定时器计数器的结构及工作原理

合集下载

定时计数器的结构与工作原理

定时计数器的结构与工作原理

定时器方式寄存器TMOD (不能按位寻址)
注意 TMOD只能以字节方式进行初始化
T1
T0
定时器方式寄存器TMOD (不能按位寻址)
振荡器
Tx端 TRx位 GATE位 01 INTx端
12 C/T=0
C/T=1
10
1&
≥1 与门
或门
计数器
控制=1 开关接通
TFx
申请 中断
GATE门控位: Timer可由软件与硬件两者控制 ▼ GATE = 0 ——普通用法
单片机的定时/计数器 -定时/计数器的结构与工作原理
秒表计时器
家用定时器ຫໍສະໝຸດ 智能计数器智能排插 计时器
定时/计数器的结构
▼ 2个16位计数器T0 (TH0、TL0)和T1 (TH1、TL1)——加1计数器 ▼ 8位特殊功能寄存器TMOD——选择定时/计数器的工作模式和工作方式 ▼ 8位特殊功能寄存器TCON ——控制定时器的启动与停止 ▼ 2个外部引脚T0(P3.4)和T1(P3.5)——接入外部计数脉冲
Timer的启/停由软件对TRx位写“1”/“0”控制
▼ GATE = 1 ——门控用法 (很少用到) Timer的启/停由软件对TRx位写“1”/“0” 和在INTx引脚上出现的信号的高/低共同控制
小 结
▼定时/计数器的内部结构与工作原理 ▼定时器控制寄存器TCON ▼定时器方式寄存器TMOD
D7
D0
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
▼ TFx: T0/T1计数溢出标志位。
=1 计数溢出; =0 计数未满 TFx标志位可用于申请中断或供CPU查询。
在进入中断服务程序时会自动清零; 但在查询方式时必须软件清零。

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理

80c51单片机定时器计数器工作原理80C51单片机是一种常用的微控制器,其定时器/计数器(Timer/Counter)是实现定时和计数功能的重要组件。

以下简要介绍80C51单片机定时器/计数器的工作原理:1. 结构:定时器/计数器由一个16位的加法器构成,可以自动加0xFFFF(即65535)。

定时器/计数器的输入时钟可以来自系统时钟或外部时钟源。

2. 工作模式:定时模式:当定时器/计数器的输入时钟源驱动加法器不断计数时,可以在达到一定时间后产生中断或产生其他操作。

计数模式:当外部事件(如电平变化)发生时,定时器/计数器的输入引脚可以接收信号,使加法器产生一个增量,从而计数外部事件发生的次数。

3. 定时常数:在定时模式下,定时常数(即定时时间)由预分频器和定时器/计数器的初值共同决定。

例如,如果预分频器设置为1,定时器/计数器的初值为X,那么实际的定时时间 = (65535 - X) 预分频系数输入时钟周期。

在计数模式下,定时常数由外部事件发生的时间间隔决定。

4. 溢出和中断:当加法器达到65535(即0xFFFF)时,会产生溢出,并触发中断或其他操作。

中断处理程序可以用于执行特定的任务或重置定时器/计数器的值。

5. 控制寄存器:定时器/计数器的操作可以通过设置相关的控制寄存器来控制,如启动/停止定时器、设置预分频系数等。

6. 应用:定时器/计数器在许多应用中都很有用,如时间延迟、频率测量、事件计数等。

为了充分利用80C51单片机的定时器/计数器功能,通常需要根据实际应用需求配置和控制相应的寄存器,并编写适当的软件来处理定时器和计数器的操作。

51单片机定时-计数器结构和计数器工作原理

51单片机定时-计数器结构和计数器工作原理
使用中断方式时对IE寄存器赋值开发中断
使TR0或TR1置位,启动定时/计数器
晶体振荡器的振荡信号从XTAL2端输入到片内的时钟发生器上,时钟发
生器是一个二分频触发器电路,它将振荡器的信号频率除以2,向CPU提供
了两相时钟信号P1和P2。时钟信号的周期称为机器状态时间S,它是振荡
周期的2倍。在每个时钟周期(即机器状态时间S)的前半周期,相位1(即
P1信号)有效,在每个时钟周期的后半周期,相位2(即P2信号)有效。
提供
用途:定时器和计数器
核心:加1计数器
原理:每来一个脉冲则加1计数器加1,当加到全1时再来一个脉冲使加
1计数器归零,同时加1计数器的溢出使TCON寄存器中的TF0(或TF1)
置1,向CPU发出中断请求
脉冲来
补充:
计数器工作原理:
用作计数器时,对T0或T1引脚的外部脉冲计数,如果前一个机器周期
采样值为1,后一个机器周期采样值为0,则说明有一个脉冲,计数器加
1。
在每个机器周期的S5P2期间采样引脚输入电平。新的计数初值于下一个
机器周期的S3P1期间装入计数器。
此种方式需要两个机器周期来检测一个1->0负跳变信号,因此最高的计
数频率为时钟频率的1/24。
S5P2:
S5P2指的是第5个时钟周期的相位2。
工作原理:13位计数器,使用TL0的低5位和TH0的高8位组成,TL0
的低5位溢出时向TH0进位。TH0溢出时发出中断请求。
方式1
计算公式:
最大计数:65536个机器周期
工作原理:16位计数器,TL0作为低8位,TH0作为高8位
方式2:自动重装初值的8位计数方式
计算公式:p.s.晶振频率必须选择12的整数倍,因为定时器的频率是晶振

