matlab《数字图像处理》第8章 傅立叶变换解析
matlab中进行傅里叶变换
matlab中进行傅里叶变换# MATLAB中的傅里叶变换及应用## 引言傅里叶变换是信号处理领域中一项重要的数学工具,广泛应用于信号分析、图像处理、通信等领域。
MATLAB作为一种高效的科学计算软件,提供了强大的傅里叶变换工具,使得用户能够方便地进行信号频谱分析和处理。
本文将介绍MATLAB中傅里叶变换的基本概念、函数使用方法,并结合实例展示其在信号处理中的应用。
## 1. 傅里叶变换的基本概念### 1.1 时域与频域傅里叶变换是将时域信号转换到频域的一种数学工具。
在时域中,信号是关于时间的函数;而在频域中,信号则是关于频率的函数。
通过傅里叶变换,我们能够将信号在时域和频域之间进行转换,从而更好地理解信号的特性。
### 1.2 连续与离散傅里叶变换MATLAB中的傅里叶变换涵盖了连续和离散两种情况。
对于连续信号,可以使用`fft`函数进行变换;对于离散信号,可以使用`fft`函数进行快速傅里叶变换。
这两种情况下,变换的结果分别为连续频谱和离散频谱。
## 2. MATLAB中的傅里叶变换函数MATLAB提供了丰富的傅里叶变换函数,包括`fft`、`ifft`、`fft2`等。
这些函数可以适用于不同类型的信号,如一维信号、二维信号等。
以下是其中一些常用函数的简要介绍:### 2.1 `fft`函数`fft`函数用于计算一维离散傅里叶变换。
其基本语法为:```matlabY = fft(X)```其中,`X`为输入的离散信号,而`Y`则为变换后的频谱。
### 2.2 `ifft`函数`ifft`函数用于计算一维离散傅里叶反变换。
其基本语法为:```matlabX = ifft(Y)```其中,`Y`为输入的频谱,而`X`则为反变换后的信号。
### 2.3 `fft2`函数对于二维信号,可以使用`fft2`函数进行二维离散傅里叶变换。
其基本语法为:```matlabY = fft2(X)```同样,`X`为输入的二维信号,而`Y`则为变换后的二维频谱。
matlab实现傅里叶变换
matlab实现傅里叶变换傅里叶变换是一种将一个连续时间函数(或离散时间函数)分解成基函数的超级工具。
它的用途非常广泛,例如在信号处理、音频处理、图像处理、机器学习等领域都有重要的应用。
在这篇文章中,我将介绍使用 MATLAB 实现傅里叶变换的基本步骤。
一、MATLAB 傅里叶变换函数在 MATLAB 中,我们可以使用 fft 函数实现傅里叶变换。
FFT 表示快速傅里叶变换,是一种高效的算法,可以在很短的时间内计算出信号的频域表示。
下面是 fft 函数的基本语法:X = fft(x)其中 x 是输入信号,X 是输出信号的频域表示。
由于傅里叶变换是一个复杂的计算过程,输入信号需要满足一些条件。
这些条件将在下一节中讨论。
在进行傅里叶变换之前,我们需要确保输入信号满足一些条件,以便 fft 函数可以正确地执行。
这些条件包括以下要求:1. 信号长度为 2 的正整数次幂在傅里叶变换中,信号长度通常是 2 的正整数次幂,例如 2、4、8、16、32 等等。
如果信号长度不是 2 的正整数次幂,则 fft 函数将自动进行填充。
2. 离散时间信号需要零填充如果输入信号是离散时间信号,我们需要使用零填充的方法将信号长度补齐至 2 的正整数次幂。
例如,如果我们的离散时间信号包含 100 个样本,我们需要将其补齐至128 个样本(下一个最小的 2 的正整数次幂)。
3. 连续时间信号需要采样如果输入信号是连续时间信号,我们需要对其进行采样,以便将其转换为离散时间信号。
采样频率需要高于信号的最高频率,这样才能避免混叠现象的发生。
下面是一个简单的示例,其中我将展示如何使用 MATLAB 实现傅里叶变换。
假设我们有一个正弦波信号,频率为 10 Hz,并将其采样为 100 个样本。
我们可以定义该信号如下:Fs = 100; % 采样频率T = 1/Fs; % 采样周期L = 100; % 信号长度t = (0:L-1)*T; % 时间向量f = 10; % 信号频率x = sin(2*pi*f*t); % 正弦波信号我们可以使用 plot 函数绘制该信号:plot(t,x)xlabel('Time (s)')ylabel('Amplitude')title('Original Signal')现在我们可以将该信号传递给 fft 函数,并将频域表示存储在 X 变量中:由于傅里叶变换输出的是一个复数数组,因此我们需要使用 abs 函数计算幅度谱并将其绘制出来:P2 = abs(X/L);P1 = P2(1:L/2+1);P1(2:end-1) = 2*P1(2:end-1);f = Fs*(0:(L/2))/L;plot(f,P1)xlabel('Frequency (Hz)')ylabel('Amplitude')title('Frequency Spectrum')幅度谱显示了信号在频域中的分布情况,显示了信号的频率成分及其振幅。
Matlab中快速傅里叶变换FFT结果的物理意义(转载)
Matlab中快速傅里叶变换FFT结果的物理意义(转载)FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。
有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。
