基本人工鱼群算法

合集下载

人工鱼群算法1

人工鱼群算法1

人工鱼群算法实例
• 然后先进行追尾活动,每条鱼Xi都查看在自己可视域范围内 (即距离小于visual,visual根据搜索空间的大小而定)的 其它鱼,从中找到适应函数值最小的一个Xj ,其适应度函 数值记为Yj,Xj周围可视域内的其它个体数量记为nf,若 Yj*nf<δ*Yi (δ为拥挤度因子,此处取1),则表明Xj周围 “食物”较多且不太拥挤,这时Xi对每一个自己和Xj的不同 的位重新随机取值(例如Xi为1001,而Xj为1100,那么就 对Xi的第2,4位重新随机取值),从而向Xj靠近。追尾活动 若不成功,则进行聚群行为,每条鱼都先找出自己周围可 视域内的其它鱼,形成一个小鱼群,然后找出这群鱼的中 心点,这里中心点的确定方法是,若鱼群中半数以上的鱼 在第i位上取1,则中心点的第i位也为1,否则为0,接 着采用和前面相同方法查看中心点的“食物”是否较多, 是否拥挤,据此决定是行为(AF-follow)指鱼向其可视区域 内的最优方向移动的一种行为。人工鱼Xi搜 索其视野内所有伙伴中的函数最优伙伴Xj, 如果 Yj/ nf > δYi,表明最优伙伴的周围不太 拥挤,则Xi朝此伙伴移动一步,否则执行觅 食行为。
算法介绍 伪代码
• • • • • • • • •
算法介绍 代码
function [XXnext] = gmjprey(XX,Try_number,Visual,Step) pp=0; for j=1:Try_number XXj=XX+rand*Step*Visual; if(maxf(XX)<maxf(XXj)) XXnext=XX+rand*Step*(XXj-XX)/norm(XXj-XX); pp=1; break end end if(~pp) XXnext=XX+rand*Step; end

鱼群算法的介绍

鱼群算法的介绍
定义:视野范围visual=2.5,步长step=0.3,拥挤因子 δ =0.125,迭代次数为 100次,人工鱼的个数为50只。
无审视环节的实验效果图:公告板得 到的结果是(0.046247,0.005745) , f(x,y)max=0.9996。
有审视环节的实验效果图:公告板显 示的结果:(-0.023021,0.007922), f(x,y)max=0.9999。
2、聚群行为:搜寻视野范内的同伴,判断视野范围内的鱼群 中心的食物量是否比当前自己拥有的食物量多。如果多则往鱼群中心方 向移动,少则执行觅食行为。
3、追尾行为:搜寻视野范围内的同伴,找出拥有食物量最多 的个体。并判断拥有食物量最多的个体的周围是否有太多的鱼。如果少 则说明值得往食物量最多的鱼方向移动,如果太多则说明不值得向食物 量最多的鱼方向移动,还是自己找食物好(即执行觅食行为。)。(这 里的多和少是有拥挤因子决定的。)
如果 且Yv1<Yv2,表明伙伴Xv2的状态具有较高的食物浓度并且其周围不太拥挤,朝伙伴Xv2的方 向前进一步;否则执行觅食行为。如果 也执行觅食行为。
2.4 随机行为
随机行为:随机行为的实现比较简单,就是在视野中随机选择一个状态,然后向该方向移动,其实 它是觅食行为的一个缺省行为。根据所要解决的问题性质, 对人工鱼当前所处的环境进行评价,从 而选一种行为。较常用的评估方法是:选择各行为中使得向最优方向前进最大的方向,也就是各行 为中使得人工鱼的下一个状态最优的行为,如果没有能使下一个状态优于当前状态的行为,则采用 随机行为。
先提一下鱼群算法里面的各种参数: 1、visual 表示人工鱼的感知距离(即视野范围)。 2、step 表示人工鱼移动的最大步长。 3、 δ 表示拥挤因子 4、try—number是人工鱼在觅食行为中的移动次数。 5、friend—number表示人工鱼数量。

