光学教程第1章参考答案
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
物理光学基础教程第一章答案
物理光学基础教程第一章答案1. 人们对光的本性的认识经历了漫长而曲折的过程,很多物理学家为此付出了艰辛的努力。
下面的四个人物,在对光的认识方面分别做出了不同的贡献。
请按照历史发展的顺序将他们依次排列,其中正确的一组是()[单选题] *④①②③③④②①④③①②③④①②(正确答案)2. 在白炽灯的照射下从两块捏紧的玻璃板表面看到彩色条纹,通过狭缝观察发光的白炽灯也会看到彩色条纹,这两种现象() [单选题] *都是光的衍射现象前者是光的衍射现象,后者是光的干涉现象前者是光的干涉现象,后者是光的衍射现象(正确答案)都是光的干涉现象3. 如图,当用激光照射直径小于激光束的不透明圆盘时,在圆盘后屏上的阴影中心出现了一个亮斑。
这是光的()现象,这一实验支持了光的()。
[单选题] *干涉微粒说衍射波动说(正确答案)干涉波动说衍射光子说4. 关于下图中的三个图样分别是将激光照射在怎样的狭缝或孔隙上实现的?[单选题] *单缝衍射双缝干涉圆形小孔衍射单缝衍射双缝干涉圆形障碍物衍射双缝干涉单缝衍射圆形障碍物衍射双缝干涉单缝衍射圆形小孔衍射(正确答案)5. 下列各组电磁波,按波长由长到短正确排列的是() [单选题] *γ射线、红外线、紫外线、可见光红外线、可见光、紫外线、γ射线(正确答案)可见光、红外线、紫外线、γ射线紫外线、可见光、红外线、γ射线6. 下列所说的几种射线中,不属于电磁波的是() [单选题] *紫外线红外线α射线(正确答案)γ射线7. 卢瑟福通过对粒子散射实验结果的分析,提出() [单选题] *原子的核式结构模型(正确答案)原子核内有中子存在电子是原子的组成部分原子核是由质子和中子组成的8. 现已建成的核电站发电的能量来自于() [单选题] *天然放射性元素衰变放出的能量人工放射性同位素放出的能量重核裂变放出的能量(正确答案)化学反应放出的能量9. 如图为双缝干涉的实验示意图,若要使干涉条纹间距变大可改用波长()的单色光;或者使双缝与光屏之间的距离()。
高等光学教程-第1章参考答案
[Re E (r , t )][Re H (r , t )]
1 1 * j t * j t E 0 e j t E 0 H 0 e j t H 0 e e 2 2 1 Re E 0 H 0 e j 2 t Re E 0 H 0 2
ˆ。 1.6 求(1-201)式中所表示的表象之间的变换矩阵 F
解答:设偏振光表示为
1 E 0 X Y ˆE ˆ E Ep E x y x y 0 1
也可以表示为
~ ~ ~ ˆ ~ ˆ EL 1 ER 1 E p EL L ER R 2 j 2 j
令 则有
z vt , z vt
U U1 U 2 U1 U 2 U1 U 2 z z z z z
2U z2
2U 1 2U 2 2U 1 2U 2 2 2 z 2 2 z
因此
~ ~ Ex 1 1 1 E L ~ ~ 2 j j ER E y
1 1 ˆ 1 F j j 2
1.7 设一个偏振态与下列偏振态正交
cos J ( , ) j sin e
U1
r2
1 U 1 U 2 1 U 2 U 1 1 U 1 2U 1 U 2 1 U 2 2U 2 2 2 r r r r2 r 2 r r 2
2U 2 2
1 2 v2 t 2 (r f ) 之值。 v , t v t
光学教程课后习题解答
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nmλ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯=⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m-⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n dδ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:7050500100.1250.02r y cm d λ-∆==⨯⨯=由干涉条纹可见度定义:由题意,设22122A A =,即122A A =代入上式得5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
光学教程第1章_参考答案
忽略玻璃的厚度,则有n1=n2=1,进而有i1=i2=60°,
则
条纹宽度则为 ,
单位长度内的条纹数为
条
即每厘米长度内由10条条纹。
1.10在上题装置中,沿垂直于玻璃片表面的方向看去,看到相邻两条暗纹间距为1.4mm。已知玻璃片长17.9cm,纸厚0.036mm,求光波的波长。