这就是很多信号分析采用FFT变换的原因。
另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。
现在就根据实际经验来说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。
采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。
采样得到的数字信号,就可以做FFT变换了。
N个采样点,经过FFT之后,就可以得到N个点的FFT结果。
为了方便进行FFT运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。
那么FFT之后结果就是一个为N点的复数。
每一个点就对应着一个频率点。
这个点的模值,就是该频率值下的幅度特性。
具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。
而第一个点就是直流分量,它的模值就是直流分量的N倍。
而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。
例如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz 的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。
图像处理之傅里叶变换matlab实现
傅里叶变换一.实验内容:1、傅里叶变换二.实验目的:1、理解傅里叶变换的原理2、掌握傅里叶变换的性质三.实验步骤:1.首先构造一幅黑白二值图像,在128×128的黑色背景中心产生一个4×4的白色方块,对其进行傅里叶变换;(Matlab 中用fft2实现2D 傅里叶变换)2.把低频分量移到图象中心,而把高频分量移到四个角上;(方法有两种:其一,在FT 以前对测试图象逐点加权(-1)^(i+j);其二,利用FFTSHIFT 函数);3.利用图象增强中动态范围压缩的方法增强2DFT ;(Y =C*log (1+abs (X)));4.构造一幅黑白二值图像,在128×128的黑色背景中令第32行至36行、第32列至第36列的值为1(即产生一个4×4的白色方块),对其进行傅里叶变换;5.将上图旋转300,再进行傅里叶变换 (imrotate )6.构造二幅黑白二值图像,在128×128的黑色背景中分别令第60行至68行、第60列至第68列的值为1,第64行至65行、第64列至第65列的值为1产生两幅图像,分别对这两幅图像进行傅里叶变换四、原理分析、技术讨论、回答问题1、对于第二幅图像(第一步与第四步图像的比较),说明FOURIER 变换具有以下性质:)//(20000),(),(N vy M ux j e v u F y y x x f +-⇔--π2、对于第三幅图像(第一步与第五步图像的比较),说明FOURIER 变换具有以下性质:θcos r x = θs i n r y = αωc o s =u αωs i n =v),(),(00θαωθθ+⇔+F r f3、对于第四幅图像(第一步与第六步图像的比较),说明FOURIER 变换具有以下性质:)/,/(||1),(b v a u F ab by ax f =五、结果如下六、M文件如下:a=zeros(128,128);a(63:66,63:66)=1;A=fft2(a);b=fftshift(A);for i=1:128for j=1:128B(i,j)=log(1+abs(A(i,j)));endendh=zeros(128,128);h(32:36,32:36)=1;H=fft2(h);h1=imrotate(h,30);H1=fft2(h1);i=zeros(128,128);i(60:68,60:68)=1;I=fft2(i);j=zeros(128);j(64:65,64:65)=1;J=fft2(j);figure;subplot(221),imshow(a);title('原图');subplot(222),imshow(A);title('FT');subplot(223),imshow(b);title('低中高角FT'); subplot(224),imshow(B);title('增强2DFT');figure;subplot(221);imshow(a);title('Step 1原图'); subplot(222);imshow(A);title('Step 1FT'); subplot(223);imshow(h);title('Step 4原图'); subplot(224);imshow(H);title('Step 4FT');figure;subplot(221),imshow(a);title('Step 1原图'); subplot(222),imshow(A);title('Step 1FT'); subplot(223),imshow(h1);title('Step 5原图'); subplot(224),imshow(H1);title('Step 5FT');figure;subplot(321);imshow(a);title('Step 1原图'); subplot(322);imshow(A);title('Step 1FT'); subplot(323),imshow(i);title('Step 6原图1'); subplot(324),imshow(I);title('Step 6原图1FT'); subplot(325),imshow(j);title('Step 6原图2'); subplot(326),imshow(J);title('Step 6原图2FT');。