单片机定时器与计数器

单片机定时器与计数器

定时器计数器原理及应用一、知识点1、定时器/计数器的结构2、定时器和计数器两种工作模式3、工作方式控制寄存器TMOD4、定时器/计数器控制寄存器TCON5、定时器/计数器的4种工作方式方式0:13位计数器方式1:16位计数器方式2:8位可自动重装初值方式方式3只适用于T0,T1不能工作在方式36、定时器/计数器的初始化及编程实现(1)设置TMOD寄存器(2)计算定时器T0的计数初值X(3)设置IE寄存器(4)启动和停止定时器7、定时器的单次最大定时时间:2M*12/晶振频率9、定时器应用(方式1、2;编程:中断方式、查询方式)10、计数器应用(方式1、2;编程:中断方式、查询方式)二、复习题(一)判断题1、在MCS-51单片机内部结构中,TMOD为模式控制寄存器,主要用来控制定时器的启动与停止。

(F)2、在MCS-51单片机内部结构中,TCON为控制寄存器,主要用来控制定时器的启动与停止。

(T)3、MCS-51单片机的两个定时器的均有两种工作方式,即定时和计数工作方式。

(T)4、MCS-51单片机的TMOD模式控制寄存器不能进行位寻址,只能用字节传送指令设置定时器的工作方式及操作模式。

(T)5、定时器/计数器T1于定时模式,工作于方式2,则工作方式字为20H。

(T)6、定时器/计数器T1于计数模式,工作于方式1,则工作方式字为50H。

(T)7、单片机8051的定时/计数器是否工作可以,通过外部中断进行控制。

(T)8、定时/计数器工作于定时方式时,是通过8051片内振荡器输出经12分频后的脉冲进行计数,直至溢出为止。

(T)9、定时/计数器工作于计数方式时,是通过8051的P3.4和P3.5对外部脉冲进行计数,当遇到脉冲下降沿时计数一次。

(T)10、定时/计数器在工作时需要消耗CPU的时间。

(F)11、定时/计数器在使用前和溢出后,必须对其赋初值才能正常工作。

(F)12、特殊功能寄存器SCON,与定时器/计数器的控制无关。

定时器 计数器的结构、特殊功能寄存器TMOD、TCON

定时器 计数器的结构、特殊功能寄存器TMOD、TCON
特殊功能寄存器tmod控制定时计数器的工作方式14定时器计数器的结构特殊功能寄存器tmodtcon工作方式控制寄存器tmod不可位寻址1gate门控位gate0以运行控制位tr启动定时器gate1以外中断请求信号imt0或int1启动定时器计数工作方式采用外部引脚的输入脉冲为计数脉冲3m1m0工作方式选择位m1m000方式0m1m001方式1m1m010方式2m1m011方式314定时器计数器的结构特殊功能寄存器tmodtcon定时器控制寄存器tcon可位寻址1tf0tf1计数溢出标志位当计数器计数溢出计满时该位置1查询方式时此位作状态位供查询软件清0
TC=1微秒
可见,初值越小,定时时间越长。
实验27 初值与定时时间的关系
因为 脉冲个数=溢出值-初值=216-初值 ①
计数脉冲的频率fc = 振荡频率fosc÷12
所以
定时时间=脉冲个数×计数脉冲的周期
=(216-初值)×1/计数脉冲的频率fc =(216-初值)×12/振荡频率fosc 由②式可得: … ②
5. 1-4 定时器/计数器的结构、特殊功பைடு நூலகம்寄存器TMOD、TCON
教学目的
1、单片机定时/计数器的结构及工作原理。 2、掌握初值的计算公式,理解初值、满值 和溢出值等概念。 3、掌握专用寄存器TMOD、TCON 。
教学重点
1、了解定时/计数器组成框图; 2、掌握定时/计数器的初值计算公式。
教学难点
1、GATE 门控位 GATE=0 以运行控制位TR启动定时器 GATE=1 以外中断请求信号(/IMT0或/INT1)启动定时器 2、C/T 定时方式或计数方式选择位 C/T=0 定时工作方式 C/T=l 计数工作方式(采用外部引脚的输入脉冲为计数脉冲) 3、M1、M0 工作方式选择位 M1、M0=00 方式0 M1、M0=01 方式1 M1、M0=10 方式2 M1、M0=11 方式3

