新初中数学二次根式经典测试题及答案解析

合集下载

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。

【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2. 9的平方根是()A.3B.±3C.D.81【答案】B【解析】根据平方根的定义可判断.【考点】平方根3. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根4.的平方根为()A.B.C.3D.【答案】B.【解析】由于=3,故其平方根是.故选B.【考点】平方根.5.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.6.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.7.下列各式正确的是()A.B.C.D.【答案】A.【解析】A选项正确,B、C、D选项错误.故选A.【考点】二次根式的化简.8.大于小于的所有整数的和是 .【答案】-4.【解析】求出和的范围,求出范围内的整数解,最后相加即可.∵-5<<-4,3<<4,∴大于小于的所有整数为-4,±3,±2,±1,0,∴-4-3-2-1+0+1+2+3=-4,【考点】估算无理数的大小.9.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.10.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.11.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.【答案】9【解析】解:因为2a-1的平方根是±3,所以2a-1=9,解得因为3a+b-1的算术平方根是4,所以3a+b-1=16.又所以故a+2b=9.12.在-4,,0,π,1,,这些数中,是无理数的是.【答案】π.【解析】无理数有:π.故答案为:π.【考点】无理数.13.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.14.若(x-1)=64,则x=______。

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.计算(1)(2)【答案】(1);(2)2.【解析】(1)根据二次根式的乘除法则运算;(2)根据二次根式有意义的条件得到-(a+2)2≥0,得到a=-2,然后把a=-2代入原式进行计算.试题解析:(1)原式===(2)∵-(a+2)2≥0,∴a=-2,原式==3-5+4=2.【考点】二次根式的混合运算.2.计算:【答案】.【解析】先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.试题解析:原式=3﹣3+2+2+1=.【考点】二次根式的混合运算.3.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.当1≤x≤5时,【答案】4.【解析】根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥0,x-5≤0.故原式=(x-1)-(x-5)=x-1-x+5=4.考点: 二次根式的性质与化简.6.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.7.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项【考点】根式运算.8.=________________.【答案】6【解析】由题, .,由题, .【考点】二次根式的化简.9.函数中自变量x的取值范围是.【答案】x≥4【解析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.10.的平方根是()A.4B.±4C.±2D.2【答案】C【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根.,平方根是±2,故选C.【考点】平方根点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.11.函数y=中,自变量x的取值范围是。

初中数学二次根式基础测试题附答案解析

初中数学二次根式基础测试题附答案解析

初中数学二次根式基础测试题附答案解析一、选择题1.下列各式中,不能化简的二次根式是()A B C D【答案】C【解析】【分析】A、B选项的被开方数中含有分母或小数;D选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【详解】解:A=,被开方数含有分母,不是最简二次根式;B=,被开方数含有小数,不是最简二次根式;D=,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C.【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.下列式子正确的是()=-A6=±B C3=-D5【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】=,故A错误.解:6B错误.=-,故C正确.3=,故D错误.D. 5故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.3.a的值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.4.下列计算中,正确的是()A.=B1b=(a>0,b>0)C=D.=【答案】B【解析】【分析】a≥0,b≥0a≥0,b>0)进行计算即可.【详解】A、B 1b(a>0,b>0),故原题计算正确;C ,故原题计算错误;D 32故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.5.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .6.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.7.下列计算或运算中,正确的是()A .=B =C .=D .-=【答案】B【解析】【分析】根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.8.的结果是 A .-2B .2C .-4D .4【答案】B【解析】22=-=故选:B9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<< 【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.估计值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计2值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12x 的取值范围是( )A .x≥5B .x>-5C .x≥-5D .x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】Q 有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.13.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.14.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.16.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.17.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.18.下列运算正确的是()A =B =C 123=D 2=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )A B . C + 1 D + 2 【答案】A【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】解:(221m m ++1)31m m+÷ 223211m m m m m +++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.n的最大值为()A.12B.11C.8D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n22,从而得出结果.【详解】2时,n取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解”的含义.。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.二次根式中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1【答案】D.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 因此,二次根式中字母x的取值范围是x≥1. 故选D.【考点】二次根式有意义的条件.2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.实数-8的立方根是【答案】-2.【解析】利用立方根的定义即可求解.试题解析:∵(-2)3=-8,∴-8的立方根是-2.【考点】立方根.4.计算:+(﹣1)0=.【答案】3【解析】原式=2+1=3故答案为:3.【考点】1、立方根;2、零指数幂;3、实数的运算5.若二次根式有意义,则x的取值范围是.【答案】.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】二次根式有意义的条件.6.已知实数x,y满足x+y=-2a,xy=a(a≥1),则的值为A.a B.2a C.a D.2【答案】D.【解析】解:∵x+y=-2a,xy=a(a≥1),∴x,y均为负数,∵∴===2.故选:D.【考点】二次根式的化简求值.7.计算:.【答案】.【解析】根据二次根式、负整数指数幂以及零次幂的意义进行计算即可求出答案.原式=.【考点】实数的混合运算.8.方程的根是.【答案】.【解析】∵,∴.∴.【考点】解方程.9.观察分析下列数据,寻找规律:0,,,3,2,…,那么第10个数据应是________.【答案】3【解析】观察可知规律:被开数依次是0,3,6,9,12,…,按规律可知,第10个数据应该是=3,填3.10.。

【答案】【解析】根据二次根式的乘法法则计算.试题解析:.考点: 二次根式的乘除法.11.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.12.下列属于最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、,被开方数含能开得尽方的因数,不是最简二次根式;B、是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选B.【考点】最简二次根式.13.计算:【答案】0.【解析】根据二次根式运算法则计算即可.试题解析:.【考点】二次根式计算.14.下列计算正确的是()A.B.C.D.【答案】A.【解析】二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式,由题,,A正确,不能合并,,不能合并,B错误,C不能合并,错误,,D错误,故选A.【考点】根式的计算.15.的值是()A.4B.2C.±2D.【答案】B.【解析】首先应弄清所表示的意义:求的算术平方根.根据一个正数的平方等于,那么这个正数就叫做的算术平方根.因为,所以的算术平方根为,故应选B.【考点】算术平方根的定义.16.计算【答案】.【解析】原式=.【考点】 1.实数的运算;2.零指数幂;3.负整数指数幂.17.下列根式中属最简二次根式的是()A.B.C.D.【答案】A【解析】最简二次根式的是满足两个条件:1.被开方数中不含分母.2.被开方数中不能含有开得方的因数或因式.故符合条件的只有A.故选A【考点】最简二次根式18.若x,y为实数,且,则的值为A.1B.C.2D.【答案】B.【解析】∵,∴根据绝对值和二次根式的非负数性质,得.∴.故选B.【考点】1.绝对值和二次根式的非负数性质;2.乘方.19.若,则m-n的值为.【答案】4.【解析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.试题解析:根据题意得:,解得:,则m+n=3-(-1)=4.考点: (1)算术平方根;(2)绝对值.20.已知,则有()A.B.C.D.【答案】A.【解析】,∵,∴,即.故选A.【考点】1.估算无理数的大小;2.实数的运算.21.若使二次根式在实数范围内有意义,则x的取值范围是()A.B.C.D.【答案】B【解析】根据题意,a-1…0,a…1.当被开方数为非负数时,二次根式有意义,根据题意,得到a的不等式.【考点】二次根式有意义的条件(被开方数为非负数).22.计算:.【答案】或者.【解析】此题是二次根式的加减乘除运算和化简,首先要弄明白二次根式加减的法则和乘除的公式,对于二次根式的加减来说,首先要把各项化为最简二次根式,然后是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.试题解析:解:原式=.【考点】二次根式的加减乘除运算和化简.23.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为.【答案】.【解析】如图,经过等积转换:平行四边形BNME与平行四边形NFDM等积;△AHM与△CGN 等积.∴阴影部分的面积其实就是原矩形ABCD面积的一半.∴阴影部分的面积=.【考点】1.矩形的性质;2.面积割补法的应用,3.全等图形的判定;4.二次根式的运算;5.转换思想和整体思想的应用.24.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.25.要使二次根式有意义,字母x必须满足的条件是.【答案】【解析】二次根式有意义的条件:二次根号下的式子为非负数,即,.【考点】二次根式有意义的条件26.若x3=8,则x=.【答案】2【解析】根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a的一个立方根:∵23=8,∴8的立方根是2。