matlab对给定坐标点求傅里叶变换
matlab对给定坐标点求傅里叶变换一、概述傅里叶变换是信号处理中常用的一种方法,用于将时域上的信号转换到频域上。
在数字信号处理中,matlab是一种常用的工具,能够方便地对给定的坐标点进行傅里叶变换。
本文将介绍如何使用matlab对给定坐标点进行傅里叶变换,包括输入数据处理、变换函数的调用和输出结果的解释等。
二、数据准备1. 将给定的坐标点存储为matlab中的向量或矩阵,其中横坐标和纵坐标分别对应向量的两个分量。
将(1,2)、(2,3)、(3,4)三个点存储为:x = [1 2 3];y = [2 3 4];2. 确保输入数据的采样间隔是均匀的,如果不均匀需要进行插值处理。
三、傅里叶变换的调用在matlab中,使用fft函数可以对给定的坐标点进行傅里叶变换。
在调用该函数时,需要指定采样频率,傅里叶变换的结果将与采样频率相关联。
以下为对给定坐标点进行傅里叶变换的示例代码:fs = 1000; 采样频率N = length(x); 采样点数X = fft(y, N)/N; 对y进行傅里叶变换f = (0:N-1)*(fs/N); 频率坐标amplitude = abs(X); 幅值phase = angle(X); 相位四、结果解释1. 频率坐标f是通过采样频率和采样点数计算得到的,表示了傅里叶变换结果的频率范围。
2. 幅值amplitude表示傅里叶变换结果的振幅大小,可用于分析频域上不同频率的能量分布情况。
3. 相位phase表示了傅里叶变换结果的相位信息,对于描述信号的相位特性具有重要意义。
五、结果可视化通过matlab的绘图函数,可以将傅里叶变换的结果进行可视化展示,以便更直观地分析频域上的信息。
以下为将傅里叶变换的结果可视化的示例代码:subplot(2,1,1);stem(f, amplitude); 绘制频谱图xlabel('Frequency (Hz)'); ylabel('Amplitude');title('Amplitude Spectrum');subplot(2,1,2);stem(f, phase); 绘制相位谱图xlabel('Frequency (Hz)'); ylabel('Phase (radians)');title('Phase Spectrum');六、总结本文介绍了如何使用matlab对给定坐标点进行傅里叶变换的方法,包括数据准备、变换函数的调用和结果的解释与可视化。
matlab如何做傅里叶变换
matlab如何做傅里叶变换# MATLAB中的傅里叶变换## 引言傅里叶变换是一种在信号处理和频谱分析中广泛使用的数学工具,能够将一个信号从时域转换为频域。
MATLAB作为一个强大的数值计算工具,提供了丰富的函数和工具箱,使得进行傅里叶变换变得相对简单。
本文将介绍MATLAB中如何执行傅里叶变换,包括基本概念、使用的函数以及示例应用。
## 傅里叶变换的基本概念傅里叶变换通过将一个时域信号分解为不同频率的正弦和余弦函数的组合,从而提供了在频域中分析信号的能力。
在MATLAB中,傅里叶变换主要有两种类型:离散傅里叶变换(DFT)和连续傅里叶变换(FFT)。
DFT适用于离散信号,而FFT是一种更快的算法,通常用于实际计算。
## MATLAB中的傅里叶变换函数### 1. 离散傅里叶变换(DFT)在MATLAB中,`fft`函数用于计算离散傅里叶变换。
下面是一个简单的例子,演示如何使用该函数:```matlab% 定义信号t = 0:0.01:1; % 时间向量f = 5; % 信号频率signal = sin(2*pi*f*t);% 计算离散傅里叶变换fft_result = fft(signal);% 绘制原始信号和频谱subplot(2,1,1);plot(t, signal);title('原始信号');subplot(2,1,2);plot(abs(fft_result));title('频谱');```上述代码创建了一个简单的正弦信号,并使用`fft`函数计算了其频谱。
通过绘制原始信号和频谱,我们可以直观地理解信号在频域中的表示。
### 2. 连续傅里叶变换(FFT)MATLAB中的`fft`函数也可以用于执行连续傅里叶变换。
以下是一个示例,展示了如何应用FFT来分析一个包含多个频率成分的信号:```matlab% 定义包含多个频率成分的信号t = 0:0.01:2;f1 = 3;f2 = 8;signal = sin(2*pi*f1*t) + 0.5*cos(2*pi*f2*t);% 计算连续傅里叶变换fft_result = fft(signal);% 绘制原始信号和频谱subplot(2,1,1);plot(t, signal);title('原始信号');plot(abs(fft_result));title('频谱');```通过这个例子,我们可以看到如何利用FFT来分析包含多个频率成分的信号,从而更全面地了解信号的频谱特性。