定时器和计数器的工作原理 -回复

定时器和计数器的工作原理 -回复

定时器和计数器的工作原理-回复定时器和计数器都是常见的电子设备,用于测量时间和计数事件。

它们在多个领域得到广泛应用,包括计算机、通信、工业自动化等。

在本文中,我们将详细介绍定时器和计数器的工作原理,并逐步回答中括号内的问题。

一、定时器的工作原理:定时器是一种用于计量时间间隔的设备。

它通常由一个时钟源和一个计数器组成。

时钟源提供一个稳定的时钟信号,用于驱动计数器进行计数。

计数器通过不断累加时钟信号来测量时间间隔。

那么,定时器如何工作呢?我们可以从以下几个方面来解答:1. 时钟源选择:定时器的精度和稳定性与时钟源的选择有关。

常见的时钟源包括晶体振荡器、电压控制振荡器等。

时钟源的频率决定了定时器的计数速度和分辨率。

2. 计数器初始化:在开始计时之前,计数器需要进行初始化。

初始化可以将计数器的值设置为0,或者根据具体应用需求设置一个起始值。

3. 时钟信号计数:一旦计数器被初始化,它开始接受时钟信号,并不断累加。

每个时钟信号的到来,计数器的值就会增加1。

通过记录计数器的值,可以推算出已经经过的时间。

4. 计数器溢出:计数器是有限的,它的值通常是一个固定的位数。

当计数器的值超过它的最大值时,会发生溢出。

在溢出时,计数器会重新从0开始计数。

5. 测量时间间隔:通过记录开始和结束时计数器的值,我们可以计算出时间间隔。

例如,假设在计数器溢出前经过了n个时钟信号,每个时钟信号间隔t。

则总的时间间隔为n*t。

通过上述步骤,我们可以看到定时器是如何工作的,并能够测量出时间间隔。

接下来,我们将探讨计数器的工作原理。

二、计数器的工作原理:计数器是一种用于计数事件次数的设备。

它通过记录事件的发生次数来实现计数功能。

常见的应用包括频率测量、步进电机控制等。

下面是计数器的工作原理解释:1. 事件触发:计数器需要接收到一个事件信号来触发计数。

事件信号可以是外部信号,例如来自传感器的触发信号,或者是内部信号,例如时钟信号。

每当事件发生时,计数器的值就会增加1。

定时器和计数器的工作原理

定时器和计数器的工作原理

定时器和计数器是电子设备中常用的两种工作原理。

它们都是通过一定的逻辑电路或芯片来实现特定功能的,为各种应用提供了灵活且准确的计时和计数功能。

定时器的工作原理定时器的工作原理主要是基于计数器和比较器。

它通常由一个计数器和一个比较器组成。

计数器从零开始计数,当计数到设定的值时,比较器发出一个信号,触发相应的动作。

具体来说,定时器的输入信号是时钟信号,这个信号可以是系统的时钟信号,也可以是外部的输入信号。

当定时器接收到输入信号后,计数器开始计数。

当计数到设定的值时,比较器将输入信号与预设值进行比较,如果相等,则发出一个触发信号。

触发信号可以控制输出门的开启或关闭,从而控制输出信号的电平。

当定时器触发时,输出信号的电平会从低电平变为高电平,或者从高电平变为低电平。

这个输出信号可以用于控制其他电路或设备的工作。

计数器的工作原理计数器的工作原理主要是基于触发器的翻转和组合逻辑电路。

它通常由多个触发器和组合逻辑电路组成。

具体来说,计数器的输入信号是时钟信号,这个信号可以是系统的时钟信号,也可以是外部的输入信号。

当计数器接收到输入信号后,触发器开始翻转。

在每个时钟周期内,触发器都会翻转一次。

当触发器翻转到一定的次数后,组合逻辑电路会输出一个触发信号。

触发信号可以控制输出门的开启或关闭,从而控制输出信号的电平。

当计数器触发时,输出信号的电平会从低电平变为高电平,或者从高电平变为低电平。

这个输出信号可以用于控制其他电路或设备的工作。

在计数器中,每个触发器的状态都会被传递到下一个触发器,从而实现连续的计数。

计数器的计数值可以通过改变组合逻辑电路的连接方式来实现不同的功能和计数值。

总的来说,定时器和计数器的工作原理都是基于特定的逻辑电路或芯片来实现特定的计时和计数功能。

它们的应用范围广泛,可以用于各种电子设备中,如定时开关、定时报警器、计数器等。

单片机定时器与计数器的工作原理及应用

单片机定时器与计数器的工作原理及应用

单片机定时器与计数器的工作原理及应用摘要:单片机作为现代电子设备中广泛采用的一种集成电路,其内部包含了丰富的功能模块,其中定时器和计数器被广泛应用于各种领域。

本文将介绍单片机定时器和计数器的工作原理及应用,包括定时器的基本原理、工作模式和参数配置,以及计数器的工作原理和常见应用场景。

希望通过本文的阐述,读者能够深入了解单片机定时器和计数器的基本原理和应用,为电子系统设计提供参考。

引言:单片机作为嵌入式系统中的核心部件,承担着控制和处理各种信号的重要任务。

定时器和计数器作为单片机的重要功能模块,为实现各种实时控制任务提供了有效的工具。

定时器可以生成一定时间间隔的定时信号,而计数器则可以对外部事件的频率进行计数,实现时间测量和计数控制等功能。

一、定时器的工作原理单片机中的定时器通常为计数器加上一定逻辑控制电路构成。

定时器的基本工作原理是通过控制计数器的计数速度和计数值来实现不同时间间隔的输出信号。

当定时器触发时,计数器开始计数,当计数值达到预设值时,定时器产生一个输出信号,然后重新开始计数。

定时器通常由以下几个部分组成:1.计数器:定时器的核心部件是计数器,计数器可以通过内部振荡器或外部输入信号进行计数。

通常情况下,计数器是一个二进制计数器,它可以按照1、2、4、8等倍数进行计数。

2.预设值:定时器的预设值决定了定时器的时间间隔。

当计数器达到预设值时,定时器会产生一个输出脉冲。

3.控制逻辑电路:控制逻辑电路用于控制计数器的启动、停止和重置等操作。

通常情况下,控制逻辑电路由一系列的触发器和逻辑门组成。

二、定时器的工作模式定时器可以根据实际需求在不同的工作模式下运行,常见的工作模式有以下几种:1.定时工作模式:在定时工作模式下,定时器按照设定的时间间隔进行计数,并在计数值达到预设值时产生一个输出脉冲。

这种模式常用于周期性任务的触发和时间测量。

2.计数工作模式:在计数工作模式下,定时器通过外部输入信号进行计数,可以测量外部事件的频率。

单片机定时器计数器工作原理

单片机定时器计数器工作原理

单片机定时器计数器工作原理一、引言单片机作为嵌入式系统的核心部件,在工业控制、智能家居、汽车电子等领域中发挥着重要作用。

在单片机中,定时器和计数器是常用的功能模块,它们可以实现精确的定时控制和计数功能。

本文将详细介绍单片机定时器计数器的工作原理,以及其在实际应用中的作用。

二、单片机定时器和计数器概述单片机定时器和计数器是单片机内部的特殊功能模块,用于生成精确的时间延时和进行事件计数。

在单片机的内部结构中,定时器和计数器通常由定时/计数器模块和控制逻辑组成,通过寄存器配置和控制信号来实现各种定时和计数功能。

定时器和计数器通常包括以下几个重要的功能部分:1. 控制寄存器:用于配置定时器/计数器工作模式、计数模式、计数方向等参数。

2. 定时/计数寄存器:用于存储定时器/计数器的计数值,根据计数模式进行累加或递减。

3. 比较寄存器:用于存储比较值,用于与定时/计数器的计数值进行比较,从而触发相应的中断或输出信号。

定时器通常用于产生精确的时间延时,常用于生成精确的脉冲信号、PWM信号等。

而计数器则用于进行精确的事件计数,通常用于测量脉冲个数、计时等应用。

三、定时器和计数器的工作原理1. 定时器的工作原理定时器的工作原理主要分为定时/计数模式的选择、定时器计数器的递增和中断触发等几个方面。

在配置定时器工作模式时,可以选择不同的计数模式,包括定时器/计数器模式、分频器模式等。

通过配置控制寄存器和定时/计数寄存器,可以设置定时器的计数值和计数方向。

在定时器计数器的递增过程中,定时器会根据设定的计数模式和计数值进行递增,当达到比较寄存器中的比较值时,会触发相应的中断或输出信号。

这样就实现了定时器的定时操作。

2. 计数器的工作原理计数器的工作原理与定时器类似,同样涉及到计数模式的选择、计数器的递增和中断触发等几个方面。

在配置计数器工作模式时,同样可以选择不同的计数模式,通过配置控制寄存器和计数寄存器来设置计数器的计数值和计数方向。

定时器 计数器的工作原理

定时器 计数器的工作原理

定时器计数器的工作原理
定时器和计数器是电子设备中常见的两种功能模块。

它们可以分别完成精确计时和计数的任务。

定时器的工作原理是基于一个稳定的时钟源,通常是晶体振荡器。

时钟源会产生一个固定频率的周期性信号,这个信号频率可以根据系统需求进行调节。

定时器的主要组成部分是一个计数器和一些辅助逻辑电路。

计数器用于记录时钟脉冲的数量,根据计数值和时钟频率可以确定经过的时间。

辅助逻辑电路用于控制计数器的工作方式,例如开始计数、计数暂停、计数清零等。

当定时器启动后,时钟信号会连续地输入计数器。

每个时钟脉冲都会使计数器的计数值加1。

当计数器的计数值达到某个预先设置的目标值时,辅助逻辑电路会触发一个中断信号,以通知系统达到了设定的时间。

计数器的工作原理与定时器相似,但它主要用于计数任务,而不是计时。

计数器通常用于记录输入信号的脉冲数量,可以用来测量运动物体的速度、计算输入信号的频率等。

计数器也是由一个计数器和辅助逻辑电路组成。

计数器记录输入脉冲的数量,辅助逻辑电路用于控制计数器的工作方式,例如开始计数、计数暂停、计数清零等。

当计数器启动后,每个输入脉冲都会使计数器的计数值加1。

当计数器的计数值达到预先设置的目标值时,辅助逻辑电路会触发一个中断信号,通知系统完成了预定的计数任务。

总结起来,定时器和计数器都是基于时钟脉冲的工作,通过计数器记录时钟脉冲的数量来实现计时或计数的功能。

它们在很多电子设备中都有广泛的应用。

单片机定时器计数器工作原理

单片机定时器计数器工作原理

单片机定时器计数器工作原理单片机定时器计数器是单片机中非常重要的一个模块,它通常用于实现各种定时和计数功能。

通过定时器计数器,单片机能够精准地进行定时操作,实现定时中断、计数、脉冲生成等功能。

本文将详细介绍单片机定时器计数器的工作原理。

1. 定时器计数器的功能单片机定时器计数器通常由若干寄存器和控制逻辑组成,可以实现以下几种功能:- 定时功能:通过设置计数器的初始值和工作模式,可以实现一定时间的定时功能,单片机能够在计时结束时触发中断或产生输出信号。

- 计数功能:可以实现对外部信号的计数功能,用于测量脉冲个数、频率等。

也可以用于实现脉冲输出、PWM等功能。

- 脉冲发生功能:可以在一定条件下控制定时器输出脉冲,用于控制外部器件的工作。

2. 定时器计数器的工作原理定时器计数器的工作原理可以分为初始化、计数及中断处理几个基本环节。

(1)初始化:在使用定时器前,需要对定时器计数器进行初始化设置。

主要包括选择工作模式、设置计数器的初始值、开启中断等。

不同的单片机厂商提供了不同的定时器初始化方式和寄存器设置方式,通常需要查阅相关的单片机手册来进行设置。

(2)计数:初始化完成后,定时器开始进行计数工作。

根据不同的工作模式,定时器可以以不同的频率进行计数。

通常采用的计数源是内部时钟频率,也可以选择外部时钟源。

通过对计数器的频率设置和初始值的设定,可以实现不同的定时功能。

(3)中断处理:在定时器计数完成后,可以触发中断来通知单片机进行相应的处理。

通过中断服务程序,可以定时执行一些任务,或者控制一些外部设备。

中断服务程序的编写需要根据具体的单片机和编程语言来进行相应的设置。

3. 定时器计数器的应用定时器计数器广泛应用于各种嵌入式系统中,最常见的应用包括定时中断、PWM输出、脉冲计数、定时控制等。

可以利用定时器计数器实现LED呼吸灯效果、马达控制、红外遥控编码等功能。

在工业自动化、通信设备、电子仪器等领域也有着广泛的应用。

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理
定时器计数器是一种用于计算时间间隔的电子设备。

它通过内部的晶振、分频器和计数器等组件实现精确的计时功能。

工作原理如下:
1. 晶振:定时器计数器内部搭载了一个晶振,晶振的频率非常稳定,一般为固定的几十千赫兹。

2. 分频器:晶振的频率可能非常高,但计数器需要较低的频率进行计数,所以需要一个分频器将晶振的频率降低,得到一个更低的频率作为计数器的输入。

3. 计数器:分频器将得到的较低频率信号送入计数器,计数器会根据信号的脉冲个数来进行计数。

4. 触发器:计数器会将计数结果保存在一个触发器中,可以通过读取这个触发器来获取时间间隔的计数值。

5. 重置:当计数器达到设定的计数值后,会自动重置为初始状态,重新开始计数。

通过以上几个步骤的组合,定时器计数器可以实现精确的时间间隔计算。

可以根据不同的需求设置不同的晶振频率、分频器的分频倍数和触发器的位数,以实现不同精度的计数功能。

定时器计数器广泛应用于各种电子设备中,如计时器、时钟、
定时开关等。

它们都依赖于定时器计数器的准确计时功能,来实现精确的时间控制。

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理
定时器计数器工作原理是利用双色LED分别显示计数值的方法,实时记录时间。

定时器计数器通常由一个时钟信号源和一个计数寄存器组成。

首先,时钟信号源提供完整的周期性时钟信号,如晶振或外部脉冲源。

该信号被传输到计数寄存器中,开始计数。

计数寄存器是一个二进制寄存器,能够计数时钟信号的脉冲次数。

当计时器启动时,计数寄存器开始从初始值开始计数,然后每接收到一个时钟信号,计数值就会加一。

计数器通过一个高速时钟信号和一个除频器来控制计数频率。

除频器可以通过设置不同的分频比来改变计数频率,从而实现不同的计时精度。

双色LED用来显示计时值。

例如,一个红色LED用于表示小时位,一个绿色LED用于表示分钟位。

当计数器的值递增到下一个单位时,相应的LED会亮起,显示出当前的计数值。

通过以上步骤循环执行,定时器计数器可以实时记录时间,并在LED上显示出来。

这种设计简单、可靠,广泛应用于计时器、时钟等各种设备中。

定时器计数器的定时实验

定时器计数器的定时实验

定时器计数器的定时实验简介本文将介绍定时器计数器的定时实验,主要涉及定时器计数器的原理、使用方法以及实验步骤。

定时器计数器是一种常用的计时设备,广泛应用于各种计时场景。

定时器计数器的原理定时器计数器是一种能够精确计时的设备,它通常由一个可编程的时钟和一个计数器组成。

计数器根据时钟的脉冲信号进行计数,从而实现计时的功能。

定时器计数器的工作原理如下:1.初始化计数器:将计数器的初始值设置为0。

2.启动计数器:通过控制信号将时钟输入到计数器中,开始计数。

3.计数过程:计数器根据时钟的脉冲信号进行计数,每接收到一个时钟脉冲,计数器的值加1。

4.判断定时完成:当计数器的值等于设定的定时值时,表示定时完成。

5.停止计数器:定时完成后,停止时钟信号的输入,计数器停止计数。

定时器计数器的使用方法定时器计数器通常由软件通过编程的方式进行使用,具体方法如下:1.初始化定时器计数器:首先,需要将计数器的初始值设置为0,并且设定定时的时间。

2.启动计数器:通过控制信号将时钟输入到计数器中,开始计数。

3.监测计数器的值:在计数的过程中,可以通过查询计数器的值来获取当前的计时结果。

4.判断定时完成:当计数器的值等于设定的定时值时,表示定时完成。

5.停止计数器:定时完成后,停止时钟信号的输入,计数器停止计数。

实验步骤以下是一个简单的实验步骤,用于演示定时器计数器的定时功能:1.准备硬件:–打开开发板,并确保定时器计数器的引脚与外部设备连接正常。

–连接调试器,以便在实验过程中监测计数器的值。

2.编写代码:–在开发环境中,编写一段代码,完成实验的需求,包括初始化计数器、设定定时值等。

3.烧录程序:–将编写好的程序烧录到开发板中。

4.启动实验:–启动开发板,开始实验。

5.监测计数器的值:–在实验过程中,通过调试器监测计数器的值,以便实时了解计时结果。

6.判断定时完成:–当计数器的值等于设定的定时值时,表示定时完成,可以进行相关操作,如触发其他事件、输出提示信息等。

单片机中的定时器和计数器

单片机中的定时器和计数器

单片机中的定时器和计数器单片机作为一种嵌入式系统的核心部件,在各个领域都发挥着重要的作用。

其中,定时器和计数器作为单片机中常用的功能模块,被广泛应用于各种实际场景中。

本文将介绍单片机中的定时器和计数器的原理、使用方法以及在实际应用中的一些典型案例。

一、定时器的原理和使用方法定时器是单片机中常见的一个功能模块,它可以用来产生一定时间间隔的中断信号,以实现对时间的计量和控制。

定时器一般由一个计数器和一组控制寄存器组成。

具体来说,定时器根据计数器的累加值来判断时间是否到达设定的阈值,并在时间到达时产生中断信号。

在单片机中,定时器的使用方法如下:1. 设置定时器的工作模式:包括工作在定时模式还是计数模式,以及选择时钟源等。

2. 设置定时器的阈值:即需要计时的时间间隔。

3. 启动定时器:通过控制寄存器来启动定时器的运行。

4. 等待定时器中断:当定时器计数器的累加值达到设定的阈值时,会产生中断信号,可以通过中断服务函数来进行相应的处理。

二、计数器的原理和使用方法计数器是单片机中另一个常见的功能模块,它主要用于记录一个事件的发生次数。

计数器一般由一个计数寄存器和一组控制寄存器组成。

计数器可以通过外部信号的输入来触发计数,并且可以根据需要进行计数器的清零、暂停和启动操作。

在单片机中,计数器的使用方法如下:1. 设置计数器的工作模式:包括工作在计数上升沿触发模式还是计数下降沿触发模式,以及选择计数方向等。

2. 设置计数器的初始值:即计数器开始计数的初始值。

3. 启动计数器:通过控制寄存器来启动计数器的运行。

4. 根据需要进行清零、暂停和启动操作:可以通过控制寄存器来实现计数器的清零、暂停和启动操作。

三、定时器和计数器的应用案例1. 蜂鸣器定时器控制:通过定时器模块产生一定频率的方波信号,控制蜂鸣器的鸣叫时间和静默时间,实现声音的产生和控制。

2. LED呼吸灯控制:通过定时器模块和计数器模块配合使用,控制LED的亮度实现呼吸灯效果。

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理定时器计数器是嵌入式系统中常用的一种计时设备,它可以在特定的时间间隔内进行计数,并在达到设定值时触发相应的事件。

本文将介绍定时器计数器的工作原理及其在嵌入式系统中的应用。

定时器计数器通常由一个计数器和一组控制寄存器组成。

计数器用于存储计数数值,而控制寄存器则用于配置定时器的工作模式、计数间隔等参数。

在工作过程中,定时器计数器会根据设定的时钟频率不断递增计数值,当计数值达到设定的目标值时,定时器会产生一个中断请求或者触发一个输出信号,从而完成定时器的计时功能。

定时器计数器的工作原理可以分为两种基本模式,定时模式和计数模式。

在定时模式下,定时器会根据设定的时间间隔进行计数,并在计数完成后触发相应的事件;而在计数模式下,定时器会根据外部事件的触发进行计数,直到达到设定的计数值后触发相应的事件。

这两种模式可以根据具体的应用需求进行灵活选择,以满足不同的计时需求。

在嵌入式系统中,定时器计数器被广泛应用于定时中断、PWM输出、脉冲捕获等场景。

通过定时中断,系统可以在固定的时间间隔内进行任务调度和处理,实现实时性要求;而通过PWM输出,系统可以控制各种电机、灯光等设备的工作状态;此外,定时器计数器还可以用于脉冲捕获,实现对外部脉冲信号的精确计数和测量。

在实际应用中,定时器计数器的精度、稳定性和灵活性是非常重要的。

为了提高定时器计数器的精度,可以采用外部晶振或者时钟模块作为时钟源,以确保定时器计数的准确性;同时,合理选择定时器的工作模式和计数间隔,可以充分发挥定时器的灵活性和多功能性;此外,合理设计定时器中断服务程序,可以有效提高系统的实时性和稳定性。

总的来说,定时器计数器作为嵌入式系统中常用的计时设备,具有重要的应用价值。

通过深入理解定时器计数器的工作原理,合理配置定时器的参数,可以更好地发挥定时器的功能,满足系统对于定时和计时的需求,提高系统的稳定性和实时性。

同时,不断优化定时器计数器的设计和应用,可以为嵌入式系统的性能提升和功能拓展提供有力支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CPU 的字节传送指令来设定而不能用位寻址指令改变,
复位时各位状态为0。
第6章
定时器/计数器
控 制 T1 控 制 T0 M0 GATE C/T M1 M0
TMOD GATE (89H) C/T M1
TMOD各位的控制功能说明如 图6-2 定时器方式控制寄存器TMOD格式 下: (1) M0、M1:工作方式控制
第6章
定时器/计数器
6.1 定时器/计数器的结构及工作原理
6.1.1 定时器/计数器的结构 定时器/计数器T0、T1的逻辑结构如图6-1所示。
第6章
定时器/计数器
定 时 器 T1 (8DH) TH1 溢 出 启 动 溢 出 中断 TCON(88H) 启 动 (8BH) TL1
T1(P3.5)
定 时 器 T0 (8CH) TH0 (8AH) TL0
位。
(2) C/ T :模式控制选择位。 (3) GATE:
第6章
定时器/计数器
表6-1 T0、T1工作方式选择
M1 0 0 1 1 M0 0 1 0 1 工作方式 方式0 方式1 方式2 方式3 13位计数器 16位计数器 自动重装初值的8位计数器 T0:分为两个8位独立计数器;T1:停止计数 计数器功能
第6章
定时器/计数器
2.工作方式1 方式1时,定时器/计数器被设置为一个 16位加1的计数
器,该计数器由高 8 位 TH 和低 8 位 TL 组成。定时器 / 计数
器在方式 1 下的工作情况与在方式 0 下时的基本相同,差 别只是计数器的位数不同。
3.工作方式2
方式2时,定时器/计数器被设置成一个8位计数器 TL0(或TL1)和一个具有计数初值重装功能的8位寄存器 TH0(或TH1)。逻辑结构如图6-6所示。
第6章
定时器/计数器
晶振 P3.4/T0
÷ 12
C/T = 0 TL0 (8位 ) C/T =1 TF0
溢出中断
Байду номын сангаас
TR0 GATE P 3.2 / INT 0
&
≥1
1
TH0 (8位 )
图6-6 定时器/计数器T0在方式2下的逻辑结构图
第6章
定时器/计数器
4.工作方式3 定时器/计数器T0和T1在前三种工作方式下,其功
第6章
定时器/计数器
2.定时器控制寄存器TCON TCON是一个8位寄存器,用于控制定时器的启动/停
止以及标志定时器溢出中断申请。 TCON 的地址为 88H ,
既可进行字节寻址又可进行位寻址。复位时所有位被清 零。各位定义如图6-3所示。图中TR0和TR1分别用于控
制T0和T1的启动与停止,TF0和TF1用于标志T0和T1是
第6章
定时器/计数器
晶振 P3 .4 /T0
÷ 12
C/T = 0 TL0 TH0 ( 低 5 位 ) (8 位 ) C/T = 1 TF0
GATE
P 3.2 / INT 0
1
TR0
≥1
&
图6-5 定时器/计数器T0在方式0下的逻辑结构图
第6章
定时器/计数器
(1) 当C/ T =0时,T0选择为定时器模式,对CPU内部机器周期加1 计数,其定时时间为:T=(213-T0初值)×机器周期。 (2) 当C/ T =0时,T0选择为计数器模式,对T0(P3.4)脚输入的外 部电平信号由“1”到“0”的负跳变进行加1计数。 (3) 当GATE=0时,或门的另一输入信号 INT 0 将不起作用,仅用 TR0来控制T0的启动与停止。 (4) 当GATE=1时, INT 0 和TR0同时控制T0的启/停。只有当两者 都为“1”时,定时器T0才能启动计数。
=1 ≥1
1
T0 T1
TF 0 TF1
& 溢出中断
&
EA ET0
&
图6-4 T0和T1输入时钟与控制逻辑图
第6章
定时器/计数器
6.2.2 工作方式 1.工作方式0 方式 0 时,定时器 / 计数器被设置为一个 13 位的计数 器,这 13 位由 TH 的高 8 位和 TL 中的低 5 位组成,其中 TL中的高3位不用,如图6-5所示。
每个机器周期寄存器增1,即寄存器对机器周期计数。
第6章
定时器/计数器
6.2 定时器/计数器的控制
6.2.1 方式控制寄存器 1.工作方式寄存器TMOD 特殊功能寄存器 TMOD用于控制T0和T1的工作方式, 低4位用于控制T0,高4位用于控制T1,8位格式如图62 所示。 TMOD 的地址为 89H ,其各位状态只能通过
否产生了溢出中断请求,详细说明请参阅5.2节。
第6章
定时器/计数器
TCON TF1 位地址 8FH
TR1 8EH
TF0
TR0
IE1
IT1
IE0 89H
IT0 88H
8DH 8CH 8BH 8AH
见 第 5章 0: 停 T0计 数 ; 1: T0启 动 0: T0无 溢 出 ; 1: T0溢 出 中 断 0: 停 T1计 数 ; 1: T1启 动 0: T1无 溢 出 ; 1: T1溢 出 中 断
T0(P3.4)
CPU
工作方式
工 作 方 式 TMOD(89H)
图6-1 AT89C51定时器/计数器逻辑结构图
第6章
定时器/计数器
6.1.2 定时器/计数器的工作原理 定时器/计数器是一个二进制的加1寄存器,当启
动后就开始从所设定的计数初始值开始加1计数,寄存
器计满回零时能自动产生溢出中断请求。但定时与计 数两种模式下的计数方式却不相同,定时器模式时,
定时器/计数器
晶振
÷ 12
C/T = 0
TH0 (8位 ) TR1 TL0 (8位 ) C/T =1
TF1
中断
P3.4/T0 TR0 GATE P 3.2 / INT 0
TF0
中断
&
≥1
1
图6-7 定时器/计数器T0在方式3下的逻辑结构图
图6-3 定时器控制寄存器TCON各位定义
第6章
定时器/计数器
定时器 / 计数器 T0 和 T1 是在 TMOD 和 TCON 的联合控 制下进行定时或计数工作的,其输入时钟和控制逻辑 可用图6-4综合表示。
第6章
定时器/计数器
晶振
÷ 12
C/T TCON 0
TCON
P3.4/T0 P3.5/T1 TR0 /1 TCON GATE TMOD P 3.2 / INT 0 P3 .3 / INT1
能是完全相同的,但在方式3下,T0与T1的功能相差很
大。当T1设置为方式3时,它将保持初始值不变,并停 止计数,其状态相当于将启/停控制位设置成TR1=0,
因而T1不能工作在方式3下。当将T0设置为方式3时,
T0的两个寄存器TH0和TL0被分成两个互相独立的8位 计数器,其逻辑结构如图6-7所示。
第6章
相关文档
最新文档