初中数学二次根式基础测试题附答案

初中数学二次根式基础测试题附答案
解: A 、 x 1 x 2 x ,故本选项错误; 33
B 、 a3 a2 a5 ,故本选项错误;
C 、 ( 5 1)( 5 1) 5 1 4 ,故本选项正确;
D 、 a2 2 a4 ,故本选项错误;
故选: C .
【点睛】 本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法 是解题的关键.
8.下列计算或运算中,正确的是()
A. 2 a a 2
B. 18 8 2
C. 6 15 2 3 3 45
D. 3 3 27
【答案】B
【解析】
【分析】
根据二次根性质和运算法则逐一判断即可得.
【详解】
A、2 a =2× a 2a ,此选项错误;
2
2
B、 18 8 =3 2 -2 2 = 2 ,此选项正确; C、 6 15 2 3 3 5 ,此选项错误;
B、 1 2 , 2 与 1 是同类二次根式;
22
2
C、 4ab 2 ab, ab4 b2 a , 4ab 与 ab4 不是同类二次根式;
D、 a 1 与 a 1 不是同类二次根式;
故选:B. 【点睛】 本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式 后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
16.下列各式中是二次根式的是( )
A. 3 8
【答案】C 【解析】 【分析】
B. 1
C. 2
根据二次根式的定义逐一判断即可. 【详解】
A、 3 8 的根指数为 3,不是二次根式;
B、 1 的被开方数﹣1<0,无意义;

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.(6分)化简:(+)-(+6)÷.【答案】.【解析】分别利用二次根式的乘除运算法则化简,进而合并得出即可.试题解析:(+)-(+6)÷=2+3﹣3﹣=.【考点】二次根式的混合运算.2.规定用符号[m]表示一个实数m的整数部分. 例如:[]="0" ,[3.14]="3" ,按此规定[]的值为_________ .【答案】4.【解析】∵9<10<16,∴. ∴.试题解析:【考点】1.新定义;2.估计无理数的大小.3.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.计算:【答案】3【解析】先进行乘方、分母有理化及负整数指数幂,最后合并同类二次根式即可求解.原式=【考点】实数的混合运算.6.若,则。

A.B.C.0D.2【答案】A.【解析】∵∴x+y=2,x-y=2∴原式=(x+y)(x-y)=2×2=4.故选A.考点: 二次根式的化简求值.7.若,则的取值范围是。