数字图像处理-傅里叶变换
(u,v)=arctan(I(u,v)/R(u,v)) • 能量谱: E=|F(u,v)|2
11
e j 2 xu yv/ N
12
F ( x)
二维傅立叶变换
•傅立叶谱:
|F(u,v)|= [R2(u,v)+I2(u,v)]1/2
1
x N 1 y N 1
f ( x, y)e j 2 (uxvy ) / N
N x0 y0
f ( x, y)
1
u N 1 v N 1
F (u, v)e j 2 (uxvy ) / N
N u0 v0
• 变换对 f ( x, y ) F (u, v)
10
二维傅立叶变换
• 傅立叶变换:F(u,v)=|F(u,v)|ej(u,v) • 傅立叶谱:
f ( , 0 ) F (, 0 )
34
傅立叶变换性质 6 线性
• 如果f1(x,y)F1(u,v), f2(x,y)F2(u,v),则
af1(x,y)+ bf2(x,y) aF1(u,v)+bF2(u,v)
35
傅立叶变换性质 7 比例性
• 如果f(x,y)F(u,v),则
f (ax,by) 1 F (u , v ) | a || b | a b
30
傅立叶变换性质 4 共轭对称性
• 如果f(x,y)F(u,v), F*(-u,-v)是共轭复数,则 –F(u,v)= F*(-u,-v) –|F(u,v)|= |F*(-u,-v)|
31
傅立叶变换性质 5 旋转
32
33
• 设f(x,y)F(u,v),
MATLAB数字图像处理几何变换傅里叶变换
Matlab数字图像处理实验指导实验目的:通过实验,深入理解和掌握图像处理的基本技术,提高动手实践能力。
实验环境:Matlab变成实验一图像的几何变换实验内容:设计一个程序,能够实现图像的各种几何变换。
实验要求:读入图像,打开图像,实现图像的平移变换、比例缩放、转置变换、镜像变换、旋转变换等操作。
实验原理:图像几何变换又称为图像空间变换,它将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置。
学习几何变换的关键就是要确定这种空间映射关系,以及映射过程中的变化参数。
几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。
一个几何变换需要两部分运算:首先是空间变换所需的运算,如平移、镜像和旋转等,需要用它来表示输出图像与输入图像之间的(像素)映射关系;此外,还需要使用灰度插值算法,因为按照这种变换关系进行计算,输出图像的像素可能被映射到输入图像的非整数坐标上。
设原图像f(x0,y0)经过几何变换产生的目标图像为g(x1,y1),则该空间变换(映射)关系可表示为:x1=s(x0,y0)y1=t(x0,y0)其中,s(x0,y0)和t(x0,y0)为由f(x0,y0)到g(x1,y1)的坐标换变换函数。
一、图像平移图像平移就是将图像中所有的点按照指定的平移量水平或者垂直移动。
二、图像镜像镜像变换又分为水平镜像和垂直镜像。
水平镜像即将图像左半部分和右半部分以图像竖直中轴线为中心轴进行对换;而竖直镜像则是将图像上半部分和下半部分以图像水平中轴线为中心轴进行对换。
三、图像转置图像转置是将图像像素的x坐标和y坐标呼唤。
图像的大小会随之改变——高度和宽度将呼唤。
四、图像的缩放图像缩放是指将图像大小按照指定的比率放大或者缩小。
图像缩放函数imresize();调用格式如下:B=imresize(A,Scale,method);参数A为要进行缩放的原始图像。
Scale为统一的缩放比例。
如果希望在x和y方向上以不同比例进行缩放,可用如下调用形式。
傅里叶变换 matlab
傅里叶变换 matlab
matlab 中的傅里叶变换是一种用于对频率分量进行分析的高效数字技术。
与时域分
析不同,傅里叶变换可以用于分析频率分量的相关性特征,这是数字信号处理中非常重要
的一种功能。
傅里叶变换可以让我们用频率信息来描述信号,从而实现模式识别,信号去噪,图像处理,对时域和频率域进行转换等。
傅里叶变换能够将任意周期信号的时域表示转换成另一种基于频率的表示,即频谱表示。
这是一种通用变换,可以通过振动和声音信号,电路和逻辑系统,可见和不可见光测量,线性系统,以及众多其他形式的信号解析来实现。
matlab 中的傅里叶变换主要是通过其内置函数fft和ifft实现。
其中,fft是从时
域向频域进行变换的函数,ifft是从频域到时域进行变换的函数。
fft 函数可以用来计算一段信号的频率分布,而ifft函数可以用来计算信号的时域表示。
此外,matlab 中还提
供了可以用来计算有关信号的汉宁窗,频率移除等功能的函数。
总之,matlab 中的傅里叶变换一种强有力的工具,可以应用于高维复杂的数字信号
的频率分析,可以帮助用户快速精确地探索、分析、处理数字信号。
由于它的高效、灵活,以及准确度,傅里叶变换已被广泛用于许多研究和应用中。
matlab如何做傅里叶变换
matlab如何做傅里叶变换
Matlab是一种流行的数学计算软件,也可以用来完成许多信号处理工作。
傅立叶变换是信号处理中最重要的技术之一,它将时域信号转换为频域信号,便于对信号进行特征分析和操作。
使用matlab可以方便快捷地计算傅立叶变换。
Matlab中使用傅里叶变换的步骤如下:
第一步:准备输入信号,这通常是一个数组,表示时域信号的波形。