1.14调节一台迈克耳孙干涉仪,使其用波长为500nm的扩展光源照明时会出现同心圆环条纹。若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离?若中心是亮的,试计算第一暗环的角半径。(提示:圆环是等倾干涉图样。计算第一暗环角半径是可利用 ≈ 及 ≈1- 的关系。)
解:略
1.15用单色光观察牛顿环,测得某一亮环的直径为3mm,在它外边第5个亮环的直径为4.6mm,所用平凸透镜的凸面曲率半径为1.03m,求此单色光的波长。
解:由牛顿环干涉可知
亮环半径满足的条件为 ,即 ,由题意可得
由上面两式得
所以 nm
1.16在反射光中观察某单色光所形成的牛顿环。其第2级亮环与第3级亮环间距为1mm,求第19和20级亮环之间的距离。
解:由牛顿环干涉可知,亮环半径满足的条件为 ,由题意可得 m
m2
mm
即第19级和第20级亮环之间的距离为0.322mm。
解:(1)图(b)中的透镜由A,B两部分胶合而成,这两部分的主轴都不在该光学系统的中心轴线上,A部分的主轴OA 在系统中心线下0.5cm处,B部分的主轴OB 则在中心线上方0.5cm处, 分别为A,B部分透镜的焦点。由于单色点光源P经凸透镜A和B后所成的像是对称的,故仅需考虑P经B的成像位置 即可。
光学第1章习题及答案
光学第1章习题及答案第一章习题答案1-1速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角为104- rad解:α粒子在实验室系及在质心系下的关系有:由此可得: ⎩⎨⎧=+=cc L cc c L v v v v vθθθθααααsin sin cos cos ①由此可得:uC CL+=θθθcos sin tan 其中u=αc cv v②()c e v m m v m +=αα0Θ0v m m m v ec +=∴αα③∵ce c c e v -=-=ααα 与坐标系的选择无关 ∴cec v v v-=α0④ 又∵0=+ce e v m vm αα ∴0v m m veceα-=代入④式,可得:v m m m v e ec αα+=由此可以得到:ecm m vvαα=代入②式中,我们可以ααc c v v v +=αc vce ve vcvαv得到:rad m m m m ec ec L 410cos sin tan -≈≤+=ααθθθ 证毕解法二:α粒子与电子碰撞,能量守恒,动量守恒,故有:⎪⎩⎪⎨⎧+'='+=e e v m v M v M v M mv Mv ρρρ222212121 ⎪⎪⎩⎪⎪⎨⎧='-='-⇒222e e v M m v v v Mm v v ρρρ e v m p ρρ=∆e p=mv p=mv ∴∆∆,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ∆≈-≈22e m v v v M∴⋅∆=有 212e p p Mmv ⋅∆=亦即: (2) (1)2/(2)得22422210e e m v m p Mmv M -∆===p 亦即:()ptg rad pθθ∆≈=-4~10 1-2(1)动能为5.00Mev 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0µm ,则上述入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射例子的百分之几? 解:(1)由库仑散射公式可得:b=2a cot 2θ=21Ee Z Z 02214πεcot 2θ=21⨯E Z Z 21⨯024πεe cot 4π=21⨯5792⨯⨯1.44⨯1=22.752 fm(2)在大于90°的情况下,相对粒子数为:⎰NdN '=nt(E Z Z 421⨯024πεe )2⎰Ω2sin4θd =tN MA Aρ(E Z Z 421⨯024πεe )2Ω⎰d ππθθπ242sinsin 2=9.4⨯105-1-1 试问:4.5MeV 的α粒子与金核对心碰撞的最小距离是多少?若把金核改为7Li 核,则结果如何?解:α粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为: r m=a=Ee Z Z 02214πε=E Z Z 21⨯024πεe =1.44⨯105-⨯5792⨯≈50.56 fmα粒子与7Li 核对心碰撞时,我们可以在质心系下考虑,此时α粒子与锂核相对于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:221v E C μ==mr e Z Z 02214πε+0=LLiLiE mm m+α其中LE =21mv 2为入射粒子实验室动能 由此可以得到mr =024πεe L E Z Z 21LiLim m m +α=3.02 fm1-4(1)假定金核的半径为7.0fm 试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm.解:仍然在质心系下考虑粒子的运动,由1-3题可知:EC=mr e Z Z 02214πε(1)对金核可视为静止,实验系动能与质心系动能相等,由此得到E=16.25MeV(2)对铝核,E=1.44⨯AlAl pmmm +⨯413=4.85MeV 1-5 动能为1.0MeV 的窄质子束垂直地射在质量厚度为1.5mg/cm 2的金箔上,计数器纪录以 60°角散射的质子,计数器圆形输入孔的面积为1.5cm ²,离金箔散射区的距离为10cm ,输入孔对着且垂直于射到它上面的质子。
