随机信号重要知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
随机信号重要知识点整理
1.能量信号和功率信号
通常称2)(t x 为信号)(t x 的能量密度或瞬时功率。信号的总能量是对2
)(t x 在整个时间范围积分,即
⎰
∞∞
-=dt t x E x 2
)((1.6)
同理,离散信号的总能量定义为
1.7)
1.8) 1.9) 则称)(t x
2. 1.10)
其中(X 1.11)
可见,时间信号可以看作是由简单的正弦波t j e Ω相加(线性叠加)组成,)(ΩX 是)(t x 在频域或频率空间的表示。
如果信号)(t x 的频谱)(ΩX 在较窄的频率区间内存在,则称其为窄带信号。与之对应的是,如果信号)(t x 的频谱)(ΩX 在较宽的频率区间内存在,则称其为宽带信号。
3.信号处理的
理论基础
数字信号处理的理论基础:1)Nyquist —Shannon 采样定理;2)傅立叶级数;3)z -变换。时域分析、频域分析。FFT 算法,滤波器设计。
4.随机信号数字特征量
1)一维分布的数字特征量
随机信号的均值函数
{})()(t X E t x =μ⎰∞
∞-=dx x t xf ),((2-10)
它表示了全部样本函数(样本序列)在同一时刻取值的总体均值,它又称为一阶原点矩。
随机信号的均方函数
{}
)()(2
t X E t D x =⎰∞
∞
-=dx x t f x ),(2(2-11)
它表示了全部样本函数(样本序列)在同一时刻取值的总体均方,又称为二阶原点矩;它也表示了在样本函数空间的瞬时功率,也就是在总集意义下的瞬时功率。
随机信号的方差函数
{}2
2)]
()([)(t t X E t x x
μσ-=⎰
∞
--=dx x t f t x x ),()]([2μ(2-12)
它表示了随机信号在均值函数上下的起伏程度,它又称为二阶中心矩。
一维分布的数字特征量之间的关系
)()()(2
2
t t t D x x x μσ+=(2-13)
证明:因为 由(2-10),即可得(2-14)。 2)二维分布的数字特征量 对任意的T t t ∈21,随机变量)(1t X 和)(2t X 的协方差称为随机过程)(t X 的自协方差函数(Autocovariance )
周期信号连续或离散
一维、二维、确定性信随机信 (功率,窄带)
非周期信号
(能量、功短持续时间、瞬态长持续时间
非平稳平稳信
各态遍历非各态遍历
⎰
⎰
∞∞-∞
∞
---=2121212211),,,()]()][([dx dx x x t t f t x t x x x μμ(2-14)
而)(1t X 和)(2t X 乘积的期望
{})()(),(2121t X t X E t t R x =⎰
⎰
∞
∞-∞
∞
-=21212121),,,(dx dx x x t t f x x (2-15)
称为随机过程)(t X 的自相关函数(Autocorrelation )。
自协方差和自相关函数可以看作是随机变量的协方差与相关系数的推广,它们表示了随机信号不同时刻取值的关联程度。
由n 维分布的相容性,容易得出如下关系
)()(),(),(212121t t t t C t t R x x x x μμ+=(2-16)
)的边际且 因此
3取值的(2-33)
(2-34)
其中(1t f (2-35)
5.212)二阶矩过程的自相关函数对于所有的T t t ∈21,存在。 由施瓦兹不等式
6.平稳随机过程
如果随机过程)(t X 的均值是常数,它的自相关函数),(21t t R x 只取决于时间差12t t -=τ)(12t t >,即
{})()(t X E t x =μ=常数(2-17)
),(21t t R x {})()(21t X t X E ={})()(11τ+=t X t X E {})()(τ+=t X t X E )(τx R =(2-18)
则称其为广义平稳随机过程。
平稳随机过程的一、二维分布的数字特征有以下性质: 1) 一维分布的数字特征都是常数
{})()(t X E t x =μμ==常数(2-21)
{
}
)0()()(2x x R t X E t D ====x D 常数(2-22)
=-=)()()(22t t D t x x x μσ=2x σ常数(2-23)
2)二维分布的数字特征都是单变量函数
),(21t t R x )(τx R =(2-24)
),(21t t C x =),(21t t R x )()(21t t x x μμ-2
)(x
x R μτ-=
7.平稳随机过程的各态遍历性
定义:一个平稳随机过程,如果满足:
1) 它的单一样本的时间平均与总集平均(某一时刻的统计平均)相等; 2)
,本函数x 8.1取值的(2-33)
(2-34)
其中(1t f 221xy 仅依赖于时间差12t t -=τ,)(12t t >,即
),(21t t R xy {})()(21t Y t X E ={})()(11τ+=t Y t X E {})()(τ+=t Y t X E )(τxy R =(2-36)
则称它们是联合平稳的。
➢ 联合平稳随机过程的互协方差函数
联合平稳随机过程)(t X 和)(t Y 的互协方差函数为
)()()()(),(),(212121τμμτμμxy y x xy y x xy xy C R t t t t R t t C =-=-=(2-37)
➢ 联合平稳随机过程的各态遍历
对于联合平稳的随机信号)(t X 和)(t Y ,如果各自的样本函数)(t x 和)(t y 的时间互相关与样本总集互相关相等,即