第二步:使用matlab的fft(x)函数对时域信号进行变换,其中x 表示时域信号的数组,对其执行傅立叶变换,生成频域信号的函数。
第三步:将信号进行归一化处理,可以使用matlab中的normalize(x)函数,将时域和频域信号归一化到[-1,1]之间。
第四步:使用matlab中的plot()函数画出频域信号的图形,以便可以更好地分析和操作它。
以上就是使用Matlab完成傅立叶变换的简单步骤了。
使用Matlab 可以轻松有效地进行傅里叶变换,节省大量时间。
此外,Matlab还提供了众多控制参数,可以根据用户的实际需求进行调整,从而更轻松地处理信号。
matlab编程实现傅里叶变换
傅里叶变换是信号处理和图像处理中的重要数学工具,可以将一个信号或图像从时域转换到频域。
MATLAB作为一款强大的数学软件,可以方便地实现傅里叶变换并进行相应的分析和处理。
本文将介绍如何使用MATLAB编程实现傅里叶变换,并探讨其在信号处理和图像处理中的应用。
一、MATLAB中的傅里叶变换函数在MATLAB中,可以使用fft函数来进行一维离散傅里叶变换(DFT)的计算,使用fft2函数进行二维离散傅里叶变换(DFT)的计算。
这两个函数的基本语法如下:1. 一维离散傅里叶变换Y = fft(X)其中,X是输入的一维信号(向量),Y是输出的一维频谱(向量)。
2. 二维离散傅里叶变换Y = fft2(X)其中,X是输入的二维图像(矩阵),Y是输出的二维频谱(矩阵)。
除了fft和fft2函数外,MATLAB还提供了ifft和ifft2函数用于进行离散傅里叶逆变换。
通过这些函数,我们可以方便地实现傅里叶变换和逆变换的计算。
二、MATLAB中的傅里叶变换实例为了更好地理解MATLAB中的傅里叶变换实现,我们可以通过一个具体的实例来进行演示。
假设我们有一个包含两个正弦波的信号,我们首先可以使用MATLAB生成这个信号,并对其进行傅里叶变换。
生成信号fs = 1000; 采样频率为1000Hzt = 0:1/fs:1-1/fs; 时间范围为1秒f1 = 50; 第一个正弦波的频率为50Hzf2 = 120; 第二个正弦波的频率为120Hzx = 0.7*sin(2*pi*f1*t) + sin(2*pi*f2*t); 生成包含两个正弦波的信号进行傅里叶变换N = length(x); 信号的长度X = fft(x)/N; 进行离散傅里叶变换,并进行归一化处理f = (0:N-1)*(fs/N); 计算频率轴figure;subplot(2,1,1);plot(f,abs(X)); 绘制频谱幅度title('单边频谱');xlabel('频率/Hz');ylabel('幅度');subplot(2,1,2);plot(f,angle(X)); 绘制频谱相位title('频谱相位');xlabel('频率/Hz');ylabel('相位');通过上面的实例,我们可以看到,MATLAB可以很方便地实现最常见的傅里叶变换,并且提供了丰富的绘图功能来呈现变换结果。
MATLAB数字图像处理几何变换傅里叶变换.docx
Matlab数字图像处理实验指导实验目的:通过实验,深入理解和掌握图像处理的基本技术,提高动手实践能力。
实验环境:Matlab变成实验一图像的几何变换实验内容:设计一个程序,能够实现图像的各种几何变换。
实验要求:读入图像,打开图像,实现图像的平移变换、比例缩放、转宜变换、镜像变换、旋转变换等操作。
实验原理:图像儿何变换乂称为图像空间变换,它将一幅图像中的朋标位置映射到另一•幅图像中的新处标位査。
学习儿何变换的关键就是要确定这种空间映射关系,以及映射过程小的变化参数。
几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。
一个几何变换需要两部分运算:首先是空间变换所盂的运算,如平移、镜像和旋转等,需要川它來表示输出图像与输入图像Z间的(像素)映射关系;此外,述需耍使用灰度插值算法,因为按照这种变换关系进行计算,输出图像的像索可能被映射到输入图像的非整数坐标上。
设原图像f(xO,yO)经过几何变换产生的口标图像为g(xlYL),则该空间变换(映射)关系可表示为:xl=s(xO,yO)yl=t(xO,yO)其中,s(xO,yO)和t(xO,yO)为由f(xO,yO)到g(xl,yl)的坐标换变换函数。
一、图像平移图像平移就是将图像屮所有-的点按照指定的平移最水平或者垂肓移动。
二、 图像镜像镜像变换又分为水平镜像和垂肓镜像。
水平镜像即将图像左半部分和右半部分以图像竖 直中轴线为中心轴进行对换;而竖直镜像则是将图像上半部分和下半部分以图像水平中轴线 为中心轴进行对换。
三、 图像转置图像转置是将图像像索的x 坐标和y 坐标呼唤。
图像的大小会随Z 改变——高度和宽度 将呼唤。
原图像 10015020025050100 150 200 250 50100 150 200 250 图像平移50 100 150 200 250原图像 水平镜像原图像图像转蛊四、 图像的缩放图像缩放是指将图像大小按照指定的比率放大或者缩小。
MATLAB实验傅里叶分析
MATLAB实验傅里叶分析实验七 傅里叶变换一、实验目的傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。
通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。
MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。
本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。
二、实验预备知识1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介设x (t )是给定的时域上的一个波形,则其傅里叶变换为2()() (1)j ft X f x t e dt π∞--∞=⎰显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。
而傅里叶逆变换定义为:2()() (2)j ftx t X f e df π∞-∞=⎰因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。
由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使之符合电脑计算的特征。
另外,当把傅里叶变换应用于实验数据的分析和处理时,由于处理的对象具有离散性,因此也需要对傅里叶变换进行离散化处理。
而要想将傅里叶变换离散化,首先要对时域上的波形x (t )进行离散化处理。
采用一个时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1;可以实现上述目的,如图所示。
其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。
注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。
接下来对离散后的时域波形()()()(x t x t t n T x n T δ=-=的傅里叶变换()X f 进行离散处理。
matlab中离散序列的傅里叶变换
matlab中离散序列的傅里叶变换离散序列的傅里叶变换是信号处理中常用的方法之一,它可以将一个离散序列(数字信号)转换为频域表示。
在MATLAB中,我们可以使用fft函数来实现离散序列的傅里叶变换。
下面我将详细介绍傅里叶变换的原理和在MATLAB中的实现方法。
1. 傅里叶变换的原理傅里叶变换是数学中的一个重要工具,用于将一个信号从时域转换为频域。
在离散序列的情况下,傅里叶变换可以表示为以下公式:X(k) = Σ(x(n)e^(-j2πkn/N))其中,X(k)是变换后的频域表示,x(n)是原始序列,N是序列的长度,k是频域的索引。
2. 在MATLAB中进行离散序列的傅里叶变换在MATLAB中,我们可以使用fft函数来实现离散序列的傅里叶变换。
该函数的用法如下:Y = fft(X)其中,X是输入的离散序列,Y是傅里叶变换后的频域表示。
3. 实例演示接下来,我将通过一个具体的实例来演示在MATLAB中进行离散序列的傅里叶变换。
假设我们有一个长度为N的离散序列x,现在需要对它进行傅里叶变换。
首先,我们需要生成一个离散序列,并给出相关参数,如下所示:N = 100; % 序列长度fs = 1000; % 采样频率t = (0:N-1)/fs; % 时间向量f1 = 100; % 第一个正弦波频率f2 = 200; % 第二个正弦波频率x = sin(2*pi*f1*t) + sin(2*pi*f2*t); % 生成离散序列接下来,我们使用fft函数对离散序列进行傅里叶变换,并将结果保存在变量Y中:Y = fft(x);最后,我们可以绘制原始序列和傅里叶变换后的频域表示,如下所示:subplot(2,1,1);plot(t,x);xlabel('时间 (s)');ylabel('幅度');title('原始序列');subplot(2,1,2);f = (-N/2:N/2-1)*(fs/N);stem(f,abs(fftshift(Y)));xlabel('频率 (Hz)');ylabel('幅度');title('傅里叶变换');通过运行上述代码,我们可以得到原始序列和傅里叶变换后的频域表示的图像。
傅里叶变换的原理及matlab实现
傅里叶变换的原理及matlab实现课程名称:数字图像处理学院:信息工程与自动化学院专业:计算机科学与技术年级: 09级学生姓名: 111 指导教师: 1111日期: 2012-6-10教务处制一、傅立叶变化的原理; (3)(1)原理 (3)(2)计算方法 (3)二、傅立叶变换的应用; (3)(1)、频谱分析 (4)(2)、数据压缩 (4)(3)、OFDM (4)三、傅里叶变换的本质; (4)四、实验内容; (8)五、傅立叶变换方法; (8)六、实验结果及分析; (8)七、傅立叶变换的意义; (9)(1)、傅立叶变换的物理意义 (9)(2)、图像傅立叶变换的物理意义 (10)八、总结; (11)九.附录; (11)一、傅立叶变化的原理;(1)原理正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。
在此基础上进行推广,从而可以对一个非周期函数进行时频变换。
从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。
从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。
当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外,一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。
引入衰减因子e^(-st),从而有了Laplace变换。
(好像走远了)。
(2)计算方法连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。
连续傅里叶变换的逆变换 (inverse Fourier transform)为即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。
一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
matlab傅里叶变换
matlab傅里叶变换傅里叶变换(FourierTransform,简称FT)是一种将时间信号转换为频率信号的数学技术,通常用于分析时域信号的周期性和非周期性特征。
傅里叶变换把某一时间序列上的所有信号表示为存在不同频率下的幅度和相位量,从而使时间域中延时,普通滤波器都无法滤除的元素,成为在频域中可以通过简单的滤波器来实现的。
Matlab是一种高级技术计算语言,拥有广泛的应用和优异的计算性能,其具有许多内置的函数,可用于帮助用户完成各种复杂的数学任务,其中之一就是傅里叶变换的实现。
Matlab的傅里叶变换功能提供了一些很有用的算法可以帮助设计系统完成各种高级建模和分析。
例如,经典的FFT(快速傅里叶变换)算法,可以帮助设计者实现快速、准确的频域分析;非经典的傅里叶变换,可以更好地提取出实际信号中存在的频率分量。
Matlab还提供了一些其他特殊的傅里叶变换,如理论变换、傅立叶变换和谱比变换,其中可以实现复杂的信号测量和建模。
在实际的应用中,Matlab的傅里叶变换功能可以帮助用户解决许多复杂的信号处理和建模问题。
例如,在现代无线通信领域,FFT 算法可以用来实现多径衰落的测量;在航空航天工程中,分析某个特定的复杂信号时,傅立叶变换可以帮助找出其中的模式;而在计算机视觉技术中,谱比变换是用来识别图像中特定的模式等。
此外,Matlab也提供了一些用于傅里叶变换的工具,以帮助用户更好地实现复杂的信号处理问题。
例如,如果用户想使用傅立叶变换来进行信号分析,则可以借助于Matlab提供的傅立叶变换函数;如果用户想使用FFT算法来实现某种复杂的频域建模,则可以借助于Matlab提供的FFT函数;此外,还可以借助Matlab提供的其他内置函数来实现更复杂的信号处理问题,比如用来实现抽取、变量组合、数据滤波等等。
总之,Matlab提供的傅里叶变换功能可以极大地提高信号处理和建模的效率,而其内置的各种函数则使其应用更加广泛。
matlab实现傅里叶变换
一、傅立叶变化的原理;(1)原理正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。
在此基础上进行推广,从而可以对一个非周期函数进行时频变换。
从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。
从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。
当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外,一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。
引入衰减因子e^(-st),从而有了Laplace变换。
(好像走远了)。
(2)计算方法连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。
连续傅里叶变换的逆变换 (inverse Fourier transform)为即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。
一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
二、傅立叶变换的应用;DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。
需要指出的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算法,即快速傅里叶变换(快速傅里叶变换(即FFT)是计算离散傅里叶变换及其逆变换的快速算法。
)。
(1)、频谱分析DFT 是连续傅里叶变换的近似。
因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。
前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
8.2 二维傅立叶变换
1) 二维连续函数傅立叶变换(2DFT)
定义: 若f(x,y)是连续图像函数
正变换: F (u, v) f (x, y) exp j2 (ux vy)dxdy
反变换: f (x, y) F (u, v) exp j2 (ux vy)dudv
变换对: f (x, y) F(u, v)
18
幅度谱、相位谱、能量谱