光学教程第1章参考答案
光学教程第1章_参考答案光学教程第1章参考答案光学是研究光的传播、反射、折射、干涉和衍射等现象的科学。
光学是一门非常重要的学科,广泛应用于各个领域,包括物理学、化学、生物学、医学、通信等等。
本章主要介绍了光的基本性质和光的传播规律。
1. 光的基本性质光是一种电磁波,具有波粒二象性。
光波的波长和频率决定了光的颜色和能量。
光的传播速度是光在真空中的速度,约为每秒3×10^8米。
2. 光的传播规律光的传播遵循直线传播原则。
当光传播到介质边界时,会发生反射和折射现象。
反射是光从界面上反射回去,折射是光从一种介质传播到另一种介质中。
根据菲涅尔定律,入射角、反射角和折射角之间满足一定的关系。
3. 光的反射和折射光的反射是光从界面上反射回去的现象。
根据角度关系,入射角等于反射角。
光的折射是光从一种介质传播到另一种介质中的现象。
根据斯涅尔定律,入射角、折射角和两种介质的折射率之间满足一定的关系。
4. 光的干涉和衍射光的干涉是指两束或多束光波相遇时产生的干涉现象。
干涉可分为构造性干涉和破坏性干涉。
光的衍射是指光通过一个小孔或绕过一个障碍物后产生的衍射现象。
衍射使得光的传播方向发生偏转。
5. 光的偏振光的偏振是指光波中的电矢量在某一平面上振动的现象。
光的偏振可以通过偏振片来实现。
偏振片可以选择只允许某一方向的偏振光通过。
6. 光的吸收和散射光的吸收是指光能量被介质吸收并转化为其他形式的能量的现象。
光的散射是指光在介质中传播时与介质中的微粒发生相互作用,并改变光的传播方向的现象。
总结:光学是研究光的传播、反射、折射、干涉和衍射等现象的科学。
光的传播遵循直线传播原则,当光传播到介质边界时会发生反射和折射现象。
光的干涉是指光波相遇时产生的干涉现象,光的衍射是指光通过小孔或绕过障碍物后产生的衍射现象。
光的偏振是指光波中的电矢量在某一平面上振动的现象,可以通过偏振片来实现。
光的吸收是光能量被介质吸收并转化为其他形式的能量,光的散射是光在介质中传播时与介质中的微粒发生相互作用并改变光的传播方向的现象。
《光学教程》第三版 姚启钧答案
光学教程 第一章1.解: ∵λd r yyy jj 01=-=+∆∴ 409.010*******.018081≈⨯⨯=∆-y cm 573.010*******.018082≈⨯⨯=∆-y cm 又∵λd r j y 0= , 2=j ∴81210)50007000(022.01802)(-⨯-⨯⨯=-=∆λλd r j y≈0.327 cmor: 328.02212≈∆-∆=∆y y y cm2. 解: ∵ .0⎪⎭⎫ ⎝⎛=∆λd r y λd r j y 0= j=0,1 ∴ (1)cm 08.0104.604.050)01(5=⨯⨯⨯-=∆-y (2)4104.650001.004.020225ππλππϕ=⨯⨯⨯⨯=⋅=⋅=∆-r dy j(3) 2cos 412221ϕϕ-=-A I214A I =-412πϕϕ=-854.08cos 24cos 22≈==ππI Ip3.解:∵d n d nd )1(-=-=δ)22(πδλπϕ⋅==∆j而:λδj =∴cmmnjd46710610615.110651---⨯=⨯=-⨯⨯=-=λ4. 解:cm dry125.010500002.05080=⨯⨯==∆-λ23221222:943.023221221222212122121minmaxminmax21212=+=+=≈=+=⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛=+-==∴==III IVorAAAAIIIIVAAIIAI5. 解:λθsin2rlry+=∆()'18122.00035.0sin0035.01070001.0202180202sin=≈==⨯⨯⨯⨯+=∆+=∴--oyrlrθλθ6.解:(1)mmmm d r y 19.01875.0105002215007≈=⨯⨯⨯==∆-λ [利用2,220λδπδλπϕ-=⋅==∆y r d j 亦可导出同样结果。