【答案】x≥0.【解析】根据(a≥0),可得答案.试题解析:解;∵,∴2x≥0,∴x≥0.考点: 二次根式的性质与化简.8.计算()(+++…+)【答案】2013.【解析】根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:()(+++…+)=()(-1+-+-+…+-)=()()=2014-1=2013.考点: 分母有理化.9.已知+,那么 .【答案】8【解析】由+,得,所以.10.已知、b为两个连续的整数,且,则= .【答案】11【解析】∵,、b为两个连续的整数,又<<,∴ =6,b=5,∴.11.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.12.下列说法正确的是……()A.0的平方根是0B.1的平方根是1C.-1的平方根是-1D.的平方根是-1【答案】A.【解析】根据平方根的定义即可判定A.0的平方根是0,故说法正确;B.1的平方根是±1,故说法错误;C.-1的平方根是-1,负数没有平方根,故说法错误;D.(-1)2=1,1的平方根为±1,故说法错误【考点】平方根.13.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.14.计算:【答案】5【解析】解:原式【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.要使代数式有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x≤-2D.x≤2【答案】A.【解析】根据题意,得x-2≥0,解得,x≥2;故选A.【考点】二次根式有意义的条件.2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.下列各式是最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.因此,A、=3,不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.5.下列说法正确的是()A.带根号的数都是无理数B.无理数都是无限小数C.是无理数D.无限小数都是无理数【答案】B.【解析】A、如,是有理数不是无理数,故本选项错误;B、无理数都是无限小数,故本选项正确;C、是有理数,故本选项错误;D、无限不循环小数是无理数,故本选项错误.故选B.考点: 无理数.6.(1)计算: (2)解方程组:【答案】(1);(2)方程组的解为:.【解析】(1)根据二次根式混合运算的运算顺序计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1);(2)②-①×3得x=5,把x=5代入①得,10﹣y=5,解得y=5,故此方程组的解为:.【考点】1.二次根式的运算,2.解方程组.7.已知实数满足,则代数式的值为()A.B.C.D.【答案】B【解析】由,知所以8.有一个数值转换器,原理如图所示:当输入的=64时,输出的y等于()A.2B.8C.3D.2【答案】D【解析】由图表得,64的算术平方根是8,8的算术平方根是2.故选D.9.下列计算中,正确的有()①=±2 ②=2 ③=±25 ④a=-A.0个B.1个C.2个D.3个【答案】C.【解析】A、任何数的立方根只有一个;B、负数的奇次幂是负数,负数的立方根也是负数;C、非负数的平方根有两个,且互为相反数;D、二次根式的意义可知a<0,再根据二次根式的性质求解据此作答,进行判断.A、=2,此选项错误;B、=-2,此选项错误;C、=±25,此选项正确;D、a=-故选C.【考点】1.立方根;2.平方根;3.算术平方根.10.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.11.计算:(1);(2)sin30°+cos30°•tan60°.【答案】(1);(2)2【解析】(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较13.计算:3÷的结果是()A.B.C.D.【答案】A【解析】,选A【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.在0.1,﹣3,和这四个实数中,无理数是()A.0.1B.﹣3C.D.【答案】C【解析】在0.1,﹣3,和这四个实数中,无理数有:【考点】无理数2.读取表格中的信息,解决问题.a=b+2c b=c+2a c=a+2b满足的n可以取得的最小整数是.【答案】7.【解析】由,,,….∵,∴.∴.∵36<2014<37,∴n最小整数是7.【考点】1.探索规律题(数字的变化类);2.二次根式化简;3.不等式的应用.3.计算sin245°+cos30°•tan60°,其结果是()A.2B.1C.D.【答案】A【解析】原式=()2+×=+=2.故选:A.【考点】1、特殊角的三角函数值;2、实数的计算4.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2【答案】D【解析】根据题意得:x﹣2≥0,解得:x≥2.故选D.【考点】二次根式有意义的条件5.在下列实数中,无理数是()A.2B.3.14C.D.【答案】D.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是整数,是有理数,选项错误;B、是小数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、是无理数,选项正确析.故选D.【考点】无理数.6.二次根式在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1【答案】B.【解析】根据题意得:x-1≥0,解得:x≥1.故选B.考点: 二次根式有意义的条件.7.下列计算正确的是 ()A.-=B.=-=1C.÷(-)=-1D.=3【答案】A【解析】∵-=2-=∴A对.∵==∴B错.∵÷(-)===+1∴C错∵===3-1∴D错.选A.8.计算:·-=________.【答案】2【解析】原式=-=3-=2.9.下列各式中,正确的是 ()A.=-3B.-=-3C.=±3D.=±3【答案】B【解析】因为-=-=-3,所以选B.10. 9的算术平方根是( )A.3B.±3C.81D.±81【答案】A.【解析】9的算术平方根是.故选A.考点: 算术平方根.11.已知则.【答案】【解析】因为所以所以,故.12.下列运算正确的是()A.B.C.D.【答案】B.【解析】A.与不是同类二次根式,不能合并,故本选项错误;B.,故本选项正确;C.3与不是同类二次根式,不能合并,故本选项错误;D. ,,故本选项错误.故选B.考点: 二次根式的运算与化简.13.的值等于()A.4B.-4C.±4D.【答案】A.【解析】根据42=16,可得.故选A.【考点】算术平方根.14.的算术平方根是()A.4B.C.2D.【答案】C.【解析】根据算术平方根的定义解答即可.∵∴4的算术平方根是2.故选C.考点:算术平方根.15.观察分析下列数据,按规律填空:(第n个数).【答案】.【解析】寻找规律:可写为.【考点】探索规律题(数字的变化类).16.下列计算正确的是()A.B.C.D.【答案】D【解析】A、与不是同类二次根式,无法合并,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算17.下列计算,正确的是A.B.C.D.【答案】C.【解析】A、与不是同类二次根式,不能合并,故A错误;B、与不是同类二次根式,不能合并,故B错误;C、,该选项正确;D、,故本选项错误.故选C.考点: 二次根式的混合运算.18.计算【答案】.【解析】先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:考点: 二次根式的混合运算.19.计算:=.【答案】7.【解析】直接根据二次根式的性质与化简进行计算即可..故填7.【考点】二次根式的性质与化简.20.已知:a.b.c满足,求:(1)a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【答案】(1)a=2,b=5,c=3;(2)能构成三角形,周长=.【解析】(1)几个非负数的和为零,要求每一项为零,由题,a-2=0,b-5=0,c-3=0,a=2 ,b=5,c=3;(2)能构成三角形的条件是两边之和大于第三边,由题,,而,所以能构成三角形,周长=. 试题解析:(1)由题,∴a-2=0,b-5=0,c-3=0,∴a=2,b=5,c=3;(2)∵,,∴能构成三角形,三角形的周长=.【考点】1.非负数的性质;2.三角形三边的关系.21.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.22.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.23.如果,那么= .【答案】-2【解析】根据题意,可得=0,∣b-2∣=0,从而得到a+1=0,a=-1,b-2=0,b=2,ab=-2.因为二次根式为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要求每一项都为零,即=0,∣b-2∣=0,而零的二次根式为0,0的绝对值为0,从而得到a+1=0,b-2=0,解得a=-1,b=2,ab=-2.【考点】几个非负数的和为零,要求每一项都为零.24.若平行四边形的一边长为2,面积为,则此边上的高介于A.3与4之间B.4与5之间C.5与6之间D.6与7之间【答案】B【解析】先根据四边形的面积公式列出算式,求出高的值,再估算出无理数,即可得出答案:根据四边形的面积公式可得:此边上的高=。