人工鱼群算法及其应用研究

人工鱼群算法及其应用研究

人工鱼群算法及其应用研究人工鱼群算法及其应用研究人工鱼群算法是近年来兴起的一种基于群体智能的优化算法,其灵感来源于鱼群觅食行为。

该算法通过模拟鱼群的觅食行为,以求解复杂的优化问题。

随着计算机技术的发展,人工鱼群算法受到广泛关注,并在多个领域得到应用。

本文将介绍人工鱼群算法的基本原理、应用情况以及存在的问题。

一、人工鱼群算法的基本原理人工鱼群算法中,鱼被模拟成具有觅食行为的个体,每条鱼都有一定的感知范围和特定的行为规则。

在觅食过程中,鱼会根据周围环境的信息对个体与群体的行为进行调整。

个体的行为规则包括觅食、逃避、追逐和交配等行为。

觅食行为主要包括鱼群个体的聚集和分散。

在算法中,每条鱼可以表示为一个解,将每个解表示为一个向量,向量的每个元素表示解的一个变量。

算法根据目标函数的值来评估每条鱼的适应度。

同时,算法会根据适应度值和鱼群中的信息进行个体的移动和调整。

通过多次迭代,鱼群逐渐趋于最佳解。

二、人工鱼群算法的应用研究人工鱼群算法在各个领域的应用研究日趋广泛。

以下将介绍几个典型的应用案例:1.优化问题求解人工鱼群算法在数学优化问题中有着广泛的应用。

例如,对于线性规划问题,可以将每个变量看作一条鱼进行建模,通过人工鱼群算法进行求解。

此外,该算法还被应用于网络流优化、组合优化、约束优化等多个领域的问题求解中,取得了较好的效果。

2.图像处理人工鱼群算法在图像处理中具有较强的适用性。

例如,在图像分割中,人工鱼群算法可以通过调整参数来达到图像分割的最佳效果。

此外,该算法还能够用于图像去噪、图像压缩等多个图像处理任务中。

3.路径规划人工鱼群算法在路径规划问题中的应用也较为广泛。

例如,对于无人驾驶车辆的路径规划问题,可以将人工鱼群算法应用于规划车辆的最短路径,并考虑到实时交通状况进行调整。

此外,该算法还可用于无线传感器网络中的路径规划问题、机器人的运动路径规划等多个领域。

三、人工鱼群算法存在的问题虽然人工鱼群算法在诸多领域有着广泛的应用,但也存在一些问题亟需解决。

人工鱼群算法(AFSA)及其简单应用举例

人工鱼群算法(AFSA)及其简单应用举例

+ 2.2 AFSA基本概念 + 假设在一个n维的目标搜索空间中,有N条组成一 + 个群体的人工鱼,每个人工鱼个体的状态可表示为 + 向量X=(x1,x2,……xn),其中xi(i=1,……n)为欲寻 + 优的变量:人工鱼当前所在位置的食物浓度表示为 + Y=f(X),其中Y为目标函数;人工鱼个体间距离表示 + 为 d=||Xi-Xj ||; visual表示人工鱼的感知范围,step + 为人工鱼移动步长,δ为拥挤度因子;trynumber + 表示人工鱼每次觅食最大试探次数。
6
8 10
x1
AFSA 迭 代 20次 8
+ 1.2 人工生命
+ 具有某些生命基本特征的人工系统。包括两方面 的内容:
+ 1、研究如何利用计算技术研究生物现象;
+ 2、研究如何利用生物技术研究计算问题。
+
+ 我们关注的是第二点。
+
如何利用生物技术研究计算问题是人工生命
研究的重要方向,现已有了很多源于生物现象的计
算技巧, 例如人工神经网络是简化的大脑模型,遗
+ 2.4 具体算法步骤 + 鉴于以上描述的人工鱼群行为,每条人工鱼探索 + 它当前所处的环境状况和伙伴的状况,从而选择一 + 种行为来实际执行,最终人工鱼集结在几个局部极 + 值周围。一般情况下,在讨论求极大问题时,拥有 + 较大的适应值的人工鱼一般处于值较大的极值域周 + 围,这有助于获取全局极值域,而值较大的极值区 + 域周围一般能集结较多的人工鱼,这有助于判断并 + 获取全局极值。具体的人工鱼群算法步骤如下:

人工鱼群算法的分析及改进

人工鱼群算法的分析及改进

1、引入动态调整策略
在AFSO算法中,随着迭代次数的增加,鱼群的全局最优解可能逐渐偏离真正 的最优解。这是由于在寻优过程中,鱼群可能会陷入局部最优陷阱。为了解决这 个问题,我们引入了动态调整策略,即根据算法的迭代次数和当前的最优解,动 态地调整鱼群的搜索范围和搜索速度。
2、增加随机扰动
在AFSO算法中,鱼群通常会向当前的全局最优解集中。这可能会导致算法过 早地陷入局部最优陷阱。为了解决这个问题,我们引入了随机扰动。即在每次迭 代时,随机选择一部分鱼,将其位置和速度进行随机扰动,以增加算法的探索能 力。
2、计算适应度:对于每一条鱼,计算其适应度函数值(通常是目标函数 值),这个值代表了这条鱼的“健康”状况。
3、比较适应度:将每条鱼的适应度与全局最优解进行比较,更新全局最优 解。
4、更新领头鱼:随机选择一条鱼作为领头鱼,然后根据一定的规则,如最 小距离规则,选择其他鱼跟随领头鱼。
5、更新鱼群:根据领头鱼的位置和行为,更新其他鱼的位置和行为。
4、多种群并行搜索:通过将搜索空间划分为多个子空间,并在每个子空间 中独立运行AFSA,我们可以实现多种群的并行搜索。这种并行搜索方法可以显著 提高算法的搜索速度和效率。
四、结论
本次演示对人工鱼群算法进行了详细的分析和改进。通过引入混沌理论、变 异机制和自适应调整参数等方法,我们可以有效地提高AFSA的全局搜索能力和效 率,避免算法过早地陷入局部最优解。多种群并行搜索方法也可以显著提高算法 的搜索速度和效率。这些改进方案为AFSA在实际应用中的广泛应用提供了有力的 支持。
感谢观看
3、引入学习因子
在AFSO算法中,每个鱼会根据自身经验和群体行为来调整自己的方向和位置。 然而,这个学习因子通常是固定的。为了提高算法的收敛速度和精度,我们引入 了可变的学习因子。即根据算法的迭代次数和当前的最优解,动态地调整学习因 子的大小。

人工鱼群算法

人工鱼群算法

5
算法旳收敛性分析
人工鱼群算法旳参数选用
视野(Visual ):因为视野对算法中各行为都有较大旳影响, 所以其变化对收敛性能旳影响也是比较复杂旳。当视野范围较小时 ,人工鱼群旳觅食行为和随机游动比较突出;视野范围较大时人工 鱼旳追尾行为和聚群行为将变得较突出。总体来看,视野越大,越 轻易使人工鱼发觉全局极值并收敛。所以对人工鱼旳视野进行合适 旳改善,是提升人工鱼群算法优化性能旳一种方向。
(4)δ:拥挤度因子,人工鱼群旳汇集规模; (5)Try-number:试探次数。人工鱼变化目前状态前旳尝试
次数,满足试探次数后,假如不满足变化状态旳条件, 则人工鱼需要根据规则选择下次行为继续寻优。
鱼群行为分析
这些行为在不同步刻会相互转换,而这种转换一般是鱼经过对环境旳感知来自主实现旳,这些 行为与鱼旳觅食和生存都有着亲密旳关系,而且与我们优化问题旳处理也有着亲密旳关系。
觅食行为
聚群行为
追尾行为
随机行为
鱼群算法在对以上四种行为进行评价后,自动选择合适旳行为,从而形成了一种高 效迅速旳寻优策略。
觅食行为
这是人工鱼旳一种趋向食物活动。一般经过视觉或味觉来感知水中旳食物量或浓度来
选择趋向。设人工鱼i旳目前状态为Xi,在其感知范围内随机选择一种状态Xj,则
X j Xi Visual Rand
尝试次数(Try-number):
尝试次数越多,人工鱼执行觅食行 为旳能力越强,收敛效率越高,但 在局部极值突出旳情况下,易错过 全局极值点,即人工鱼摆脱局部极 值旳能力越弱。所以,在一般优化 中,可合适增长尝试次数,以加紧 收敛速度;在局部极值突出旳情况 下,应降低尝试次数,增长人工鱼 随机游动旳概率。
其迅速到达食物点。即追尾行为是一种向邻近旳有最高适应度旳人工鱼追逐旳行为

基于多智能体系统的人工鱼群算法研究

基于多智能体系统的人工鱼群算法研究

基于多智能体系统的人工鱼群算法研究人工智能领域近年来发展迅速,多智能体系统(Multi-Agent Systems,MAS)作为其中一个研究重点,受到了越来越多的关注。

在MAS中,人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)是其中一个重要的算法,在优化问题、图像处理、机器学习等领域都得到了广泛应用。

本文将从多智能体系统的角度出发,对人工鱼群算法的研究进行探讨。

一、多智能体系统概述多智能体系统是由多个智能体组成的,这些智能体可以相互通信协作,完成一定的任务。

每个智能体都有自己的意识、思考、行动方式,即使不同智能体之间的行动策略可能有所不同,但是它们能够在一定程度上相互协调,实现共同的目标。

多智能体系统中的智能体可以包括机器人、无人机、传感器、计算节点等,它们之间通过信息交流和决策协作,共同完成一定的任务。

研究多智能体系统的目的不只是因为多智能体具有高度的自适应性和智能性,而且是因为多智能体系统中的协作是人工智能技术在现实世界中的应用之一,这与现实生活中智能化发展的趋势是一致的。

二、人工鱼群算法基础概念人工鱼群算法是基于生物群体智能的优化算法,模拟了鱼群跳跃寻优的行为。

在算法中,鱼个体通过觅食和聚群两种行为方式进行探测和搜索空间,以达到全局最优目标。

与传统遗传算法、粒子群算法、模拟退火算法等计算机智能算法相比,人工鱼群算法更加稳定、鲁棒和易于实现。

人工鱼群算法的基本流程如下:(1)初始化鱼群,确定群体大小和搜索空间范围;(2)根据目标函数,计算每个鱼个体的适应度值;(3)根据当前的适应度值,进行随机游动;(4)根据新位置,更新适应度值;(5)通过聚群行为相互交流学习,提升整个鱼群的性能。

三、基于多智能体系统的人工鱼群算法研究随着智能化技术的发展,多智能体系统的应用越来越广泛,而人工鱼群算法作为其中一个重要的算法,正在受到越来越多的关注。

在多智能体系统中,人工鱼群算法具有以下特点:(1)可以处理多约束优化问题,将局部探测和全局搜索的过程相互分离,提高了算法的收敛速度和搜索精度;(2)适用于不确定性较高的复杂环境下解决问题,例如路径规划、数据聚类等问题;(3)具有良好的鲁棒性,能够适应环境变化和噪声扰动;(4)能够自适应地调整参数,减少了手动调整的复杂性。

人工鱼群算法

人工鱼群算法

人工鱼群算法基本思想
首先放置36条鱼,每一条鱼分别位于每个格子的中心;依次对鱼执行觅食行为,确定鱼的下—步位置,36条鱼的下一步位置计算完以后,这个过程称为一轮;再执行下一轮的计算,直到鱼群的位置不再改变,算法结束。

算法的细节说明如下:
(1)格子的中心点有鱼表示当前格子内有一个以格子中心点为圆心半径为20 m的空洞。

(2)鱼的位置只能位于格子的中心点,鱼可以从当前格子走到其他任何—个格子的中心点上。

(3) 36条鱼的位置对应空洞的分布情况,空洞的分布确定后可以计算出波在98条线段上的传播时间(理论时间),进而得到理论时问与观测时间的误差,所以36条鱼的位置对应于—个误差。