] (2)图条)(1219.029.2)(29.216.145.3)(45.355.02)4.055.0()()()(16.195.01.14.055.0255.012212211≈=∆∆=∆=-=-=∆=∴≈⨯+=⋅+=+=≈=+⨯=+⋅==y l N mm p p p p l p p mm A a B C tg B C p p mm C A a B Btg p p θθ即:离屏中央1.16mm 的上方的2.29mm 范围内,可见12条暗纹。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=、7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== (0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-《()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)课后习题解答《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=7011180500100.4090.022r y cmd λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cmd λ-∆==⨯⨯=两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯=⑵由光程差公式210sin yr r d dr δθ=-==由题意,设22122A A =,即122A A=220.943V ==5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式()()()72sin 20180sin 700100.003522200.1r L y r r L r y λθθλ-+∆=++==⨯⨯=∆⨯⨯180sin 0.003560123.14θθ'≈=⨯⨯6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答欧阳学文第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》[姚启钧]课后习题解答
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)课后习题解答 - 百度文库《光学教程》(姚启钧)习题解答第一章光的干涉1 、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2 级亮纹位置的距离。
解:改用两种光第二级亮纹位置的距离为:2 、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第 1 亮条纹和中央亮纹之间的距离;⑵若 P 点离中央亮纹为问两束光在 P 点的相位差是多少?⑶求 P 点的光强度和中央点的强度之比。
解:⑴⑵由光程差公式⑶中央点强度:P 点光强为:3 、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4 、波长为的单色平行光射在间距为的双缝上。
通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:由干涉条纹可见度定义:由题意,设,即代入上式得5 、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角。
解:由菲涅耳双镜干涉条纹间距公式6 、在题 1.6 图所示的劳埃德镜实验中,光源 S 到观察屏的距离为,到劳埃德镜面的垂直距离为。
劳埃德镜长,置于光源和屏之间的中央。
⑴若光波波长,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域 P 1 P 2 可由图中的几何关系求得)解:由图示可知:①②在观察屏上可以看见条纹的区域为 P 1 P 2 间即,离屏中央上方的范围内可看见条纹。
7 、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。
已知肥皂膜折射率为,且平行光与法向成 30 0 角入射。
《光学教程》课后习题解答
单缝衍射花样最小值位置对应的方位满足:
则
11、以纵坐标表示强度,横坐标表示屏上的位置,粗略地画出三缝的夫琅禾费衍射(包括缝与缝之间的干涉)图样。设缝宽为,相邻缝间的距离为,。注意缺级问题。
12、一束平行xx垂直入射在每毫米条刻痕的光栅上,问第一级光谱的末端和第二光谱的始端的衍射角之差为多少?(设可见光中最短的xx波长为,最长的xx波长为)
⑵
5、(略)
6、高的物体距凹面镜顶点,凹面镜的焦距是,求像的位置及高度,(并作光路图)
解:
由球面成像公式:
代入数值
得:
由公式:
7、一个高的物体放在球面镜前处成高的虚像。求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜?