二次根式50题上 参考答案与试题解析

二次根式50题上 参考答案与试题解析

二次根式50题上参考答案与试题解析一.解答题(共50小题)1.【解答】解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.2.【解答】解:(1)原式=3×5÷=15=15;(2)原式=5﹣3=2;(3)原式=2﹣﹣﹣=﹣;(4)原式=3×1﹣(﹣)﹣1=3﹣2+﹣1=.3.【解答】解:(1)原式=7﹣25=﹣18;(2)原式==.4.【解答】解:(1)原式=4+3﹣2=5;(2)原式=[(﹣2)(+2)]2019•(+2)﹣2(1﹣)﹣1=﹣(+2)﹣2(1﹣)﹣1=﹣﹣2﹣2+﹣1=﹣5.5.【解答】解:(I)(+)+(﹣)=2+2+﹣=3+;(II)2×÷5=4×÷5=3×=.6.【解答】解:(1)原式=4÷﹣3÷=4﹣3;(2)原式=×2﹣×=2﹣=4﹣5=﹣1.7.【解答】解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.8.【解答】解:(1)﹣﹣+原式=2﹣4﹣2+5=3﹣2;(2)÷(3﹣2)=2÷(﹣)=﹣2.9.【解答】解:(1)原式=﹣|2﹣|=+2﹣=2;(2)原式=2(1+)(1﹣)=2×(1﹣3)=﹣4.10.【解答】解:(1)原式=+﹣4=2+3﹣4=1;(2)原式=+4﹣4+3=3+4﹣4+3=7﹣.11.【解答】解:原式=2+1﹣+8=+9.12.【解答】解:原式=+4=3+4=7.13.【解答】解:(1)﹣+=2﹣3+5=4;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×=4﹣1+2﹣+3=5+2.14.【解答】解:(1)原式=(2+7﹣)•=27﹣.(2)原式=(5﹣3)﹣(2+2+6)=2﹣(8+4)=2﹣8﹣4=﹣6﹣4.(3)原式=÷==.15.【解答】解:原式=2﹣+(3+9﹣6)÷=+(12﹣6)÷=+4﹣6=5﹣6.16.【解答】解:(1)原式=×4﹣1+4++1=2﹣1+4++1=7;(2)原式=(6﹣+4)÷2=÷2=.17.【解答】解:原式=(6﹣)÷2=×=.18.【解答】解:(1)原式=(3)2﹣62=18﹣36=﹣18;(2)原式=3+﹣1+1=4.19.【解答】解:(1)原式=[x2﹣4xy+4y2﹣(4y2﹣x2)]÷2x =[x2﹣4xy+4y2﹣4y2+x2]÷2x=(2x2﹣4xy)÷2x=x﹣2y;(2)原式=1+﹣1+3﹣=3.20.【解答】解:原式=1﹣3﹣+﹣2=﹣4.21.【解答】解:(1)原式=﹣3=2﹣3=﹣;(2)原式=()2﹣()2=8﹣=.22.【解答】解:×﹣()﹣1﹣|2﹣|=﹣﹣|2﹣3|=﹣﹣1=﹣﹣.23.【解答】解:(3﹣)2+=18﹣6+6+4=18﹣12+6+4=24﹣8.24.【解答】解:原式=4+﹣2+﹣1=4+﹣2+﹣1=3.25.【解答】解:(1)原式=2+1+2﹣2+4=7;(2)原式=4÷(8﹣﹣3)=1.26.【解答】解:(1)原式=3﹣2﹣3﹣1=﹣2﹣1;(2)原式=3+4﹣4﹣6=1﹣4.27.【解答】解:(1)(3﹣)2++4=9﹣6+2+4+2=11;(2)|﹣1|﹣•+(+1)2﹣()2=﹣1﹣2+3+2+1﹣3=;(3)÷+(﹣1)0﹣1=×+1﹣1=5+1﹣1=5;(4)+×﹣=3+﹣=3;(5)()2(5+2)+5=(3﹣2+2)×(5+2)+5=(5﹣2)×(5+2)+5=25﹣24+5=6;(6)÷﹣|2﹣3|+(﹣)﹣1=﹣(3﹣2)+(﹣2)=﹣3+2+(﹣2)=﹣5+.28.【解答】解:(1)原式=+3﹣4=0;(2)原式=2××=;(3)原式=12﹣6=6.29.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=3﹣4+4+2+2=7.30.【解答】解:(1)原式=2+3﹣2﹣6=﹣4+;(2)原式=+﹣﹣=﹣=.31.【解答】解:(1)原式=﹣2+4=4﹣4+4=4;(2)原式=4﹣3+=+3.32.【解答】解:原式=﹣2+4×=3﹣6+=3﹣5.33.【解答】解:(1)原式=4×÷=3÷=;(2)原式=3﹣﹣(8﹣4+1)=3﹣﹣(9﹣4)=3﹣﹣9+4=7﹣﹣9.34.【解答】解:(1)原式=(×3+2×﹣2)×2=(+﹣2)×2=(﹣)×2=6﹣8;(2)原式=3﹣4+12﹣4+1=12﹣4.35.【解答】解:(1)﹣4÷+3=2﹣4+=﹣.(2)(﹣2)(+2)﹣(﹣)+|1﹣|=3﹣4+2+﹣1=﹣2+3.36.【解答】解:(1)=3﹣2+(3﹣1)=3﹣2+2=+2;(2)(﹣)×(﹣)+|﹣1|+(5﹣2π)0=3+﹣1+1=4.37.【解答】解:(1)=+1+3﹣3+2=4;(2)=2b•(﹣a)•=﹣9a2b.38.【解答】解:(1)﹣=2﹣=;(2)﹣×=2﹣=;(3)(+﹣×)÷=(5+4﹣3)÷2=6÷2=3.39.【解答】解:原式=﹣(×2﹣×2)+()2﹣()2=﹣+3+2﹣3=3﹣1.40.【解答】解:原式=4﹣3+﹣1+﹣2=6﹣6.41.【解答】解:原式=(2)2﹣12=12﹣1=11.42.【解答】解:(1)原式=3﹣2+3=+3;(2)原式=(4﹣2+6)÷=8÷=8.43.【解答】解:(1)(+)﹣(﹣)=2+﹣+=3+;(2)()2﹣()=5+2+2﹣﹣=7+2﹣﹣.44.【解答】解:(﹣2)2++6﹣|1﹣|=3﹣4+4+2+2﹣(﹣1)=3﹣4+4+2+2﹣+1=8﹣.45.【解答】解:(1)=2﹣﹣+=;(2)=+1﹣1=3+1﹣1=3.46.【解答】解:=3﹣﹣3=3﹣2﹣3=﹣3.47.【解答】解:原式=2+1﹣﹣2﹣=﹣1.48.【解答】解:原式=+2﹣=2+2﹣=3.49.【解答】解:(1)原式=2×2÷4=8÷4=2;(2)原式=2+3﹣2=3.50.【解答】解:(1)原式=•=;(2)原式=4×﹣(5﹣1)=12﹣4=8.。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.与﹣2的乘积是有理数的是()A.﹣2B.C.2﹣D.+2【答案】D.【解析】∵-2的有理化因式为+2,∴与-2的乘积是有理数的是+2,故选D.【考点】分母有理化.2.式子在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤﹣1D.x>1【答案】B.【解析】根据二次根式的性质,被开方数大于等于0,所以x﹣1≥0,即x≥1时,二次根式有意义.故选B.【考点】二次根式有意义的条件.3.下列计算中正确的是()A.B.C.D.【答案】C.【解析】根据二次根式的性质化简即可:A.,计算错误;B.,计算错误;C.,计算正确;D.,计算错误.故选C.【考点】二次根式化简.4.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.5.计算:(1);(2)【答案】(1)4;(2).【解析】(1)根据二次根式的性质化简计算.(2)根据分配律和完全平方公式展开后合并同类根式即可.(1)原式=.(2)原式=【考点】二次根式的计算.6.化简的结果 .【答案】【解析】写成分式的形式,然后分子、分母都乘以(1+),化简整理即可..【考点】分母有理化.7.方程的解是 .【答案】1【解析】先进行分母有理化,把所给方程化为一元一次方程,求出方程的解即可.分母有理化得:去分母整理得:;解得x=1.【考点】解一元一次方程.8.是整数,则最小的正整数a的值是。

【答案】5.【解析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5.试题解析:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.考点: 二次根式的定义.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.10.比较下列各组数的大小:(1)与; (2)与.【答案】(1)>(2)小于【解析】解:(1)因为,,所以.(2)因为,,所以.11.计算:______.【答案】13【解析】12.已知正数的两个平方根是和,则=【答案】49.【解析】∵正数x的两个平方根是m+3和2m-15,∴m+3+2m-15=0,∴3m=12,m=4,∴m+3=7,即x=72=49.【考点】平方根.13. 9的平方根是()A.3B.C.D.【答案】B.【解析】此题主要考查了平方根的定义,易错点正确区别算术平方根与平方根的定义.根据平方根的定义:若一个数的平方等于a,那么这个数就是数a的平方根.∵(±3)2=9,∴±3是9的平方根.故选B.【考点】平方根的定义.14.以下说法正确的是()A.B.C.16的算术平方根是±4D.平方根等于本身的数是1.【答案】A.【解析】A.,正确;B.,故本选项错误;C.16的算术平方根是4,故本选项错误;D.平方根等于本身的数是1和0,故本选项错误.故选A.【考点】1.平方根;2.算术平方根.15.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.16.如图所示,数轴上表示2,的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A. B. C. D.【答案】C.【解析】因为表示2,的对应点分别为C,B,所以CB=,因为点C是AB的中点,则设点A的坐标是x,则,所以点A表示的数是.故选C.【考点】实数与数轴.17.已知是实数,且,则()A.31B.21C.13D.13或21或31【答案】C【解析】由可得,再结合二次根式有意义的条件即可求得x的值,最后代入代数式计算即可.∵∴解得∵即∴∴故选C.【考点】解一元二次方程,二次根式有意义的条件,代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.18.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可. (1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分. 19.下列实数:,3.14,,,,,,无理数有( )A.2个B.3个C.4个D.5个【答案】B【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.∵∴无理数有,,共3个,故选B.【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.20.请写出一个介于1与2之间的无理数: .【答案】【解析】此题答案不唯一,,,即此无理数只要存在于和之间即可【考点】无理数的定义点评:答案不唯一,此题考查学生对无理数概念的掌握,无理数,即无限不循环小数,且不能化成整数之比21.观察下面的等式:=7,=67,=667,则=6667。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