当36条鱼的位置对应的空洞分布最逼近于空洞分布的真实情况时,得到的误差应是最小的;当误差最小时,此时鱼群位置被认为是真实的空洞位置。

(4)针对一条鱼而言,若它游到下—步后鱼群位置所对应的误差小于当前鱼群位置所对应误差,那么这条鱼就允许移到下一步。

(5)第i条鱼下一步的位置确定以后,第f+1条鱼的位置在第i条鱼下—步位置的基础上计算出来的,即第f+l条鱼的下一步位置依赖于第f条鱼的下一步位置。

本算法中鱼的行动不是同时进行的,而是依次序进行。

人工鱼群算法及其在一维下料问题中的运用

人工鱼群算法及其在一维下料问题中的运用

Y=f(X),其中Y为目标函数值;人工鱼个体的距离表示为di,j=//Xi-Xj//;
Visual表示人工鱼的感知距离;Step表示人工鱼的最大步长;δ为拥挤 度因子。 ② 觅食行为 设人工鱼的当前状态为Xi在其感知范围内随机选择一个状态Xj, 如果在求极大问题中,Yi<Yj(或在求极小问题中, Yi>Yj ,因极大 和极小问题可以互相转换,所以以下均以求极大问题讨论),则向该 方向前进一步;反之,再重新随机选择状态Xj,判断是否满足前进条 件;这样反复尝试try-number次后,如果仍不满足前进条件,则随机 移动一步。
觅食行为:这是生物的一种最基本的行为,也就是趋向食物的一种
活动;一般可以认为它是通过视觉或味觉来感知水中的食物量或浓度来 选择趋向的,因此,以上所述的视觉概念可以应用于该行为。 聚群行为:这是鱼类较常见的一种现象,大量或少量的鱼都能聚集 成群,这是它们在进化过程中形成的一种生存方式,可以进行集体觅 食和躲避敌害。 追尾行为:当某一条鱼或几条鱼发现食物时,它们附近的鱼会尾随 其后快速游过来,进而导致更远处的鱼也尾随过来。 随机行为:鱼在水中悠闲的自由游动,基本上是随机的,其实它们 也是为了更大范围的寻觅食物或同伴。
其中,初始状态X=(x1,x2,…,xn),随机状态Xv=(x1v,x2v,…,xnv)
则该过程可以表示如下:
上式中,Rand函数为产生0到1之间的随机数,Step为移动步长。 由于环境中同伴的数目是有限的,因此在视野中感知同伴的状态, 并相应的调整自身状态的方法与上式类似。
●鱼群行为分析
鱼类与我们的关系相当密切,也较为我们所熟知,通常我们可以 观察到如下的鱼类行为:
鉴于以上描述的人工鱼模型及其行为,每个人工鱼探索它当前 所处的环境状况(包括目标函数的变化情况和伙伴的变化情况),从 而选择一种行为,最终,人工鱼集结在几个局部极值的周围,一般 情况下,在讨论求极大问题时,拥有较大的AF_foodconsistence值的 人工鱼一般处于值较大的极值域周围,这有助于获取全局极值域, 而值较大的极值区域周围一般能集结较多的人工鱼,这有助于判断 并获取全局极值。

人工鱼群算法课件

人工鱼群算法课件

面临的挑战与问题
局部最优解
人工鱼群算法容易陷入局部最优解,导致搜索过程停滞不前。
参数设置
人工鱼群算法的参数设置对搜索结果影响较大,如何合理设置参数 是关键问题。
适用性问题
人工鱼群算法在处理大规模、高维度问题时性能下降,需要改进算 法以适应更复杂的问题。
解决方案与建议
混合优化算法
将人工鱼群算法与其他 优化算法结合,如遗传 算法、粒子群算法等, 以提高搜索性能。
03
人工鱼群算法的实现过程
初始化
随机初始化鱼群
在解空间中随机生成一定数量的鱼, 每条鱼代表一个潜在的解。
设置初始参数
包括最大迭代次数、视野范围、步长 等,这些参数对算法的性能和收敛速 度有重要影响。
行为模拟
觅食行为
01
每条鱼根据自身的感知能力在解空间中随机游动,寻找更优的
解。
聚群行为
02
根据鱼群中其他鱼的分布情况,判断是否聚集到中心区域,以
自适应参数调整
根据搜索过程动态调整 人工鱼群算法的参数, 以避免陷入局部最优解 。
强化学习
借鉴强化学习的思想, 通过与环境的交互不断 调整策略,提高搜索性 能。
THANK YOU
详细描述
多群体协同进化策略将问题划分为多个子问题,并为每个子问题分配一个独立的鱼群进行优化。每个鱼群采用不 同的优化策略和参数,以适应其对应的子问题的特性。通过多群体协同进化,算法能够同时从多个角度探索解空 间,提高全局搜索能力和收敛速度。
混合优化策略
总结词
混合优化策略结合了多种优化算法的优点, 以提高人工鱼群算法的性能。通过将不同的 优化算法与人工鱼群算法相结合,可以弥补 人工鱼群算法的不足,提高其求解复杂问题 的能力。