解:⑴
, 虚像
由
得:
⑵由公式
(为凸面镜)
8、某观察者通过一块薄玻璃板去看在凸面镜中他自己的像。他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起。若凸面镜的焦距为,眼睛距凸面镜顶点的距离为,问玻璃板距观察者眼睛的距离为多少?
解:每毫米条刻痕的光栅,即
第一级光谱的末端对应的衍射方位角为
第二级光谱的始端对应的衍射方位角为
13、用可见光()照射光栅时,一级光谱和二级光谱是否重叠?二级和三级怎样?若重叠,则重叠范围是多少?
解:光谱线对应的方位角:
即第一级光谱与第二级光谱无重叠
即第二级光谱与第三级光谱有重叠
由
即第三级光谱的的光谱与第二级光谱重叠。
解:⑴
⑵由光程差公式
⑶中央点强度:
P点光强为:
3、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。已知光波长为
光学教程叶玉堂第一章答案
1-4 一个玻璃球半径为R ,折射率为n ,若以平行光入射,当玻璃的折射率为何值时,会聚点恰好落在球的后表面上?解:如图所示,平行光入射经前表面折射成像,要会聚在后表面,则R l 2=' 代入物象关系式r n n l n l n -'=-'',其中-∞=l :R n R n 12-'=' 求得:2='n1-6 在一张报纸上放一个平凸透镜,眼睛通过透镜看报纸。
当平面朝着眼睛时,报纸的虚像在平面下12mm 处;当凸面朝着眼睛时,报纸的虚像在凸面下15mm 处,若透镜的中央厚度为20mm ,求透镜的折射率和凸球面的曲率半径。
解:当平面朝着眼睛时,凸面紧贴报纸,因此只有平面成像,如图(a )所示:mm l 20-=,∞=r ,1='n ,mm l 12-=' 代入物象公式r n n l n l n -'=-'':∞-=---n n 120121 求得:n =1.525当凸面朝着眼睛时,只有凸面成像,如图(b )所示:mm l 20-=,1='n ,mm l 15-=' 代入物象公式:r .525.1120525.1151-=---求得:r =-54.783 mmA1-9 一个直径为400mm 的玻璃球,折射率为1.52。
球内有两个小气泡,看上去一个恰好在球心,另一个从最近的方向去看,在球表面和中心的中间,求两气泡的实际位置。
解:∵通过球心的光线垂直于球表面出射或入射∴看上去在球心的气泡,其实际位置就是在球心。
另一个气泡像位于表面和中心的中间,球直径为400mm∴mm l 100212400-=⨯-=' 代入物象关系式r n n l n l n -'=-'':20052.1152.11001--=--l 求得:mm l 635.120-=∴另一个气泡的实际位置离球心的距离为:200-120.635=79.365 mm1-12 有一玻璃半球,折射率为1.5,半径为100mm ,其中的平面镀银。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答之巴公井开创作第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片拔出杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变成中央亮条纹,试求拔出的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题 1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离0r 为180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离。
解:相邻两个亮条纹之间的距离为m dry y y i i 29220110409.01050010022.010180----+⨯≈⨯⨯⨯⨯==+=∆λ若改用700nm 的红光照射时,相邻两个亮条纹之间的距离为m dry y y i i 29220110573.01070010022.010180----+⨯≈⨯⨯⨯⨯==+=∆λ这两种光第2级亮条纹位置的距离为m drj y y y nm nm 3922120500270021027.3]10)500700[(10022.0101802)(----==⨯≈⨯-⨯⨯⨯⨯=-=-=∆λλλλ1.2 在杨氏实验装置中,光源波长为640nm ,两狭缝间距d 为0.4mm ,光屏离狭缝的距离0r 为50cm.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若P 点离中央亮条纹0.1mm ,问两束光在P 点的相位差是多少?(3)求P 点的光强度和中央点的强度之比。