数学中考试题二次根式200题(含解析)

数学中考试题二次根式200题(含解析)
113.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)
-(cos30°)0115.已知x= +1,求x2-2x-3的值.
116. 先化简,再求值 ,其中a=,b=.
117.计算: .
118.计算: .
119. 计算:
120.计算: .
121. 计算:.
122.计算:(2-)(2+)+(-1)2010 .
25.已知实数x、y、a满足: ,
试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果丌能,请说明理由.
26. 我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:
…①(其中 a、b、c 为三角形的三边长,s
163.计算:-(-3)=;如图所示,化简 =.
164.实数a在数轴上的位置如图所示,则化简|a-2|+ 的结果为.
165.已知a<2,则 =.
166.当x>2时,化简=.
167.计算: +| -2|+(2-π)0
168.计算: .
169.计算:-(-2009)0+( )-1+|-1|.
170.计算:
154.计算:(-1)(+1)-(sin35°- )0+(-1)2008-(-2)-2
155.计算:( +3)(3- )
156.阅读下列材料,然后回答问题.
在迚行二次根式的化简不运算时,我们有时会碰上如 一样的式子, 其实我们还可以将其迚一步化简:
=
=
= (三)
以上这种化简的步骤叫做分母有理化. 还可以用以下方法化简:

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1. 2的算术平方根是.【答案】【解析】∵2的平方根是±,∴2的算术平方根是.故答案为:.【考点】算术平方根2.请写出一个比小的整数【答案】答案不唯一,小于或等于2的整数均可,如:2,1等【解析】首先找到所求的无理数在哪两个和它接近的整数之间,然后即可判断出所求的整数的范围.试题解析:∵2<<3,∴所有小于或等于2的整数都可以,包括任意负整数答案不唯一,小于或等于2的整数均可,如:2,1等【考点】估算无理数的大小.3.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+【答案】C.【解析】当n=时,n(n+1)=(+1)=2+<15;当n=2+时,n(n+1)=(2+)(3+)=6+5+2=8+5>15,则输出结果为8+5.故选C.【考点】实数的运算.4.在,0,3,这四个数中,最大的数是()A.B.C.D.【答案】C.【解析】根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小. 因此,∵,∴四个数中,最大的数是3.故选C.【考点】实数的大小比较.5.使二次根式有意义的x的取值范围是.【答案】x≥﹣3【解析】由二次根式的定义可知被开方数为非负数,则有x+3≥0所以x≥﹣3.【考点】二次根式有意义的条件6.计算:.【答案】-6【解析】先计算乘方和开方运算,再根据特殊角的三角函数值和平方差公式得到原式=,然后进行乘除运算后合并即可.原式==-6.【考点】二次根式的混合运算;特殊角的三角函数值.7.把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.【答案】±【解析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.8.若a、b均为正整数,且a>,b<,则a+b的最小值是 ()A.3B.4C.5D.6【答案】B【解析】a、b均为正整数,且a>,b<,∴a的最小值是3,b的最小值是:1,则a+b 的最小值是4.9.使有意义的x的取值范围是()A.x>2B.x<-2C.x≤2D.x≥2【答案】D.【解析】依题意,得x-2≥0,解得,x≥2.故选:D.考点: 二次根式有意义的条件.10.下列二次根式是最简二次根式的是A.B.C.D.【答案】C.【解析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.A、被开方数中含有分母,不是最简二次根式,故本选项错误;B、被开方数中含有小数,不是最简二次根式,故本选项错误;C、是最简二次根式,故本选项正确;D、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选C.考点: 最简二次根式.11.已知为等腰三角形的两条边长,且满足,求此三角形的周长.【答案】10或11【解析】解:由题意可得即所以,.当腰长为3时,三角形的三边长为,周长为10;当腰长为4时,三角形的三边长为,周长为11.12.下列计算中,正确的是()A.B.C.=±2D.【答案】D.【解析】试题分析:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.考点:二次根式的混合运算.13.若式子在实数范围内有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1【答案】C.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选C.【考点】二次根式有意义的条件.14.计算:(1)+-2012+();(2)(1-)—【答案】(1);(2).【解析】(1)根据二次根式、绝对值、零次幂及负整数指数幂的意义进行计算即可求出答案;(2)根据完全平方公式及二次根式的除法进行计算即可.试题解析:(1)(2)考点: 实数的混合运算.15.计算:【答案】.【解析】根据二次根式及非零数的零次幂的意义进行计算即可得出答案.试题解析:原式=考点: 1.二次根式的混合运算;2.非零数的零次幂.16.计算:= 。