一般F(u,v)是复函数,即:
F(u,v) R(u,v) jI(u,v) F(u,v) e j(u,v)
幅度谱: F(u, v) R2 (u, v) I 2 (u, v)
MN x0 y0
反变换:
M 1 N 1
f (x, y) F (u, v) exp[ j2ux / M vy / N ] u0 v0
20
8.3 二维傅立叶变换的性质
1) 可分离性:正反变换都具有分离性
21
1) 可分离性:正反变换都具有分离性
利用二维傅立叶变换的可分离性,可将二维DFT转化 成一维DFT计算。即,先在x(或y)方向进行一维DFT, 再在y(或x)方向进行一维DFT
6
7
8.1 一维傅立叶变换
1) 一维连续函数的傅立叶变换(FT)
定义:若函数满足狄里赫利(Dirichlet)条件: 1)具有有限个间断点; 2)具有有限个极值点; 3)绝对可积,
则下列变换成立:
傅立叶正变换: F (u)
f (x) exp j2uxdx
傅立叶反变换:
f ( x) F (u) exp j2uxdu
F (u)e j 2ux / M
x0
10
离散傅里叶变换及其反变换总存在。 用欧拉公式得 e j cos j sin
F(u)
1
M 1
f (x)[cos 2ux / M j sin 2ux / M ]
M x0
每个F(u) 由f(x)与对应频率的正弦和余弦乘积和组成;
u 值决定了变换的频率成份,因此,F(u)覆盖的域 (u值) 称为频率域,其中每一项都被称为FT 的频率
相位谱
(u)
arc tan
I (u) R(u)
功率谱 P(u) R2 (u) I 2 (u)
13
f(x)是一门函数,如图所示,它表示为:
f (x)
A 0
(0x X ) x0
求其傅立叶变换F(u)
14
解:
F (u) f ( x)e j 2uxdx
X Ae j 2uxdx
8
如果 f (x) 为实函数,傅立叶变换用复数表示:
F(u) R(u) jI(u)
用指数形式表示:
F(u) F(u) e j(u)
傅立叶谱:
相角: (u) arctg[ I (u) ]
R(u)
能量谱: E(u) F(u) 2 R2 (u) I 2 (u)
9
2) 一维离散傅立叶变换(DFT)
离散函数f(x)(其中x,u=0,1,2计,…算F,(Mu-)1:)的傅
立叶变换:
1) 在指数项中代入
u=0,然后将所有x
F (u)
1
M 1
值相加
f ( x)e j 2ux2/)M u=1,复对所有x
M x0
的相加;
3) 对所有M 个u 重
F(u)的反变换:
复此过程,得到完 整的FT。
M 1
f (x)
第8章 图像傅立叶 变换
学习重点
二维傅立叶变换的定义 二维傅立叶变换的性质 二维傅立叶变换matlab实现
2
学习内容
8.1 一维傅立叶变换 8.2 二维傅立叶变换 8.3 傅立叶变换的性质 8.4 matlab傅立叶变换的实现 8.5 傅立叶变换的应用简介
3
为什么要在频率域研究图像增强
可以利用频率成分和图像外表之间的对应关系。 一些在空间域表达困难的增强任务,在频率域 中变得非常普通。
分量。与f(x) 的“时间域”和“时间成份”相对应。
11
傅里叶变换将信号分成不同频率成份。类 似光学中的分色棱镜把白光按波长(频率) 分成不同颜色,称数学棱镜。
傅里叶变换的成份:直流分量和交流分量
12
傅立叶变换u)
频率谱
F (u) R2 (u) I 2 (u)
相位谱:
(u,
v)
tg
1
I (u, v) R(u, v)
能量谱: E(u, v) R2 (u, v) I 2 (u, v)
19
2) 二维离散傅立叶变换
定义: 若f(x,y)是离散图像函数,为M×N维大小(通常M=N), 则其傅立叶变换为:
正变换:
F (u, v)
1
M 1 N 1
f (x, y) exp[ j2 (ux / M vy / N )]
一旦找到一个特殊应用的滤波器,通常在空间 域采用硬件实现它
5
8.1 一维傅立叶变换
法国数学家傅立叶(生于1768年)在1822年出版的 《热分析理论》一书中指出:任何周期函数都可以表 达为不同频率的正弦和或余弦和的形式,即傅立叶级 数。
20世纪50年代后期,快速傅立叶变换算法出现,得到 了广泛的应用。
0
A
j 2u
e j 2ux
X 0
A e juX e juX e juX j 2u
A sin(uX )e juX u
15
对应的傅立叶谱为:
F (u) A sin(uX ) e juX u
AX sin(uX ) uX
16
简单函数的傅里叶谱M 点离散函数及其傅里叶频 谱(M=1024, A=1, K=8); 对应的傅里叶频谱
滤波在频率域更为直观,它可以解释空间域滤 波的某些性质
给出一个问题,寻找某个滤波器解决该问题, 频率域处理对于试验、迅速而全面地控制滤波 器参数是一个理想工具
4
为什么要在频率域研究图像增强
可以在频域指定滤波器,做反变换,然后在空 间域使用结果滤波器作为空间域滤波器的指导
一旦通过频域试验选择了空间滤波,通常实施 都在空间域进行
22
2) 平移性 公式(1):
23
2) 平移性:
公式(2):
f
(x
x0 ,
y
y0 )
F (u, v) exp
j
2
N
(ux0
vy0 )
24
2)平移性:
25
3)分配律:
26
3) 尺度变换(缩放):
27
5)旋转性
则: f ( , 0 ) F (, 0 )