解:(1)因为λdr jy 0=(j=0,1)。
所以第1亮条纹和中央亮条纹之间的距离为m d r y y y 4932001100.810640104.01050)01(----⨯=⨯⨯⨯⨯=-=+=∆λ (2)因为021r ydr r -≈-,若P 点离中央亮纹为0.1mm ,则这两束光在P 点的相位差为41050104.0101.01064022)(22339021ππλπλπϕ=⨯⨯⨯⨯⨯⨯-=-≈-=∆----r yd r r(3)由双缝干涉中光强)](cos 1)[(A 2I(p)21p p ϕ∆+=,得P 点的光强为]22)[(A]221)[(A2)](cos1)[(A2I(p)212121+=+=∆+=ppppϕ,中央亮纹的光强为)(A4I21p=。
所以854.04]22[I(p)≈+=I。
1.3 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为600nm。
1.3把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为600nm。
解:在未放入玻璃片时,P点为第5级条纹中心位置,对应的光程差λδ512=-=rr(1)在加入玻璃片后,P点对应的光程差λδ0)]([12=-+-=drndr(2)由(2)式可得)1(12=-+--rrdn所以m100.615.1100.651567--⨯=-⨯⨯=-=ndλ1.4 波长为500nm的单色平行光射在间距为0.2mm的双狭缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度。
解:相邻两个亮条纹之间的距离为mdryyyii2932110125.010500102.01050----+⨯≈⨯⨯⨯⨯==+=∆λ因为I=A2,由题意可的212II=,所以212AA=由可见度的定义22121minmaxminmax)(12AAAAIIIIV+=+-=得943.02322122)(12222121≈=+⨯=+=AAAAV1.5 波长为700nm的光源与菲涅耳双镜的相交棱之间距离为20cm,棱到光屏间的距离L 为180cm,若所得干涉条纹中相邻亮条纹的间隔为1mm,求双镜平面之间的夹角θ。
解:因为λθsin2rlry+=∆,所以0035.010700101202)20180(2sin93=⨯⨯⨯⨯⨯+=∆+=--λθyrlr故两平面镜之间的夹角'122.0)0035.0(sin1=≈=-oθ。
1.6 在题1.6图所示的劳埃德镜实验中,光源S到观察屏的距离为1.5m,到劳埃德镜面的垂直距离为2mm。
劳埃德镜长40cm,置于光源和屏之间的中央。
(1)若光波波长λ=500nm,问条纹间距是多少?(2)确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域P1P2可由图中的几何关系求得。
)解:(1)屏上的条纹间距为mdryyyii493110875.110500102250.1---+⨯≈⨯⨯⨯⨯==+=∆λ(2)如图所示条)(1219.029.2)(29.216.145.3)(45.355.02)4.055.0()()()(16.195.01.14.055.0255.012212211≈=∆∆=∆=-=-=∆=∴≈⨯+=⋅+=+=≈=+⨯=+⋅==ylNmmpppplppmmAaBCtgBCppmmCAaBBtgppθθ即:离屏中央1.16mm的上方的2.29mm范围内,可见12条暗纹。
(亮纹之间夹的是暗纹) 1.7 试求能产生红光(λ=700nm)的二级反射干涉条纹的肥皂膜厚度。
已知肥皂膜折射率为1.33,且平行光与发向成30°角入射。
解:设肥皂膜的厚度为d,依题意可知,该干涉为等倾干涉。
2)12(sin2112λ+=-jinnd干涉相长,产生二级条纹,即j=0,1。
所以41070030sin133.11124sin129222122122-⨯⨯-+⨯=-+=oinnjdλm10104260-⨯=Or(设肥皂膜的厚度为d,依题意可知,该干涉为等倾干涉。
222sin2112λλδjinnd=+-=干涉相长,得2)12(2sin2112λλ-=-jinnd产生二级条纹,即j=1,2符合题意所以41070030sin133.11124sin129222122122-⨯⨯--⨯=--=oinnjdλm10104260-⨯=)1.8 透镜表面通常镀一层如Mg2F(n=1.38)一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射.为了使透镜在可见光谱的中心波长(550nm)处产生极小的反射,则镀层必须有多厚?解:因为n1<n<n2,反射光无附加光程差,所以上下两表面反射光的光程差2)12(cos22λδ+==jidn,(j=0、1、2…)产生干涉相消,此时透射光最强。