人工鱼群算法

人工鱼群算法
鱼类的活动中,觅食行为,聚群行为,追 尾行为和随机行为与寻优命题的解决有较密切的 关系,如何利用简单有效的方式来构造实现这些 行为将是算法实现的主要问题。
• 2.2 人工鱼的结构模型
人工鱼是真实鱼的一个虚拟的实体,用来进行
问题的分析和说明。
人工鱼就是一个封装了自
身数据和一系列行为的实体,
参数 数据
分别计算它们的目标函数值进行比较,如果发现Yj比Yi优 ,则Xi向Xj的方向移动一步;
否则,Xi继续在其视野内选择状态Xj,判断是否满足前进 条件,反复尝试Try-number次后,仍没有满足前进条件, 则随机移动一步使Xi到达一个新的状态。表达式如下:
2聚群行为Swarm():鱼在游动过程中为了保证自 身的生存和躲避危害会自然地聚集成群 。 鱼聚群时所遵守的规则:一是尽量向临近伙伴 的中心移动;二是避免过分拥挤。 人工鱼Xi搜索当前邻域内(dij <Vaisual)的伙 伴数目nf及中心位置Xc,若 Yc/ nf > δYi,表明伙 伴中心位置状态较优且不太拥挤,则Xi朝伙伴的 中心位置移动一步,
4 人工鱼群算法的寻优原理
人工鱼群算法在寻优的过程中,可能会集结在几 个局部极值域的周围,使人工鱼逃出局部极值域, 实现全局寻优的因素主要有: ① 觅食行为中重复次数较少时,为人工鱼提供了随机 移动的机会,从而可能跳出局部极值域 ② 随机步长使得人工鱼在前往局部极值的途中,有可 能转向全局极值 ③ 拥挤度因子限制了聚群的规模,使得人工鱼能够更 广泛的寻优 ④ 聚群行为能够促使少数陷于局部极值的人工鱼趋向 全局极值的人工鱼方向聚集,从而逃出局部极值 ⑤ 追尾行为加快了人工鱼向更优状态游动。
3)迭代终止条件
通常的方法是判断连续多次所得值的均方 差小于允许的误差;或判断聚集于某个区域 的人工鱼的数目达到某个比率;或连续多次 所获得的均值不超过已寻找的极值;或限制 最大迭代次数。若满足终止条件,则输出公 告牌的最有记录;否则继续迭代。

人工鱼群算法

人工鱼群算法

算法实现
▪ 鱼群中的每条人工鱼均为一组实数,是在给定范围内产生随机数组。例
如,鱼群大小为N,有两个待优化的参数 x,y,范围分别为[x1,x2]和
[y1,y2],则要产生一个2行N列的初始鱼群,每列表示一条人工鱼的两个参

Xi|n =0
Xj = Xi + rand()*Visual
n=n+1
NO
Yj/ nf > δYi,表明最优伙伴
的周围不太拥挤,则Xi朝此
伙伴移动一步:
否则,执行觅食行为
▪ 目标函数(即食物浓度函数)是用来求人工鱼当前位置的食物浓度,其实就是求给定变
量的函数值,例如计算以下函数的最大值:

f(x)=xsin(10π)+2.0 ,-1≤x ≤1
▪ 此时的食物浓度函数如下:
Xi
确定di,j < Visual 的伙伴数目nf 及其中Yj 最大
的伙食Xj
Y
n
j
> δYi
NO
f
YES
Xi|next =Xi + rand * Step *
X
|| X
j
j


X
X
i
i
||
Xi 进行觅食行为
人工鱼Xi搜索当前邻域
内( dij <Visual )的伙伴中
的函数Yj最优伙伴Xj,如果
0.618
觅食最大试探次数
100
移动步长
0.3
算法分析
在求极大值问题中: δ=1/(αnmax), α∈(0,1]
其中α为极值接近水平,nmax为期望在该邻域内聚集的最大人工鱼数目。
在求极小值问题中: δ=αnmax , α∈(0,1]

人工鱼群算法的简介及应用

人工鱼群算法的简介及应用

德州律师人工鱼群算法是根据鱼在水中寻找食物的行为演化而来。

我们知道,在鱼塘里对着某一区域撒下食物,不一会儿就会有大量的鱼儿集中过来,鱼儿在水中一般有觅食,聚群,追尾三种行为,以下是这些行为的描述:(1)觅食行为:鱼一般会呆在食物较多的地方。

一般在水里游的鱼,当它发现食物时,会向其游去。

(2)聚群行为:鱼在水中大多是群聚在一起,这样是为了能够更好的在水中生存,观察鱼群不难发现,鱼群中每条鱼之间都保持有一定的距离,而且它们会尽量保持方向一致,而外围的鱼也都是不断像中心的位置靠近。

(3) 追尾行为:在鱼群中,当一条鱼或者几条鱼发现食物时,其它的鱼也会尾随其快速的游到食物分布较多的地方。

1.人工鱼群算法原理1.1人工鱼群算法具的特点(1)收敛速度较快,可以用来解决有实时性要求的问题;(2)针对一些精度要求不高的情况,可以用来快速的得到一个可行解;(3)不需要问题的严格机理模型,甚至不需要问题的精确描述,这使得它的应用范围得以扩展。

1.2人工鱼群算法常用终止条件(1) 判断连续多次所得的均方差小于允许的误差。

(2)判断一些区域的人工鱼群的数量达到某个比率。

(3)连续多次所获取的值均不得超过已寻找的极值。

(4)迭代次数到达设定的最大次数1.3人工鱼群算法的基本流程人工鱼群算法演化到具体计算技术,具体流程如下:为两个体之间的距离,xp(v1,v2……vn)个体的当前位置,visual一只鱼的感知距离。

@拥挤度因子。

(1)觅食人工鱼当前位置为Xi,在可见域内随机选择一个位置Xj(d(ij) <=visual),如xj优于xi向xj前进一步,否则随机移动一步。

如出现不满足约束则剪去。

不变,else =随机(0,1)}。

(2)聚群:xi可见域内共有nf1条鱼。

形成集和KJi,,if KJi不为空,then(xjk属于kji),若:(FCc为中心食物浓度,FCi为Xi点食物浓度)则:向中心移动:X(i+1,k)=不变,当Xik=X(center,k)时,Xik=随机(0,1),当Xik!=X(center,k)时,若:FCc/n-[论文网]f1<@FCi则:进行觅食。

人工鱼群算法觅食行为算法流程

人工鱼群算法觅食行为算法流程

人工鱼群算法觅食行为算法流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!人工鱼群算法是一种基于动物行为的优化算法,它模拟了鱼群在觅食过程中的行为,通过个体之间的信息交互和协作来寻找最优解。

人工鱼群算法综述

人工鱼群算法综述

人工鱼群改进算法研究综述摘要:人工鱼群算法源于对鱼群运动行为的研究,是一种新型的群体智能随机全局优化算法,人工鱼群算法(AFSA)起步较晚,还存在着许多不足之处。

因此本文主要通过阐述鱼群算法的基本理论的同时,对人工鱼群算法的改进方法进行文献综述,并根据这些改进方法指出了人工鱼群算法未来的改进与研究方向。

关键词:人工鱼群算法算法改进综述1.引言1.1 人工鱼群算法的基本概念人工鱼群算法是李晓磊等[1]人于2002年提出的一种基于动物自治体[2-3]的优化方法,是集群智能思想[4]的一个具体应用,该算法根据水域中鱼生存数目最多的地方就是本水域中富含营养物质最多的地方这一特点来模拟鱼群的觅食行为而实现寻优。

它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工鱼个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度[5]。

人工鱼群算法主要利用鱼的三大基本行为:觅食、聚群和追尾行为,采用自上而下的寻优模式从构造个体的底层行为开始,通过鱼群中各个体的局部寻优,达到全局最优值在群体中凸显出来的目的[6]。

(1)觅食行为:这是鱼趋向食物的一种活动,一般认为它是通过视觉或味觉来感知水中的食物两或食物浓度来选择行动的方向[6]。

(2)聚群行为:大量或少量的鱼聚集成群,进行集体觅食和躲避敌害,这是它们在进化过程中形成的一种生存方式[6]。

(3)追尾行为:当某一条鱼或几条鱼发现食物时,它们附近的鱼会尾随而来,导致更远处的鱼也会尾随过来[6]。

人工鱼群算法就是通过模拟鱼类的觅食、聚群、追尾等行为在搜索域中进行寻优的。

1.2 人工鱼群算法的行为描述觅食行为:设置人工鱼当前状态,并在其感知范围内随机选择另一个状态,如果得到的状态的目标函数大于当前的状态,则向新选择得到的状态靠近一步,反之,重新选取新状态,判断是否满足条件,选择次数达到一定数量后,如果仍然不满足条件,则随机移动一步[6]。

人工鱼群算法1范文

人工鱼群算法1范文

人工鱼群算法1范文人工鱼群算法1范文人工鱼群算法的基本思想是通过模拟鱼群的觅食行为来解决优化问题。

在鱼群中,鱼的个体通过观察周围环境中的食物浓度来判断是否需要改变自己的位置,从而寻找到最优的食物源。

算法的整个过程可以分为两个阶段:觅食行为和迁徙行为。

首先,假设鱼群中的每个鱼体的位置和适应值都表示了一个解的性能,并且每个鱼体都具有自主觅食行为。

觅食行为中,鱼体根据自身周围的环境信息来判断是否需要改变自己的位置。

通过计算每个鱼体周围的食物浓度,可以评估出每个鱼体所处位置的适应值。

较高适应值的鱼体会更有可能吸引周围的鱼体,鱼体也会根据个体的适应值来决定是否跟随高适应值的鱼体。

迁徙行为是指鱼体通过移动来寻找更优的解。

迁徙行为中,鱼体会考虑自身记忆中的最优解,通过随机运动来新解,并与当前最优解进行比较,从而决定是否更新记忆中的最优解。

在过程中,鱼体会根据当前位置附近的环境信息决定下一步移动的方向和距离。

迁徙行为的目的是通过对当前最优解的探索和发现,提高整个鱼群的集体性能。

通过迭代觅食和迁徙,人工鱼群算法能够在优化问题中到相对较优的解。

算法通过模仿鱼群的觅食和迁徙行为,利用自适应性和感知能力来解决优化问题,从而能够在求解复杂问题时具有较好的性能。

人工鱼群算法的应用领域广泛,如图像处理、信号处理、机器学习、约束问题等。

在图像处理中,人工鱼群算法可以用于图像分割、图像压缩等问题,通过优化算法的能力,能够得到更优的图像处理结果。

在机器学习中,人工鱼群算法可以用于特征选择、模型优化等问题,能够提高机器学习算法的性能。

在约束问题中,人工鱼群算法可以用于求解约束优化问题,通过约束条件的考虑,能够得到满足约束的最优解。

综上所述,人工鱼群算法是一种简单而高效的启发式优化算法。

通过模拟鱼群的觅食和迁徙行为,能够在求解优化问题中获得较好的解。

人工鱼群算法的应用领域广泛,通过与其他算法的结合和改进,可以提高算法的性能和适应性,使其更加适用于不同的优化问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本人工鱼群算法摘要人工鱼群算法(Artificial Fish-Swarm Algorithm,AFSA)是由李晓磊等在2002年提出的,源于对鱼群运动行为的研究,是一种新型的智能仿生优化算法。

它具有较强的鲁棒性、优良的分布式计算机制易于和其他方法结合等优点。

目前对该算法的研究、应用已经渗透到多个应用领域,并由解决一维静态优化问题发展到解决多维动态组合优化问题。

人工鱼群算法已经成为交叉学科中一个非常活跃的前沿性学科。

本文主要对鱼群算法进行了概述,引入鱼群模式的概念,然后给出了人工鱼的结构,接下来总结出了人工鱼的寻优原理,并对人工鱼群算法的寻优过程进行仿真,通过四个标准函数选取不同的拥挤度因子进行仿真实验,证实了利用人工鱼群算法进行全局寻优确实是有效的。

关键词:人工鱼群算法;拥挤度因子;寻优0 引言动物在进化过程中,经过漫长的优胜劣汰,形成了形形色色的觅食和生存方式,这些方式为人类解决生产生活中的问题带来了不少启发和灵感。

动物不具备复杂逻辑推理能力和综合判断等高级智能,但他们通过个体的简单行为和相互影响,实现了群体的生存和进化。

动物行为具有以下几个特点。

(1)适应性:动物通过感觉器官来感知外界环境,并应激性的做出各种反应,从而影响环境,表现出与环境交互的能力。

(2)自治性:在不同的时刻和不同的环境中能够自主的选取某种行为,而无需外界的控制或指导。

(3)盲目性:单个个体的行为是独立的,与总目标之间没有直接的关系。

(4)突现性:总目标的完成是在个体行为的运动过程中突现出来的。

(5)并行性:各个个体的行为是并行进行的。

人工鱼群算法是根据鱼类的活动特点提出的一种基于动物行为的自治体寻优模式。

1 鱼群模式描述1.1 鱼群模式的提出20世纪90年代以来,群智能(swarm intelligence,SI)的研究引起了众多学者的极大关注,并出现了蚁群优化、粒子群优化等一些著名的群智能方法。

集群是生物界中常见的一种现象,如昆虫、鸟类、鱼类、微生物乃至人类等等。

生物的这种特性是在漫长的进化过程中逐渐形成的,对其生存和进化有着重要的影响,同时这些方式也为人类解决问题的思路带来不少启发和鼓舞。

因此,近年来有不少科学家对生物行为进行了广泛研究,并逐渐形成了一种基于生物行为的人工智能模式。

这种基于生物行为的人工智能模式与经典的人工智能模式是不同的,它不是采取自上而下的设计方法,而是采取自下而上的设计方法:首先设计单个实体的感知、行为机制,然后将一个或一群实体放置于环境中,让它们在与环境的交互作用中解决问题。

它是内嵌的、物化的、自治的、突现的。

一个集群通常定义为一群自治体的集合,他们利用相互直接或间接的通信,从而通过全体的活动来解决一些分布式难题。

在这里,自治体是指在一个环境中具备自身活动能力的一个实体,其自身力求简单,通常不必具有高级智能。

但是,它们的集群活动所表现出来的则是一种高级智能才能达到的活动,这种活动可以称为集群智能。

动物自治体通常指自主机器人或动物模拟实体,它主要用来展示动物在复杂多变的环境中能够自主产生自适应的智能行为的一种方式。

自治体的行为受到环境的影响同时每一个自治体又是环境的构成因素。

环境的下一个状态是当前状态和自治体活动的函数,自治体的下一个刺激是在环境的当前状态和其自身活动的函数,自治体的合理架构就是能在环境的刺激下做出最好的应激活动。

将动物自治体的概念引入鱼群优化算法中,采用自下而上的设计思路,应用基于行为的人工智能方法,形成一种新的解决问题的模式,因为是从分析鱼类活动而出发的,所以称为鱼群模式。

该模式用于寻优中,形成人工鱼群算法。

在一片水域中,鱼生存数目最多的地方一般就是该水域中富含营养物质最多的地方,依据这一点来模仿鱼群的觅食、群聚、追尾等行为,从而实现全局寻优,这就是人工鱼群算法的基本思想。

1.2 人工鱼的结构模型人工鱼(artificial fish,AF)是真实鱼的一个虚拟实体,用来进行问题的分析和说明。

人工鱼的结构模型和行为描述可以借助面向对象的分析方法,如图1.1所示。

可以认为人工鱼就是封装了自身数据和一系列行为的实体,可以通过感官来接收环境的刺激信息,并通过控制尾鳍来做出相应的应激活动。

图1.1 人工鱼的结构人工鱼所在的环境主要是问题的解空间和其人工鱼的状态,它在下一刻的行为取决于目前自身状态和目前环境状态,并且它还通过自身活动来影响环境,进而影响其他同伴的活动。

人工鱼对外界的感知是靠视觉来实现的。

生物的视觉是极其复杂的,为了实施的简单有效,在人工鱼的模型中应用如下方法实现虚拟人工鱼的视觉。

如图1.2所示,一条虚拟人工鱼当前状态为X ,Visual 为其视野范围状态v X 为其某时刻视点所在的位置,若该位置的状态由于当前状态,则考虑向当前位置方向前进一步,即到达状态next X ;若状态v X 不比当前状态更优,则继续巡视视野内的其他位置。

巡视的次数越多,对视野的状态了解的越全面,从而对周围的环境有一个全方位立体的认知,这有助于做出相应的判断和决策。

当然,对于状态多状态无限的环境也不必全部遍历,允许人工鱼具有一定的不确定性的局部寻优,从而对寻找全局最优是有帮助的。

StepVisualX XnextX2X1Xv图1.2 人工鱼视觉的概念 其中,状态()n x x x X ...,,,21=,状态()nv v v V x x x X ...,,,21=,则该过程可以表示如下: ()Rand Visual X X v •+=()X X X X v v next Rand Step XX ••+++=式中,Rand()函数为产生0到1之间的随机数;Step 为移动步长。

由于环境中同伴的数目是有限的,因此在视野中感知同伴(如图1.2中X1,X2等)的状态,并相应的调整自身状态,方法与上式类似。

通过模拟鱼类的四种行为——觅食行为、聚群行为、追尾行为和随机行为,来使鱼类活动在周围的环境。

这些行为在不同的条件下会相互转换。

鱼类通过对行为的评价,选择一种当前最优的行为进行执行,以达到食物浓度更高的位置,这是与鱼类生存有着密切关系的。

算法采用面向对象的技术重构人工鱼的模型,将人工鱼封装成变量和函数两部分。

变量部分包括人工鱼的总数N 、人工鱼个体的状态()n x x x X ...,,,21=(其中()n i x i ,...,2,1=为欲寻优的变量)、人工鱼移动的最大步长Step 、人工鱼的视野Visual 、尝试次数Try_number 、拥挤度因子δ、人工鱼个体i,j 之间的距离j i ij X X d -=。

函数部分包括人工鱼当前所在位置的食物浓度)(Y X f =(Y 为目标函数值)、人工鱼的各种行为函数(觅食行为Prey()、聚群行为Swarm()、追尾行为Follow()、随机行为Move()以及行为评价函数Evaluate())。

通过这种封装,人工鱼的状态可以被其他同伴所感知。

2 人工鱼的四种基本行为算法描述鱼类不具备人类所具有的复杂逻辑推理能力和综合判断能力等高级智能,它们的目的是通过个体的简单行为或通过简单行为而达到或突现出来的。

这里,对人工鱼定义了四种基本行为。

1.觅食行为这是人工鱼的一种基本行为,也就是趋向食物的一种活动,一般可以认为它是通过视觉或味觉来感知水中的食物量或浓度进而来选择趋向的,因此前面讲到的视觉概念可以应用于该行为。

行为描述:设人工鱼i 当前状态为i X ,在其感知范围内随机选择一个状态j X ()Rand V isual i •+=X X j (2.1) 式中,Rand()是一个介于0和1之间的随机数,如果在求极大值问题中,j Y <i Y ,则向该方向前进一步()1Rand Step X X X X X X ti j t i j t t i i ••--+=+()(2.2) 反之,再重新随机选择状态j X ,判断是否满足前进条件,反复尝试Try_number 次后,若仍不满足前进条件,则随机移动一步()X 1Rand Visual X t i ti •+=+ (2.3)伪代码描述如下:Float Artificial_fish::AF_prey(){For(i=0;i<trynumber;i++){Xj=Xi+Rand()*Visual; if(Yi<Yj)i j ji i next X X X X Step Rand X +-••+=()X /i ;ElseStep Rand X i next •+=()X /i}Return AF_fooodconsistence(next i /X );}2 聚群行为鱼在游动过程中会自然的聚集成群,这也是为了保证群体的生存和躲避危害而形成的一种生活习性。

鱼群的形成也是一种突现的生动实例,一般认为鸟类和鱼类聚群的形成并不需要一个领头者,只需每只鸟或每条鱼遵循一些局部的相互作用规则,然后集群现象作为整体模式从个体的局部相互作用中突现出来。

行为描述:自然界中鱼在游动过程中为保证群体的生存和躲避危害,会自然的聚集成群。

在人工鱼群算法中对每条人工鱼做如下规定:一是尽量向邻近伙伴的中心移动;二是避免过分拥挤,设人工鱼当前状态为i X ,探索当前领域内Visual d ij <的伙伴数目f n 及中心位置o X 。

若i f Y n δ>/Y c ,表明伙伴中心有较多食物且不太拥挤,则朝伙伴中心位置方向前进一步 ()X 1Rand Step X X X X X t i c t i c t it i ••--+=+ (2.4) 否则执行觅食行为。

伪代码描述如下:Float Artificial_fish::AF_swarm(){;0;0==c f X nfor(j=0;j<friend_number;j++){If(Visual d j i <,){f n ++;j c X =+X }fn n X =c X ; If(i fY n δ>c Y ); i c i i next X X X X Step Rand X +-••+=c /i ()X ; elseAF_prey();}Return AF_foodconsistence(next i /X );}3. 追尾行为鱼群在游动过程中,当其中一条鱼或几条鱼发现食物时,其邻近的伙伴会尾随其快速达到食物点。

行为描述:追尾行为是一种向邻近的有着最高适应度的人工鱼追逐的行为,在寻优算法中可以理解为是向附近的最优伙伴前进的过程。

设人工鱼i 当前状态为i X ,探索当前邻域内Visual d ij <的伙伴中j Y 为最大值的伙伴j X 。

若i f Y n δ>/Y j ,表明伙伴j X 的状态具有较高的食物浓度并且其周围不太拥挤,则朝j X 的方向前进一步 ()X j 1Rand Step X X X X X ti j t i ti t i ••--+=+ (2.5)否则执行觅食行为。

相关文档
最新文档