原式得:3832a ab b ab a b +--+=15ab 87ab ==12+5ab 7abab ab +﹣﹣﹣. 【点拨】此题考查了化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.18.x 1=32,x 2=﹣1. 【分析】本题要求出方程ax 2+bx +c =0的根,必须先求出a 、b 、c 的值.根据非负数的性质,带根号、绝对值、平方的数值都大于等于0,三个非负数相加和为0,则这三个数的值必都为0,由此可解出a 、b 、c 的值,再代入方程中可解此题. 解:根据分析得:a ﹣2=0,b +1=0,c +3=0a =2,b =﹣1,c =﹣3方程ax 2+bx +c =0即为2x 2﹣x ﹣3=0∴x 1=32,x 2=﹣1. 【点拨】本题主要考查一元二次方程求解问题,考点还涉及偶次方、绝对值以及二次根式非负性的应用.1.A30解:253036<∴5306<<,305,∴当30x x 的值是5,故选A .【点拨】本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键. 2.B【分析】知识点是代数式求值及绝对值,根据a 的取值范围,先去绝对值符号,再计算求值.解:当1<a <2时,|a ﹣2|+|1﹣a|=2﹣a+a ﹣1=1.故选B .【点拨】考核知识点:绝对值化简.3.B解:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.4.A解:由图可知:00a b <>,,∴+0a b <,∴2(+)2+=---=--a a b a b a a b . 故选A. 5.A【解析】试题分析:由可得,解得,所以,故答案选A.考点:的非负性;二元一次方程组的解法. 6.D2930x y x y -+--=. 290,1530,12.x y x x y y ,解得-+==⎧⎧∴⎨⎨--==⎩⎩∴x +y =27.故选D.7.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,22(3)(7)374m m m m ∴---+-=,故选:D .【点拨】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.8.A解:试题解析:由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .9.23-【分析】根据非负性求得a 、b 的值,再根据一元二次方程根与系数关系求得1x +2x 、1x 2x ,代入12121211=x x x x x x ++求解即可. 解:∵实数a 、b30b +=,∴a ﹣2=0,b +3=0,解得:a =2,b =﹣3,∴2230x x --=,∵一元二次方程2230x x --=的两个实数根分别为1x 、2x ,∴1x +2x =2,1x 2x =﹣3, ∴12121211=x x x x x x ++=23-, 故答案为:23-. 【点拨】本题考查代数式求值、二次根式被开方数的非负性、绝对值的非负性、一元二次方程根与系数,熟练掌握非负性和一元二次方程根与系数关系是解答的关键.10.2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.解:545y x x x =+=--+当4x <时,4592y x x x =--+=-当4x ≥时,451y x x =--+=则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点拨】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.11.﹣1【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.解:∵(a ﹣1)2,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点拨】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.12.3.【解析】试题分析:根据非负数的性质即可求出m 与n 的值.由题意可知:n ﹣2=0,m+1=0,∴m=﹣1,n=2,∴m+2n=﹣1+4=3,故答案为3考点:非负数的性质;算术平方根;非负数的性质;绝对值.13.75°解:试题分析:由已知sinα-12=0,tanβ-1=0,∴α=30°,β=45°,∴α+β=75°.考点:1.非负数的性质;2.特殊角的三角函数值.14.1【解析】试题分析:根据算术平方根和绝对值的非负数的性质列式求出a 、b ,然后代入代数式进行计算即可得解:根据题意得,a ﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,b 2a 11-==.15.75°【解析】由题意得cosA =12, ∴∠A=60°,∠B=45°∴∠C =180°-60°-45°=75°16.6解:由题目知:2(1)0b +=又因为绝对值和平方均为非负数,而他们的和为0,故:2(1)0b +=则:1b =-,231a a -+=0 故:1=b ,130a a-+= 13a a += 2217a a +=2216a b a +-=17. 1【分析】先根据二次根式的性质化简,然后合并即可.解:原式1+1.故答案为1.【点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.2n +2n n+1解:∵S n =1+21n +21n+(1)=222222n n++n++n n (n 1)+(1)(1) =222n n++2n +2n+1n n+[(1)][(1)]=22n n++n n+[(1)1][(1)]n n++n n+(1)1(1)=1+1n -1n+1∴S=1+1﹣12+1+12﹣13+…+1+1n ﹣1n+1=n+1﹣1n+1=2n+-1n+1(1) =2n +2n n+1故答案为2n +2n n+1. 19.(1)1,2m n ==-;(2)22m mn +,0【分析】(1)分别根据绝对值的非负数、二次根式的非负数列出m 、n 的方程,解之即可求出m 、n 的值;(2)先利用整式的运算法则化简,再代入m 、n 值计算即可求解.解:(1)根据非负数得:m-1=0且n+2=0,解得:1,2m n ==-,(2)原式=22223444m mn m mn n n -+++-=22m mn +,当1,2m n ==-,原式=211(2)0⨯+⨯-=.【点拨】本题考查了绝对值与二次根式的非负性、整式的化简求值,还涉及去括号法则、完全平方公式、合并同类项法则等知识,熟练掌握非负数的性质以及运算法则是解答的关键.20.①6;②3x <-或1x >;③1a =-或5a =-【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.解:(3)①设A 表示的数为4,B 表示的数为-2,P 表示的数为x ,∴|4|x -表示数轴上的点P 到4的距离,用线段PA 表示,|2||(2)|+=--x x 表示数轴上的点P 到-2的距离,用线段PB 表示,∴|4||2|x x -++的几何意义表示为PA+PB ,当P 在线段AB 上时取得最小值为AB , 且线段AB 的长度为6,∴|4||2|x x -++的最小值为6.故答案为:6.②设A 表示-3,B 表示1,P 表示x ,∴线段AB 的长度为4,则,|3||1|x x ++-的几何意义表示为PA+PB ,∴不等式的几何意义是PA+PB >AB ,∴P 不能在线段AB 上,应该在A 的左侧或者B 的右侧,即不等式的解集为3x <-或1x >.故答案为:3x <-或1x >.③设A 表示-a ,B 表示3,P 表示x ,则线段AB 的长度为3a --,++-x a x 3的几何意义表示为PA+PB ,当P 在线段AB 上时PA+PB 取得最小值, ∴32a --=∴32a +=或32a +=-,即1a =-或5a =-;故答案为:1a =-或5a =-.【点拨】此题考查了解一元一次不等式,数轴,绝对值,以及数学常识,掌握绝对值的几何意义,学会分类讨论是解决本题的关键.21.1【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.试题解析:原式==∵=0,∴a﹣3=0,b﹣2=0,即a=3,b=2,∴原式==1.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方。
历年广东省广州市中考数学试卷(含答案)
2017年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C. D.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,134.(3分)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥46.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点 D.三条高的交点7.(3分)计算(a2b)3•的结果是()A.a5b5 B.a4b5 C.ab5D.a5b68.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.249.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=.12.(3分)分解因式:xy2﹣9x=.13.(3分)当x=时,二次函数y=x2﹣2x+6有最小值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=.15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=.16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共9小题,共102分)17.(9分)解方程组.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B 类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•广州)如图,数轴上两点A,B表示的数互为相反数,则点B 表示的数为()A.﹣6 B.6 C.0 D.无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选B【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.(3分)(2017•广州)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C. D.【分析】根据旋转的性质即可得到结论.【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选A.【点评】本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键.3.(3分)(2017•广州)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,13【分析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数=14.故选C【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.4.(3分)(2017•广州)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.【点评】此题主要考查了分式的基本性质以及绝对值的性质、二次根式的性质,正确掌握相关性质是解题关键.5.(3分)(2017•广州)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)(2017•广州)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点 D.三条高的交点【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.【点评】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.7.(3分)(2017•广州)计算(a2b)3•的结果是()A.a5b5 B.a4b5 C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.8.(3分)(2017•广州)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF 的周长为()A.6 B.12 C.18 D.24【分析】根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选C.【点评】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定,熟练掌握翻折变换的性质是解决问题的关键.9.(3分)(2017•广州)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.10.(3分)(2017•广州)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•广州)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= 70°.【分析】根据平行线的性质即可得到结论.【解答】解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论.12.(3分)(2017•广州)分解因式:xy2﹣9x=x(y+3)(y﹣3).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.13.(3分)(2017•广州)当x=1时,二次函数y=x2﹣2x+6有最小值5.【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.14.(3分)(2017•广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= 17.【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.15.(3分)(2017•广州)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=3.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×=2πcm,则:=2π,解得l=3.故答案为:3.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)(2017•广州)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是①③(填写所有正确结论的序号).【分析】①证明△CDB∽△FDO,列比例式得:,再由D、E为OB的三等分点,则=,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=12,根据相似三③如图3,利用面积差求得:S△CFG角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴,∵D、E为OB的三等分点,∴=,∴,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=8×4﹣8﹣8×4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴==,∴=,∴,=;∴S四边形DEGF所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共9小题,共102分)17.(9分)(2017•广州)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)(2017•广州)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)【点评】本题考查全等三角形的判定,解题的关键是求证AF=BE,本题属于基础题型.19.(10分)(2017•广州)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有5人,补全条形统计图;(2)D类学生人数占被调查总人数的36%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.20.(10分)(2017•广州)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【点评】本题主要考查了基本作图以及含30度角的直角三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.21.(12分)(2017•广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【分析】(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)60×=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:﹣=20,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)找准等量关系,列出分式方程.22.(12分)(2017•广州)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.【分析】(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.【解答】解:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数y=的图象:如图所示,由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.【点评】本题考查的是一次函数与反比例函数的交点问题和一次函数的图象的平移问题,涉及到用待定系数法求反比例函数的解析式,并熟知函数图象平移时“上加下减,左加右减”的法则.23.(12分)(2017•广州)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点是抛物线的顶点(﹣1,0),不合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次函数的解析式,根据题意求得顶点坐标是解题的关键.24.(14分)(2017•广州)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【分析】(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠DAE=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE 交CD 于K .∵四边形CODE 是菱形,∴DE ∥AC ,DE=OC=OA ,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt △ADK 中,AK===3, ∴sin ∠DAE==,②作PF ⊥AD 于F .易知PF=AP•sin ∠DAE=AP ,∵点Q 的运动时间t=+=OP +AP=OP +PF ,∴当O 、P 、F 共线时,OP +PF 的值最小,此时OF 是△ACD 的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==, ∴当点Q 沿上述路线运动到点A 所需要的时间最短时,AP 的长为,点Q 走完全程所需的时间为3s .【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、锐角三角函数、平行线分线段成比例定理、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用垂线段最短解决最值问题,所以中考压轴题.25.(14分)(2017•广州)如图,AB 是⊙O 的直径,=,AB=2,连接AC .(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF⊥l于点F,证四边形OBFC是矩形可得AB=2OC=2BF,结合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度数可得;②同理BF=BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得==,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI⊥AB于I,由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.【点评】本题主要考查圆的综合问题,熟练掌握切线的性质、等腰直角三角形的判定与性质、圆心角定理及相似三角形的判定与性质是解题的关键.。
数学中考分类试题(含答案)
1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
广东省茂名市2009年中考数学试题(含答案)
(6 分)
(2)问该校学生平均每人捐图书多少本? (2 分)
人均捐款
书数(本)
6
4 2
七年级 八年级 九年级 年级
图(1)
七年级
九年级 30%
八年级 35%
图(2)
(第 19 题图)
20.设 x1、x2 是关于 x 的方程 x2 − 4x + k +1 = 0 的两个实数根.试问:是否存在实数 k,使
B
A
C
(第 18 题图)
-4-
四、沉着冷静,缜密思考(本大题共 2 个小题,每小题 8 分,共 16 分).
19.某校在“书香满校园”的读书活动期间,学生会组织了一次捐书活动.如图( 1)是学
生捐图书给图书馆的条形图,图(2)是该学校学生人数的比例分布图,已知该校学生
共有 1000 人.
(1)求该校学生捐图书的总本数;
(2)解:由①-②得: y = 3,·············································································· 2 分
∴把 y = 3代入①得: x = −2,····················································································· 3 分
11.方程 1 = 1 的解是 x =
.
x +1 2x
12.如图, 在两个同心圆中, 三条直径把大圆 分成六等份,若在 这
个 圆面上 均匀 地撒 一把 豆子 ,则 豆子 落在阴 影部 分的 概率
是
.
13.若实数 x、y 满足 xy ≠ 0,则 m = x + y 的最大值是 xy
广州市中考数学模拟试卷分类汇编二元一次方程组易错压轴解答题(及答案)
广州市中考数学模拟试卷分类汇编二元一次方程组易错压轴解答题(及答案)一、二元一次方程组易错压轴解答题1.某商场经销A,B两款商品,若买20件A商品和10件B商品用了360元;买30件A 商品和5件B商品用了500元.(1)求A、B两款商品的单价;(2)若对A、B两款商品按相同折扣进行销售,某顾客发现用640元购买A商品的数量比用224元购买B商品的数量少20件,求对A、B两款商品进行了几折销售?(3)若对A商品进行5折销售,B商品进行8折销售,某顾客同时购买A、B两种商品若干件,正好用完49.6元,问该顾客同时购买A、B两款商品各几件?2.已知关于、的方程组(1)若是方程组的解时,求的值;(2)当时,若方程组的解满足为非正数,为负数,化简:.3.在平面直角坐标系中,O为坐标原点,点A的坐标为,点B的坐标为,且满足 .(1)若,判断点处于第几象限,给出你的结论并说明理由;(2)若为最小正整数,轴上是否存在一点,使三角形的面积等于10,若存在,求点的坐标;若不存在,请说明理由.(3)点为坐标系内一点,连接,若,且,直接写出点的坐标.4.文雅书店出售A,B两种书籍,已知A书籍单售为每本50元,B书籍单售为每本30元,整套(A,B各一本)出售为每套70元。
(1)小明购买了A,B两种书籍共20本,且购买的B书籍数量比A书籍数量的2倍少4本。
①小明购买了A,B两种书籍各多少本?②小明至少需要花费多少钱?(2)如果小刚花了600元购买A,B两种书籍,其中A书籍购买了8本,那么有哪几种购买方案?其中哪一种方案最划算?5.在平面直角坐标系中,已知点A(a,0),B (b,0),a、b满足方程组,C 为y轴正半轴上一点,且 .(1)求A、B、C三点的坐标;(2)是否存在点D(t,-t)使?若存在,请求出D点坐标;若不存在,请说明理由.(3)已知E(-2,-4),若坐标轴上存在一点P,使,请求出P的坐标.6.王大厨去超市采购鸡蛋超市里鸡蛋有A,B两种包装,其中各鸡蛋品质相同,且只能整盒购买,商品信息如下:A包装盒B包装盒每盒鸡蛋个数(个)38每盒价格(元)511y盒①则共买鸡蛋________个,需付________元(用含x,y的代数式表示)②若王大厨买了AB两种包装共15盒,一共买到90个鸡蛋,请问王大厨花了多少钱? ________(2)①若王大厨正好买了100个鸡蛋,则他最少需要花________元。
中考数学题库(含答案和解析)
解得:
在数轴上表示其解集如下:
故选B
【点睛】本题考查的是一元一次不等式的解法.在数轴上表示不等式的解集.掌握“小于向左拐”是解本题的关键.
6.“方胜”是中国古代妇女的一种发饰.其图案由两个全等正方形相叠组成.寓意是同心吉祥.如图.将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形 .形成一个“方胜”图案.则点D. 之间的距离为()
13.小曹同学复习时将几种三角形的关系整理如图.请帮他在横线上____填上一个适当的条件.
中考数学题库(含答案和解析)
一、选择题(本题有10小题)
1.若收入3元记为+3.则支出2元记为()
A.1B.-1C.2D.-2
【答案】D
【解析】
【分析】根据正负数的意义可得收入为正.收入多少就记多少即可.
【详解】解:∵收入3元记 +3.
∴支出2元记为-2.
故选:D
【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时.通常把向指定方向变化的量规定为正数.而把向指定方向的相反方向变化的量规定为负数.
【答案】D
【解析】
【分析】根据同底数幂的乘法法则进行运算即可.
【详解】解:
故选D
【点睛】本题考查的是同底数幂的乘法.掌握“同底数幂的乘法.底数不变.指数相加”是解本题的关键.
4.如图.在⊙O中.∠BOC=130°.点A在 上.则∠BAC的度数为( )
A.55°B.65°C.75°D.130°
【答案】B
12.不透明的袋子中装有5个球.其中有3个红球和2个黑球.它们除颜色外都相同.从袋子中随机取出1个球.它是黑球的概率是_____.
【答案】
【解析】
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。
数学全品八上答案
12.1.1 平方根(第一课时)◆随堂检测1、若x 2= a ,则 叫 的平方根,如16的平方根是 ,的平方根是 2、表示 的平方根,表示12的 3、196的平方根有 个,它们的和为 4、下列说法是否正确?说明理由 (1)0没有平方根; (2)—1的平方根是; (3)64的平方根是8; (4)5是25的平方根; (5) 5、求下列各数的平方根(1)100 (2) (3)1.21 (4) ◆典例分析例 若与是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是( )A 、49B 、441C 、7或21D 、49或441 2、的平方根是( )A 、4B 、2C 、-2D 、 二、填空3、若5x+4的平方根为,则x=4、若m —4没有平方根,则|m —5|=5、已知的平方根是,3a+b-1的平方根是,则a+2b 的平方根是9723±12-1±636±=)8()2(-⨯-4915142-m 13-m 2)2(-2±1±12-a 4±4±三、解答题6、a 的两个平方根是方程3x+2y=2的一组解 (1) 求a 的值 (2)的平方根7、已知+∣x+y-2∣=0 求x-y 的值● 体验中考1、(09河南)若实数x ,y 满足+=0,则代数式的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有 个3、(08荆门)下列说法正确的是( )A、64的平方根是8 B 、-1 的平方根是 C 、-8是64的平方根 D、没有平方根12.1.1平方根(第二课时)◆随堂检测1、的算术平方根是 ;___ __ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是 ,若a ≥04、下列叙述错误的是( )A 、-4是16的平方根B 、17是的算术平方根C 、的算术平方根是 D 、0.4的算术平方根是0.02◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b ,求c 的取值范围 分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高2a 1-x 2-x 2)3(y -2x xy -1±2)1(-2592(17)-16418|4|0b -=一、选择1,则的平方根为( )A 、16B 、C 、D 、 2)A 、4B 、 C、2 D 、 二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是 4=0,则= 三、解答题5、若a 是的平方根,b+2b 的值6、已知a b-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为,则和这个自然数相邻的下一个自然数是( ) A .B .CD2、(08的整数部分是;若<b ,(a 、b 为连续整数),则a= , b=3、(08年广州)如图,实数、在数轴上的位置,化简 =4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2 立方根◆随堂检测1、若一个数的立方等于 —5,则这个数叫做—5的 ,用符号表示为 ,—642=2(2)m +16±4±2±4±2±2(4)y +x y 2(2)-2a a 1a +21a +1a b的立方根是 ,125的立方根是 ; 的立方根是 —5. 2、如果=216,则= . 如果=64, 则= .3、当为时,. 4、下列语句正确的是( )A 、的立方根是2B 、的立方根是27C 、的立方根是 D 、立方根是 典例分析例 若,求的值.◆课下作业●拓展提高一、选择1、若,,则a+b 的所有可能值是( )A 、0B 、C 、0或D 、0或12或 2、若式子有意义,则的取值范围为( )A 、B 、C 、D 、以上均不对 二、填空3、的立方根的平方根是4、若,则(—4+x )的立方根为 三、解答题5、求下列各式中的x 的值(1)125=343 (2) 6、已知:,且,求的值●体验中考3x x 3x x x 643-27832±2)1(-1-338x 51x 2+-=-2x 22)6(-=a 33)6(-=b 12-12-12-3112a a -+-a 21≥a 1≤a 121≤≤a 64162=x 3)2(-x 64631)1(3-=-x 43=a 03)12(2=-++-c c b 333c b a ++1、(09宁波)实数8的立方根是2、(08泰州市)已知,,互为相反数,则下列各组数中,不是互为相反数的一组是( )A 、3a 与3bB 、+2与+2C 、与D 、与3、(08益阳市)一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A 、4~5cm 之间 B 、5~6cm 之间 C 、6~7 cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:,,,,,,,中,无理数有 个,有理数有 个,负数有 个,整数有 个. 2、的相反数是 ,||=的相反数是 ,的绝对值=3、设对应数轴上的点A ,对应数轴上的点B ,则A 、B 间的距离为 4、若实数a<b<0,则|a| |b|;大于小于的整数是 ; 比较大小: 5、下列说法中,正确的是( )A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例: 设a 、b 是有理数,并且a 、b 满足等式,求a+b 的平方根◆课下作业0≠a a b a b 2a 2b -3a 3b 23722-327-414.13π-12122.39-∙∙9641.333-33-57-21-3517353532522-=++b b a●拓展提高一、选择1、 如图,数轴上表示1,的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为 ( )A .-1B .1-C .2-D .-2 2、设a 是实数,则|a|-a 的值( )A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数 二、填空3、写出一个3和4之间的无理数4、下列实数,,0,,,,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则= 三、解答题5、比较下列实数的大小(1)|| 和3 (2) 和 (3)和 6、设m 是的整数部分,n 是的小数部分,求m-n 的值.● 体验中考2.(2011年青岛二中模拟)如图,数轴上两点表示的数分别为 点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A . B .C .D .3.(2011年湖南长沙)已知实数在数轴上的位置如图所示,则化简的结果为( )A .1B .C .D .3、(2011年江苏连云港)实数在数轴上对应点的位置如图所示,2222219073π-49-2131-n m 8-52-9.0-215-871313A B ,1-2-1--2-+1+a |1|a -1-12a -21a -a b ,C A 0 B (第46题图)则必有( )A .B .C .D .4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A .B . 2C .D . §13.1 幂的运算1. 同底数幂的乘法试一试(1) 2×2=( )×( )=2;(2) 5×5=5; (3) a ·a =a .概 括:a ·a =( )( )= =a .可得 a ·a =a 这就是说,同底数幂相乘, .例1计算:(1) 10×10; (2) a ·a ; (3) a ·a ·a .练习1. 判断下列计算是否正确,并简要说明理由.(1) a ·a=a ;(2) a +a =a ;(3)a ·a =a ;(4)a +a =a .2. 计算:(1) 10×10; (2) a ·a ; (3) x ·x ·x .3.填空:(1)叫做的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)表示________,表示________;(4)根据乘方的意义,=________,=________,因此=0a b +>0a b -<0ab >0a b<2-1212-34()34()34()m n n m +m n n m +343352223339336253757ma a 4)2(-42-3a 4a 43a a⋅)()()(+0 (第8题图)同底数幂的乘法练习题1.计算: (1) (2)(3) (4)(5) (6)(7) (8)2.计算: (1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11) (12)3.下面的计算对不对?如果不对,应怎样改正?(1); (2);(3); (4);(5); (6);(7); (8);(9); (10). 4.选择题: (1)可以写成( ).A . B . C . D .(2)下列式子正确的是( ).A .B .C .D . (3)下列计算正确的是( ).A .B .C .D .=⋅64a a=⋅5b b =⋅⋅32m m m =⋅⋅⋅953c c c c =⋅⋅p n ma a a =-⋅12m t t =⋅+q qn 1=-+⋅⋅112p p n n n =-⋅23b b=-⋅3)(a a =--⋅32)()(y y =--⋅43)()(a a =-⋅2433=--⋅67)5()5(=--⋅32)()(q q n=--⋅24)()(m m =-32=--⋅54)2()2(=--⋅69)(b b=--⋅)()(33a a 523632=⨯633a a a =+nnny y y 22=⨯22m m m =⋅422)()(a a a =-⋅-1243a a a =⋅334)4(=-6327777=⨯⨯42-=-a 32n n n =+22+m a12+m a22a am+22a a m ⋅12+⋅m a a 4334⨯=443)3(=-4433=-3443=44a a a =⋅844a a a =+4442a a a =+1644a a a=⋅2. 幂的乘方根据乘方的意义及同底数幂的乘法填空: (1) (2)= × =2; (2) (3)= × =3;(3) (a )= × × × =a .概 括(a )= (n 个)= (n 个)=a可得(a )=a (m 、n 为正整数).这就是说,幂的乘方, .例2计算:(1) (10);(2) (b).练习1. 判断下列计算是否正确,并简要说明理由.(1) (a )=a ;(2) a ·a =a ;(3) (a )·a =a . 2. 计算:(1)(2); (2)(y ); (3)(x ); ( 4)(y )·(y ). 3、计算: (1)x·(x2)3 (2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8 (5)[(a -b )n ] 2 [(b -a )n -1] 2(6)[(a -b )n ] 2 [(b -a )n -1] 2 (7)(m 3)4+m 10m 2+m·m 3·m 8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m )n = ___(其中m 、n 都是正整数)2、计算:(1)(23)2=_____; (2)(-22)3=______;32()23()34()m n mn m nmn 3534358551523492225433223(3)-(-a 3)2=______; (4)(-x 2)3=_______。
精品解析:2024年广东省广州市中考数学试题(解析版)
2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)−,1−,0,10中,最小的数是()1. 四个数10− B. 1− C. 0 D. 10A. 10【答案】A【解析】【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.−<−<<,【详解】解:101010∴最小的数是10−,故选:A.2. 下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A. B. C. D.【答案】C【解析】【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O对称的是C,故选:C.3. 若0a≠,则下列运算正确的是()A.235a a a+= B. 325a a a⋅=C.235a a a⋅= D. 321a a÷=【答案】B【解析】【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分母分数相加,可判断A 选项;根据同底数幂相乘,底数不变,指数相加,可判断B选项;根据分式乘法法则计算,可判断C选项;根据同底数幂除法,底数不变,指数相减,可判断D 选项.【详解】解:A、32523666a a a a a+=+=,原计算错误,不符合题意;B、325a a a⋅=,原计算正确,符合题意;C、2236a a a⋅=,原计算错误,不符合题意;D、32a a a÷=,原计算错误,不符合题意;故选:B.4. 若a b<,则()A. 33a b+>+ B. 22a b−>− C. a b−<− D. 22a b<【答案】D【解析】【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .5. 为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a 的值为20B. 用地面积在812x <≤这一组的公园个数最多C. 用地面积在48x <≤这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷 【答案】B 【解析】【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案. 【详解】解:由题意可得:5041612810a =−−−−=,故A 不符合题意; 用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意; 故选B6. 某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( ) A. 1.2110035060x += B. 1.2110035060x −= C. 1.2(1100)35060x += D. 110035060 1.2x −=⨯【答案】A 【解析】【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆, 根据题意得:1.2110035060x +=, 故选:A .7. 如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A. 18B.C. 9D.【答案】C 【解析】【分析】本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.连接AD ,根据等腰直角三角形的性质以及AE CF =得出ADE CDF V V ≌,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.【详解】解:连接AD ,如图:∵90BAC ∠=︒,6AB AC ==,点D 是BC 中点,AE CF = ∴45,BAD B C AD BD DC ∠=∠=∠=︒== ∴ADE CDF V V ≌,∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S =+=+==四边形△△△△△△ 又∵166182ABCS=⨯⨯= ∴1=92ABCAEDF S S =四边形故选:C8. 函数21y ax bx c =++与2ky x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A. 1x <−B. 10x −<<C. 02x <<D. 1x >【答案】D 【解析】【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9. 如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A. 点P 在O 上B. 点P 在O 内C. 点P 在O 外D. 无法确定【答案】C 【解析】【分析】本题考查了垂径定理,圆周角定理,点与圆的位置关系,锐角三角函数,掌握圆的相关性质是解题关键.由垂径定理可得AD =由圆周角定理可得60AOC ∠=︒,再结合特殊角的正弦值,求出O 的半径,即可得到答案.【详解】解:如图,令OC 与AB 的交点为D ,OC 为半径,AB 为弦,且OC AB ⊥,12AD AB ∴==,30ABC =︒∠260AOC ABC ∴∠=∠=︒,在ADO △中,90ADO ∠=︒,60AOD ∠=︒,AD = sin ADAOD OA∠=,4sin 60AD OA ∴===︒,即O 的半径为4,54OP =>,∴点P 在O 外,故选:C .10. 如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是( )A.π8B.π8C.D.【答案】D 【解析】【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r ,则圆锥的底面周长为2r π,根据弧长公式得出侧面展开图的弧长为2π=,进而得出1r =,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r ,则圆锥的底面周长为2r π,圆锥的侧面展开图是一个圆心角为72︒的扇形,且扇形的半径l 是5,∴扇形的弧长为7252180ππ⨯=, 圆锥的底面周长与侧面展开图扇形的弧长相等,22r ππ∴=,1r ∴=,∴=,∴圆锥的体积为2113π⨯⨯,故选:D .第二部分 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11. 如图,直线l 分别与直线a ,b 相交,ab ,若171∠=︒,则2∠的度数为______.【答案】109︒ 【解析】【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒, ∴21803109∠=︒−∠=︒; 故答案为:109︒12. 如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.【答案】220 【解析】【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=, 故答案为:220.13. 如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.【答案】5 【解析】【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长. 【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠, BAE EBA ∴∠=∠,3BE AE ∴==,235DE AD AE ∴=+=+=,故答案为:5.14. 若2250a a −−=,则2241a a −+=______. 【答案】11 【解析】【分析】本题考查了因式分解,提取公因式,得出条件的等价形式是解题关键.由2250a a −−=,得225a a −=,根据提公因式法分解因式得()22241221a a a a −+=−+,代入可得答案. 【详解】解:2250a a −−=,225a a ∴−=,()2224122125111a a a a ∴−+=−+=⨯+=,故答案为:11.15. 定义新运算:()()200a b a a b a b a ⎧−≤⎪⊗=⎨−+>⎪⎩例如:224(2)40−⊗=−−=,23231⊗=−+=.若314x ⊗=−,则x 的值为______.【答案】12−或74【解析】【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a ⎧−≤⎪⊗=⎨−+>⎪⎩, 而314x ⊗=−, ∴①当0x ≤时,则有2314x −=−, 解得,12x =−; ②当0x >时,314x −+=−, 解得,74x =综上所述,x 的值是12−或74, 故答案为:12−或74. 16. 如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)ky x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)ky x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号) 【答案】①②④ 【解析】【分析】由()1,2B ,可得122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',证明四边形A DEO '为矩形,可得当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,可得A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,可得()1,2B n '+,证明B BD A OB '''∽,可得B BD B OA '''∠=∠,再进一步可得答案.【详解】解:∵(1,0)A ,(0,2)C ,四边形OABC 是矩形; ∴()1,2B ,∴122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,∵1212AOBA ODS S'==⨯=, ∴BOKAKDA S S '=四边形, ∴BOKBKDBKDAKDA SSS S'+=+四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意; 如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒, ∴四边形A DEO '为矩形, ∴A E OD '=,∴当OD 最小,则A E '最小, 设()2,0D x x x ⎛⎫> ⎪⎝⎭, ∴2224224OD x x x x=+≥⋅⋅=, ∴2OD ≥,∴A E '的最小值为2,故③不符合题意; 如图,设平移距离为n , ∴()1,2B n '+, ∵反比例函数为2y x=,四边形A B CO ''为矩形, ∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭, ∴BB n '=,1OA n '=+,22211n B D n n '=−=++,2A B ''=, ∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB '''∽, ∴B BD B OA '''∠=∠, ∵B C A O ''∥, ∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意; 故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17. 解方程:1325x x=−.【答案】3x = 【解析】【分析】本题考查的是解分式方程,掌握分式方程的解法是解题关键,注意检验.依次去分母、去括号、移项、合并同类项求解,检验后即可得到答案. 【详解】解:1325x x=−,去分母得:()325x x =−, 去括号得:615x x =−, 移项得:615x x −=−, 合并同类项得:515x −=−, 解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18. 如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.【答案】见解析 【解析】【分析】本题考查了正方形的性质,相似三角形的判定,掌握相似三角形的判定定理是解题关键.根据正方形的性质,得出90B C ∠=∠=︒,9AB CB ==,进而得出AB BEEC CF=,根据两边成比例且夹角相等的两个三角形相似即可证明. 【详解】解:3BE =,6EC =,9BC ∴=,四边形ABCD 是正方形, 9AB CB ∴==,90B C ∠=∠=︒,9362AB EC ==,32BE CF =, AB BEEC CF∴= 又90B C ∠=∠=︒,ABE ECF ∴∽.19. 如图,Rt ABC △中,90B??.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析 (2)证明见解析 【解析】【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求; (2)先证明四边形ABCD 为平行四边形,再结合矩形判定可得结论. 【小问1详解】解:如图,线段BO 即为所求;【小问2详解】证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =, ∴四边形ABCD 为平行四边形, ∵90ABC ∠=︒, ∴四边形ABCD 为矩形.20. 关于x 的方程2240x x m −+−=有两个不等的实数根. (1)求m 的取值范围;(2)化简:2113|3|21m m m m m −−−÷⋅−+.【答案】(1)3m > (2)2− 【解析】【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键; (1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可. 【小问1详解】解:∵关于x 的方程2240x x m −+−=有两个不等的实数根. ∴()()224140m ∆=−−⨯⨯−>, 解得:3m >;的【小问2详解】解:∵3m>,∴2113|3|21m m mm m−−−÷⋅−+()()1123311 m m mm m m−+−−=⋅⋅−−+2=−;21. 善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.【答案】(1)A组同学得分的中位数为85分,众数为82分;(2)1 3【解析】【分析】本题考查了中位数与众数,列表法或树状图法求概率,掌握相关知识点是解题关键.(1)根据中位数和众数的定义求解即可;(2)由题意可知,A、B两组得分超过90分同学各有2名,画树状图法求出概率即可.【小问1详解】解:由题意可知,每组学生人数为10人,∴中位数为第5、6名同学得分的平均数,∴A组同学得分的中位数为8486852+=分,82分出现了两次,次数最多,∴众数为82分;【小问2详解】的解:由题意可知,A 、B 两组得分超过90分的同学各有2名, 令A 组的2名同学为1A 、2A ,B 组的2名同学为1B 、2B , 画树状图如下:由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种,∴这2名同学恰好来自同一组的概率41123=. 22. 2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin36.870.60︒≈,cos36.870.80︒≈,tan36.870.75︒≈) 【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒. 【解析】【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键. (1)过点B 作BE CD ∥交AD 于点E ,根据余弦值求出CD 的长即可;(2)先由勾股定理,求出AC 的长,再利用正弦值求出BC 的长,进而得到AB 的长,然后除以速度,即可求出下降时间.【小问1详解】解:如图,过点B 作BE CD ∥交AD 于点E , 由题意可知,36.87DBE ∠=︒, 36.87BDC ∴∠=︒,在BCD △中,90C ∠=︒,10BD =米,cos CDBDC BD∠=, cos36.87100.808CD BD ∴=⋅︒≈⨯≈米,即CD 的长约为8米;【小问2详解】解:17AD =Q 米,8CD =米,15AC ∴==米,在BCD △中,90C ∠=︒,10BD =米, sin BCBDC BD∠=, sin36.87100.606BC BD ∴=⋅︒≈⨯≈米, 1569AB AC BC ∴=−=−=米,模拟装置从A 点以每秒2米的速度匀速下降到B 点,∴模拟装置从A 点下降到B 点的时间为92 4.5÷=秒,即模拟装置从A 点下降到B 点的时间为4.5秒.23. 一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:(1)在图1中描出表中数据对应的点(,)x y ; (2)根据表中数据,从(0)y ax b a =+≠和(0)ky k x=≠中选择一个函数模型,使它能近似地反映身高和脚长函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析 (2)75y x =− (3)175.6cm 【解析】【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键. (1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =−代入即可求解; 【小问1详解】 解:如图所示:的【小问2详解】解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系, 将点()()23,156,24,163代入得:1562316324a ba b=+⎧⎨=+⎩, 解得:75a b =⎧⎨=−⎩∴75y x =− 【小问3详解】解:将25.8cm 代入75y x =−得:725.85175.6cm y =⨯−=∴估计这个人身高175.6cm24. 如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围; ②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【答案】(1)AF AD =,AF AD ⊥(2)①3r ≥+;②12 【解析】【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论; (2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒−︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒−︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案. 【小问1详解】解:AF AD =,AF AD ⊥;理由如下: ∵在菱形ABCD 中,120C ∠=︒, ∴120BAD C ∠=∠=︒,AB AD =, ∵30BAF ∠=︒,∴1203090FAD ∠=︒−︒=︒, ∴AF AD ⊥,由对折可得:AB AF =, ∴AF AD =; 【小问2详解】 解:①如图,设AEF△外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒, ∴AC BD ⊥, 60BCA ∠=︒,BA BC =, ∵ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,的∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上, ∵AO OE =,∴30AEO EAO ∠=∠=︒, 过O 作OJ AE ⊥于J ,∴AJ EJ =,3AO AJ =,∴3AO AE =, 当AE BC ⊥时,AE 最小,则AO 最小,∵6AB =+60ABC ∠=︒,∴(sin 6069AE AB =⋅︒=+=,∴)93AO ==+∴r 的取值范围为3r ≥+; ②DF 能为O 的切线,理由如下:如图,以A 为圆心,AC 为半径画圆, ∵AB AC AF AD ===, ∴,,,B C F D A 上,延长CA 与A 交于L ,连接DL ,在同理可得ACD 为等边三角形, ∴60CAD ∠=︒, ∴30CLD ∠=︒,∴18030150CFD ∠=︒−︒=︒, ∵DF 为O 的切线,∴90OFD ∠=︒, ∴60OFC ∠=︒, ∵OC OF =,∴OCF △为等边三角形, ∴60COF ∠=︒, ∴1302CAF COF ∠=∠=︒, ∴603030DAF ︒−︒=︒∠=, ∴1203090BAF ∠=︒−︒=︒,由对折可得:45BAE FAE ∠=∠=︒,BE EF =, 过E 作EM AF ⊥于M , ∴设AMEM x ==,∵60EFM ∠=︒,∴33FM EM x ==,∴63x x +=+解得:x =∴63FM =⨯=, ∴212BE EF FM ===.【点睛】本题考查的是轴对称的性质,菱形的性质,等边三角形的判定与性质,圆周角定理的应用,锐角三角函数的应用,勾股定理的应用,切线的性质,本题难度很大,作出合适的辅助线是解本题的关键. 25. 已知抛物线232:621(0)G y ax ax a a a =−−++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+. (1)求抛物线G 的对称轴; (2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点. ①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.【答案】(1)对称轴为直线:3x =; (2)1m =±(3)①15t =,②k的最大值为G 为262y x x =−+; 【解析】【分析】(1)直接利用对称轴公式可得答案;(2)如图,由122C C =+,可得A 在B 的左边,2AD AC CD CD BC BD ++=+++,证明CA CB =,可得2AD BD =+,设(),2D p ,建立1212232x x p x x p +=⨯⎧⎨−=−+⎩,可得:4p =,()4,2D ,再利用待定系数法求解即可;(3)①如图,当l AB '∥时,与抛物线交于,E F ,由直线y x n =+,可得45DCF ∠=︒,可得345t =,从而可得答案;②计算()1122AEFA E SEF y y EF =⋅−=,当1y =时, 可得22620x x a a −−+=,则126x x +=,2122x x a a =−+,可得12EF x x =−==1a =时,EF 的最小值为【小问1详解】解:∵抛物线232:621(0)G y ax ax a a a =−−++>, ∴抛物线对称轴为直线:632ax a−=−=; 【小问2详解】解:∵直线2:l y m x n =+过点(3,1)C , ∴231m n +=, 如图,∵直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+,∴A 在B 的左边,2AD AC CD CD BC BD ++=+++, ∵C 在抛物线的对称轴上, ∴CA CB =, ∴2AD BD =+, 设(),2D p ,∴1212232x x p x x p +=⨯⎧⎨−=−+⎩,解得:4p =, ∴()4,2D ,∴223142m n m n ⎧+=⎨+=⎩, ∴21m =, 解得:1m =±; 【小问3详解】解:①如图,当l AB '∥时,与抛物线交于,E F , ∵直线y x n =+, ∴45DCF ∠=︒,∴345t =, 解得:15t =, ②∵()1122AEFA E SEF y y EF =⋅−=, 当1y =时,2326211ax ax a a −−++=, ∴22620x x a a −−+=,∴126x x +=,2122x x a a =−+,∴12EF x x =−====∵40>,∴当1a =时,EF 的最小值为∴此时12AEFS=⨯= ∵对于任意的0a >,均有S k ≥成立,∴k 的最大值为 ∴抛物线G 为262y x x =−+;【点睛】本题考查的是二次函数的图象与性质,一次函数的性质,坐标与图形面积,一元二次方程根与系数的关系,理解题意,利用数形结合的方法解题是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年广东广州中考数学试卷及参考答案滿分150分,考試時間120分鐘一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 将图1所示的图案通过平移后可以得到的图案是( )2. 如图2,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( )(A )40° (B )50° (C )130° (D )140°3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( )(A )b a < (B )b a =(C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( )(A )2 (B )1 (C )-1 (D )-25. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( )(A )222)(n m n m -=- (B ))0(122≠=-m mm (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( )(A )31-=x y (B )31-=x y (C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( )(A )正十边形 (B )正八边形(C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( )(A )125 (B )135 (C )1310 (D )1312 10. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( )(A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分)11. 已知函数xy 2=,当x =1时,y 的值是________ 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________13. 绝对值是6的数是________14. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________16. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成三、解答题(本大题共9小题,满分102分。
解答应写出文字说明、证明过程或演算步骤)17. (本小题满分9分)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
证明:四边形DECF 是平行四边形。
18. (本小题满分10分) 解方程223-=x x19.(本小题满分10分)先化简,再求值:)6()3)(3(--+-a a a a ,其中215+=a20.(本小题满分10分)如图10,在⊙O 中,∠ACB=∠BDC=60°,AC=cm 32,(1)求∠BAC 的度数; (2)求⊙O 的周长21. (本小题满分12分)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别。
现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球。
(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率。
22. (本小题满分12分)如图11,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。
(1)写出点A、B的坐标;(2)求直线MN所对应的函数关系式;(3)利用尺规作出线段AB关于直线MN的对称图形(保留作图痕迹,不写作法)。
23. (本小题满分12分)为了拉动内需,广东启动“家电下乡”活动。
某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。
(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)?24.(本小题满分14分)如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。
(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若RtΔGBF的周长为1,求矩形EPHD的面积。
25.(本小题满分14分)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。
(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。
2009年广州市初中毕业生学业考试 数学一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. A2. C3. C4. A5. D6. B7. D8. C9. B 10. A二、填空题(本大题共6小题,每小题3分,满分18分)11. 2 12. 9.3 13. +6,-6 14. 略 15. 2n +5 16. 4三、解答题(本大题共9小题,满分102分。
解答应写出文字说明、证明过程或演算步骤)17. (本小题满分9分)证明:D 、E 是中点,所以DE//BC ,DE=0。
5BC=EC ,所以四边形DECF 是平行四边形。
18. (本小题满分10分)解:两边乘以x(x -2),得3(x -2)=2x ,解得x=6,经检验,x=6是原方程的解。
19. (本小题满分10分)解:原式=a 2-3-a 2+6a=6a -3,当215+=a 时,原式=65 20.(本小题满分10分)解:(1)∠BAC=∠BDC=60°(2)∠ABC=180°-∠BAC -∠ACB=60°,所以ΔABC 是等边三角形,作OE ⊥AC ,连接OA , OA=3230AE COS OAE COS ==∠︒,所以⊙O 的周长为4π 21. (本小题满分12分) ①② ③ 红白 蓝 红蓝 白 蓝红 白 蓝白 红 白 蓝 红(2)P (红球恰好被放入②号盒子)=1322. (本小题满分12分)解:(1)A (-1,3),B (-4,2)(2)y=2x (3)图略。
23. (本小题满分12分) 解:(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为x 、y 台,得9601.3 1.251228x y x y +=⎧⎨+=⎩,解得560400x y =⎧⎨=⎩经检验,符合题意。
答:在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为560台、400台。
(2)(2298×560×1.3+1999×400×1.25)×13%=3.5×10524.(本小题满分14分)解:(1) 易证ΔABF ≌ΔADH,所以AF=AH(2) 如图,将ΔADH 绕点A 顺时针旋转90度,如图,易证ΔAFH ≌ΔAFM,得FH=MB+BF,即:FH=AG+AE(3) 设PE=x,PH=y,易得BG=1-x,BF=1-y,FG=x+y-1,由勾股定理,得(1-x )2+(1-y )2=(x +y -1)2, 化简得xy=0.5,所以矩形EPHD 的面积为0.5.25.(本小题满分14分)解:(1)OC=1,所以,q=-1,又由面积知0.5OC ×AB=45,得AB=52, 设A (a,0),B(b,0)AB=b -a=2()4a b ab +-=52,解得p=32±,但p<0,所以p=32-。
所以解析式为:2312y x x =-- (2)令y=0,解方程得23102x x --=,得121,22x x =-=,所以A(12-,0),B(2,0),在直角三角形AOC 中可求得AC=52,同样可求得BC=5,,显然AC 2+BC 2=AB 2,得三角形ABC 是直角三角形。
AB 白 红 蓝为斜边,所以外接圆的直径为AB=52,所以5544m-≤≤.(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组231224y x xy x⎧=--⎪⎨⎪=-+⎩得D(52-,9)②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把A(12-,0)代入得AD解析式为y=0.5x+0.25,解方程组23120.50.25y x xy x⎧=--⎪⎨⎪=+⎩得D(53,22)综上,所以存在两点:(52-,9)或(53,22)。