二次根式经典测试题及答案解析

二次根式经典测试题及答案解析

二次根式经典测试题及答案解析一、选择题1.一次函数 y mx n 的图象经过第二、三、四象限,则化简 (m n)2 n 2 所得的 结果是 ( ) A .mB . mC . 2m nD . m 2n【答案】 D 【解析】 【分析】根据题意可得﹣ m < 0,n <0,再进行化简即可. 【详解】∵一次函数 y =﹣ mx+n 的图象经过第二、三、四象限, ∴﹣ m <0, n < 0, 即 m >0,n < 0, ∴ (m n)2 n 2=| m ﹣ n|+| n| =m ﹣ n ﹣n =m ﹣ 2n , 故选 D .【点睛】 本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数 的图象与性质是解题的关键 .2.把 a b 根号外的因式移到根号内的结果为( ) .A . a bB . b aC . b aD . a b【答案】 C 【解析】 【分析】先判断出 a-b 的符号,然后解答即可. 【详解】 故选 C . 【点睛】本题考查了二次根式的性质与化简:∵被开方数ba1b 1a0,分母 b a 0,∴ b a 0,∴a b 1a b a 1 b a . bab 0 ,∴原式a 2 | a| .也考查了二次根式的成立的条件以及二次根式的乘法.3.如果最简二次根式 3a 8 与 17 2a 能够合并,那么 a 的值为( ) A .2B . 3C . 4D . 5【答案】 D 【解析】【分析】 根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可. 【详解】根据题意得, 3a-8=17-2a , 移项合并,得 5a=25, 系数化为 1 ,得 a=5. 故选: D .【点睛】 本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.4.下列各式计算正确的是( )A . 102 82102 82 10 8 2解析】 分析】详解】 解: A 、原式 = 36 =6,所以 A 选项错误;B 、原式 = 4 9 = 4 9 =2× 3=,6 所以 B 选项错误;故选: D .点睛】 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.215 36B .C 、D 、,所以 C 选项错误;5,所以 D 选项正确.4式的性质,选择恰当的解题途径,往往能事半功倍.5.在下列算式中: ① 2 5 7 ; ② 5 x 2 x 3 x ;③ 18 8 9 4 4 ;④ a 9a 4 a ,其中正确的是( )2A .①③B . ②④C . ③④D . ①④【答案】 B 【解析】【分析】 根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案 . 【详解】解: 2 与 5 不能合并,故 ① 错误;5 x 2 x 3 x ,故②正确;18 8 3 2 2 2 5 2,故③ 错误; 2 2 2a 9a a 3 a 4 a ,故 ④ 正确; 故选: B.【点睛】 本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行 解题 .6.若 (2a 1)2 1 2a ,则 a 的取值范围是( )分析】根据二次根式的性质得 (2a 1)2 |2a-1| ,则 |2a-1|=1-2a ,根据绝对值的意义得到1≤0,然后解不等式即可.【详解】 解:∵ (2a 1)2 |2a-1| , ∴|2a-1|=1-2a , ∴2a-1 ≤0,1∴a .2 故选: C .1 A . a2【答案】 C【解析】 1B . aC .a 1D .无解2a-【点睛】此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质17.若式子6x1在实数范围内有意义,则x 的取值范围是(77 A.x≥6 【答案】B 【解析】7B.x>67C.x≤6D.7 x<6【分析】根据被开方数大于等于0,分母不等于0 列式计算即可得解.详解】∵ 6x 7 是被开方数,∴ 6x 7 0 ,又∵分母不能为零,∴ 6x 7 0,解得,x> 7;6故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为关键是熟练掌握其意义的条件.0;二次根式的被开方数是非负数,解题的8.计算( 3)2的结果为( )A.± 3 B.-3【答案】C【解析】【分析】C.3 D.9根据a2=|a| 进行计算即可.【详解】( 3) =|-3|=3 ,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键9.下列式子正确的是( )A.36 6 B.3 7 2=-372C.3333D. 5 2 5 【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可【详解】解:A.366,故A 错误.B. 32372,故B 错误C. 3333,故C正确.D.525,故D错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键10.已知12 n 是正偶数,则实数n的最大值为()A.12 B.11 C.8 D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n有最小值,又知12 n 是正偶数,而最小的正偶数是2,则12 n =2,从而得出结果.【详解】解:当12 n 等于最小的正偶数2 时,n 取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解“ 12 n 是正偶数”的含义.11.下列运算正确的是()A.C.(a﹣3)2=a2﹣9【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B.D.原式=a 2﹣ 6a+9,不符合题意; 原式=﹣ 8a 6,不符合题意, 故选: B .点睛】 考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法, 练掌握运算法则是解本题的关键.12.使代数式 a a 有意义的 a 的取值范围为 nnA . a 0B . a 0C . aD .不存在【答案】 C【解析】试题解析: 根据二次根式的性质, 被开方数大于等于 0,可知: a ≥0,且 -a ≥0.所以 a=0.故选 C .【解析】【分析】 判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件 不含分母 ② 被开方数不含能开的尽方的因数或因式,据此可解答 . 【详解】(1) A 被开方数含分母,错误 . (2) B 满足条件,正确 .(3) C 被开方数含能开的尽方的因数或因式 ,错误 .(4) D 被开方数含能开的尽方的因数或因式 ,错误 . 所以答案选 B.【点睛】 本题考查最简二次根式的定义,掌握相关知识是解题关键 .14.下列根式中是最简二次根式的是( A .B . 【答案】 D 【解析】 【分析】A 、B 、C 三项均可化简 .【详解】 解: , , ,故 A 、B 、C 均不是最简二次根式,为最简二次根式,故选择 D. 【点睛】本题考查了最简二次根式的概念 .13.下列各式中,是最简二次根式的是 答案】 B ( )C . 18D . a 2B 、C 、D 、 ① 被开方数)C .D .原式= ,符合题意;15.下列各式中,运算正确的是( )A.B.2 8 4 C.2 8 10 D.2 2 2( 2) 2【答案】B【解析】【分析】根据a2=|a| ,a b ab ( a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】A、 2 2 2 ,故原题计算错误;B、2 8 16 =4,故原题计算正确;C、2 8 3 2 ,故原题计算错误;D、2 和2不能合并,故原题计算错误;故选B.【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.16.当实数x的取值使得x 2有意义时,函数y 4x 1中y 的取值范围是( )A.y 7 B.y 9 C.y 9 D.y 7【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得x 2 0 ,解得x 2 ,4x 1 9 ,即y 9 .故选:B.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到 题的关键.答案】 B 解析】分析】 根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择. 【详解】A . 5 3 2,故 A 错误; B . 82 2 2- 2= 2 ,故 B 正确;C .41937= 37 ,故 C 错误; 93D .2522 5 = 5-2 ,故 D 错误故选:B .【点睛】 本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.18.二次根式 x 3 有意义的条件是( ) A . x>3B . x>-3C .x ≥3D . x ≥-3【答案】 D 【解析】【分析】 根据二次根式被开方数大于等于 0 即可得出答案. 【详解】根据被开方数大于等于 0 得, x 3 有意义的条件是 x+3 0 解得: x -3 故选: D【点睛】 本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.若 x 2在实数范围内有意义,则 x 的取值范围在数轴上表示正确的是( )x 的取值是解决本17. 下列运算正确的是 ( )A . 5 3 2B . 8 2 2 D . 2 5 2 5A.B.C.D.答案】D解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.详解】∵二次根式x 2 在实数范围内有意义,∴被开方数x+2 为非负数,∴x+2≥0,解得:x≥-2. 故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件20.已知实数a、b在数轴上的位置如图所示,化简| a+b|- (b a)2,其结果是()C.2b D.2b A.2a B.2a【答案】A【解析】【分析】根据二次根式的性质可得a2=|a| ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a| < |b| ,则a+b< 0,b-a< 0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】2=|a| .此题主要考查了二次根式的性质和绝对值的性质,关键是掌握a。

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析1. 4的平方根是()A.2B.C.D.【答案】C.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴4的平方根是±2.故选C.【考点】平方根.2.观察下列计算过程:因为112=121,所以,因为1112=12321,所以……,由此猜想=()A.111 111 111B.11 111 111C.1 111 111D.111 111【答案】A.【解析】:因为112=121,所以,因为1112=12321,所以,则="111" 111 111.故选A.【考点】算术平方根.3.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.4.观察下列计算过程:…,由此猜想= .【答案】111111111.【解析】观察给出的等式,算术平方根的1的个数是被开方数的位数加1后的一半.【考点】1算术平方根;2找规律.5.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.6.下列各数中无理数有(),,,,,A.1个B.2个C.3个D.1个【答案】B.【解析】根据有理数与无理数的定义分别进行判断即可得到,是无理数.故选B.【考点】无理数.7.若,为实数,且,则的值为()A.-1B.1C.1或7D.7【答案】D.【解析】∵,∴a2﹣9=0且a+3≠0,解得a=3,b=0+4=4,则a+b=3+4=7.故选D.【考点】二次根式有意义的条件.8.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.9.若某数的立方等于-0.027,则这个数的倒数是____________.【答案】【解析】立方等于-0.027的数为-0.3,其倒数是.10.一个正方体的体积变为原来的27倍,则它的棱长变为原来的倍.【答案】3【解析】因为正方体的体积是棱长的立方,当体积变为原来的27倍时,则棱长变为原来的3倍.11.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.12.若一个正数的平方根分别是和,则,这个正数是 .【答案】-1 9【解析】由于一个正数有两个平方根且互为相反数,所以,即,所以此正数为9.13.小东在学习了后,认为也成立,因此他认为一个化简过程:=是正确的. 你认为他的化简对吗?如果不对,请说明理由并改正.【答案】不正确,理由见解析【解析】解:不正确.因为只有正数有平方根,负数是没有平方根的,所以这一步是错误的.注意的前提条件是.正确的化简过程是:14.已知和︱8b-3︱互为相反数,求-27 的值.【答案】37【解析】解: 因为︱8b-3︱且和︱8b-3︱互为相反数,所以︱8b-3︱所以所以-27=64-27=37.15.估计的值在哪两个整数之间()A.75和77B.6和7C.7和8D.8和9【答案】D【解析】因为所以故选D.16.下列各数中,是无理数的是()A.﹣2B.0C.D.【答案】C【解析】无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.解:A、﹣2是有理数,不是无理数,故本选项错误;B、0是有理数,不是无理数,故本选项错误;C、是无理数,故本选项正确;D、是有理数,不是无理数,故本选项错误;故选C.点评:本题考查了对无理数的应用,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.17.下列命题中正确的是()A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数【答案】D【解析】根据立方根以及平方根的定义和无理数的加减运算分别判断得出即可.解:A、当两个无理数互为相反数时,和为0,故此选项错误;B、正数的平方根有两个,故此选项错误;C、开立方等于它本身的实数有1,﹣1,0,故此选项错误;D、负数的立方根是负数,此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握相关的法则是解题关键.18.若,则a=.【答案】4【解析】根据已知得出a=22,求出即可.解:∵=2,∴a=22=4.故答案为:4.点评:本题考查了算术平方根的应用,关键是能根据题意得出a=22.19.已知a2=1,|a|=﹣a,求的值.【答案】2【解析】根据已知求出a的值,代入求出即可.解:∵a2=1,∴a=±1,∵|a|=﹣a,∴a=﹣1,∴===2.点评:本题考查了算术平方根和二次根式的化简求值的应用,主要考查学生的计算能力.20.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.21.化简:=_____。

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2.在实数4,,,,0.010 010 001 000 01中,无理数有 ( )A.1个B.2个C.3个D.4个【答案】C【解析】无理数就是无限不循环小数.根据无理数定义可判断.【考点】无理数3. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根4.下列说法正确的是()A.-6是36的算术平方根B.±6是36的算术平方根C.是36的算术平方根D.是的算术平方根【答案】D.【解析】根据算术平方根的定义可知:6是36的算术平方根,是6的算术平方根.因此,A、B、C选项是错误的,故选D.【考点】算术平方根.5.已知,则= ,= .【答案】2,3.【解析】根据二次根式有意义的条件得到得,解得x=2,然后把x=2代入计算即可.试题解析:根据题意得,解得x=2,所以y=-3.【考点】二次根式有意义的条件.6.下列说法正确的是()A.是无理数B.是有理数C.是无理数D.有无理数【答案】A.【解析】根据有理数,无理数的相关概念知:、是无理数,=2,=﹣2是有理数.故选A.【考点】1.有理数2.无理数.7.一个数的平方根与这个数的立方根相等,那么这个数是﹒【答案】0.【解析】根据平方根与立方根的定义知:0的平方根等于0的立方根.故答案是0.【考点】1.平方根2.立方根.8.下列各数中,3.14159,,0.131131113……,-π,,,无理数的个数有()A.1个B.2个C.3个D.4个【答案】B.【解析】根据无理数是无限不循环小数,可知0.131131113…,-π是无理数,故选B.考点:无理数.9.的值是()A.5B.-5C.± 5D.【答案】A.【解析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x 就是a的算术平方根,特别地,规定0的算术平方根是0.因此,∵52=25,∴.故选A.【考点】算术平方根.10.若一个正数的平方根是和,则这个正数是.【答案】64.【解析】∵一个正数的平方根是和,∴.∴这个正数是64。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.下列各数中是无理数的是()A.B.﹣2C.0D.【答案】A【解析】A、正确;B、是整数,是有理数,故B错误;C、是整数,是有理数,故C错误;D、是分数,是有理数,故D错误.故选A.【考点】无理数2. a满足以下说法:①a是无理数;②2<a<3;③a2是整数.那么a可能是()A.B.C.2.5D.【答案】A.【解析】由a是无理数可知C、D是有理数,不合题意;由a2是整数可知A、B符合题意;再由2<a<3,只有A.故选A.【考点】1.估算无理数的大小;2.无理数;3.实数的运算.3. 16的平方根是()A.B.4C.-4D.【答案】A.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±4)2=16,∴16的平方根是±4.故选A.【考点】平方根.4.计算:= .【答案】2.【解析】.【考点】二次根式计算.5.=.【答案】﹣【解析】分别进行分母有理化、二次根式的化简及零指数幂的运算,然后合并即可得出答案.解:原式=﹣1﹣2+1=﹣.故答案为:﹣.6.计算:-=________.【答案】3【解析】原式=4-=3.7.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.8.下面计算正确的是()A.4+=4B.÷=3C.·=D.=±2【答案】B.【解析】A.4+=4,本选项错误;B.,本选项正确;C.,故本选项错误;D.,故本选项错误.故选B.考点: 二次根式的混合运算.9.的值为()A.B.4C.D.2【答案】B.【解析】∵故选B.考点: 算术平方根.10.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.11.式子成立的条件是()A.≥3B.≤1C.1≤≤3D.1<≤3【答案】D【解析】根据二次根式的定义,式子成立的条件为,-1,即1<.12.若一个式子与之积不含二次根式,则这个式子可以是.(填写出一个即可)【答案】.【解析】本题实际是求的有理化因式,一般二次根式的有理化因式是符合平方差公式的特点的式子.与的积不含二次根式的式子是.故答案是.【考点】分母有理化.13.二次根式的值是()A.﹣3B.3或﹣3C.9D.3【答案】D.【解析】. 故选D.【考点】二次根式化简.14.下列计算正确的是()A.B.C.D.【答案】C.【解析】 A.,故本选项错误;B.和不是同类二次根式,不能合并,故本选项错误;C.,故本选项正确;D.,故本选项错误.故选C.【考点】二次根式的乘除法.15.若,,且ab<0,则a﹣b=.【答案】-7.【解析】先根据算术平方根的定义,求出、的值,然后根据确定、的值,最后代入中求值即可.试题解析:∵,,∴a=±3,b=4;∵,∴,;∴.考点: (1)算术平方根;(2)代数式求值.16.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.17.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B【解析】最简二次根式满足:1.被开方数中不能含有分母;2. 被开方数中不能有开得尽方的因数或因式.只有B符合条件; 选项A,C,D都不符合条件, 故选B.【考点】最简二次根式.【考点】最简二次根式18.化简:=_______________.【答案】【解析】根据二次根号下的数为非负数,可得,解得所以.【考点】二次根式的性质19.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.20.计算:(1)(2)(3)【答案】(1);(2);(3).【解析】(1)将各根式化为最简单二次根式后合并同类根式即可;(2)括号内化最简单二次根式后合并同类根式,除式变为乘式计算即可;(3)应用完全平方公式和平方差公式展开后合并同类根式即可.试题解析:(1).(2).(3).【考点】二次根式化简.21.计算:。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.下列二次根式中,属于最简二次根式的是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据二次根式的定义即可求解.
【详解】
A. ,根号内含有分数,故不是最简二次根式;
B. ,根号内含有小数,故不是最简二次根式;
C. ,是最简二次根式;
D. =2,故不是最简二次根式;
故选C.
【点睛】
此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.
10.若 成立,那么a的取值范围是( )
A. B. C. D.
【答案】A
【解析】
【分析】
由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.
【详解】
得-a≥0,所以a≤0,所以答案选择A项.
【点睛】
本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.
11.下列各式中,属于同类二次根式的是()
19.若 在实数范围内有意义,则x的取值范围在数轴上表示正确的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.
【详解】
∵二次根式 在实数范围内有意义,
∴被开方数x+2为非负数,
∴x+2≥0,
解得:x≥-2.
故答案选D.
【点睛】
解得,x≥1,
故选:B.
【点睛】
本题主要考查二次根式有意义的条件,熟悉掌握是关键.
4.下列运算正确的是( )
A.2 ﹣ =1B.(﹣ )2=2C. =±11D. = =3﹣2=1
【答案】B
【解析】
【分析】
根据二次根式的性质和加减运算法则判断即可.
【详解】
根据二次根式的加减,可知2 ﹣ = ,所以A选项错误;
2.已知 ,则化简 的结果是()
A.4B. C. D.
【答案】A
【解析】
由 可得 ,∴3≤x≤5,∴ =x-1+5-x=4,故选A.
3.式子 在实数范围内有意义,则x的取值范围是( )
A.x<1B.x≥1C.x≤﹣1D.x<﹣1
【答案】B
【解析】
【分析】
根据二次根式有意义的条件判断即可.
【详解】
解:由题意得,x﹣1≥0,
【详解】
解: 、 ,被开方数含有分母,不是最简二次根式;
、 ,被开方数含有小数,不是最简二次根式;
、 ,被开方数含有能开得尽方的因数,不是最简二次根式;
所以,这三个选项都不是最简二次根式.
故选: .
【点睛】
在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
A. B. C. D.
【答案】B
【解析】
【分析】
根据 =|a|, (a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.
【详解】
A、 ,故原题计算错误;
B、 =4,故原题计算正确;
C、 ,故原题计算错误;
D、2和 不能合并,故原题计算错误;
故选B.
【点睛】
此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.
=-a-b+b-a
=-2a,
故选A.
【点睛】
此题主要考查了二次根式的性质和绝对值的性质,关键是掌握 =|a|.
7.如图,数轴上的点可近似表示(4 ) 的值是()
A.点AB.点BC.点CD.点D
【答案】A
【解析】
【分析】
先化简原式得4 ,再对 进行估算,确定 在哪两个相邻的整数之间,继而确定4 在哪两个相邻的整数之间即可.
新初中数学二次根式经典测试题及答案解析
一、选择题
1.下列计算正确的是
A. B. C. D.
【答案】D
【解析】
【分析】
根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.
【详解】
A、 ,错误;
B、 、 不是同类二次根式,不能合并,错误;
C、 ,错误;
D、 ,正确;
故选:D.
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.
A. B.
C. D.
【答案】C
【解析】
【分析】
根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.
【详解】
解: 、 ,故本选项错误;
、 ,故本选项错误;
、 ,故本选项正确;
、 ,故本选项错误;
故选: .
【点睛】
本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.
D、 是三次根式;故本选项错误.
故选:C.
【点睛】
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
12.使代数式 有意义的a的取值范围为
A. B. C. D.不存在
【答案】C
【解析】
试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0.
【详解】
原式=4 ,
由于2 3,
∴1<4 2.
故选:A.
【点睛】
本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.
8.下列各式中,不能化简的二次根式是()
A. B. C. D.
【答案】C
【解析】
【分析】
、 选项的被开方数中含有分母或小数; 选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有 选项符合最简二次根式的要求.
17.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()
A.2B.
C. D.
【答案】D
【解析】
【分析】
将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.
【详解】
将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:
则阴影面积=
=
=
故选:D
【点睛】
本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.
18.下列运算正确的是( )
A. B.
C. D.
【答案】D
【解析】
试题分析:A. ,无法计算,故此选项错误;
B. = ,故此选项错误;
C. ,故此选项错误;
D. ,正确.
故选D.
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
9.把 根号外的因式移到根号内的结果为().
A. B. C. D.
【答案】C
【解析】
【分析】
先判断出a-b的符号,然后解答即可.
【详解】
∵被开方数 ,分母 ,∴ ,∴ ,∴原式 .
故选C.
【点睛】
本题考查了二次根式的性质与化简: |a|.也考查了二次根式的成立的条件以及二次根式的乘法.
所以a=0.故选C.
13.下列计算错误的是( )
A.3+2 =5 B. ÷2=
C. × = D. =
【答案】A
【解析】
【分析】
【详解】
选项A,不是同类二次根式,不能够合并;
选项B,原式= ;
选项C,原式= ;
选项D,原式= .
故选A.
14.下列各式中是二次根式的是( )
A. B. C. D. (x<0)
【点睛】
本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
A. B. 与 C. 与 D. 与
【答案】C
【解析】
【分析】
化简各选项后根据同类二次根式的定义判断.
【详解】
A、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
B、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
C、 与 的被开方数相同,所以它们是同类二次根式;故本选项正确;
本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.
20.下列计算正确的是
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的混合运算顺序和运算法则逐一计算可得.
【详解】
A. ,此选项计算错误;
B. ,此选项计算正确;
C. ,此选项计算错误;
D. ,此选项计算错误;
故选:B.
6.已知实数a、b在数轴上的位置如图所示,化简|a+b|- ,其结果是( )
A. B.2aC.2bD.
【答案】A
【解析】
【分析】
根据二次根式的性质可得 =|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.
【详解】
解:由数轴知b<0<a,且|a|<|b|,
则a+b<0,b-a<0,
∴原式=-(a+b)+(b-a)
根据二次根式的性质 =a(a≥0),可知(﹣ )2=2,所以B选项正确;
根据二次根式的性质 ,可知 =|﹣11|=11,所以C选项错误;
D、根据二次根式的性质,可知 = = ,所以D选项错误.
故选B.
【点睛】
此题主要考查了的二次根式的性质 =a(a≥0), ,正确利用性质和运算法则计算是解题关键.
5.下列运算正确的是()
【答案】C
【解析】
【分析】
根据二次根式的定义逐一判断即可.
【详解】
A、 的根指数为3,不是二次根式;
相关文档
最新文档