依题意可知,i2=0,j=0。
由2)12(cos22λδ+==jidn得cminjdo592210cos38.1410550)12(cos4)12(--≈⨯⨯⨯+⨯=+=λOr光程差2)12(2sin212212λλδ+=-=jinnd,(j=0、1、2…)产生干涉相消,此时透射光最强。
依题意可知,i1=0,j=0。
由2)12(sin212212λδ+=-=jinnd得cminnjd522291221210sin138.1410550)12(sin4)12(--≈-⨯⨯+⨯=-+=λ1.9 在两块玻璃片之间一边放一条厚纸,另一边相互压紧。
玻璃片l长10cm,纸厚为0.05mm,从60°的反射角进行观察,问在玻璃片单位长度内看到的干涉条纹数目是多少?设单色光源波长为500nm。
解:在薄膜的等厚干涉中,相邻干涉条纹的宽度所对应的空气劈的厚度的变化量为12122121221sin212]12[sin212]1)1(2[innjinnjdddjj-+--++=-=∆+λλ12122sin12inn-=λ忽略玻璃的厚度,则有n1=n2=1,进而有i1=i2=60°,则92229121221055060sin11210550sin12--⨯=︒⨯-⨯⨯=-=∆inndλ条纹宽度则为mhdllhddx3329101005.0101010500sin----=⨯⨯⨯⨯=∆=∆=∆=∆α,单位长度内的条纹数为100010113==∆=-xN条即每厘米长度内由10条条纹。
1.10 在上题装置中,沿垂直于玻璃片表面的方向看去,看到相邻两条暗纹间距为1.4mm。
已知玻璃片长17.9cm,纸厚0.036mm,求光波的波长。
解:由于时正入射,故i1=0,当出现暗纹时,有221222λλjnjd==,则出现相邻暗纹对应的空气膜的厚度差为21λ=-=∆+jjddd暗纹的间距为lhlhddx/2/sinλα=∆=∆=∆,即波长mlhx723310631.5109.1710036.02104.1/2----⨯=⨯⨯⨯⨯⨯=∆=λ1.11 波长为400-760nm的可见光正射在一块厚度为1.2×610-m,折射率为1.5玻璃片上,试问从玻璃片反射的光中哪些波长的光最强。
解:由于是正入射,故i1=0,依题意可知,该干涉为等倾干涉,上下两表面反射光的光程差为22222λλδjdn=-=(j=0、1、2……)干涉相长(加强)即2)12(22λ+=jdn,12102.712102.15.14124662+⨯=+⨯⨯⨯=+=--jjjdnλ当j=0时,mjdn1021072000124-⨯=+=λ当j=1时,m j dn 1021024000124-⨯=+=λ 当j=2时,1021014400124-⨯=+=j dn λm当j=3时,102107.1285124-⨯=+=j dn λm当j=4时,102108000124-⨯=+=j dn λm当j=5时,m j dn 102105.6545124-⨯=+=λ当j=6时,m j dn 102105.5538124-⨯=+=λ当j=7时,m j dn 102104800124-⨯=+=λ当j=8时,m j dn 102103.4235124-⨯=+=λ当j=9时,m j dn 102108.3789124-⨯=+=λ所以在可见光中,j=5、6、7、8,对应的波长为6545.5、5538.5、4800、4235.5埃。
1.12 迈克耳孙干涉仪的反射镜2M 移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长。
解:由迈克尔孙干涉仪干涉为等倾干涉,视场中每移动一个条纹,空气膜厚度改变量2λ=∆d ,由题意可知,视场中移过了909个条纹,故有以下关系成立2'λNd =∆,得55009091025.02'23=⨯⨯=∆=-N d λǺ1.13 迈克耳孙干涉仪平面镜的面积为4×42cm ,观察到该镜上有20个条纹。
当入射光的波长为589nm 时,两镜面之间的夹角为多大?解:由题意可知,迈克尔孙干涉仪产生的干涉为等厚干涉,相邻两个条纹之间的空气膜的厚度差为ααλ•∆≈∆==∆l l d sin 2,而N L l =∆,所以有2λα=N L ,得''4.3010422010589229=⨯⨯⨯⨯==--L N λα1.14 调节一台迈克耳孙干涉仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹。